
Citation: Stepanova, A.I.;

Khalyasmaa, A.I.; Matrenin, P.V.;

Eroshenko, S.A. Application of SHAP

and Multi-Agent Approach for

Short-Term Forecast of Power

Consumption of Gas Industry

Enterprises. Algorithms 2024, 17, 447.

https://doi.org/10.3390/a17100447

Academic Editors: Van-Hai Bui,

Xuan Zhou, Wencong Su and

Akhtar Hussain

Received: 3 September 2024

Revised: 6 October 2024

Accepted: 7 October 2024

Published: 8 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Application of SHAP and Multi-Agent Approach for Short-Term
Forecast of Power Consumption of Gas Industry Enterprises
Alina I. Stepanova , Alexandra I. Khalyasmaa , Pavel V. Matrenin * and Stanislav A. Eroshenko

Ural Power Engineering Institute, Ural Federal University Named after the First President of Russia B.N. Yeltsin,
Ekaterinburg 620062, Russia; a.i.stepanova@urfu.ru (A.I.S.); a.i.khaliasmaa@urfu.ru (A.I.K.);
s.a.eroshenko@urfu.ru (S.A.E.)
* Correspondence: p.v.matrenin@urfu.ru

Abstract: Currently, machine learning methods are widely applied in the power industry to solve var-
ious tasks, including short-term power consumption forecasting. However, the lack of interpretability
of machine learning methods can lead to their incorrect use, potentially resulting in electrical system
instability or equipment failures. This article addresses the task of short-term power consumption
forecasting, one of the tasks of enhancing the energy efficiency of gas industry enterprises. In order to
reduce the risks of making incorrect decisions based on the results of short-term power consumption
forecasts made by machine learning methods, the SHapley Additive exPlanations method was pro-
posed. Additionally, the application of a multi-agent approach for the decomposition of production
processes using self-generation agents, energy storage agents, and consumption agents was demon-
strated. It can enable the safe operation of critical infrastructure, for instance, adjusting the operation
modes of self-generation units and energy-storage systems, optimizing the power consumption
schedule, and reducing electricity and power costs. A comparative analysis of various algorithms for
constructing decision tree ensembles was conducted to forecast power consumption by gas industry
enterprises with different numbers of categorical features. The experiments demonstrated that using
the developed method and production process factors reduced the MAE from 105.00 kWh (MAPE of
16.81%), obtained through expert forecasting, to 15.52 kWh (3.44%). Examples were provided of how
the use of SHapley Additive exPlanation can increase the safety of the electrical system management
of gas industry enterprises by improving experts’ confidence in the results of the information system.

Keywords: compressor station of the main gas pipeline; gas industry; machine learning; multi-agent
approach; short-term power consumption forecast; SHapley Additive exPlanation

1. Introduction

Oil and gas enterprises use special energy programs to meet the requirements of
critical infrastructure operations. These programs are aimed at reducing energy resource
costs and consumption, as well as improving the energy efficiency and social responsibility
of personnel/workers, which in turn affects energy efficiency [1].

One of the promising measures that can be implemented to enhance the energy effi-
ciency of production processes in the gas industry is the development and implementation
of a short-term (1–3 days) load-forecasting system [2,3].

Forecasting of power consumption is essential for planning the operation of power
systems [4]. Many countries are introducing economic incentives to promote demand-
responsive power consumption [5]. One of the methods encouraging enterprises to
plan their daily power consumption schedules is the wholesale electricity and capac-
ity market [2]. By connecting to such a market, gas industry enterprises can benefit from
lower tariffs than those on the retail market, provided that accurate power consumption
forecasting is taken into account, as electricity tariffs include charges for deviations of
actual consumption from planned schedules. The consumption patterns of gas industry en-
terprises often have a high aperiodic component of the load, which requires consideration
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of numerous production factors, making the process of power consumption forecasting
labor-intensive [3].

Thus, the introduction of short-term power consumption forecasting system can
enable:

• Flattening of the power consumption curve;
• Optimizing the operation of self-generation units and energy-storage systems;
• Optimizing maintenance, repairs, and other support systems;
• Minimization of power consumption costs.

Optimizing the operation of self-generation units and energy-storage systems can be
achieved because their purpose is to manage the power consumption schedule, cover the
enterprise’s own needs, and ensure power supply quality [6].

Optimizing the support system processes becomes possible because increased accuracy
in short-term power consumption forecasting allows the enterprise to develop an optimal
maintenance schedule based on peak load hours [7].

Cost minimization can be achieved by regulating tariffs on the wholesale electricity
and power market through load planning and controllable load consumer scheduling
due to the fact that the wholesale electricity and power tariffs incentivize off-peak power
consumption. Additionally, since part of the electricity tariff accounts for deviations in
consumed power from the forecasted amount, improving forecast accuracy can help reduce
electricity costs [2,8].

Implementing this measure is complicated by the need to account for the influence of
numerous production process factors on the power consumption schedule of gas industry
enterprises [8]. Generally, existing studies are aimed at short-term forecasts of power
consumption in relation to power systems, microgrids, and residential power demand [9,10].
Due to the high proportion of periodic components in electricity consumption processes
within power systems, the average forecast accuracy reaches 98–99% [3,10–13].

For short-term (1–3 days) forecasting of power consumption schedules, various meth-
ods are applied, which can be divided into deterministic (statistical) methods and machine
learning methods. The former include seasonal models [14] and autoregression-based
methods [15–17].

Machine learning methods can account for many factors, including weather [9,18],
production [19], and their interdependencies [20]. Studies on short-term power consump-
tion forecasting for industrial enterprises to adjust power consumption in real-time based
on demand within a microgrid are presented in [21,22]. The advantages of accounting
for different factors, not just the seasonal factor, while using machine learning methods
compared to deterministic ones have been demonstrated in studies [20,23,24]. Typically,
the best results of the accuracy of power consumption forecast are achieved using neural
network models [25–27], including recurrent [28] and deep neural networks [26,29,30], as
well as ensemble decision trees [31,32]. Currently, there is a lack of studies on forecasting
power consumption for gas industry enterprises.

