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Abstract: Machine learning-based Surrogate Reservoir Models (SRMs) can replace/augment multi-
physics numerical simulations by replicating the reservoir simulation results with reduced com-
putational effort while maintaining accuracy compared with numerical simulations. This research
will demonstrate SRMs’ potential in long-term simulations and optimization of geological carbon
storage in a real-world geological setting and address challenges in big data curation and model
training. The present study focuses on CO2 storage in the Smeaheia saline aquifer. Two SRMs were
created using Deep Neural Networks (DNNs) to predict CO2 saturation and pressure over all grid
blocks for 50 years. 18 million samples and 31 features, including reservoir static and dynamic
properties, build the input data. Models comprise 3–5 hidden layers with 128–512 units apiece. SRMs
showed a runtime improvement of 300 times and an accuracy of 99% compared to the 3D numerical
simulator. The genetic algorithm was then employed to determine the optimal rate and duration
of CO2 injection, which maximizes the volume of injected CO2 while ensuring storage operations’
safety through constraints. The optimization continued for the reproduction of 100 generations, each
containing 100 individuals, without any hyperparameter tuning. Finally, the optimization results
confirm the significant potential of Smeaheia for storing 170 Mt CO2.

Keywords: geological carbon storage; surrogate reservoir model; artificial intelligence; deep
learning; optimization

1. Introduction

The main target of the Paris Agreement in December 2015 was to concentrate efforts
on limiting temperature increases (above pre-industrial levels) below 1.5 ◦C [1]. Based on
research findings [2], if there is not a significant reduction in greenhouse gas emissions
before 2030, global warming will exceed 1.5 ◦C; consequently, the permanent demise of
delicate ecosystems is inevitable. Carbon capture and storage (CCS) is an efficient method
that targets CO2 emissions at their origin and has the potential to lead to a 15% reduction
in overall emissions by 2050 [3]. CCS is a promising strategy for addressing climate change
that involves trapping and purifying CO2 emissions from industrial and energy sources,
rather than emitting them into the atmosphere. The captured CO2 is then transported
and stored permanently in the underground, either onshore or offshore [4,5]. Different
techniques for storage and utilization of CO2 underground have been developed, including
storing it in saline aquifers, utilizing it to enhance oil and gas recovery, recovering methane
from coal beds, using it in geothermal systems, storing it in compressed air energy storage
systems, and converting it into carbonate minerals in situ [6].

The geological storage of CO2 presents five possible risks: CO2 and CH4 leakage,
seismicity, ground movement, and brine migration [7,8]. Prior to injection, the primary
objective is to ensure that CO2 does not flow through pre-existing fractures and faults
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or newly created fractures in the caprock due to pressures exceeding the fracture pres-
sure. Additionally, it is important to maintain the effectiveness of the caprock seal, as
measured by breakthrough capillary pressure values [9,10] and legacy wells [11,12]. Hence,
optimizing the storage process can prevent such risks by defining proper objectives and
constraints [13–15]. Traditionally, the optimization of storage activities has been faced
via multi-physical 3D numerical simulation approaches, which allow a holistic vision of
the phenomena involving geological, fluid-flow, geochemical and geomechanical aspects.
However, the high degree of accuracy in the phenomena simulation could be counteracted
by time-consuming computational efforts [16,17]. A promising alternative, Proxy Modeling,
reproducing simulation outputs from input features through mathematical or statistical
functions, has been used to substitute physics-based reservoir simulations [18,19] and
enhance computational time by orders of magnitude [20,21]. There are several types of
proxy models including reduced-physics, the reduced-order modeling (ROM) approach,
statistics-based techniques, and artificial intelligence (AI)-based methods [22,23].

The Smart Proxy Model (SPM) or Surrogate Reservoir Model (SRM) is a data-driven
model that uses machine learning to replace/aid computationally intensive numerical
models. It can accurately reproduce the pressure and saturation distribution, for instance,
across the grid cells at each time step [24]. Computationally expensive optimization
tasks (injection or production) can be performed by SRMs to reduce the computational
time. Golzari, et al. [25] developed a field-based SRM and later optimized the reservoir
production through the Genetic Algorithm (GA). Ng et al. [26] used adaptive moment
estimation (Adam) to build an SPM for a fractured reservoir and optimize production [27].
Based on ten realizations of the Egg Model, Ng et al. [28] showed how multilayer perceptron
may be used to create data-driven models. To perform waterflooding optimization, these
models were then combined with two nature-inspired algorithms, namely particle swarm
optimization and the gray wolf optimizer. In parallel, they compared the optimizers’
performance, which resulted in good prediction accuracy. Ng et al. [29] enhanced proxy
modeling applications for waterflooding optimization by utilizing a sophisticated machine
learning algorithm, Long Short-Term Memory (LSTM).

