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Abstract: This paper presents a new optimization technique based on the hybridization of two
meta-heuristic methods, Jellyfish Search (JS) and Moth Flame Optimizer (MFO), to solve the Optimal
Power Flow (OPF) problem. The JS algorithm offers good exploration capacity but lacks performance
in its exploitation mechanism. To improve its efficiency, we combined it with the Moth Flame
Optimizer, which has proven its ability to exploit good solutions in the search area. This hybrid
algorithm combines the advantages of both algorithms. The performance and precision of the
hybrid optimization approach (JS-MFO) were investigated by minimizing well-known mathematical
benchmark functions and by solving the complex OPF problem. The OPF problem was solved by
optimizing non-convex objective functions such as total fuel cost, total active transmission losses,
total gas emission, total voltage deviation, and the voltage stability index. Two test systems, the
IEEE 30-bus network and the Mauritanian RIM 27-bus transmission network, were considered for
implementing the JS-MFO approach. Experimental tests of the JS, MFO, and JS-MFO algorithms
on eight well-known benchmark functions, the IEEE 30-bus, and the Mauritanian RIM 27-bus
system were conducted. For the IEEE 30-bus test system, the proposed hybrid approach provides
a percent cost saving of 11.4028%, a percent gas emission reduction of 14.38%, and a percent loss
saving of 50.60% with respect to the base case. For the RIM 27-bus system, JS-MFO achieved a
loss percent saving of 50.67% and percent voltage reduction of 62.44% with reference to the base
case. The simulation results using JS-MFO and obtained with the MATLAB 2009b software were
compared with those of JS, MFO, and other well-known meta-heuristics cited in the literature. The
comparison report proves the superiority of the JS-MFO method over JS, MFO, and other competing
meta-heuristics in solving difficult OPF problems.

Keywords: optimization; hybrid JS-MFO; power flow; hybrid method; grid

1. Introduction

Today, planners and operators in the field of electrical engineering are interested in
solving the Optimal Power Flow (OPF) problem as an important tool to determine the
optimal operating states of electrical power systems. This tool plays one of the most impor-
tant roles in modern power system operation and has received a lot of interest over recent
decades [1,2]. Furthermore, the problem of economic power generation can be evoked by
considering the security of the power system through simultaneously minimizing the total
fuel cost and the load bus voltage deviation as a mono-objective optimization problem [3].

In addition to economic and security issues, environmental safety is a major concern
that has attracted the attention of many researchers in the OPF field, where the objective
function to be minimized is given by the total quantity of pollutant gasses emitted from

Algorithms 2024, 17, 438. https://doi.org/10.3390/a17100438 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a17100438
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0009-0005-4888-8365
https://orcid.org/0000-0002-3340-4031
https://doi.org/10.3390/a17100438
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a17100438?type=check_update&version=1


Algorithms 2024, 17, 438 2 of 25

thermal generating units based on fossil fuel burning. In this case, the environmental
dispatch problem is evoked by considering the complex function of gas emission [4].

One of the OPF problems cited previously requires the optimal adjustment of power
system control variables, including active power from generating units, the voltage magni-
tude of the generating buses, the tap ratio of regulating transformers, and the generated
reactive powers from VAR compensators. The active power and voltage magnitude of
generating buses are continuous variables, while the tap settings of transformers and
reactive power from VAR compensators are discrete control variables, which yield to a
Mixed-Integer Nonlinear Programming (MINLP) optimization problem. Various classical
optimization methods have been applied in the literature to solve OPF problems, such as
the gradient-based method [5], linear programming, the Newton method, and the interior
point method [6], among others. These methods based on gradient concepts present some
drawbacks in dealing with MINLP and highly dimensional OPF problems, particularly
their convergence to a local minimum failing in achieving the global optimal solution with
highly nonlinear constraints and discontinuous objective functions. To overcome these
drawbacks, meta-heuristic optimization methods based on intelligent soft computing and
evolutionary algorithms have been developed, especially in recent decades, such as Genetic
Algorithms (GAs) [7], Particle Swarm Optimization (PSO) [8], Ant Colony Optimization
(ACO) [9], Artificial Bee Colony (ABC) [10], Gravitational Search Algorithm (GSA) [11],
Grey Wolf Optimizer (GWO) [12], Dragonfly Algorithm (DA) [13], Teaching–Learning-
based Optimization Algorithm (TLBO) [14], Firefly Algorithm (FFA) [15], Harris Hawks
Optimization [16], Turbulent Flow of Water-Based Optimization (TFWO) [17], and so on.
They have been successfully applied to solve MINLP-OPF problems without considering
the derivability and continuity of the objective functions and constraints.

The two main phases of a meta-heuristic algorithm that determine its performance
in achieving a global optimal solution are exploration and exploitation [18]. In the past
decade, various strategies have been developed to enhance the effectiveness of meta-
heuristic techniques by balancing these two phases, particularly when the technique shows
weaknesses in one of them. The first strategy focuses on improving the basic meta-heuristic
optimization algorithm by adjusting the parameters of the search equation that guide
exploration, exploitation, or both. In [19], a Modified Sine Cosine Algorithm (MSCA) is
introduced to address the issue of premature convergence in the basic SCA, with two key
modifications highlighted. The first modification involves replacing the existing linear
update mechanism in the standard SCA with a new nonlinear update mechanism. The
second modification adjusts the updated design variable of each agent to include an
average design variable between the current design variable of each agent and the best
current design variable. In [20], the author proposes an improved Whale Optimization
Algorithm (WOA) based on a Nonlinear Adaptive Weight and Golden Sine Operator
(NGS-WOA). First, NGS-WOA introduces a nonlinear adaptive weight, allowing search
agents to adaptively explore the search space and balance the exploration and exploitation
phases. Second, the improved Golden Sine Operator is integrated into the WOA. The
second strategy for improving the performance of meta-heuristics involves combining or
hybridizing two meta-heuristic techniques to leverage their strengths in managing both the
exploration and exploitation phases [18].

To improve the solution quality and speed up the convergence characteristics of meta-
heuristics-based OPF problems, various strategies using hybrid meta-heuristic techniques
have been proposed in the literature. In [21], a hybrid PSO and Pattern Search (PS) algorithm
named PSO-PS is considered to improve the OPF solution by merging the advantages of
both basic algorithms with the inclusion of FACTS devices. In [22], a combination of
Differential Evolution and Harmony Search algorithms (DE-HS) is elaborated to improve
the OPF solution by considering various scales of test systems. In [23], the authors proposed
a hybrid meta-heuristic optimization approach based on the Dragonfly Algorithm (DA) and
PSO to enhance the search capability to achieve the best global solution quality for solving
the single- and multi-objective OPF problems. As reported in [24], a new hybrid approach
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using the Firefly and PSO algorithms (HFPSO) has been applied to the OPF solution to
enhance the exploration and exploitation mechanisms with fast convergence to deal with
various complexities of the OPF problem. The recently published work in [25] presents a
novel hybrid optimization technique combining ABC and Salp Swarm Algorithms (SSAs)
named ABC-SSA to solve the Optimal Reactive Power Dispatch (ORPD) as a sub-problem
of OPF. The efficiency of ABC-SSA in balancing between exploration and exploitation
mechanisms has been proven for the large-scale test system IEEE 30-bus. The authors
of [26] developed a new hybrid fruit fly-based artificial bee colony (HFABC) algorithm to
solve single- and multi-objective OPF problems using a fuzzy decision-based mechanism
strategy to obtain the best compromise solution from the Pareto front. A Firefly and JAYA
Algorithm based on the hybrid evolutionary technique (HFAJAYA) is suggested in [27]
to solve the OPF problem by efficiently considering renewable energy sources. Various
scenarios in the standard IEEE 30-bus test system network have been implemented to
validate the simulation results of the HFAJAYA.

The Jellyfish Search optimizer (JS) algorithm is a modern meta-heuristic optimization
technique recently developed by Jui-Sheng Chou and Dinh-Nhat Truong [28] in 2020; it is
inspired by the behavior of jellyfish when looking for food in the ocean. The JSO reaffirms
its effectiveness by using a set of unimodal and multimodal benchmark functions and
various engineering problems. In [29], the JS optimizer algorithm was applied to solve the
economic load dispatch (ELD) in the electric power system.

In order to obtain the best solution quality for the OPF problem, this paper proposes a
new hybrid approach based on the JS and Moth Flame Optimization (MFO) algorithms. The
MFO algorithm was developed by Mirjalili in 2015 [30] and is inspired by the flying behavior
of moths with respect to the moon, as they can become trapped in spiral paths around
artificial lights. Later, a spiral function was proposed to enhance the MFO algorithm’s
performance, as in [31]. The JS optimizer shows an adequate search in the exploration stage,
but it suffers during the exploitation phase because it lacks a proficient exploitation operator
of the best solutions in the search space. Inversely, the MFO algorithm, by imitating the
flying spiral path performed by moths around flame lights, can be useful in the exploitation
phase by exploiting the best solutions; nevertheless, it can become trapped in local optima.
The main contribution issues can be summarized as follows:

• Providing a hybrid JS-MFO algorithm to associate the advantages of both the JS
optimizer in exploration and MFO in exploitation.