However, despite the efficiency of machine learning methods, forecast accuracy can
be up only to 60% due to the complexity of accounting for production processes. To
address this issue, a multi-agent approach can be applied. Multi-agent methodology is
a methodology for modeling production processes by decomposing them into agents.
This methodology allows for investigating the behavior of real production processes by
constructing loosely coupled autonomous agents that interact with each other to achieve
set goals. An agent can be determined as an object that receives data from the environment
and acts upon it [33].

Based on the multi-agent approach, a multi-agent system (MAS) can be created, which
is defined as a system consisting of several interacting agents. The terms multi-agent
system and multi-agent approach are related but refer to different aspects of studying and
applying agents. When discussing the term multi-agent system, the main focus is on the
system as a whole, the mechanisms of interaction between agents, and between agents
and the environment [34]. The application of the multi-agent approach is associated with
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considering mechanisms for distributing tasks among agents, coordinating their actions,
and managing their interactions to achieve individual and common goals. Thus, a multi-
agent system is a type of system that consists of several interacting agents, while the
multi-agent approach is a methodology for solving problems by decomposing production
processes and objects into agents and their interactions. The difference lies in what the
focus is on—the system itself or the methodology for designing and analyzing systems [35].

Currently, multi-agent systems (MAS) are applied to solve various optimization prob-
lems related to the operation of enterprises and systems. Some of the applications of MAS
include but are not limited to the following:

• The selection of control strategies for microgrid modes considering energy-storage
systems [36,37];

• The management of power consumption in a microgrid with photovoltaic stations,
introducing a generator agent whose objective function is to minimize power purchase
costs based on forecasted generation [38];

• The management of a power system with renewable energy generation objects [39];
• Processing heterogeneous information in microgrid [40].

The use of MAS for gas industry enterprises was proposed in [41,42]. The authors
describe the use of generator agents, power supply system agents, and consumer agents.
Agents are used to ensure the reliable operation of the enterprise by optimizing electrical
modes, network topology, and power balance. This approach allows for analyzing the
operation modes of the system. However, it should be noted that these articles primarily
use an object-oriented approach, as the goals of the agents, their input and output data,
and the interactions between agents are not defined or described.

It can be assumed that considering production process factors from the perspective of
a multi-agent approach may improve the accuracy of power consumption forecasting for
gas industry enterprises.

Furthermore, it should be noted that current research on power consumption fore-
casting primarily focuses on improving forecast accuracy, while the models remain “black
boxes” for experts. This complicates the implementation of these models in enterprises due
to experts’ lack of trust in the learning results of these models [43]. Studies in the field of
eXplainable Artificial Intelligence (XAI) were conducted to address this issue [44,45]. For
complex models that are not interpretable, a posterior explanation can be used. Currently,
posterior explanation in short-term power consumption forecasting is mainly represented
by algorithms such as Local Interpretable Model-Agnostic Explanations (LIME) [46,47] and
Shapley Additive exPlanations (SHAP) [32,48].

The drawback of the LIME method is the need to select, configure, and train a surrogate
model, as well as the implicit violation of the accuracy principle, as the hypothesis that the
surrogate model’s explanation corresponds to the decision-making process of the model
under explanation is an untestable assumption.

For an expert, displaying the features that influenced the decision-making process
along with their feature importance (weights) develops trust in the system and increases
the probability of successful joint operation [49]. Therefore, the SHAP-based method of
additive explanation becomes relevant for the system of short-term power consumption
forecast, which is installed at gas industry enterprises, where the model is used by an
expert. The Shapley Additive exPlanations algorithm is based on the theoretically optimal
Shapley values from Game Theory. SHAP determines the influence of each feature on
the machine learning model’s results. Currently, SHAP is primarily used for the global
explanation of parameter influence on model outputs in short-term power consumption
forecasting [50].

Based on the literature review, there is a gap in knowledge regarding the lack of
research on power consumption forecasting for gas industry enterprises. This issue is
associated with the complexity of accounting for numerous production process factors.

The objectives of the study are to develop a method for decomposing production
processes at a gas industry enterprise using a multi-agent approach and to create a method
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for short-term power consumption forecasting at a gas industry enterprise based on ex-
plainable artificial intelligence.

The contributions of this study are the following:

• The MAS-based algorithm for improving the energy efficiency of production processes
at gas industry enterprises was proposed;

• The necessity of the application of production process factors for increased accuracy
of power consumption forecast was experimentally proven;

• A comparative analysis of different decision tree ensemble algorithms for power
consumption forecasting in a gas industry enterprise with varying numbers of features
was conducted;

• The possibility of enhancing the interpretability of power consumption forecasts for
each hour of the day using the SHAP algorithm, considering changes in SHAP results
depending on the applied machine learning model, was explored.

In addition, this study covers data preprocessing. This can be of interest to researchers
having problems processing the data obtained from real-life power objects with a low level
of digitization of data gathering, processing, and storing.

The article is organized as follows. Section 2 presents descriptions of the studied
object, the proposed data-preprocessing algorithm, the proposed method for decomposing
production processes at a gas industry enterprise using a multi-agent approach, and a
method for short-term power consumption forecasting at a gas industry enterprise based
on explainable artificial intelligence, descriptions of machine learning methods, and an
approach to results interpretation. Section 3 shows the results and discussion of applying
machine learning methods and SHAP to the preprocessed dataset in the short-term power
consumption forecasting task. Section 4 concludes the article by describing the future
prospects of the study.

2. Materials and Methods

This section describes the method for increasing energy efficiency of production
processes in gas industry enterprises based on the multi-agent approach, machine learning
methods, and the approach to interpreting models of machine learning regarding the
problem of short-term power consumption forecast.

The first step of the algorithm proposed in the article involves applying a multi-agent
approach to decompose production processes into objects/agents necessary for short-term
power consumption forecasting. However, the short-term power consumption forecasting
system itself is not implemented as a multi-agent system.