Furthermore, SRMs were exploited for injection optimization in CO2 Storage and
CO2-EOR by Agada et al. [30], Nait Amar et al. [31], Nait Amar et al. [32], Sun et al. [33].
Various optimization algorithms were used such as GA [30,32,34,35], Ant Colony [31],
Hooke–Jeeves Direct Search [36], SIMPLEX (a simple optimization technique by linear
programming), and Generalized Reduced Gradient [13]. The main aim of these works
was optimizing the CO2 injection rate, Water Alternating Gas (WAG) cycle, slug size, and
well location to maximize Field Oil Production Total and CO2 storage capacity based on
operational goal and CO2 storage type (in saline aquifer or CO2-EOR).

Various machine learning algorithms, such as Artificial Neural Network (ANN), Sup-
port Vector Machine, and Random Forest, can be employed for proxy modeling [37]. Due
to the strong performance in highly non-linear problems and precise predictive capabilities
of Artificial Neural Networks (ANNs) [38–40], much research has utilized this method
or its advanced variations, such as Deep Neural Networks (DNNs), Convolutional Neu-
ral Networks (CNNs), or Recurrent Neural Networks (RNNs), for surrogate reservoir
modeling [41,42].

Gholami [43] integrated a grid-based and a well-based SRM to optimize CO2-EOR
by utilizing ANN. They used a cascading (sequential) grid-based approach to simulate
the distribution of CO2 mole fraction, pressure, water saturation, and oil saturation in a
compositional model. A cascading approach produces distinct SRMs for each time step
and parameter. The model output at the preceding time step, t − 1, becomes the model
input at time step t. In addition, the robust SRM accurately simulated the production rate
and the total amount of oil produced. Amini [44] employed ANN to build grid-based
SRMs for coarse and fine grid models using cascading and non-cascading approaches.
Unlike cascading, the non-cascading method involves creating a single model for the entire
simulation time for each parameter. Only the original state of dynamic features at time step
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zero is provided to the model. As a result, the cascading grid-based SRM (SRMG) led to
the accumulation of errors from each time step with prior time steps, resulting in lower
accuracy compared to the non-cascading approach. In addition, the non-cascading SRMG,
which was constructed using the fine-grid model, led to greater precision in predicting
pressure but a bigger margin of error in predicting saturation when compared to the
coarse-grid model.

Matthew, et al. [45] employed DNNs to develop field-based proxy models and address
a multi-objective optimization problem through the utilization of NSGA-II (Non-dominated
Sorting Genetic Algorithm II) in two reservoir models. The research was conducted to
investigate the application of CO2-WAG (Water Alternating Gas) in order to optimize oil
recovery and CO2 storage in the reservoir. The study focused on optimizing the injection
rates of gas and water, as well as the duration of half-cycles. Naghizadeh et al. [46] proposed
an economical optimization framework that combines machine learning models and several
optimization techniques to determine the ideal setting for injecting flue gas-WAG into the
“Gullfaks” reservoir. Proxy models such as DNN, Cascade Forward Neural Network
(CFNN), Radial Basis Function, and Generalized Regression Neural Network were used
in this study to develop robust machine learning models. The CFNN and DNN models
exhibited the most accurate predictions for recovery factor and CO2 storage.

A limitation of the current SRM studies (presented briefly in this section) lies in
their applicability to real-world field development planning, which requires long-term
simulation and optimization of numerous temporal and spatial factors. The majority of the
aforementioned works have a brief and restricted time span. In addition, the training of
intricate SRMs necessitates a substantial number of numerical simulation cases [47]. The
Smeaheia storage project, which is part of the Northern Lights’ full-scale CCS project, has
been granted a license [48]. The project aims to develop transport and storage solutions for
up to 20 million tons of CO2 per year (to be operational by 2028) and covers a large area east
of the Troll field off the west coast of Norway. Smeaheia possesses an extensive numerical
model, developed by Eqionor and Gassnova [49] that is computationally demanding to
conduct long-term simulations. Many simulation runs are necessary to evaluate and
optimize the development plan of this project. Additionally, no proxy models have been
developed for this aquifer model to reduce the computing costs. This computational
challenge will be more significant considering the ambition of 30–50 million tons per
annum capacity for CO2 transport and storage by 2035, by storing all the transported CO2
in Smeaheia and other potential storage sites as they are matured, thus making the models
bigger and more complex.