• The effectiveness of the proposed hybrid approach has been investigated by solving
various cases related to the OPF problem.

• Applications were carried out on two test systems, the IEEE 30-bus and the Maurita-
nian RIM 27-bus electric power systems, to verify the JS-MFO’s performance.

This is an assessment study based on comparing our simulation results with those of
other meta-heuristic methods reported in the literature.

The rest of the structure of this work is ordered as follows: Section 2 presents the
formulation of the OPF problem. The mathematical representation of the proposed op-
timization problem is given in Section 3. Section 4 provides the simulation results and
discussions. Finally, a brief conclusion is given in Section 5.

2. Optimal Power Flow Problem

A. Formulation of OPF problem
The OPF problem aims to determine the optimal adjustments of the control equip-

ment by assessing their optimal control variables in the power system network to obtain
an optimized objective function, while simultaneously guaranteeing various operating
restrictions. These restrictions are given by power flow equations as equality constraints
and the functional limits of control equipment are given as inequality constraints. The
most recognized objective function to be minimized in the OPF area is that of the total
generation cost, with various complexities, including the quadratic, non-quadratic, and
piecewise quadratic of the fuel cost function besides the valve point effects, affecting the
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fuel cost curves of the generating units [2,5,6]. In general, the conventional OPF problem
can be mathematically formulated as follows:

min f (x, u)
subject to : g(x, u) = 0

h(x, u) ≤ 0
(1)

where f is the objective function to be optimized, g is the set of equality constraints repre-
sented by the nonlinear power flow equations, h is the set of inequality constraints reflecting
the operating limits of control equipment, u is the vector of control variables, and x is the
vector of state variables. The vector u can be expressed as

u =
[

PG2 . . . .PGNg , VG1 . . . .VGNg, T1 . . . .TNt, QC1 . . . .QCNc

]T
(2)

Vector x is given as follows:

x =
[
PG1, VL1 . . . .VLNpq, QG1 . . . .QGNg, SL1 . . . .SLNl

]T (3)

The equality constraints represent the balance equations of the active and reactive
powers assigned to each bus, and the expression of g(x,u) can be formulated in terms of
control and state variables as follows:{

PGi − PDi − Vi∑
NB
j = 1Vj

(
Gijcosδij + Bijsinδij

)
= 0

QGi − QDi − Vi∑
NB
j = 1Vj

(
Gijsinδij − Bijcosδij

)
= 0

(4)

The inequality constraints expressed as h(x,u) are as follows:
Limits of Generators:
The capability constraints for each generation unit are presented for limiting the active

and reactive power outputs within the operational limits as follows:{
PGi,min ≤ PGi ≤ PGi,max

QGi,min ≤ QGi ≤ QGi,max
i = 1, . . . . Ng (5)

Similar to the power capability constraints, the voltage at the generator terminals is
kept within the minimum and maximum limits as follows:

VGi,min ≤ VGi ≤ VGi,max i = 1, . . . . Ng (6)

Limits of tap setting transformers:
In Equation (7), the transformer tap settings are kept between the accepted boundaries

that are able to control the voltage at the transformer terminals as follows:

Ti,min ≤ Ti ≤ Ti,max i = 1, . . . . Nt (7)

Limits of reactive power compensators:
Reactive power compensators are bounded in Equation (8) as follows:

QCi,min ≤ QCi ≤ QCi,max i = 1, . . . . NC (8)

Limits of voltage magnitude for load buses

VLi,min ≤ VLi ≤ VLi,max i = 1, . . . . NPQ (9)

Power flow limits of transmission lines:

SLi,min ≤ SLi ≤ SLi,max i = 1, . . . . Nl (10)
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To handle an inequality constraint of a state variable, a penalty function is introduced
in the augmented objective function as follows [6]:

Faug = f (x, u) + ∑Ns
k = 1λpk(xk − xlim

k )
2

(11)

where xk is the variable of the k-th violation of the state, xlim
k is the limit of the variable of

the k-th violation of the state, f (x,u) is the objective function, and λPk is the penalty factor
for the penalty function of the variable of the k-th violation of the state.

B. Objective functions:
The mono-objective optimization problem is considered for eight cases of objective

function f (x,u) in Equation (1):
Case 1: minimization of total fuel cost
The total cost of electrical power generation is expressed as an objective function

(quadratic function) [9] by:

f = FC = ∑Ng
i = 1Fi(PGi) = ∑Ng

i = 1(ai + biPGi + ciP2
Gi) (12)

where ai, bi, and ci are the cost coefficients of the i-th generating unit.
Case 2: minimizing total gas emissions
The gasses emitted by each generating unit can be expressed as a combination of

the quadratic and exponential functions of the generated active power [10], and the total
amount of gas emissions produced by all generating units:

f = FEm = ∑Ng
i = 1(αi + βiPGi + yiP2

Gi + δiexp(εiPGi)) (ton/h) (13)

where FEm is the total gas emissions (ton/h) and αi, βi, γi, δi, and εi are the emission
coefficients of the i-th unit.

Case 3: minimization of total fuel cost considering the valve point effect
A sine component is added to the expression of the objective function in (12) to

consider the effect of the valve point to evaluate the total fuel cost as follows [11]:

f = FC = ∑Ng
i = 1Fi(PGi) = ∑Ng

i = 1(ai + biPGi + CiP2
Gi + fvpi) (14)

where fvpi = |di · sin [ei(PGi,min − PGi)]|, while ei and di are the fuel cost coefficients of the
since component.

Case 4: minimization of total active losses
The total active transmission losses for the power system can be expressed as an

objective function:

f = FPlosses = ∑Nl
K = 1gk

[
V2

i + V2
j − 2ViVj cos(δi − δj)

]
(15)

where gk is the conductance of the k-th transmission line between buses i and j.
Case 5: minimization of the total load bus voltage deviation
This optimization case is devoted to the minimization of total voltage magnitude

deviation related to load buses with the goal of enhancing power system security; the total
voltage deviation function for all load buses is given by:

f (x, u) = FVD = ∑NPQ
k = 1|VLk − 1| (16)

Case 6: improvement of voltage stability index
The stability of a power system is its capacity to maintain all bus voltages within nor-

mal limits. The power system reaches a voltage instability state due to severe perturbations,
rising electric load, or network configuration changes, which occasions a progressive and
unexpected voltage drop. The improvement of the system voltage stability for each bus is
a fundamental measure to ensure a safe and stable power system using voltage stability



Algorithms 2024, 17, 438 6 of 25

(L-index). Its value varies between 0 and 1 (0 corresponds to a zero-load situation, while
1 means a voltage drop). If the power system has NPQ load buses (PQ buses) and NPV
generator buses (PV buses), the L-index is evaluated by [32,33]:

Lj =

∣∣∣∣∣1 − ∑NPV
i = 1Fji

VGi
VLj

∣∣∣∣∣ j = 1, 2, . . . , NPQ (17)

where VGi is the complex voltage of the generation bus i and VLj is the complex voltage of
the load bus j.

Fji = −[YLL]
−1·[YLG] (18)

where the sub-matrices YLL and YLG have been obtained from the YBUS matrix after rear-
ranging nodal current injections with respect to nodal voltages, as defined as:[

IL
IG

]
=

[
YLLYLG
YGLYGG

][
VL
VG

]
(19)

The maximum value Lmax of Lj among all load buses is a system stability indicator
that can be considered as an objective function presented in the following expression:

FLmax = max(Lj) where j = 1, 2, . . . . . . , NPQ (20)

Case 7: quadratic total fuel cost function and load bus voltage deviation
Minimizing both the total cost of fuel in (6) and the total voltage deviation in (14)

to achieve the economical and secure state of the power system, these two functions are
introduced in one objective function, as stated in the following expression:

f = FCVD =
(
∑Ng

i = 1ai + biPGi + ciP2
Gi

)
+ YVD × FTVD (21)

where YVD is a weighting factor, which is selected as 100.
Case 8: quadratic total fuel cost function and voltage stability index
In order to reduce the total fuel cost and improve the voltage stability of the system

simultaneously, the two objective functions in (6) and (13) are implemented into a single-
objective function, formulated as follows:

f = FLmax =
(
∑Ng

i = 1ai + biPGi + ciP2
Gi

)
+ YL × FLmax (22)

The selected value of the weighting factor YL is 6000.

3. Mathematical Representation of the Optimization Technique

A. Jellyfish Optimization Algorithm:
The main inspiration of the JS algorithm is the search behavior of jellyfish for food

sources in the ocean, considering their intelligent movement behavior when detecting the
best location of aliments [28]. Three rules are adopted in JS modeling:

• Two types of jellyfish movement can be handled by the time control mechanism:
moving in the jellyfish swarm or following the ocean current.

• When searching for food sources in the ocean, jellyfish move in an attractive manner
towards the best locations of nutrients.

• The quantity of food found by jellyfish and its location correspond to the objective
function of the problem and the corresponding solution, respectively.