After data preprocessing, ensemble machine learning methods are employed to obtain
short-term power consumption forecast values.

Following the power consumption forecasting results, their interpretation is conducted
using the SHAP algorithm.

The pipeline of proposed algorithm is shown in Figure 1.
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2.1. Gas Industry Enterprise under Consideration

The gas industry encompasses the extraction, transportation, storage, and distribution
of natural gas. Since the nature of a company’s operations determines the factors influencing
production processes, it is essential to identify the type of enterprise beforehand to analyze
these processes. In this study, a compressor station was selected as the object within the gas
industry. A compressor station of a main gas pipeline is an enterprise in the gas industry,
which can be defined as a complex of equipment for increasing gas pressure and cooling
during gas transportation through a main gas pipeline. The compressor station discussed
in the article consists of three compressor compartments.

The compressor station includes a compressor compartment with gas–compressor
units (GCU) and cooling units (CU). The drives of the GCU of main gas pipelines are gas
turbine units (GTU), asynchronous engines with a capacity of 4.5 MW and synchronous
from 4 to 25 MW. In addition, it should be noted that the gas turbine units (GTU) of GCU
can be used as self-generation units. The most common CU are air-cooled units (ACU),
which use electric fan drives from 10 kW to 100 kW. The consumption of ACU can account
for 50–80% of the total compressor station load. Figure 2 illustrates the main elements of
the compressor station.
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2.2. Initial Dataset

The initial dataset for this article included data from the automated commercial
electricity metering system (ACEMS) of the gas industry enterprises and weather data.
Data from the ACEMS included three-year values (791 days):

• Hourly power consumption by the entire compressor station;
• Daily power consumption by ACUs of each compartment;
• Daily power consumption by GCUs of each compartment.

Hourly power consumption data for each month was provided in separate files. Daily
consumption data of ACUs and GCUs for each day was presented in separate files. The
data had missing values.

The statistical characteristics of power consumption for the compressor station under
consideration are shown in Table 1.
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Table 1. Statistical characteristics of power consumption of compressor station.

Season/Year
Statistical Characteristics

Average Value,
kWh

Standard
Deviation, kWh Min Value, kWh Max Value, kWh

Seasonal consumption

Whole dataset 675.8 541.3 99.4 2837.0

Summer 270.4 155.6 99.4 1556.0

Autumn 983.9 604.9 125.3 2797.2

Winter 1307.5 453.6 458.5 2837.0

Spring 476.3 230.4 123.2 2017.8

Consumption by year for one season (autumn)

2019 430.2 108.1 266.0 737.0

2020 1400.2 493.6 207.2 2797.2

2021 511.7 288.7 125.3 1808.0

Analysis of the distribution of hourly power consumption values for the entire period
shows a large standard deviation of 541.3 kWh compared to the average value of 675.8 kWh.
The difference between the maximum consumption in the winter (2837 kWh) and the
minimum in the summer (99 kWh) is 2738 kWh.

The analysis of the statistical characteristics showed that the following factors are to
be considered for the short-term power consumption forecast:

• The dependence of power consumption on the operating modes of GCUs and ACUs;
• The non-stationarity nature of gas transportation processes;
• The seasonality factor.

Figure 3 presents a fragment of the hourly power consumption for the compressor
station from December 2020 to January 2021, demonstrating the high stochasticity of power
consumption.
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Practice in working with data shows that sometimes, due to low automation of pro-
cesses, it is not possible to obtain values for production process factors. Therefore, the
production process index was introduced by the authors to account for the magnitude
of power consumption. By the production process index, we mean a value that indi-
rectly accounts for production processes. Its value was 1 for power consumption greater
than 1 MWh; otherwise, it was 0. The value of 1 MWh was selected based on an anal-
ysis of the consumption load curve. While we do not provide a specific methodology
for selecting this value, we demonstrate that its use improves the accuracy of power
consumption forecasting.
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Since we are forecasting the power consumption of a compressor station whose
production processes are season-dependent, it is necessary to consider weather data. The
data were taken for a weather station located 5 km from the compressor station from the
archive of the rp5.ru website. This assumption of the use of weather data from the archive
instead of the forecasted ones can be justified by the fact that meteorological parameters
are additional factors, and the accuracy of weather forecasting is comparable to actual
weather parameters.

The meteorological data include:

• Wind speed (m/s);
• Temperature (◦C);
• Atmospheric pressure (mm Hg);
• Humidity (%).

The discretization step for all meteorological parameters was initially 3 h.
Initial research data are shown in Table 2.

Table 2. Initial data description.

Parameter Units Time Sampling Step, h Source

Hourly power consumption of entire
compressor station kWh 1 ACEMS

Daily power consumption of ACU 1 kWh 24 ACEMS

Daily power consumption of ACU 2 kWh 24 ACEMS

Daily power consumption of ACU 3 kWh 24 ACEMS

Total daily power consumption of ACUs kWh 24 ACEMS

Daily power consumption of GCU 1 kWh 24 ACEMS

Daily power consumption of GCU 2 kWh 24 ACEMS

Daily power consumption of GCU 3 kWh 24 ACEMS

Total daily power consumption of GCUs kWh 24 ACEMS

Production process index - 1 Authors

Wind speed m/s 3 rp5.ru

Temperature ◦C 3 rp5.ru

Atmospheric pressure mm Hg 3 rp5.ru

Humidity % 3 rp5.ru

2.3. Multi-Agent Approach

In this article, a multi-agent approach is proposed to enhance the energy efficiency of
production processes of gas industry enterprises. The algorithm for applying the multi-
agent approach can be described as follows:

• Defining the objective function of the short-term power consumption forecasting
system for the compressor station (in our case study, the energy costs; see Section 2.3.1);

• Description of the information model for short-term forecast of consumption of a
compressor station (see Section 2.3.2);

• Application of Multi-agent Approach for analyzing production processes of compres-
sor station (see Section 2.3.3):

• Identifying agents based on objects involved in the production processes of the com-
pressor station (in our case study, GCU and ACU);

• Defining the objective functions of the agents;
• Specifying the input and output data flows of the agents;
• Establishing connections between the agents.
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2.3.1. Defining the Objective Function of the Short-Term Power Consumption Forecasting
System for the Compressor Station

The first step in creating a short-term power consumption forecasting system for the
compressor station is to define its overall objective function. The objective function of this
system is determined by the energy costs according to Formula (1), considering constraint
(2) that represent power balance.