The objective of this study is to create the first SRM for the Smeaheia aquifer and
enhance the efficiency of long-term CO2 storage simulations. The potential risks associated
with this storage project are the migration of CO2 plume towards the leakage points and
the fracturing of the caprock [50–52]. Hence, the objective of optimization is to maximize
the storage of CO2 while simultaneously imposing restrictions on the CO2 saturation and
cell pressure below the caprock. This study shall utilize grid-based SRMs to forecast the
pressure and CO2 saturation within the cells in a computationally effective way. SRMs
will be created for this real-world reservoir model that consists of about 1.5 million grid
cells and spans 50 years. Although RNNs can anticipate intermediate time steps and the
period after injection, they also result in higher computational expenses for both training
and computation. Furthermore, the training of CNNs requires a large number of numerical
simulation examples, as demonstrated by Wang et al. [41], who utilized 200 simulation
cases. Given the extensive simulation time required for a complex model like Smeaheia, it
is not practical to conduct such a large number of simulation cases. Furthermore, it would
be impractical to create a proxy model for optimization. Hence, the DNN approach will be
employed for the development of SRMs. In this technology, the prediction of features for
each grid cell can be performed independently of other cells. This allows for the simula-
tion volume to be targeted specifically to the desired cells and reduces the time required
for optimization.
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This study (which is mainly based on the results obtained in [53]), will provide a
concise introduction to ANN and GA in the second section. Subsequently, the methodology
will involve investigating the features of the Smeaheia aquifer and updating its numerical
model. This will be carried out by incorporating pore volume multipliers and creating an
injection well. The updated model will be utilized for generating training and validation
data for two grid-based SRMs that forecast pressure and CO2 saturation. Once the model
has been trained and validated without previous knowledge of the data, it will be employed
to optimize CO2 storage. Ultimately, the outcome of the proxy-based optimization will be
verified against numerical simulation results. After presenting the results, the discussion
part offers an analysis of the results and comprehensively elucidates all the limitations and
challenges faced in constructing the ultimate model.

2. Theory
2.1. Artificial Neural Network

An ANN is a type of machine learning algorithm that utilizes previous data and exam-
ples to learn and predict the future performance of a given phenomenon [54]. It includes
three layers: the input layer, hidden layer, and output layer, each with
respective units.

The hidden layer employs an activation function (σ(z)) to activate weighted input data
using the kernel (W) and bias (b) matrices (Figure 1). The output layer will apply weights
and activation functions to the outcomes of the hidden layer, using units that correspond to
the required features for prediction. The model forecast will then be reflected in the output
of the last layer.
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The process of Forward Propagation is crucial for generating the expected outcome,
while the loss function calculates the discrepancy between the predicted values and the true
values. The Back Propagation method improves the matrices and decreases the prediction
loss and error in proportion to the learning rate. The method is iterated until reaching the
global minimum of the loss; each iteration is referred to as an Epoch [55].

There exist multiple activation functions that can be utilized in the construction of
an ANN. The foremost activation functions include the sigmoid, tangent hyperbolic, and
rectified linear unit (ReLU). The sigmoid activation function (Equation (1)) maps the input
range to the interval [0, 1]. The inherent nature of the phenomenon under consideration is
characterized by non-linearity, as visually depicted in Figure 2, where it is evident that the
derivative exhibits a continuous and gradual change. The Hyperbolic Tangent function
exhibits a structure that closely resembles the Sigmoid function. The function compresses
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the input value into the interval of [−1, +1] and operates according to Equation (2). Both
practitioners and researchers widely employ the ReLU activation function in deep learning.
The efficacy of the ReLU stems from its higher performance in training as compared to
alternative activation functions, such as the logistic sigmoid and the hyperbolic tangent.
The ReLU function can be described as a linear function, namely the identity function,
for all positive input values. Conversely, the ReLU function outputs zero for all negative
input values, as denoted by Equation (3). Nevertheless, the output numbers span from zero
to infinity [56].

σ(x) =
1

1 + e−x (1)

tanh(x) =
2

1 + e−2x − 1 (2)

ReLU(x) = max(0, x) (3)
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A Deep Neural Network (DNN) operates in a similar manner by utilizing multiple
hidden layers. Hyperparameters, such as the learning rate, number of hidden layers, and
optimizer, need to be tuned to suit different scenarios. Underfitting and overfitting are the
two primary challenges encountered during model training. Underfitting arises when the
ANN is inadequately taught to comprehend the intricacy of the occurrence. Overfitting
is the phenomenon where a model achieves high performance during training but fails
to generalize effectively. Possible remedies for overfitting encompass augmenting the
model’s network, elevating the learning rate, enhancing features, streamlining the model,
implementing regularization techniques, and incorporating additional data [57].

2.2. Genetic Algorithm

Holland [58] pioneered the development of the GA, which gained popularity through
David Goldberg’s application in solving a challenging gas-pipeline transmission
problem [59]. GA is an optimization and search technique that operates on the concepts of
genetics and natural selection. It facilitates the reproduction of a population, consisting of
a specific number of individuals, to achieve the highest level of fitness or the lowest cost
function value. The widespread adoption of GA is due to its numerous benefits, such as its
ability to handle both continuous and discrete values, its capacity to simultaneously search
multiple samples from a cost surface, its lack of limitations on the number of variables,
its ability to avoid becoming stuck in local optima, and its applicability on numerically
generated data, experimental data, or analytical functions [60,61].