(a) Ocean current
The ocean current includes a considerable amount of food sources, and jellyfish

are drawn to its flow. In such a case, the jellyfish update their positions based on the
following equation:
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Xi(t + 1) = Xi(t) + rand(0, 1)µ(X∗ − β × rand(0, 1)), i = 1, 2, 3, Npop (23)

where X∗: the current best global position of jellyfish in the swarm, rand(0, 1): the uniform
random number in the interval [0, 1], µ: the mean location of all jellyfish, and β: the
distribution coefficient.

The determination of β and the ocean current direction are given in [28], with β = 3
referring to numerical tests. Xi(t) and Xi(t + 1) are the jellyfish positions at the iterations t
and (t + 1), respectively, and Npop: the number of jellyfish.

(b) Jellyfish swarm
In swarms, jellyfish show passive (type A) and active (type B) motions. In the begin-

ning when the swarm is created, jellyfish exhibit the passive motion type (A). Over time,
they increasingly exhibit a type B motion. Type A motion is the motion of jellyfish around
their own locations, and the consistent updated location of each jellyfish is given by:

Xi(t + 1) = Xi(t) + γ × rand(0, 1)× (Ub − Lb) (24)

In order to simulate type B motion, a jellyfish (j) is selected randomly, other than the
current jellyfish (i), and a distance vector is formed between jellyfish (i) and jellyfish (j) to
establish the step and the direction of the movement. When the quantity of food at the
location of the selected jellyfish (j) exceeds that at the location of the jellyfish (i) of interest,
the latter moves toward the former; it moves directly away from it if the quantity of food
available to the selected jellyfish (j) is lower than that available to the jellyfish of interest (i).
So, each jellyfish moves toward a better direction to find the food in a swarm [28]. This
behavior can be simulated by the following equations:

−−→
Step = Xi(t + 1)− Xi (25)

where −−→
Step = rand (0, 1)×

−−−−−→
Direction (26)

−−−−−→
Direction =

{
Xj(t)–Xi(t) i f f (Xi) ≥ f

(
Xj

)
Xi(t)− Xj(t) i f f (Xi) < f

(
Xj

) (27)

Here, f is an objective function of location X, and hence the active motions (type B) are
accomplished using the following expression:

Xi(t + 1) = Xi(t) +
−−→
Step (28)

A control parameter, time control mechanism, is employed to switch between the
passive and active types of motion. It can also be used to manage the movement of jellyfish
in the direction of the ocean current.

(c) Time control mechanism
At each level of changes in wind or temperature, the jellyfish change their positions

to another ocean current and a new jellyfish swarm is created. Inside this swarm, the
jellyfish favor the passive motion type A in the beginning of the search phase. Over time,
the jellyfish begin to prefer active motion (type B). In order to simulate this behavior, a
time control mechanism is introduced by regulating the movement, switching between
jellyfish moving in a swarm and following the ocean current. This time control mechanism
is modeled as a time control function, which randomly fluctuates over the time between 0
and 1. Equation (29) formulates the time control function as below:

C(t) =

[(
1 − t

MaxIt

)
× (2 × rand(0, 1)− 1)

]
(29)
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where MaxIt is the maximal number of iterations and rand is a random number in the
interval [0, 1].

(d) Initialization of population
The initial population of jellyfish is generated randomly. To obtain more diversifica-

tion of the population, a logistic map is developed, which provides more diverse initial
populations than random selection and provides a lower probability of premature conver-
gence [28]. Consequently, the logistic map can be used in the initial population based on
the following:

Xi+1 = η × Xi × (1 − Xi) with 0 ≤ Xo ≤ 1 (30)

where Xi is the chaotic logistic value of the location of the i-th jellyfish, Xo is used to generate
the initial population of jellyfish, and the parameter η is set to 4.

(e) Restriction of boundaries
During the swarm movement, jellyfish can move outside of the boundaries of the

search space; in this case, the location is updated by returning to the opposite bound,
referring to Equation (31):{

X′
i,d = (Xi,d − Ub,d) + Lb(d) i f Xi,d > Ub,d

X′
i,d = (Xi,d − Lb,d) + Ub(d) i f Xi,d < Lb,d

(31)

where Xi,d is the location of the i-th jellyfish in the d-th dimension; X′
i,d is the updated

location after checking the boundary constraints; and Ub,d and Xb,d are the upper and lower
bounds of the d-th dimension in search spaces, respectively.

B. Moth Flame Optimization Algorithm
As insects, moths share important characteristics with butterflies. The navigation

strategy used by moths is a particularly intriguing aspect of their behavior and deserves
closer examination. To cover great distances in a straight line, they fly at a fixed angle
relative to the moon. This efficient technique is known as transverse orientation [30]. The
distance from the light source substantially affects the efficacy of transverse orientation.
When the light source is close, the moth spirals around it. This spiral flight path guides the
moth to light [31]. The Moth Flame Optimization method was introduced by Mirjalili [30]
based on observed behaviors and mathematical models. This method employs moths as
potential solutions and their locations are presented as a decision variable vector, allowing
each moth to move freely within the problem’s solution space.

MO =


mo1,1mo1,2 . . . . . . . . . . . . . . . . . . . . . . . ..mo1,D−1mo1,D
mo2,1mo2,2 . . . . . . . . . .. . . . . . . . . . ....mo2,D−1mo2,D

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
moNPOP−1,1moNPOP−1,2 . . . . . . . . . ..moNPOP−1,D−1moNPOP−1,D

moNPOP ,1moNPOP ,2 . . . . . . . . . . . . . . . ..moNPOP ,D−1moNPOP ,D

 (32)

where NPOP is the initial population size of moths and D denotes the number of decision
variables. The flame matrix is another fundamental element of the MFO algorithm. Given
that each moth exhibits a tendency to navigate in close proximity to its individual flame, it
may be inferred that the sizes of the flame matrix are the same as those of the moth’s matrix.

Fl =


Fl1,1Fl1,2 . . . . . . . . . . . . . . . . . . . . . . . ..Fl1,D−1Fl1,D
Fl2,1Fl2,2 . . . . . . . . . .. . . . . . . . . . ....Fl2,D−1Fl2,D

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
FlNPOP−1,1FlNPOP−1,2 . . . . . . . . . ..FlNPOP−1,D−1FlNPOP−1,D

FlNPOP ,1FlNPOP ,2 . . . . . . . . . . . . . . . ..FlNPOP ,D−1FlNPOP ,D

 (33)

The distinction between a moth and a flame is based on their respective roles within a
problem-solving context. The moth actively engages in a search process, using its flight
capabilities to explore various options in order to identify more optimal solutions. In
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contrast, the flame represents the most optimal solution that has been discovered so far by
the moth. To illustrate the helical flight trajectory of moths in proximity to a certain light
source, a logarithmic spiral function is used [31].

MOx+1
i = |MOx

i − Fli|·ebv· cos(2πv) + Fli (34)

where v represents a uniformly distributed random variable ranging from −1 to 1. This
parameter quantifies the proximity of the moth’s subsequent location to the associated
flame. To improve the efficiency of exploring the solution space during the first iterations
and exploiting the solution space during the final iterations, an adaptive approach is
suggested to decrease the parameter t throughout the iterations [31].

a = −1 + t
(

−1
MaxIt

)
(35)

v = (a − 1)× rand + 1 (36)

The constant, a, exhibits a linear reduction from −1 to −2 during the iterative process.
This well-constructed temporal change ensures both exploration and exploitation in the
MFO algorithm.

C. Hybrid Jellyfish Search–Moth Flame Optimizer (JS-MFO)
In the artificial JS optimizer, the movement toward an ocean current represents the

exploration phase, while the movement within a jellyfish swarm depicts the exploitation
phase. A time control mechanism alternates between these two processes [28]. For passive
motion (type A) within the jellyfish swarm, each jellyfish updates its position (new solution)
relative to its current location based on (24), exploiting the current solution without focusing
on the best solutions found nearby. However, exploiting the best solutions in the vicinity
of the current solution can help to discover more promising solutions. For active motion
(type B), referring to the initial position of jellyfish (i) (current solution (i)), a jellyfish (j) is
randomly selected to determine the step size and direction of movement. This updates
the position of jellyfish (i) (solution (i)) using (28). This random selection of jellyfish (j)
neglects the focus on the best positions (i.e., best solutions corresponding to the highest
food availability), causing the algorithm to explore newly discovered solutions randomly
without exploiting the best solutions or the best global solution found so far, potentially
limiting its ability to find promising solutions. These two shortcomings of passive (A) and
active (B) motions reduce the efficiency of the JS algorithm in the exploitation phase.

On the other hand, and based on the literature review, the MFO algorithm signals a
useful exploitation capability by carrying out a good search in the proximity of the best
solutions. This performance is achieved by using a spiral path around each exploited solu-
tion. However, the MFO algorithm presents a drawback; it is unable to share the best global
solution obtained so far between agents during the search stage. These characteristics lead
to a powerful exploitation mechanism and weak exploration process of the MFO algorithm.