S = ∑
(

Pext·T + f
(

Pgen
)
·kgen + Pstor+·kstor

)
, (1)

Pext + Pgen + Pstor+ = Pcons + Pstor− + ∆P. (2)

where S is the costs, Pext is the power supplied by the external power system, T is the
electricity tariff, f

(
Pgen

)
is the function of dependence between amount of used fuel and

output of self-generation units, Pstor+ is the power output of energy-storage system, kgen
is the utilization factor for self-generation units, kstor is the utilization factor for energy-
storage systems, Pgen is the power supplied by self-generation units, Pcons is the power
consumption of load objects (GCU, ACU), Pstor− is the power consumed by energy-storage
systems during charge cycle, and ∆P is the power loss in a power supply system.

2.3.2. Description of the Information Model for Short-Term Forecast of Power
Consumption of the Compressor Station

In order to create a short-term power consumption forecasting system, it is neces-
sary to identify the system users, the real-world objects required for forecasting power
consumption, and develop an information model of the system. The information model
is understood as a model consisting of a set of interconnected entities (objects). Entity is
an abstraction of a real-existing object, process, or phenomenon about which information
needs to be stored in a database.

The short-term power consumption forecasting system is designed for use by the
following subjects:

• An expert in power consumption forecasting and energy accounting with expert
knowledge in power consumption forecasting;

• A chief engineer making decisions related to the production processes of the compres-
sor station.

An expert in power consumption forecasting and energy accounting receives informa-
tion concerning the schedule of short-term power consumption forecast for enterprises of
the gas industry (henceforth—schedule of power consumption forecast), which they can
correct in accordance with their knowledge.

A chief engineer receives three schedules:

• Operating schedule of energy-storage systems;
• Schedule of controllable load consumers;
• Operating schedule of self-generation units (henceforth—operating schedule of

self-generation).

The chief engineer can make expert adjustments to these schedules.
Appropriate information models based on the multi-agent approach were developed

to model generation, storage, and consumption of power by the compressor station. The
information data model used to generate “Schedule of power consumption forecast”,
“Schedule of controllable load consumers”, and “Operating schedule of energy storage
systems”, as shown in Figure 4. The information model used to generate the “Operating
schedule of self-generation” is shown in Figure 5. Objects formed by the information
system are marked green. Objects from adjacent information systems are marked orange.
Users who interact with the system are marked blue. Objects entered by users are shown
in white. Arrows between objects indicate the direction of connection: an object where an
arrow end is formed based on an object from which it was aimed.
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The object “Production plan data” is necessary for the informational data because,
according to the specifics of the production processes, “Data on gas transportation plan”
have a discretization ranging from one to seven days. Therefore, the object “Data on gas
transportation plan” can be differently distributed among working days depending on the
equipment maintenance schedule. The object “Production plan data” is generated by the
system of short-term power consumption forecast for the compressor station based on the
following objects:

• “Production calendar data”;
• “Data on gas transportation plan”;
• “Generation equipment data”, which is used to arrange the “Operating schedule of

self-generation”;
• “Equipment data”, which is used to arrange other schedule objects.

The “Schedule of power consumption forecast” relates to the following objects:

• “Data on actual power consumption”;
• “Weather data”;
• “Production plan data”;
• “Expert adjustments to schedule of power consumption forecast”.

“Schedule of controllable load consumers” is created for the equipment related to con-
trollable load consumers after “Schedule of power consumption forecast” is formed. This
schedule describes changes made in “Schedule of power consumption forecast” depending
on the forecast of electricity tariff, forecast of peak load hour, and data on equipment of
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controllable load consumers. Hence, the object “Schedule of controllable load consumers”
relates to the following objects:

• “Schedule of power consumption forecast”;
• “Data on forecast of electricity tariff”;
• “Equipment data”;
• “Operating schedule of self-generation”;
• “Expert adjustments to schedule of controllable load”.

The object “Schedule of controllable load” is connected to “Operating schedule of self-
generation” assuming that the distribution of controllable load value is to be determined
according not only to electricity tariff but also to operating schedule of self-generation.

An energy-storage system can be a special case of controllable load since it can function
as consumer, generator, and energy-storage device. “Operating schedule of energy storage
systems” relates to the following objects:

• “Schedule of controllable load”;
• “Storage equipment data”;
• “Expert adjustments to operating schedule of energy storage system”.

The object “Operating schedule of self-generation” is formed based on interaction
with the following objects:

• “Data on actual power consumption”;
• “Data on actual self-generation”;
• “Weather data”;
• “Production plan data”;
• “Expert adjustments to operating schedule of self-generation”.

2.3.3. Application of Multi-Agent Approach for Analyzing Production Processes of
Compressor Station

After the objects required to create a schedule of power consumption forecast are
defined, agents can be determined. Within the multi-agent approach, an agent is described
by a tuple:

T = ⟨It, Ot, St, Rt, At⟩, (3)

where t is the moment of time, It is the input data of an agent (for example, retrospective
power consumption of the compressor station), Ot is the output data (for example, power
consumption), St is the object state (for example, equipment status), Rt is the rules of agent’s
behavior (for example, emergency start-up/shutdown), and At is the list of agent actions.