The genetic algorithm includes a population which comprises Npop individuals
or chromosomes, representing all feasible solutions. Each individual or chromosome
is composed of Nvar variables or genes. The representation of individual genes can
be achieved by many means such as bits, integers, trees, arrays, lists, or other objects.
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This is accomplished through the process of encoding, which involves the conversion of
gene values [62].

The initial population is a randomly generated matrix with dimensions Npop×Nvar.
During the initialization process, the objective function will be computed for decoded
indiviuals with real numbers. The value obtained for an individual is referred to as its
Fitness, which indicates both the quality of the solution and its proximity to the ideal
chromosome. The process of decoding gene values is accomplished through Genotype-
Phenotype Mapping, which transforms genotypes into phenotypes, the actual solutions [63].
When continuous solutions are used, it is not necessary to decode the genotype to obtain real
values. Only normalized data need to be denormalized. Following the evaluation of fitness,
two parents will be chosen to create the next generation. The Ranking Selection strategy,
considered one of the most effective selection methods, arranges individuals based on their
fitness levels. The selection of the best parents is determined by a selection ratio, which
randomly chooses two parents from a pool of candidates. The process of reproduction in
genetic algorithms involves the use of crossover, which entails swapping single or multiple
genes between parents, and mutation, which involves the random evolution of some genes
within the solution interval. These mechanisms build a new generation. The primary
objective of mutation is to avoid the algorithm from becoming trapped in a local optimum
by reducing the propensity of GA to converge rapidly [60]. A straightforward approach
to address constraints in genetic algorithms is utilizing the Death Penalty technique. The
method involves evaluating the feasibility of constraints after performing crossover and
mutation operations. If the constraints are not feasible, the loop will repeat until constraints
are satisfied.

3. Methodology

Figure 3 shows the overall worflow. The study commences by examining the Smeaheia
aquifer and the available numerical model. Afterwards, the aquifer model will be modified
by incorporating pore volume multipliers, determining an appropriate well location using
sensitivity analysis, and designing a new injection well. The third phase is formulating
the Smeaheia optimization problem by identifying the objective function and constraints.
SRMs are designed, trained, and validated based on the input parameters of objectives
and constraints. Ultimately, GA is coupled with SRMs to efficiently solve the optimization
problem within a remarkably short timeframe.
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3.1. Case Study Description and Its Numerical Model

In Smeaheia, the Viking Group is the storage target, which consists of three shallow
marine formations: Krossfjord, Fensfjord, and Sognefjord. Moreover, the flooding that
occurred across the entire basin resulted in the deposition of mudstones in the Draupne
formation, which served as the main caprock. The Troll Field wells prove the efficacy
of the main caprock, which extends over the entire fault block. The storage complex is
equipped with supplementary seal units made of limestone and shales from the upper
groups. Tertiary and Quaternary sediments can also be regarded as having the ability to
effectively seal. The gross seal spans approximately 750 m in width and 1200 m in length
across the studied region. The primary seal is weakened in both the eastern and western
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directions, parallel to the thinning of the storage from west to east. The Smeaheia storage
site is located within the Troll Kystnaer fault block, specifically in the footwall of the Vette
fault (VF) to the north and west, and in the hanging wall of the Øygarden Fault Complex
(ØFC) to the east [50].

Smeaheia CO2 storage is composed of Alpha, Beta, and Gamma prospects. As shown
in Figure 4, the GN1101 seismic survey covers a large portion of Alpha and Beta (green
zones), making them more dependable for examination. However, the Gamma zone, de-
spite its enormous storage potential because of its expansion, is not as
extensively surveyed.
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Smeaheia possesses a 3D numerical model with closed boundaries developed by
Statoil [49]. This available 3D model consists of 1.5105 × 106 active 3D cells with a
200 × 200 m lateral resolution and 100 layers with a 1.6 m average thickness. The model
exhibits significant heterogeneity, with porosity ranging from 0.13 to 0.17 and permeability
ranging from 0.18 to 7103 mD. This study has preserved static properties like permeability
and porosity in addition to the PVT model. A black oil fluid model is utilized to simulate
the injection of CO2 into a saline aquifer, with CO2 density of 1.87 kg/m3 and water density
of 1026.03 kg/m3 at surface condition (the model uses “oil” with brine characteristics
instead of water). At a depth of 800 m, the reservoir’s initial pressure is 81 bar. Additionally,
rock compressibility is 4 × 10−5 bar−1 at a pressure of 10 bar. The Eclipse data file of the
model was regenerated in the SLB Petrel 2017.4 software [65] for further analysis, and
ECLIPSE100 [66] was used as the numerical solver.