Achieving a new efficient optimization approach is the reason behind our hybridiza-
tion of the JS and MFO algorithms, which benefits from both advantages of the two
algorithms, as shown in Figure 1. In this work, the exploitation capability of the basic
JS algorithm is improved by introducing the spiral movement of MFO around the best
solutions during the search process. In the early iterations of JS and just after the swarm is
formed, the search space is not sufficiently explored, so in this case we try to exploit the
good solutions found so far (in order to obtain promising solutions) in the first half-course
of iterations (t varies from 0 to MaxIt/2); the elite solutions (which represent 30% of the
sorted population of solutions, from the best to the worst) are selected to be exploited, and
hence they may be imposed on the spiral movement using (37) and (38). After the first
half-course of iterations, the search space is relatively well explored, so in the second half-
course of iterations (t changes from MaxIt/2 to MaxIt) we concentrate on the exploitation
of the best global solution found so far, which must be imposed on the spiral movement
using (39) and (40).
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Figure 1. Flowchart of the JS-MFO algorithm.
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In such a manner, the elite solutions are exploited to achieve promising solutions in
the early iterations, and inversely the best global solution is more exploited in the later
iterations to improve the quality of the best solution.

Di = |Xi(t)− Xelite| (37)

Xi(t + 1) = Di.ebt.cos(2πt) + Xelite (38)

Di = |Xi(t)− X∗| (39)

Xi(t + 1) = Di .ebt.cos(2πt) + X∗ (40)

4. Simulation Results and Discussion
4.1. Performance Evaluation of JS-MFO for Benchmark Functions

The numerical efficiency of JS-FO was analyzed on eight popular benchmark functions
to extensively evaluate its performance. These functions are divided into four unimodal
functions and four multimodal functions, which are listed in Table 1 [28]. The unimodal
functions were used to verify the exploitation of algorithms. The multimodal functions
were used to check the exploration of algorithms. Experimental tests were performed
for JS-MFO, MFO, and JS separately in order to verify the effectiveness of the hybrid
approach. This task was accomplished for 30 trials, with the maximum number of iterations
(MaxIt) = 500 and the population size equals 50 (NPOP = 50). Statistical indices such as the
average (mean), standard deviation (SD), and minimum (best) of 30 trials were determined
for each benchmark function and are shown in Table 2. The findings in the previous table
distinctly exhibit the capacity of the proposed JS-MFO in overcoming the basic algorithms
JS and MFO in terms of solution quality (in reaching the near-global solution with slightly
more execution time).

Table 1. Benchmark function characteristics.

Fun Equation B Min D T

f1 f (x) = ∑n
i = 1 x2

i [−100, 100] 0 30 Unimodal
f2 f (x) = ∑n

i = 1 ix2
i [−10, 10] 0 30 Unimodal

f3 f (x) = ∑n−1
i = 1

[
100

(
xi+1 − x2

i

)2
+ (xi − 1)2

]
[−30, 30] 0 30 Unimodal

f4 f (x) = ∑n
i = 1|xi |+ ∏n

i = 1|xi | [−10, 10] 0 30 Unimodal
f5 f (x) = −20exp

(
−0.2

√
1
n ∑n

i = 1 x2
i

)
− exp

( 1
n ∑n

i = 1 cos(2πxi)
)
+ 20 + e [−32, 32] 0 30 Multimodal

f6 f (x) = ∑n
i = 1

[
x2

i − 10 cos(2πxi) + 10
]2 [−5.12, 5.12] 0 30 Multimodal

f7
f (x) = π

n

{
10sin2(πy1) + ∑n−1

i = 1(yi − 1)2[1 + 10 sin2(πyi+1)
]
+ (yn − 1)2

}
+∑n

i = 1 u(xi , 10, 100, 4), yi = 1 + xi+1
4

[−50, 50] 0 30 Multimodal

f8
f (x) = 0.1

{
sin2(3πx1) + ∑n

i = 1(xi − 1)2[1 + sin2(3πxi+1)
]
+ (xn − 1)2[1 + sin2(2πxn)

]}
+∑n

i = 1 u(xi , 5, 100, 4)
[−50, 50] 0 30 Multimodal

Table 2. Comparison results between JS, MFO, and JS-MFO for f 1–f 8.

Algorithm Index
Unimodal Functions Multimodal Functions

f1 f2 f3 f4 f5 f6 f7 f8

JS

Mean 2.00 × 10−18 2.03 × 10−19 0.7100 2.67 × 10−10 3.49 × 10−10 12.585 8.68 × 10−5 0.0098
SD 2.84 × 10−18 2.68 × 10−19 0.8835 2.65 × 10−10 1.49 × 10−10 9.0885 1.94 × 10−4 0.0368

Best 9.14 × 10−20 1.57 × 10−20 0.0179 3.97 × 10−11 1.50 × 10−10 3.0574 1.36 × 10−6 1.57 × 10−5

Time (s) 1.2488 1.2332 1.0741 1.3384 1.4780 1.4203 2.4955 2.7288

MFO

Mean 2.67 × 103 383.527 1.88 × 104 32.0936 11.1412 139.56 4.5098 1.36 × 107

SD 5.20 × 103 505.098 3.64 × 104 20.3943 8.7387 27.52 2.8850 7.48 × 107

Best 0.3104 0.0524 178.5437 0.1066 0.1323 77.67 0.4706 0.2722
Time (s) 0.7218 0.7127 0.8212 0.8202 1.2363 0.9198 2.0499 2.2922

JS-MFO

Mean 6.53 × 10−83 4.94 × 10−60 0.0520 2.59 × 10−39 3.13 × 10−15 3.89 × 10−13 5.08 × 10−29 2.41 × 10−25

SD 3.43 × 10−82 1.79 × 10−59 0.1296 1.40 × 10−38 1.74 × 10−15 1.98 × 10−12 1.88 × 10−28 1.31 × 10−24

Best 2.38 × 10−89 1.19 × 10−72 1.00 × 10−8 1.25 × 10−46 8.88 × 10−16 0 3.63 × 10−32 1.62 × 10−32

Time (s) 1.7842 1.7561 1.9401 1.9434 2.6328 2.0638 4.1697 4.6286
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4.2. Implementation of JS-MFO for Solving OPF Problems

Two test systems were used to investigate the aptitude of the proposed JS-MFO
algorithm to reach the near-global OPF solution for different cases of mono-objective
optimization problems: the IEEE 30-bus, a real part of the USA network, and the RIM
27-bus. The modeling of the tested networks was carried out in the MATLAB 2009b
environment using a personal computer running Windows XP Professional, Pentium P-IV
CPU 3 GHz processor, and RAM of 1 GB.

A. IEEE 30-bus test system
The IEEE 30-bus model has 6 generators, 41 branches (37 lines and 4 transformers

with off-nominal tap ratios), and 24 load buses as shown in Figure 2. Shunt Volt Ampere
Reactive (VAR) compensators are installed in buses 10, 12, 15, 17, 20, 21, 23, 24, and 29,
where the reactive power injection is controlled between 0 and 5 MVAR as the lower and
upper limits, respectively [11]. The total system demand was (2.834 + j1.262) p.u. for the
apparent power at the 100 MVA base. Bus 1 was taken as the slack bus. The upper and
lower limits of active power generation, the reactive power limits, and the generator cost
coefficients are taken from [34].
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Figure 2. IEEE 30-bus single-line diagram.

In the base case, the system presents the following data: Fc (quadratic fuel cost) = 901.935
USD/h, FEm = 0.23908 ton/h, FPlosses = 5.8332 MW, FVD = 1.1663 p.u., and Lmaxr = 0.1731. The
parameters of the JS, MFO. and JS-MFO algorithms are as follows: the population number
(population size) NPOP is 50, the maximum number of iterations MaxIt = 100, and the number
of control variables is D = 25. For the present test system, six cases (six objective functions) were
studied to evaluate the performance of the proposed JS-MFO compared to that of JS and MFO
in order to reach the optimal solution. In order to validate the proposed JS-MFO in dealing with
and solving complex OPF problems, 30 independent trial runs were performed for each case
study by implementing JS, MFO, and JS-MFO. Three complex cases, particularly 1, 3, and 4,
were considered to provide the minimum, average, maximum, and standard deviation (SD) for
each objective function as shown in Table 3. A comparative report of each index between the JS,
MFO, and JS-MFO algorithms, shown in the previous table, can clearly prove the superiority
of JS-MFO over JS and MFO in providing the best solution quality and stability over the trial
runs. The optimal control variable settings and the corresponding objective function value are
depicted for each case in Tables 4 and 5. Executing 30 independent runs for each case led to
extracting the solution for the run that provided the best solution.
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Table 3. Comparative statistical study between JSO, MFO, and JS-MFO for case 1, case 3, and case 4
of OPF problem.

Study Case Index
Method

JSO MFO JS-MFO

Case 1
Quadratic total fuel cost (USD/h)

Minimum 801.023 800.79 799.08
Average 801.84 801.92 799.09

Maximum 803.41 802.87 799.14
SD 0.781 1.040 0.0133

Case 3
Total fuel cost with valve point effect

(USD/h)

Minimum 929.48 924.02 918.07
Average 943.60 929.06 925.61

Maximum 959.14 984.18 952.54
SD 12.07 13.59 12.05

Case 4
Total active losses (MW)

Minimum 3.232 3.049 2.881
Average 3.189 3.443 2.909

Maximum 3.266 3.75 3.095
SD 0.053 0.2147 0.033

Table 4. Optimal tuning of control variables and objectives for Cases 1–3—IEEE 30-bus system.