The proposed system of short-term power consumption forecast system is considered
as the system with functions that are defined by all actions of agents aimed at achieving
their goals. In the field of power system control, intellectual information systems are
allowed to be used only for decision-making support due to their indeterminate nature.
Thus, in this study, agents are described by the tuple without actions At. Consequently,
agents are described by the following tuple:

T = ⟨It, Ot, St, Rt⟩. (4)

The elements are defined by the following interconnections:

Ot+1 = f (It, St+1), (5)

St+1 = f (It, St). (6)

The objective function of a consumer agent is the reduction in energy costs according
to (1).

Compressor stations can include power consumption objects, self-generation objects,
and energy-storage system objects. Power consumers can be divided into those involved in
the main production process and regulator consumers. A regulator consumer is a power
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consumer whose operating mode allows for load limitation during peak hours to smooth
out the load curve. A special case of a regulator consumer can be a storage system, which
can act as a consumer, generator, or storage system for electrical energy depending on
economic factors and production process factors.

Thus, all objects can be classified into storage agents, generator agents (in our case
study, GTU) and consumer agents (in our case study, ACU and GCU). The agent decompo-
sition for the compressor station is shown in Figure 6.
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Input and output parameters for a consumer-agent are described by (7) and (8),
respectively.

It =
〈

Power, T, Plan, Expcons, Expreg, Meteo, Eq, Cal, Actgen

〉
, (7)

where Power is the retrospective power consumption, T is the forecasted electricity tariff,
Plan is the gas transportation plan, Expcons is the expert adjustments to schedule of power
consumption forecast, Expreg is the expert adjustments to the schedule of controllable
load, Meteo is the weather data, Eq is the equipment data (on/off, resource), Cal is the
calendar-connected features (time, date, working day/day off), and Actgen is the operating
schedule of self-generation objects.

Ot = ⟨Actcons, Forecast⟩ (8)

where Actcons is the schedule of controllable load consumers and Forecast is the schedule of
power consumption forecast.

The objective functions of a generator agent and an agent-consumer are the reduction
in energy costs according to (1) taking into account power balance constraints (2).

Input and output parameters for a generator agent are described by (9) and (10),
respectively.

It =
〈

Power, Gen, Plan, Eqgen, Cal, Meteo, Expgen

〉
, (9)

where Gen is the retrospective self-generation, Eqgen is the generation equipment data (data
on technical state and on/off state of generation equipment), and Expgen is the expert
adjustments to operating schedule of self-generation.

Ot =
〈

Actgen
〉
, (10)
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Input and output parameters flows for an agent-storage are described by (11) and (12),
respectively.

It =
〈

Eqstorage, Forecast, Expstorage

〉
, (11)

where Eqstorage is the storage equipment data and Expstorage is the expert adjustments to
operating schedule of energy-storage systems.

Ot =
〈

Actstorage
〉

(12)

where Actstorage is the operating schedule of energy-storage systems.
The interaction between agents occurs according to Figure 7 through the information

system, whose data information models are discussed above. The schedule of power
consumption forecast is arranged by consumer agents that provide indicators of the main
production process. Moreover, the consumer agents form the schedule of controllable load
consumers to flatten the power consumption curve based on the forecasted electricity tariff
value and operating schedule of self-generation. Operating schedules of self-generation
and energy storage are arranged by a generator agent and agent-storage, respectively, to
maintain power balance.
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In this section, a method for decomposing production processes at a compressor
station enterprise based on a multi-agent approach is presented. The following sections
discuss the developed method for short-term power consumption forecasting.

2.4. Data Preprocessing

The data preprocessing algorithm is shown in Figure 8.
The first step of the data preprocessing algorithm was to create a dataset from separate

files of hourly power consumption of the entire compressor station and files of daily power
consumption by ACUs and GCUs.

The second step was to convert the matrix of hourly power consumption to a vector.
The third step was to perform linear interpolation for the weather data to obtain

hourly values.
The fourth step was to create an initial dataset by adding the hourly weather data to

the power consumption data and performing a Spearman correlation analysis.
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Figure 8. The algorithm of data preprocessing.

The fifth step was to create a dataset for a machine learning application. Forecast of
power consumption is retrospectively based:

y∗i = f (g(yi−h, yi−h−1, . . . , yi−h−w), X), (13)

where y∗i is the forecasting power consumption at i-time, f is the forecasting model, g
is the function that defines the rule of selection of actual retrospective values of power
consumption, h is the forecasting horizon, w is the width of the window of retrospective
data, and X is other values.

After the initial correlation analysis, it was determined that the forecast model can
be sufficiently built with 12 h time step and 4-day retrospective depth [8]. This can be
justified by the cyclic nature of production processes. In addition, values of 12, 24, and
36 h before the forecast hour were not considered when formulating the schedule of power
consumption forecast because these data were not available in the ACEMS at the time
of power consumption forecast creation. For example, the following data were used to
forecast power consumption for 9 September 19:00–20:00:

• First, 7 September 19:00–20:00 and 07:00–08:00;
• Second, 6 September 19:00–20:00 and 07:00–08:00;
• Third, 5 September 19:00–20:00.

Therefore, y∗i can be described as

y∗i = y∗i = f (yi−48, yi−60, yi−72, yi−84, yi−96, X), (14)

where X can include the following:

• Weather data:
• Wind speed in hour i;
• Temperature in hour i;
• Atmospheric pressure in i;
• Humidity in hour i;
• Production plan data:
• Hour number i (from 0 to 23);
• Day of the month (from 1 to 31);
• Day of the week (from 1 to 7);
• Month number (from 1 to 12);
• Production process index;
• Daily power consumption by ACUs and GCUs.

The final step involved removing rows with zero power consumption values from the
dataset. After preprocessing, the dataset contained 16,896 rows.
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The whole dataset was split into training and testing sets in a 90:10 ratio.

2.5. Machine Learning Methods

The following four ensemble regression methods of machine learning were chosen
for power consumption forecast: random forest [51], adaptive boosting (AdaBoost) [51],
extreme gradient boosting (XGBoost) [52], and light gradient boosting (LightGBM) [53].
They are used to build ensembles from regression decision trees:

y∗i = T(Zi), (15)

where T is a hierarchic system of rules, each of which compares the value of a certain
feature with the threshold.