The 3D numerical fluid flow model includes four virtual water production wells in the
south and one in the north. These wells are used to induce depletion in the Smeaheia aquifer
and Troll East field due to gas production from the Troll field. This depletion is facilitated
by the hydraulic communication between the aquifer and the field. The wells commenced
production in 1999 and will continue until 2060. At that point, three wells, namely WP1,
WP2, and WP5, will be closed. Additionally, in 2122, WP3 and WP4 will also be closed. In
addition, pore volume multipliers are present in both the southern and northern regions
of the model. These multipliers are used to compensate for the undiscovered reservoir
area and to align the pressure decline inside the aquifer. The simulation data file was first
executed by the numerical simulator without taking into account pore volume multipliers.
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From January 2022, CO2 was continuously injected over a period of 25 years at a rate of
5.872 × 106 sm3/day through a well named Alpha-N. The movement of the CO2 after
injection was closely observed until the year 2300. Figure 5 depicts the distribution of CO2
saturation in the year 2300, as it migrates to the Beta zone by passing through the saddle
points located in the middle of the field.
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3.2. Updating the Numerical Model

According to observations, it was projected that the storage complex would undergo an
average pressure drop of 14 bar from 1999 to 2022 [67]. Hence, the pore volume multipliers
for the southern and northern regions have been set to 50 and 55, respectively, by sensitivity
analysis to obtain a more certain model with respect to the original model.

As previously stated, the storage thickness decreases in an easterly direction, along
with the caprock. Furthermore, as indicated by Figure 6, there are some minor faults
and cracks present in the higher layers of zone Beta, where both the storage formation
and caprock have been reduced in thickness. Consequently, it is imperative to avert
the dispersion of the CO2 plume into zone Beta to mitigate the risk of probable leakage.
Pre-existing faults and fractures, as well as caprock fracturing, contribute to the dangers
associated with CO2 storage. Furthermore, during initial simulations, the bottom hole
pressure reached a magnitude of 1000 bar, which is unattainable in real-world operations.
Therefore, it is necessary to develop a new well design and optimize the injection process.

Brobakken [52] analyzed the sensitivity of the field with respect to well placement,
although the model used differs from Statoil’s model regarding the presence of the pro-
duction wells. Statoil’s model was assessed in this study with respect to the injection well
location. Figure 7 compares the CO2 plume migration path where the injection well is
located in the north of zone Alpha, between zone Alpha and Beta, and in the south of
the model.

Evidence suggests that the injection of CO2 in the vicinity of zone Beta will inevitably
result in leakage. Zone Gamma is excluded from this analysis due to its unavailability in the
seismic survey and the uncertainty surrounding its features, despite its significant storage
capacity. In addition, the depletion of virtual wells causes the CO2 plume to vary from its
initial route in the absence of virtual wells. Zone Alpha has shown superior performance in
controlling the migration path of CO2. However, to optimize its effectiveness, the injection
well must be relocated and modified as a down-dip J-shaped directed well in the northern
part of the zone. This redesign should include a lengthy tangent section and perforation
towards the northwest. The purpose of this was to ensure that the bottom hole pressure
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did not surpass the fracture pressure. The well Alpha was intentionally redesigned with
the top of the perforation positioned at a depth of 1600 m TVD ssl.
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According to the stress model, the minimum horizontal stress (Min SH) can be cal-
culated as the upper limit for bottom hole pressure, while the fracture pressure serves as
the limit for field pressure [49]. The Min SH at the depth of 1600 m TVD ssl is 216 bar; by
considering a safety factor, 200 bar is fixed as the well bottom hole pressure constraint. A
simulation scenario was developed to validate the well design by injecting CO2 at a rate of
5.872 × 106 sm3/day over a period of 35 years (2022–2057). Figure 8 illustrates the CO2
saturation after a 35-year injection in the new model. The highest bottom hole pressure in
well Alpha reached 180 bar.
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3.3. CO2 Storage Optimization via Proxy Modeling

According to the CO2 storage goal, the objective of the Smeaheia project can be defined
as follows:

• To maximize the amount of CO2 injected while maintaining a safe pressure level at
the top of the injection area to avoid fractures in the caprock and to prevent the CO2
plume from moving towards zone Beta.

The risk of fracturing occurring far from the injection well is low as a result of the
pressure reduction caused by gas production in the Troll field. The shallowest portion of
zone Alpha, which has the only potential for fracturing, is positioned at a depth of 1240 m.
This depth is located beneath the caprock, which possesses a fracture pressure of 187 bar.
If a safety factor is used, the maximum pressure allowed at the top of zone Alpha will be
150 bar [49].

During CO2 injection in well Alpha, the northernmost spill point is reached first,
which is approximately located in a grid with an i-index of 60 (Figure 4). Thus, the i-index
of 50 was selected as the saturation constraint to avoid the CO2 plume from extending
beyond the 60th i-index.