Control Variables/
Objectives

Case 1 Case 2 Case 3

JS MFO JS-MFO JS MFO JS-MFO JS MFO JS-MFO

PG1(MW) 177.68 178.13 177.15 64.529 63.804 63.921 199.60 199.60 199.589
PG2(MW) 48.689 49.146 48.727 67.393 67.79 67.490 20.144 20.000 20.002
PG5(MW) 21.448 21.824 21.329 49.958 50.00 49.999 19.625 22.290 22.027
PG8(MW) 19.436 19.307 20.897 34.974 34.99 34.999 24.920 27.904 23.029
PG11(MW) 13.069 11.740 11.924 29.983 30.00 29.999 15.038 10.003 14.982
PG13(MW) 12.276 12.426 12.005 39.993 40.00 39.999 14.528 14.576 13.192

VG1(p.u) 1.0804 1.1000 1.1000 1.0600 1.059 1.099 1.0660 1.023 1.097
VG2(p.u) 1.0607 1.0811 1.0876 1.0551 1.054 1.095 1.0352 0.999 1.076
VG5(p.u) 1.0268 1.0491 1.0605 1.0198 1.035 1.076 0.9867 0.950 1.043
VG8(p.u) 1.0353 1.0503 1.0684 1.0406 1.047 1.083 1.0032 0.966 1.058
VG11(p.u) 1.0669 1.0363 1.1000 1.0613 1.100 1.097 1.0606 1.099 1.096
VG13(p.u) 1.0633 0.9500 1.0991 1.0418 1.100 1.099 0.9937 1.087 1.098

T11(6_9) 1.0092 1.0919 1.0666 0.9850 1.019 1.050 1.0399 0.921 0.988
T12(6_10) 0.9600 1.0405 0.9061 1.0259 0.901 0.914 0.9871 0.985 1.022
T15(4_12) 1.0236 1.0600 1.0099 1.0353 0.972 0.991 1.0016 1.082 1.031
T36(28_27) 1.0080 1.0745 0.9748 0.9918 0.950 0.972 0.9932 0.931 0.968

QC10(MVar) 3.6054 5.0000 4.9914 1.8390 3.675 4.984 1.6452 0 2.657
QC12(MVar) 3.8140 3.4313 4.9341 3.6168 0 4.739 1.9352 0.017 3.497
QC15(MVar) 2.0583 4.9744 4.9263 3.5515 5.0000 4.764 2.1570 0 1.655
QC17(MVar) 2.7145 0 4.9544 1.8804 4.716 4.900 1.5654 0.137 2.442
QC20(MVar) 2.8758 4.9988 4.8532 2.7821 2.839 4.906 3.1875 4.931 4.492
QC21(MVar) 2.5908 4.7493 4.9983 3.8469 4.999 4.963 2.8867 5.00 1.828
QC23(MVar) 2.3790 4.9460 4.0653 3.8902 1.710 4.369 4.2100 4.193 3.439
QC24(MVar) 2.9189 5.0000 4.9839 2.9350 5.000 4.7945 3.4187 3.224 2.184
QC29(MVar) 1.7836 5.0000 3.2182 3.7881 3.714 2.9024 4.0090 0.043 3.073

FC ($/h) 801.02 800.79 799.085 944.30 944.6 943.690 922.48 924.02 918.07
FEm (ton/h) 0.3673 0.3689 0.3663 0.2049 0.2048 0.2047 0.4395 0.4403 0.439
FPloss (MW) 9.2026 9.179 8.6368 3.4324 3.195 3.0095 10.466 10.975 9.424

FVD (p.u) 0.532 0.9889 1.6486 0.3994 1.486 1.9257 0.4706 0.329 1.195
FLmax 0.1383 0.1145 0.1182 0.1339 0.120 0.1158 0.1433 0.1431 0.124

Case 1: Minimization of the quadratic total fuel cost function
The objective function in Equation (12) was evaluated for the optimal settings of the

control variables by running the JS, MFO, and JS-MFO algorithms, and the simulation
results are indicated in Table 4 for case 1. The optimal total fuel costs obtained were
799.085 USD/h, 801.02 USD/h, and 800.79 USD/h using JS-MFO, JS, and MFO, respectively.
The best solution of the total fuel cost for JS-MFO was compared with that of the JS and
MFO algorithms and other optimization techniques in the literature shown in Table 6,
such as the Novel Improved Social Spider Optimization algorithm (NISSO) [35], Firefly
Algorithm (FFA) [15], Moth Swarm Algorithm (MSA) [15], Efficient Sine Cosine Algorithm
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(ESCA) [36], Symbiotic Organism Search algorithm (SOS) [35], Harris Hawks Optimization
(HHO) [16], Dragonfly Algorithm (DA) [13], Adaptive Gaussian Teaching–Learning-based
Optimization (AGLBO) [14], PSO-PS [21], DA-PSO [23], HF-PSO [24], Artificial Bee Colony
based on hybrid fruit fly (HF-ABC) [25] and HFA-JAYA [27]. It is very clear from Table 6 that
the JS-MFO approach is able to reduce the fuel cost to the lowest value of 799.085 USD/h.
The percent cost savings with respect to the base cases of JS, MFO and JS-MFO are 11.188%,
11.2137%, and 11.4028 %, respectively, which lead to annual cost savings for JS-MFO of
16,951 USD/year compared to JS and 14,936 USD/year compared to MFO. The evolution
of the total fuel cost during the simulation is indicated in Figure 3. It can be seen that the
optimal total fuel cost converges towards the best optimal solution using JS-MFO.

Table 5. Optimum tuning of control variables and objectives for Cases 4, 7, and 8—IEEE 30-bus
system.

Control Variables and
Objectives

Case 4 Case 7 Case 8

JS MFO JS-MFO JS MFO JS-MFO JS MFO JS-MFO

PG1(MW) 63.591 51.483 51.349 178.73 177.89 176.174 174.09 179.01 177.466
PG2(MW) 68.150 80.00 79.988 48.711 48.76 48.826 48.904 49.483 48.746
PG5(MW) 49.993 50.00 49.997 22.006 21.03 21.970 21.632 22.102 21.785
PG8(MW) 34.962 35.00 34.950 18.213 21.49 21.356 22.195 16.766 20.639
PG11(MW) 29.969 29.965 29.998 12.433 12.239 12.722 13.182 11.959 11.458
PG13(MW) 39.965 39.999 39.997 13.246 12.008 12.133 12.351 13.317 12.015

VG1(p.u) 1.087 1.064 1.099 1.0497 1.033 1.044 1.086 1.092 1.100
VG2(p.u) 1.076 1.056 1.096 1.0429 1.009 1.026 1.066 1.07 1.084
VG5(p.u) 1.055 1.039 1.077 1.0134 0.996 1.010 1.023 1.024 1.053
VG8(p.u) 1.070 1.045 1.084 1.0000 1.004 1.0065 1.045 1.044 1.058
VG11(p.u) 1.069 1.0993 1.100 1.0038 1.073 1.0575 1.083 1.100 1.099
VG13(p.u) 1.081 1.0994 1.099 1.0446 1.0187 0.9899 1.078 1.093 1.097

T11(6_9) 0.976 0.9735 1.072 1.0780 1.1000 1.0779 1.078 0.940 0.990
T12(6_10) 1.025 0.9323 0.900 1.0690 0.9110 0.9010 1.069 0.900 0.933
T15(4_12) 0.996 0.9693 0.999 1.0320 0.9987 0.9416 1.032 0.953 0.969
T36(28_27) 0.988 0.9448 0.978 1.0680 0.9615 0.9671 1.068 0.921 0.948

QC10(MVar) 3.388 3.7029 4.870 2.9344 5.000 4.1739 4.119 4.989 4.979
QC12(MVar) 3.112 5.0000 4.984 0.6209 0.468 0.3890 3.651 4.995 4.999
QC15(MVar) 3.713 5.0000 4.946 4.7753 5.000 4.9032 4.494 5.000 4.983
QC17(MVar) 3.072 5.0000 4.964 2.8538 5.000 0.0844 3.350 4.660 4.648
QC20(MVar) 2.838 3.9215 4.815 4.4568 4.781 4.9859 2.208 5.000 4.552
QC21(MVar) 2.560 4.0782 4.810 2.5250 5.000 4.9713 3.417 1.153 4.985
QC23(MVar) 2.860 3.435 3.893 3.8349 5.000 4.9970 4.128 4.899 4.800
QC24(MVar) 3.114 4.742 4.977 4.0013 4.901 4.9836 3.787 4.964 4.897
QC29(MVar) 2.915 3.915 2.865 2.7291 1.756 2.3740 4.334 0 4.680

FC ($/h) 945.10 967.46 967.02 803.57 803.93 803.554 801.16 800.96 799.318
FEm (ton/h) 0.2048 0.207 0.207 0.3700 0.3681 0.3631 0.357 0.3712 0.367
FPloss (MW) 3.232 3.049 2.881 9.9491 10.043 9.7845 8.958 9.244 8.711

FVD (p.u) 1.174 1.639 1.8806 0.1480 0.1136 0.0993 1.282 1.872 1.8981
FLmax 0.126 0.118 0.1166 0.1371 0.1361 0.1370 0.117 0.1182 0.1141

Table 6. Comparisons of the results obtained for case 1 of the IEEE 30-bus system.