Random forest builds model as an ensemble consisting of k decision trees:

y∗i = f (Zi) =
1
k ∑k

j=1 Tj(Zi), (16)

AdaBoost, XGBoost, and LightGBM are based on the concept of gradual ensemble
improvement (boosting):

y∗i = f (Zi) = ∑k
j=1 wjT j(Zi), (17)

where wj is weight coefficient of model j.
In order to compare the results of experiments, the following metrics were calcu-

lated: mean absolute error (MAE), mean absolute percentage error (MAPE), root mean
squared error (RMSE), and coefficient of determination (R2), defined by Formulas (18)–(21),
respectively.

MAPE =
1
N ∑N

i=1

∣∣yi − y∗i
∣∣

yi
, (18)

MAE =
1
N ∑N

i=1|yi − y∗i |, (19)

RMSE =

√
1
N ∑N

i=1

(
yi − y∗i

)2, (20)

R2 = 1 − ∑N
i=1

(
yi − y∗i

)2

∑N
i=1(yi − y)2 , (21)

where yi is actual i-th value of power consumption, y∗i is forecast i-th value of power
consumption, N is the number of values, and y is the mean actual value.

Additionally, to assess the lower bound of accuracy, results for a ridge regression model
with Tikhonov regularization (henceforth—Ridge) were obtained. The linear regression
model can be formulated as follows [41]:

y∗i = X·W + d , (22)

where X is the independent variables (features, described in Formula (14)), W is regression
coefficients, and d is bias coefficient.

Data preprocessing, model construction, and testing were performed using Python
3 with open-source libraries: Scikit-Learn (AdaBoost, random forest, and Ridge) [51],
XGBoost [52], and LightGBM [53].

2.6. Interpretation of Model Output

The SHAP algorithm was applied to interpret the results of the short-term power
consumption forecast for the compressor station. This algorithm enables identifying the
influence of parameters related to the operation of equipment (ACU and GCU) on the
power consumption forecast. The importance of the j-th feature (e.g., gas transportation
plan or the daily power consumption of GCU) for the model f is calculated by analyzing its
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impact on the output results (power consumption forecast) with input data Zj, considering
all possible feature combinations, as described in the following [48]:

φj( f , Zi) = ∑S⊆P\{j}
|S|!(|P| − |S| − 1)!

|P|!

[
fS∪{j}

(
Zi,S∪{j}

)
− fS(Zi,S)

]
, (23)

where P is the set of all features, S is the subset of features, Z is the set of all possible features
S, j is a feature, and i is the index of the data instance.

3. Results and Discussion
3.1. Model Training Results

After the dataset was formed, Spearman’s correlation coefficients were analyzed for the
gas transportation plan features (daily power consumption values by GCUs and ACUs and
their sums: GCU_1, GCU_2, GCU_3, GCU, ACU_1, ACU_2, ACU_3, and ACU, respectively).
Spearman’s correlation coefficients were calculated according to the following:

r = 1 −
6∑ d2

i
n·(n2 − 1)

, (24)

where r is the Spearman’s correlation coefficient, di is the difference between two ranks of
each feature, and n is the number of observations.

Spearman’s correlation coefficients for data on planned gas transportation are shown
in Figure 9.
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Removing values with Sperman’s correlation coefficients greater than 0.70 from the
data set can increase generalization properties. Therefore, only total daily values of power
consumption by GCUs and ACUs, as well as daily values of second ACU_2, were considered
in the experiments.

Based on the initial data, the following features were chosen for model training:

• Retrospective data on actual power consumption (power consumption (hour—h),
where h—48, 60, 72, 84, and 96 are the hours before the forecast hour);

• Calendar features (hour, day, day of week, and month);
• Data on the gas transportation plan (the production process index and total daily

power consumption by GCUs, ACUs, and ACU2);
• Weather factors (air temperature, atmospheric pressure, humidity, and wind speed).

Experiments were conducted considering various features. In addition to comparing
the training results of the models, the errors of the expert forecast were used as reference
values: MAPE of 16.81% and MAE of 105 kWh.

In the first experiment, only retrospective values of power consumption
(yi−48, yi−60, yi−72, yi−84, yi−96, X) and calendar features were considered. The experimen-
tal results are shown in Table 3.

Table 3. Results of power consumption forecast for the compressor station in the first experiment.

Model
MAE, kWh MAPE, % RMSE, kWh R2

Train. Val. Train. Val. Train. Val. Train. Val.

AdaBoost 31.35 53.75 8.46 19.94 39.46 86.75 1.00 0.57

XGBoost 53.45 41.59 10.12 13.58 79.35 79.25 0.98 0.64

Random Forest 43.79 40.59 7.93 12.90 66.58 81.71 0.99 0.61

LightGBM 61.94 37.86 11.77 12.38 91.22 75.61 0.97 0.67

Ridge 111.39 43.52 19.18 14.70 175.35 84.25 0.90 0.59

LightGBM demonstrated the best results on the test dataset by the MAPE criterion
at 12.38%. It indicates an increase in forecast accuracy in relation to the expert forecast of
4.43%. It should be noted that the R2 for the best result is only 0.67. Consequently, it can
be concluded that the LightGBM-based model provides explanations for a significant part
of the power consumption of the compressor station dispersion. However, even though
parameters substantially contribute to the model, the model makes errors when predicting
individual hours of power consumption. In other words, the stochastic nature of power
consumption cannot be accurately described when only retrospective power consumption
and calendar parameters are considered. It is also important to note that underfitting is
observed in the Ridge model training. The underfitting of the model is explained by the
fact that the model fails to find a function that adequately describes the data. Overfitting is
observed in the training of models based on other methods. Model overfitting is explained
by the fact that the model fails to generalize new data: it accounts for the specifics of the
training data rather than the underlying patterns. Moreover, the MAPE of the AdaBoost
model exceeds the MAPE of the expert forecast.