The injected CO2 volume can be calculated by multiplying the injection rate and the
duration of injection, both of which are optimization variables. Furthermore, saturation and
pressure distribution can be rapidly predicted utilizing grid-based SRMs. These indicate
that the objective function and constraints can be expressed as follows:

Maximize injected volume(Rate, Time)

Rate: [1.8 × 106–7.6 × 106] Sm3/day

Time: [0:6:600] month

Subjected to:

Saturationi1,j1,k1(Rate, Time)− 0.1 ≤ 0

Pressurek2(Rate, Time)− 150 ≤ 0 (4)
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where i1, j1, and k1 are cell indexes that address the spill points locations, and k2 defines
the top of zone Alpha. The minimum injection rate was considered 2 × 106 Sm3/day,
which can be increased up to 7.6 × 106 Sm3/day without exceeding the bottom hole
pressure limit. Time is the injection period, which is between 25 and 50 years, with 6-month
time steps.

This research used a GA as the optimization technique due to its simplicity of imple-
mentation, effective constraint handling, and strong convergence capabilities, imported
from the Pymoo package [68] in Python 3.10.0, without any hyperparameter tuning during
sampling, crossover, and mutation. The requirement for the time step to be an integer
necessitates the selection of an integer value for the CO2 injection rate within the specified
range, which, in turn, enhances the efficiency of the optimization process. Consequently,
an integer simulated binary crossover and polynomial mutation are employed subsequent
to an integer random sampling. The crossover and mutation functions utilize a probability
of 1.0, which means all variables are involved in crossover and mutation, and an eta value
of 3, which controls the distribution of new solutions around parental solutions. The
default solution provided by the module for handling constraints is the death penalty. The
population size is fixed at 100 individuals, and the optimization process will conclude after
replacing 100 generations.

Proxy Modeling

As previously mentioned, there are three distinct categories of SRMs: field-based,
well-based, and grid-based. The choice of a single or coupled-type SRM depends on the
specific SRM application. Due to the need to control and monitor CO2 saturation and
pressure at different sites both horizontally and vertically in order to optimize storage, a
grid-based SRM (SRMG) will be constructed for each parameter. Figure 9 demonstrates the
proxy modeling workflow.

An ANN requires a wide range of input data in order to effectively learn the behavior
of a phenomena and accurately predict outputs under different conditions. If there is a lack
of or insufficient actual data, synthetic data are generated using analytical or numerical
models. Since the Smeaheia project has not yet started, we will use numerical simulation
to generate the necessary data. The optimization variables are injection rate and injection
time; so, an adequate number of scenarios were investigated to define the model response
as a function of injection rates and times. This dataset represents the training data.

To develop SRMG, Amini [44] used three simulation cases with a fixed injection period
and different injection rates and added two more cases to enhance the precision at the
periphery of the CO2 accumulation area. According to the workflow (Figure 9), the quantity
of numerical simulation cases that impact the ANN’s accuracy and ability to generalize to
diverse inputs was tuned while training. Accordingly, in this study, the proxy development
began by presenting the outcomes of three simulated scenarios and continued with seven
cases until the acceptance of the model’s accuracy.

Due to the superior performance of proxy models in interpolation compared to ex-
trapolation, the injection rate range for numerical simulations should be limited to the
minimum and maximum admissible rates. The maximum possible rate, without exceed-
ing the bottom-hole pressure constraint, is 5.5 Mt/year. Therefore, seven rates between
1.3 Mt/year and 5.5 Mt/year will be chosen, as shown in Figure 10.

Sensitivity analyses were developed considering time steps in the range from 1 month
up to 5 years within the fixed simulation time frame of 50 years of CO2 storage. On the
basis of the results, a 6-month time step was selected, balancing accuracy and generated
data volume, splitting the simulation time into 100 steps.

Further sensitivity analysis on the cascading and non-cascading SRM method was
performed. The cascading approach showed numerous drawbacks in terms of error ac-
cumulation, complexity, and time-consuming step-by-step predictions. Therefore, the
non-cascading approach was adopted and the input features for training the ANN were
selected and listed in Table 1.
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The qualities and conditions of neighboring cells surrounding a grid block must be
considered as a boundary condition, because they impact the movement of fluids. During
the process of injecting and storing CO2, the CO2 moves upwards due to gravitational
forces and changes the level of CO2 saturation in the grids, depending on the properties
of the layers above and below. A tier model was developed to determine the average
pressure, saturation, permeability, and porosity of neighboring grid blocks for each cell in
the current layer (the cell layer), as well as the layers directly above and below it. These
average properties are referred to as tier-1, tier-2, and tier-3, respectively. Indeed, the
average property of cells, which are connected to the main grid block through a surface,
line, and point, is computed in three sequential layers. Apart from permeability, which
uses a harmonic averaging method shown by this Equation (5), the average of all the other
parameters is computed by the arithmetic method.

kave =
∑n

j=1 Zj

/
∑n

j=1

Zj

k j

(5)

This study assumes that the boundaries are completely sealed, resulting in a layer
above the first layer and a layer below the last layer with negligible permeability and
porosity. Consequently, the saturation of CO2 in these layers will be zero. Moreover, in the
event of a closed boundary, the reservoir will exhibit a pseudo-steady state condition. The
pressure above the topmost layer and below the bottommost layer is assumed to be equal
to the pressure of the current layer due to insufficient data.
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Figure 10. Bottom hole pressure of numerical simulation cases used for SRM training.