Technique Total Fuel Cost (USD/h) Technique Total Fuel Cost (USD/h)

JS-MFO 799.085 DA [13] 802.316
JS 801.02 AGTLBO [14] 800.481

MFO 800.79 PSO-PS [21] 799.8723
NISSO [35] 799.762 DA-PSO [23] 802.124

FFA [15] 802.130 HF-PSO [24] 799.123
MSA [15] 802.223 HF-ABC [26] 800.212
ESCA [36] 800.219 HFA-JAYA [27] 800.480
SOS [35] 801.5733

HHO [16] 801.829
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Figure 3. Convergence curves of JS, MFO and JS-MFO algorithms for case 1.

Case 2: Minimization of Total Gas Emissions
The total gas emission function in (13) was minimized using the proposed JS-MFO,

MFO, and JS algorithms. The gas emission coefficients are given in [34]. The optimal solu-
tions achieved using JS-MFO, MFO, and JS are 0.2047, 0.2048, and 0.2049 ton/h, respectively,
based on the optimal setting of the control variables shown in Table 4 for case 2. Table 7
gives a statistical comparison report considering other optimization methods applied to
the same test system and the same number of control variables as the Harris Hawks opti-
mization algorithm (HHO) [16], Turbulent Flow Of Water-Based Optimization algorithm
(TFWO) [17], hybrid DA-PSO [23], Adaptive Gaussian AGTLBO [14], and Social Spider
Optimization algorithm (SSO) [37]. By examining the previous table, the minimum total
gas emissions obtained by the proposed JS-MFO algorithm was shown to be better than
that of the JS and MFO algorithms and the comparison optimization techniques reported in
the literature. The percent gas emission reductions were 14.30%, 14.34%, and 14.38% for JS,
MFO, and JS-MFO, respectively, referring to the base case. It can be seen that the proposed
hybrid technique JS-MFO achieves total gas emission reductions of 1.752 tons/year and
0.876 tons/year compared to JS and MFO, respectively. The convergence of the total gas
emission function with respect to the number of iterations is depicted in Figure 4, showing
that the proposed JS-MFO algorithm gives faster convergence to the optimal solution with
a better solution quality than the JS and MFO algorithms.

Table 7. Comparison report provided for case 2 of the IEEE 30-bus system.

Technique Total Gas Emissions (ton/h) Technique Total Gas Emissions (ton/h)

JS-MFO 0.2047 AGTLBO [14] 0.2048
JS 0.2049 SSO [35] 0.2315

MFO 0.2048 NISSO [35] 0.2048
HHO [16] 0.2850 SSA [37] 0.205

TFWO [17] 0.2050 PSO-SSA [37] 0.205
DA-PSO [23] 0.2048

Case 3: Minimization of total fuel cost considering valve point effect
The objective function given by (14) is provided for the non-smooth curve of the

total fuel cost function and that for the two generators in buses 1 and 2, where their cost
coefficients are taken from [10]. The fuel cost curves of the remaining generators keep the
same characteristics as in case 1. The minimum total fuel costs obtained using the proposed
JS-MFO, JS, and MFO algorithms are 918.073 USD/h, 922.48 USD/h, and 924.02 USD/h,
respectively, considering the valve point effect. The optimal solution reflects the optimal
control variables presented in Table 4 for case 3. The percent cost savings considering the
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valve point effect for JS, MFO, and JS-MFO are 15.01%, 14.87%, and 15.42%, respectively,
compared to the base case. It is clearly shown that JS-MFO gives the highest cost saving.
The annual cost savings of JS-MFO correspond to 38,632 USD/year and 52,122 USD/year
with respect to those of JS and MFO, respectively. The JS-MFO algorithm shows a better
solution than that of the JS and MFO algorithms, and the other methods displayed in
Table 8 such as the Improved Salp Swarm Algorithm (ISSA) [38], Salp Swarm Algorithm
(SSA) [38], Teaching–Learning-based Optimization Algorithm (TLBO) [39], Gbest-guided
ABC (Gbest-ABC) [40], and ABC-based Grenade Explosion Method (GABC) [41]. The
progress of the non-quadratic total fuel cost with respect to the iteration evolutions is given
in Figure 5 for the JS, MFO, and JS-MFO algorithms. These curves confirm the superiority
of JS-MFO over JS and MFO in attaining the best global solution.
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Figure 4. Convergence rates of JS, MFO, and JS-MFO algorithms for case 2.

Table 8. Comparison of the results obtained for case 3 of the IEEE 30-bus system.

Technique Total Fuel Cost (USD/h) Technique Total Fuel Cost (USD/h)

JS-MFO 918.093 TLBO [39] 919.394
JS 922.48 Gbest-ABC [40] 931.745

MFO 924.02 GABC1 [41] 919.597
ISSA [38] 919.191 GABC2 [41] 918.435
SSA [38] 920.706
IHS [38] 919.843
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Figure 5. Convergence rates of JS, MFO, and JS-MFO algorithms for case 3.
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Case 4: Minimization of Total Active Losses
Active transmission losses in Equation (15) are adopted as an objective function in this

case and are minimized by carrying out the proposed JS-MFO, JS, and MFO techniques.
The optimal total active losses resulting from the simulation are given in Table 5 for case
4, along with their corresponding control and state variables. It is reported that JS-MFO
is able to reduce the active transmission losses to the lowest value of 2.8810 MW, while JS
and MFO lead to 3.232 MW and 3.049 MW, respectively. The percent loss savings of the
presented techniques JS, MFO, and JS-MFO are, respectively, 44.59%, 47.72%, and 50.60%
with reference to the base case.

For comparison purposes, Table 9 depicts the optimal active transmission losses for
JS-MFO, JS, MFO, and other techniques inspired from previous works in the literature
such as AGTLBO [14], FFA [15], MSA [15], DE-HS [22], DA [23], DA-PSO [23], HFA-
JAYA [27], SS0 [35], NISSO [35], ESCA [36], and Adaptive Multiple-Team Perturbation-
Guiding JAYA [42]. From this table, it can be observed that the results obtained using
JS-MFO are better than those of the other methods presented in the current literature.
Figure 6 shows the evolution of total active losses with respect to the progression of
iterations during the simulation, depicting the convergence characteristics of the JS and
JS-MFO algorithms for this case.

Table 9. Comparison of the results for Case 4 of the IEEE 30-bus system.

Technique Total Transmission
Losses (MW) Technique Total Transmission

Losses (MW)

JS-MFO 2.881 DA [23] 3.198
JS 3.232 DA-PSO [23] 3.189

MFO 3.049 HFA-JAYA [27] 4.529
AGTLBO [14] 3.090 SS0 [35] 3.911

FFA [15] 3.643 NISSO [35] 2.945
MSA [15] 3.649 ESCA [36] 3.021

DE-HS [22] 3.054 AMTPG-JAYA [42] 3.080
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Case 7: Minimization of the total fuel cost along with the deviation of the total load
bus voltage

This case study is devoted to the simultaneous minimization of the quadratic total
fuel cost and the total load bus voltage deviation as the objective function depicted in
Equation (21). The problem is solved by running the JS, MFO, and JS-MFO algorithms
separately. The simulation results for case 7 are listed in Table 5 by showing the numerical
optimal settings of the control and state variables. Table 10 is provided to compare the
optimal total fuel cost and the total load bus voltage deviation of the JS-MFO method to
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those of the JS and MFO algorithms and the other techniques given by recently published
works in the literature. It is clearly shown that JS-MFO dominates all other comparison
techniques in terms of the optimal fuel cost with a slightly higher optimal voltage deviation
compared to AGTLBO [14], HFA-JAYA [27], ESCA [36], PSO-SSA [37], MVO [43] and
ECHT-DE [44]. The ESCA is reported to present the best optimal voltage deviation among
all other techniques, but it provides the highest optimal voltage deviation.

Table 10. Comparisons of the results obtained for case 7 of the IEEE 30-bus system.