In the second experiment, weather data were added to the features used in the first
experiment. The training results are presented in Table 4.

LightGBM demonstrated the best results using the MAPE criterion of 11.99%. The
addition of weather data does not lead to a significant improvement in results in comparison
with the results of the first experiment. This can be explained by the fact that hourly weather
data were obtained through linear interpolation, assuming that the parameter changes were
linear, whereas, in reality, the parameters may change nonlinearly between measurements.
In order to prevent this unfavorable outcome, a large dataset of weather data should be
used to analyze changes in weather parameters.
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Table 4. Results of forecasting the power consumption of the compressor station in the second
experiment.

Model
MAE, kWh MAPE, % RMSE, kWh R2

Train. Val. Train. Val. Train. Val. Train. Val.

AdaBoost 29.26 50.51 7.94 17.91 36.47 85.28 1.00 0.58

XGBoost 71.57 51.84 13.21 17.88 108.91 87.79 0.96 0.56

Random Forest 40.73 42.46 7.43 13.35 62.08 83.85 0.99 0.59

LightGBM 48.68 38.61 9.50 11.99 70.29 78.06 0.98 0.65

Ridge 110.23 49.61 18.81 16.81 172.08 87.09 0.91 0.56

In the third experiment, the data on the gas transportation plan (daily values of power
consumption by GCUs, ACUs, and ACU_2) were added to the features used in the first
experiment. The results are shown in Table 5.

Table 5. Results of power consumption forecast for the compressor station in the third experiment.

Model
MAE, kWh MAPE, % RMSE, kWh R2

Train. Val. Train. Val. Train. Val. Train. Val.

AdaBoost 14.75 23.40 4.22 8.98 18.35 36.84 1.00 0.92

XGBoost 15.52 10.24 2.66 3.44 22.57 17.74 1.00 0.98

Random Forest 14.31 17.93 2.42 5.60 22.02 36.75 1.00 0.92

LightGBM 11.58 11.19 2.05 3.20 16.54 26.30 1.00 0.96

Ridge 49.62 18.51 7.52 6.52 76.18 29.91 0.98 0.95

The best results in terms of MAPE on the test set were demonstrated by LightGBM and
XGBoost, with values of 3.20% and 3.44%, respectively. Comparing other metrics shows
that XGBoost has the best result: these results have higher R2 and lower values of MAE and
RMSE. Hence, considering production process factors reduces MAPE by 13.37% compared
to the expert forecast. The R2 of 0.98 on the testing set indicates a strong relationship
between input parameters and model results. In other words, the model explains 98% of
the variance in the compressor station’s power consumption, with only 2% of the variance
remaining unexplained by the model. This means that the model can make very accurate
forecasts based on previously unknown data. Comparing the MAE of 10.24 kWh and
RMSE of 17.74 kWh with the MAE and RMSE values in the first experiment, which were
37.86 kWh and 75.61 kWh, respectively, shows that considering production process factors
reduces the forecast error relative to all analyzed metrics. At the same time, models based
on random forest and LightGBM are characterized by good learning results (the difference
between the mean absolute percentage error on the test set is less than 4% compared to
the mean absolute percentage error on the training set). The results of models based on
AdaBoost and Ridge also show improvement.

In the fourth experiment, all features were considered, except for the production
process index. The results are presented in Table 6.

The best MAPE on the testing set was achieved by XGBoost and LightGBM, with values
of 3.70% and 3.25%, respectively. The higher MAPE compared to the third experiment can
be attributed to inaccurate consideration of weather data.
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Table 6. Results of power consumption forecast of the compressor station in the fourth experiment.

Model
MAE, kWh MAPE, % RMSE, kWh R2

Train. Val. Train. Val. Train. Val. Train. Val.

AdaBoost 14.73 23.35 4.21 9.10 18.31 36.04 1.00 0.93

XGBoost 15.57 10.43 2.71 3.70 22.38 17.12 1.00 0.98

Random Forest 14.35 17.69 2.41 5.52 22.04 36.67 1.00 0.92

LightGBM 11.53 11.31 2.50 3.25 16.39 25.88 1.00 0.96

Ridge 49.55 19.33 7.59 6.72 75.75 31.47 0.98 0.94

In the fifth experiment, the production process index was added to the features used
in the first experiment. The results are presented in Table 7.

Table 7. Results of power consumption forecast of the compressor station in the fifth experiment.

Model
MAE, kWh MAPE, % RMSE, kWh R2

Train Val Train Val Train Val Train Val

AdaBoost 32.47 45.48 7.69 15.45 40.45 75.87 1.00 0.67

XGBoost 54.49 42.11 10.43 14.62 80.59 69.50 0.98 0.72

Random Forest 40.52 40.41 7.61 14.11 60.65 74.70 0.99 0.68

LightGBM 60.42 35.02 10.52 11.00 89.70 67.04 0.97 0.74

Ridge 104.89 63.08 18.93 26.04 155.47 85.58 0.92 0.57

LightGBM yielded the best results. Consideration of the production process index
without considering other production process factors reduced the MAPE by 5.81% com-
pared to the expert forecast It is important to note that overfitting is observed in the training
of models based on other methods.

The summary results of the experiments are shown in Table 8. The absolute and
relative improvement in the forecast accuracy was estimated in relation to the MAPE of the
expert forecast (16.81%).

Table 8. Summary results of experiments on short-term forecasting of power consumption by a
compressor station.

Experiment Model MAPE, % Improvement of Forecast Results, % Improvement of Forecast Results, p.u.

1 LightGBM 12.38 4.43 0.26

2 LightGBM 11.99 4.82 0.29

3 XGBoost 3.44 13.37 0.80

4 XGBoost 3.70 13.12 0.78

5 LightGBM 11.00 5.81 0.35

Figures 10 and 11 depict the power consumption graphs for the third experiment,
which yielded the lowest error values, clearly illustrating the high accuracy of the forecast.
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It should be noted that LightGBM demonstrated better results than other machine
learning models for a small number of training features. This can be explained by two
characteristics of the algorithm [54]:

• Use of a leaf-wise tree growth instead of level-wise tree growth;
• Bundling of exclusive features to reduce feature space dimensionality.