The reservoir model contains 1.5105 × 106 grid blocks, which makes it unusable for
the input dataset. Consequently, the input grids were decreased by implementing sampling
techniques and criteria that rely on the model’s output. The input dataset of the saturation
model was sampled using the parameter variation that specifically chooses cells that are
more influenced by CO2 injection. Performing an injection at the maximum rate has a
greater impact on a bigger number of cells and spreads CO2 over a wider area. Thus,
only the grids that had a saturation value greater than zero after 50 years of injection at
the maximum rate were selected for sampling. Nevertheless, this sampling technique
resulted in overfitting for the pressure model input as a consequence of its spread across
the whole storage model, rather than being limited to a specific region surrounding the
injection well. The pressure model, which was trained using data from cells that showed
the highest level of pressure change, failed to generalize in the blind evaluation and was
consequently abandoned. Thereby, the grids were randomly sampled in order to train the
pressure model; 1.485 × 106 cells were selected randomly and excluded from all cases to
ultimately keep 2.55 × 104 random cells.
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Table 1. Input Features.

Features Range

Cell Index (i, j, k)
i: [1–106]
j: [1–174]
k: [1–100]

Cell Coordinate (X, Y, Z)
X: [5.54 × 105–5.75334 × 105] m

Y: [6.7126 × 106–6.7474 × 106] m
Z: [−1.916 × 103–8.7 × 102] m

Horizontal and Vertical Permeability (kh, kv) kh: [1.8 × 10−1–7.10365 × 103] mD
kv: [1.8 × 10−2–7.1036 × 103] mD

Porosity φ: [1.3 × 10−1–3.7 × 10−1]

Distance to injection well and production wells d: [0–3.9754 × 104] m

Injection Rate Q: [1.8 × 106–7.6 × 106] Sm3/day

Initial Gas Saturation Sg initial = 0.0

Initial Pressure P: [5.822 × 101–1.9651 × 102] bar

Tier Model of Initial Gas Saturation, Initial
Pressure, Permeability, and Porosity Same as the property range

Time step T: [0–100]

The final dataset consists of 31 features that exhibit variations across diverse ranges of
real numbers, which could potentially result in instability throughout the training process.
Based on the physics of the problem, the activation functions ReLU [69] and Sigmoid [70]
have been chosen which produce output values ranging from 0 to 1. Thus, the dataset
requires normalization between 0 and 1 by the min-max method (Equation (6)). The global
nature of each property’s minimum and maximum values allows for their application in
denormalizing the ultimate forecast of the pressure model and facilitating comparison with
the actual value.

xnorm =
x − xmin

xmax − xmin
(6)

The final stage involves constructing the architecture of the ANN, which ensures an
adequate degree of accuracy during the validation, testing, and blind evaluation processes.
An attempt was made to train a single ANN for both qualities, which encountered a
significant convergence challenge. Furthermore, the sampling technique for saturation
and pressure models differs, resulting in distinct training data. Consequently, a distinct
ANN was developed for each parameter. To attain this, hyperparameters must be tuned;
they include the number of hidden layers, the number of units in each layer, the activation
function, and the learning rate, in addition to features and amount of data.

The features and examples of input data were determined based on the reciprocal rela-
tionship between accuracy and computer facilities tolerance. The optimal hyperparameters
for the artificial neural network (ANN) structure (as shown in Table 2) were determined
by multiple trial-and-error iterations during the training, validation, and blind assessment
stages, following the SRM development flowchart (refer to Figure 9). Different optimization
algorithms can be implemented to minimize the loss function and train an ANN. The
SGD, the root mean squared propagation (RMSprop), and Adam are a group of available
optimizers. In this study, Adam indicated better performance than the others. In addition,
an exponential learning rate decay function was employed to maintain a consistent learning
rate and prevent any fluctuations in the trend of learning and validation loss. The models
were developed in Python by Keras TensorFlow [71].
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Table 2. Hyperparameters.

Model Optimizer Hidden Layer Units Activation Initial Learning Rate

CO2 Saturation Adam 5 128–512 ReLU, Sigmoid 5 × 10−4

Pressure Adam 3 128–512 ReLU, Sigmoid 5 × 10−4

4. Results
4.1. Model Training

The process of constructing an Artificial Neural Network (ANN) model consists of
distinct stages: training, validation, and testing. Each stage necessitates the use of a distinct
dataset. The dataset is divided into training, validation, and testing sets, in this study with
ratios of 80%, 10%, and 10% respectively. During the fitting phase, the model undergoes
training using the training dataset. After each epoch, the resulting model is evaluated
using the validation dataset. After completing the training and validation of the model,
it is evaluated using the testing dataset. A suitable model exhibits consistent loss values
across all time steps. This fact also must be confirmed by metrics. The primary loss
function utilized for this study was the Mean Absolute Error (MAE) (Equation (7)) due to
its suitability as a metric for regression tasks. It enables the detection of errors in the initial
set of characteristics during the training process. Moreover, the real MAE in bar units for
the pressure, which has been normalized for model training, can be computed to offer a
more accurate representation of the model’s precision. The Mean Squared Error (MSE)
(Equation (8)) is used as a supplementary metric during training to assess the effectiveness
of the primary loss function. In addition, the absolute percentage error was used to
accurately quantify and visually depict the extent of the problem.