Technique Total Fuel Cost FC (USD/h) Total Voltage Deviation FVD (p.u)

JS-MFO 803.5549 0.0993
JS 803.5727 0.1480

MFO 803.93 0.1136
AGTLBO [14] 803.738 0.0947
DA-PSO [23] 803.66 0.1163

HFA-JAYA [27] 803.7036 0.0948
ESCA [36] 804.9968 0.09163

PSO-SSA [37] 803.989 0.0940
MVO [43] 803.908 0.1056

ECHT-DE [44] 803.719 0.0945

It is observed from the results that JS-MFO provides simultaneous reductions in
quadratic total fuel cost and total voltage deviation of 10.90% and 91.48%, respectively,
with reference to the base case, while the other existing techniques, JS, and MFO show less
important results. By examining the convergence curves of the JS and JS-MFO algorithms
given by Figure 7, it can be seen that the JS-MFO algorithm gives the best final global
optimal solution compared to the JS and MFO algorithms.
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Case 8: Minimization of Quadratic Total Fuel Cost Along With Vulnerability Stability
Enhancement

The present case study examines the minimization of the total fuel cost along with the
enhancement of voltage stability by optimizing the objective function mentioned in (22).
The optimal settings obtained for the control and state variables after the JS, MFO, and
JS-MFO algorithm running processes are illustrated in Table 5 for case 8. The optimal
solution presented by JS-MFO gives the best simultaneous reductions in total fuel cost
and voltage stability index than that of JS and MFO. By referring to the base case, JS-MFO
presents, simultaneously, a percent cost saving of 11.37% and an improvement of the
stability margin of 34.08%. A comparison in Table 11 with other meta-heuristics-based
optimization techniques such as ESCA [36], PSO-SSA [37], AMTPG-JAYA [42], MVO [43],
and ECHT-DE [44] shows that the proposed JS-MFO presents the best global solution
among others.
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Table 11. Comparison of the results obtained for case 8 of the IEEE 30-bus system.

Technique Total Fuel Cost FC (USD/h) Voltage Stability Index FLmax

JS-MFO 799.3187 0.1141
JS 801.1621 0.1171

MFO 800.963 0.1182
ESCA [36] 800.410 0.1224

PSO-SSA [38] 830.352 0.1250
AMTPG-JAYA [42] 840.901 0.1240

MVO [43] 802.466 0.1146
ECHT-DE [44] 800.420 0.1374

B. Mauritanian electric power system RIM 27-bus:
B.1. Simulation of various cases for RIM 27-bus
The RIM 27-bus power grid is controlled by the SOMELEC society, involving three

voltage levels: 225 kV, 90 kV, and 33 kV. This system model consists of six generation buses:
1 (slack bus), 8, 10, 23, 24, and 25, feeding a total load of (1.786 + j0.736) p.u. at a base
power of 100 MVA, and three shunt compensators at buses 12, 14, and 16. Two solar power
plants are installed on buses 8 and 23 with active power capacities of 50 MW and 15 MW,
respectively, and a wind power plant on bus 10 with a capacity of 30 MW, as shown in
Figure 8. Also, the RIM 27-bus system has 21 load buses and 36 branches. The voltage
magnitude of the generation buses is controlled between 0.92 p.u. and 1.08 p.u. The number
of control variables for this system is 15. In the base case, the RIM 27-bus system presents
the following data: FPlosses = 6.6015 MW, FVD = 1.6358 p.u., and Lmaxr = 0. 522.

Algorithms 2024, 17, x FOR PEER REVIEW 21 of 28 
 

 
Figure 8. Single-line diagram of the Mauritanian electric power system 27 bus. 

Case 5: Minimizing of the total voltage deviation for the RIM 27-bus system: 
The objective function presented in (16) is minimized in case 5 and depicts an opti-

mal solution for the control and state variables shown in Table 12. The RIM 27-bus power 
system security is enhanced via the minimization of the total voltage deviation FVD using 
JS, MFO, and JS-MFO, signaling reductions of 59.97%, 55.25%, and 62.44%, respectively, 
compared to the base case. The JS-MFO pointed out the best optimal FVD compared to 
that of JS and MFO. The optimal total voltage deviation achieved by JS-MFO is 0.6144 p.u., 
which is better than that of the JS and MFO algorithms, which correspond to 0.6547 p.u. 
and 0.732 p.u., respectively. The best performance of the JS-MFO algorithm is verified in 
Figure 10, illustrating the convergence proprieties of JS-MFO overcoming those of the JS 
and MFO algorithms. Case 6: Voltage stability enhancement for the RIM 27-bus system: 

The FLmax voltage stability index is optimized for case 6 in order to enhance voltage 
stability using the JS, MFO, and JS-MFO algorithms. The stability margin of the RIM 
27-bus system is improved using JS, MFO, and JS-MFO, where FLmax reaches the optimal 
values of 0.3861, 0.4201, and 0.3389, respectively. The JS-MFO approach denoted a per-
cent reduction of FLmax of 12.22% compared to JSO and 19.33% compared to MFO, which 
proves the capacity of JS-MFO to overcome the JS and MFO algorithms. 

It appears from Table 12 that the JS-MFO algorithm outperforms the JS and MFOs in 
solving the OPF problem. The JS-MFO simulation result provides 12.22% and 19.33% 
improvements in the stability margin compared to the JS and MFO algorithms, respec-
tively.  

B. 2. Sizing of reactive power compensators for renewable sources 
Table 13 points out the reactive power generation for each optimal state of cases 4, 5, 

and 6. The reactive power compensator sizing for each renewable energy source in gen-
eration buses 8, 10, and 23 is, respectively, −17.5/17.5 MVAR, −16/16 MVAR, and −15/15 
MVAR. Figure 11 indicates the voltage magnitude profile for each optimal state for cases 

Figure 8. Single-line diagram of the Mauritanian electric power system 27 bus.

Case 4: Minimization of Total Active Losses for RIM 27-bus system:
In this case study, the aim is to minimize the transmission active losses of the RIM 27-bus

system, adopting (15) as the objective function, and the simulation results are tabulated in
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Table 12. The optimal active losses affected by JS, MFO, and JS-MFO are 3.35 MW, 3.56 MW,
and 3.25 MW, which represent loss percent savings of 49.19%, 46.04%, and 50.67% compared
to the base case, respectively. The best solution quality was found with the JS-MFO technique,
which yielded the lowest total active power losses and the highest loss percent saving. The
optimal total active transmission losses attributed to JS-MFO are 2.94% and 8.58% lower than
those obtained by the JS and MFO algorithms. It is clearly illustrated in Figure 9 that the JS-MFO
algorithm dominates the JS and MFO algorithms in terms of solution quality and convergence
characteristics.

Table 12. Settings of control variables and objectives of RIM 27-bus system for cases 4–6.

Control Variables and
Objective

Case 4 Case 5 Case 6

JS MFO JS-MFO JS MFO JS-MFO JS MFO JS-MFO

PG1(MW) 85.67 82.044 83.6279 90.667 49.75 36.9530 77.5546 108.26 109.0601
PG8(MW) 20.49 21.971 21.8570 20.005 50.00 49.8027 18.176 5.553 6.5210
PG10(MW) 19.27 19.327 17.8151 11.789 14.42 27.6150 25.6081 29.95 10.4073
PG23(MW) 9.345 8.581 9.0237 4.6829 9.936 3.0152 12.6120 14.66 3.5084
PG24(MW) 33.43 35.939 35.9926 30.700 36.00 35.9595 19.6385 10.71 23.6076
PG25(MW) 13.48 14.073 13.3123 24.333 2.745 29.9992 29.0962 12.86 29.9499

VG1(p.u) 0.934 0.9618 0.9200 0.9570 0.954 0.9559 0.9518 0.9379 0.9445
VG8(p.u) 0.941 0.9705 0.9271 0.9744 0.992 0.9936 0.9647 0.9398 0.9392
VG10(p.u) 0.938 0.9663 0.9235 0.9648 0.966 0.9724 0.9646 0.9500 0.9492
VG23(p.u) 0.935 0.9641 0.9219 0.9574 0.959 0.9574 0.9511 0.9422 0.9411
VG24(p.u) 0.929 0.9504 0.9200 0.9374 0.941 0.9415 0.9421 0.9313 0.9303
VG25(p.u) 0.970 0.9691 0.9431 0.9719 0.920 0.9993 0.9240 0.9200 0.9673

QC12(MVar) −19.67 −19.948 −19.994 −19.73 −20 −19.998 −16.248 −19.34 −19.903
QC14(MVar) −9.774 −9.9932 −9.9996 −9.907 −10 −9.971 −7.9491 −9.760 −7.072
QC16(MVar) −24.97 −25.000 −24.998 −24.944 −25 −24.999 −24.216 −25.00 −15.7419

FPlosses (MW) 3.354 3.5621 3.2562 3.9357 4.470 4.9235 4.3556 3.8866 4.9284
FVD (p.u) 0.916 0.6045 1.2402 0.6547 0.732 0.6144 0.8005 0.9306 0.9650

FLmax 0.426 0.3796 0.4597 0.3869 0.391 0.3876 0.3861 0.4201 0.3389
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Case 5: Minimizing of the total voltage deviation for the RIM 27-bus system:
The objective function presented in (16) is minimized in case 5 and depicts an optimal

solution for the control and state variables shown in Table 12. The RIM 27-bus power
system security is enhanced via the minimization of the total voltage deviation FVD using
JS, MFO, and JS-MFO, signaling reductions of 59.97%, 55.25%, and 62.44%, respectively,
compared to the base case. The JS-MFO pointed out the best optimal FVD compared to
that of JS and MFO. The optimal total voltage deviation achieved by JS-MFO is 0.6144 p.u.,
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which is better than that of the JS and MFO algorithms, which correspond to 0.6547 p.u.
and 0.732 p.u., respectively. The best performance of the JS-MFO algorithm is verified in
Figure 10, illustrating the convergence proprieties of JS-MFO overcoming those of the JS
and MFO algorithms. Case 6: Voltage stability enhancement for the RIM 27-bus system:

Algorithms 2024, 17, x FOR PEER REVIEW 23 of 28 
 

Table 13. Reactive power generation in the optimal state for each case—RIM 27-bus power system. 