Thus, LightGBM can be efficient in the case of a small number of training features.

3.2. The Interpretation Examples

For the third experiment, which yielded the best results, the SHAP algorithm was
applied to models based on XGBoost and LightGBM. The results of applying the SHAP
algorithm show the significance (weights) of the parameters that influenced the forecast of
power consumption for each hour. These weights can be interpreted by an expert and used
to make expert adjustments. The features are arranged from the bottom of the graph in
ascending order of influence on the predicted value of power consumption f (x) relative
to the average value across of power consumption of the whole dataset E[f (X)]. The pink
color indicates values that increase the power consumption forecast f (x) relative to E[f (X)],
and the blue color indicates values that decrease f (x). Thus, by adding and subtracting the
influence values of the factors from E[f (X)], the value of f (x) is obtained. The gray color
next to the factor labels shows the values of the factors that influenced the forecast.

Features that influenced the power consumption forecast of the second hour 06 Febru-
ary 2020 are shown in Figure 12.
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The decrease in power consumption forecast of the compressor station (f (x) = 665.51 kWh)
in relation to the average value (E[f (X)] = 720.41 kWh) for the results of LightGBM is justified
by

• Low power consumption 60 h before the forecast hour (1494 kWh);
• The absence of consumption by air-cooling unit 2.

The influence of high consumption factors by all GCUs (13,050 kWh) was compensated
by relatively low consumption by all ACUs (7430 kWh) and forecast hour (02:00), which is
characterized by statistically low power consumption.

For the results obtained using XGBoost, the decrease in power consumption of the
second hour (f (x) = 634.65 kWh) in relation to the average value (E[f (X)] = 720.40 kWh) is
justified by

• The forecast hour (02:00), which is characterized by statistically low power consump-
tion;

• Low power consumption 48 h before the forecast hour (818 kWh).

The influence of high consumption factors by all GCUs (13,050 kWh) was compensated
by relatively low consumption by all ACUs (7430 kWh) and the value of consumption 60 h
before the forecast hour (1494 kWh).
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Despite the difference in model construction, the same features had the largest weight
in the decision-making process for both models.

The features that had influenced the forecast for midnight on 03 April 2020 are shown
in Figure 13.
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For the results obtained using LightGBM, the decrease in power consumption forecast
(f (x) = 635.98 kWh) in relation to the average value is mainly explained by the forecast hour
(00:00), which is characterized by statistically low power consumption. Other factors were
compensated for by each other.

For the results obtained using XGBoost, the decrease in power consumption
(f (x) = 608.30 кBт·ч) in relation to the average value is explained by low power con-
sumption 48 and 60 h before the forecast hour (818 kWh). Other factors were compensated
for by each other.

Despite the differences in model construction, it can be noted that both models as-
signed the highest weight to the same features when making decisions.

The overall feature importance is presented in Table 9. It can be noticed that, despite
XGBoost making decisions mainly based on the daily power consumption of ACU, other
factors can have an influence on certain forecast hours. The same conclusion can be made
for LightGBM. Thus, the usage of the SHAP algorithm improves the interpretability of
results, resulting in greater trust by experts in training results for machine learning models.
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Table 9. Feature importance.

LightGBM XGBoost

Feature Feature Importance Feature Feature Importance

hour 0.1995 air-cooling unit 0.5068

air-cooling unit 0.1790 power consumption
(hour—48) 0.3419

power consumption
(hour—48) 0.1600 compressor unit 0.0437

compressor unit 0.1100 air-cooling unit 2 0.0316

power consumption
(hour—60) 0.0985 power consumption

(hour—60) 0.0265

power consumption
(hour—96) 0.0610 power consumption

(hour—96) 0.0155

air-cooling unit 2 0.0510 hour 0.0117

power consumption
(hour—72) 0.0470 month 0.0087

power consumption
(hour—84) 0.0440 day 0.0070

day 0.0325 power consumption
(hour—84) 0.0037

month 0.0090 power consumption
(hour—72) 0.0025

weekday 0.0085 weekday 0.0003

4. Conclusions

The algorithm for improving the safe operation of gas industry enterprises and the
energy efficiency of their production processes using a multi-agent approach was proposed
in this article. This approach considers the interdependence of various production pro-
cesses. The developed method was applied to solve the short-term power consumption
forecasting problem for a compressor station. The research indicates that the accuracy
of short-term power consumption forecasts can be enhanced through the modeling of
production processes using a multi-agent approach.

The experiments were conducted using various ensemble models with different fea-
tures on real three-year data of a compressor station. It was found that consideration
of production process factors can increase forecasting accuracy by 13.37%. Specifically,
MAE, obtained by XGBoost, was decreased from 105 kWh of expert forecast to 15.57 kWh.
In comparison with the experiment, where only retrospective power consumption and
production calendar were considered, R2 increased from 0.67 to 0.98, MAE decreased from
61.94 kWh to 15.57 kWh, and RMSE decreased from 91.22 kWh to 22.39 kWh. It was also
discovered that LightGBM provides better results for models built on a dataset with a small
number of input features.

The SHAP algorithm was applied to enhance the interpretability of the results. The
use of this algorithm can increase experts’ trust in the results provided by intelligent
information systems. It should be noted that although SHAP facilitates the interpretation
of machine learning results by visualizing parameters, this algorithm does not allow for
complete explainability of the results. Therefore, the proposed method can only be used
if an expert with competencies in enterprise consumption forecasting interacts with the
explanation results.

Further research is planned to focus on the short-term forecasting of self-generation
in oil and gas industry enterprises, scheduling of controllable load, scheduling of energy-
storage systems, and experiments on data from other oil and gas industry enterprises. In
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addition, the developed method is planned to be applied to consider production processes
for other optimization problems in power systems.
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