State Variables Case 4 Case 5 Case 6 
Generated Reactive Power JS-MFO JS-MFO JS-MFO 

QG1(MVAR) −79.6379 −104.3660 −99.8009 
QG8(MVAR) −13.7852 −6.2700 −17.1219 
QG10(MVAR) −15.8118 −6.1590 −8.9077 
QG23(MVAR) −7.5879 −5.8648 −11.5592 
QG24(MVAR) −5.9939 −25.0052 −17.6271 
QG25(MVAR) 0.3272 5.1091 4.5488 

 
Figure 9. Convergence characteristics of JS, MFO, and JS-MFO algorithms for case 4. 

 
Figure 10. Convergence characteristics of JS, MFO, and JS-MFO algorithms for case 5. 

0 20 40 60 80 100
3

3.5

4

4.5

5

5.5

6

Iterations

To
ta

l A
ct

iv
e 

Po
w

er
 L

os
se

s (
M

W
)

RIM27 bus -Electric Power System

 

 

JS-MFO
JS
MFO

0 20 40 60 80 100
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Iterations

To
ta

l V
ol

ta
ge

 D
ev

ia
tio

n 
(p

.u
)

 

 

JS
JS-MFO
MFO

Figure 10. Convergence characteristics of JS, MFO, and JS-MFO algorithms for case 5.

The FLmax voltage stability index is optimized for case 6 in order to enhance voltage
stability using the JS, MFO, and JS-MFO algorithms. The stability margin of the RIM 27-bus
system is improved using JS, MFO, and JS-MFO, where FLmax reaches the optimal values of
0.3861, 0.4201, and 0.3389, respectively. The JS-MFO approach denoted a percent reduction
of FLmax of 12.22% compared to JSO and 19.33% compared to MFO, which proves the
capacity of JS-MFO to overcome the JS and MFO algorithms.

It appears from Table 12 that the JS-MFO algorithm outperforms the JS and MFOs
in solving the OPF problem. The JS-MFO simulation result provides 12.22% and 19.33%
improvements in the stability margin compared to the JS and MFO algorithms, respectively.

B.2. Sizing of reactive power compensators for renewable sources
Table 13 points out the reactive power generation for each optimal state of cases 4,

5, and 6. The reactive power compensator sizing for each renewable energy source in
generation buses 8, 10, and 23 is, respectively, −17.5/17.5 MVAR, −16/16 MVAR, and
−15/15 MVAR. Figure 11 indicates the voltage magnitude profile for each optimal state for
cases 4–6, describing that the voltage magnitude is within the predefined limits between
0.92 p.u. and 1.08 p.u.

Table 13. Reactive power generation in the optimal state for each case—RIM 27-bus power system.

State Variables Case 4 Case 5 Case 6

Generated Reactive Power JS-MFO JS-MFO JS-MFO

QG1(MVAR) −79.6379 −104.3660 −99.8009
QG8(MVAR) −13.7852 −6.2700 −17.1219
QG10(MVAR) −15.8118 −6.1590 −8.9077
QG23(MVAR) −7.5879 −5.8648 −11.5592
QG24(MVAR) −5.9939 −25.0052 −17.6271
QG25(MVAR) 0.3272 5.1091 4.5488
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Figure 11. Voltage profile for each RIM 27-bus case using the JS-MFO algorithm.

5. Conclusions

A new meta-heuristic optimization technique has been developed in this paper, based
on the hybridization of two methods, Jellyfish Search (JS) and Moth Flame Optimizer (MFO),
called JS-MFO. This new hybrid approach is designed to improve the solution quality when
dealing with complex Optimal Power Flow (OPF) problems. To improve the performance
of the JS method in the exploitation mechanism, a spiral path of the MFO method on the
best solutions found after the exploration phase is introduced. In this way, we can benefit
from the advantages of the JS and MFO algorithms. The efficiency and precision of JS-MFO
have been confirmed by applying it to several complex OPF optimization problems. These
problems deal with the minimization of total power generation cost, gas emissions from
power plants, total voltage deviation, and total transmission losses. Two test grids were
employed to solve these problems: the popular IEEE 30-bus grid and the Mauritanian RIM
27-bus grid. For the IEEE 30-bus test system, JS-MFO presented a percent cost saving of
11.40% (optimization of the quadratic total fuel cost) with respect to the base case. This
benefit is the highest when it is compared to those of the JS and MFO algorithms. It
results in an annual cost saving of 16,951 USD/year with respect to the optimal value
given by the JS algorithm. The percent gas emission reduction when dealing with the
environmental optimization problem is about 14.38% for the JS-MFO algorithm (the highest
value compared to those of JS and MFO) with reference to the base case. The JS-MFO
algorithm shows a gas emission reduction of 1.752 tons/year with respect to the value
given by the JS algorithm, and of 0.876 tons/year with respect to the amount given by the
MFO algorithm. By optimizing the active transmission losses, a significant percent loss
saving of 50.60% is assigned to the JS-MFO algorithm (greater than those of JS and MFO)
with reference to the base case. For the RIM 27-bus power system, the loss percent saving
using JS-MFO is 50.67% compared to the base case. The optimization of the total voltage
deviation using JS-MFO showed a reduction of 62.44% with respect to the base case. The
results obtained prove the capacity of the proposed approach to dominate the basic meta-
heuristic techniques, JS, MFO, and others recently developed in the literature based on the
comparison report for the same test network and the same objective functions. The aptitude
of this hybrid JS-MFO technique to deal with complex OPF problems makes it competitive
for (i) treating more problems in the power system, such as a variety of cases with complex
objective functions, security constraints, prohibited zones, and different test systems, and
(ii) offering prospects for improving the performance of the Mauritania RIM 27-bus grid
by optimizing the location and sizing of new renewable sources. In view of the potential
and superior characteristics of the proposed JS-MFO algorithm, a multi-objective algorithm
based on JS-MFO is recommended to be developed and applied to solve multi-objective
OPF problems.
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Nomenclature

PG1 Generated active power of slack bus
PGi Generated active power of i-th bus
VLi Voltage magnitude of load bus i
QGi Reactive power output of generator i
PGi,min Lower active generation capacity in i-th bus
PGi,max Upper active generation capacity in i-th bus
PDi Active power of load demand on bus i
QDi Reactive power of load demand on bus i
Ng Number of generators (power plants)
NPQ Number of load buses (PQ buses)
SLi Apparent power in transmission line i
Vi, Vj Voltage magnitudes at node i and node j, respectively
SLi,min Lower limit of apparent power in transmission line i
SLi,max Upper limit of apparent power in transmission line i
VLi,min Lower limit of voltage magnitude in load bus i
VLi,max Upper limit of voltage magnitude in load bus i
QGi,min Lower reactive generation capacity in i-th bus
QGi,max Upper reactive generation capacity in i-th bus
VGi Voltage magnitude of generator connected to bus i
Qci Reactive power injected by shunt VAR compensator in i-th bus
VGi,min Minimum voltage magnitude of generator connected to bus i
VGi,max Maximum voltage magnitude of generator connected to bus i
δi, δj Voltage angles of buses i and j, respectively
δij Difference angle between voltage angles δi and δj, respectively
Bij Susceptance of the transmission line between buses i and j (imaginary part of the admittance)
Gij Conductance of the transmission line between buses i and j (real part of the admittance)
Nt Number of regulating transformers
NB Number of buses
Nl Number of the transmission lines
NC Number of shunt compensators
NPV Number of generator buses (PV buses)
Ti Tap setting of i-th transformer
Ti,min Lower tap setting of i-th transformer
Ti,max Upper tap setting of i-th transformer
PG1 Generated active power of slack bus
Ng Number of generator buses
VLj Voltage magnitude of load bus j
NPQ Number of load buses (PQ buses)
QGi Reactive power output of generator i
QDi Active power of load demand on bus i
SLi Apparent power in transmission line i
Vi, Vj Voltage magnitudes at node i and node j, respectively
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PGi Active power output of generator i
PDi Active power of load demand on bus i
VGi Voltage magnitude of generator connected to bus i
Qci Reactive power injected by shunt VAR compensator in i-th bus
Bij Susceptance of the transmission line between buses i and j (imaginary part of the admittance)
Gij Conductance of the transmission line between buses i and j (real part of the admittance)
NT Number of regulating transformers
NB Number of buses
Ti Tap setting of transformer i
NC Number of shunt compensators
NPV Number of generator buses (PV buses)
Nl Number of the transmission lines
δij Difference angle between voltage anglesδi and δj, respectively
δi,δj Voltage angles of buses i and j, respectively
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