MSE =
1
n∑n

i=1

(
Yitrue − Yiprediction

)2
(7)

MAE =
1
n∑n

i=1

∣∣∣Yitrue − Yiprediction

∣∣∣ (8)

where Y is the output feature, i is the output index in the range from 1 to n, and n is the
number of instances. The true output represents the computed variable by the numerical
simulation, while the predicted value indicates the proxy model output.

In order to enhance the accuracy assessment of the pressure model, we compute the
corresponding MAE using the denormalized data (i.e., pressure in bar):

Y = Ynorm(Ymax − Ymin) + Ymin (9)

By replacing the denormalized pressure data (Equation (9)) in the MAE formula
(Equation (8)), Equation (10) will be obtained (in bar):

Real MAE = (Ymax − Ymin)
1
n∑n

i=1

∣∣∣Yitrue−norm − Yiprediction−norm

∣∣∣ (10)

Tables 3 and 4 represent the performance metrics of CO2 saturation and pressure
models. The extremely low MAE and MSE values provide confirmation of the successful
training of the models without underfitting. Furthermore, their consistent values for
training, validation, and testing effectively eliminate any potential for overfitting. An MAE
value below 0.05 demonstrates a high level of competence in pressure model development.

Table 3. CO2 Saturation SRM Accuracy Evaluation.

Performance Metrics Training Validation Testing

MSE 7.91 × 10−5 8.14 × 10−5 8.13 × 10−5

MAE 4.2 × 10−3 4.2 × 10−3 4.2 × 10−3
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Table 4. Pressure SRM Accuracy Evaluation.

Performance Metrics Training Validation Testing

MSE 2.65 × 10−7 2.66 × 10−7 2.64 × 10−7

MAE 3.53 × 10−4 3.54 × 10−4 3.53 × 10−4

Real MAE (bar) 4.88 × 10−2 4.89 × 10−2 4.89 × 10−2

The SRM exhibited a much higher computational speed than the 3D numerical sim-
ulator, about 300 times faster when simulating the final outcome at the last time step.
Figures 11 and 12 compare the CO2 saturation and pressure distribution maps in two
different layers and at two different time steps for training cases, obtained by SRM and the
numerical simulation. Moreover, the saturation absolute difference and pressure absolute
percentage error between SRM and the numerical simulation are mapped. Based on the
saturation absolute difference map, it can be observed that the error for the CO2 plume
saturation prediction is either zero or within 0.1 in most locations. Within the CO2 plume,
there are, however, specific spots where the absolute difference of CO2 saturation is up
to 0.2–0.3. Furthermore, the SRM saturation achieved successful predictions at distant
locations (from the CO2 plume) due to its training on cells that contained CO2 saturation
values greater than zero. Unlike the MAE of the training, testing, and validation datasets,
which only include the area of the CO2 plume, the MAE of the complete field simulation
decreases to 1.6 × 10−4. The absolute percentage error of the cells’ pressure is within 1%.
The actual MAE of the complete field pressure simulation is 6.9 × 10−2 bar, which closely
aligns with the results obtained during training and validation. This verifies the model’s
potential to generalize in diverse CO2 injection rate and time.
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4.2. Blind Validation

The accuracy of the SRMs was next confirmed through a blind case that was not in-
cluded in the training dataset. A numerical simulation case with a distinct rate is generated
in order to assess the viability of the proxy model for applications such as optimization and
sensitivity study. Table 5 shows the blind evaluation results of SRMs at various time steps
for a CO2 injection time frame of 50 years with a rate of 3.45925 × 106 Sm3/day. The MAE of
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the blind evaluation is of the same order of magnitude as the MAE of the training outcome:
it confirms the model’s ability to generalize in various dynamic conditions. Furthermore,
upon comparing the MAE observed during the simulation, no discernible evidence of error
accumulation can be identified. As previously stated, the training data for the saturation
model only includes cells around the injection well that are more significantly impacted
by CO2. In contrast, the blind validation data encompasses the whole model. Due to a
substantial portion of the model containing zero CO2 saturation and the capability of SRM
in predicting these zero saturations, the MAE was reduced compared to the MAE of the
training data.

Table 5. Blind Validation Results.

MAE 1st
Time Step

25th
Time Step

50th
Time Step

75th
Time Step

100th
Time Step

For CO2 saturation 7.08 × 10−6 1.03 × 10−4 1.80 × 10−4 2.54 × 10−4 3.32 × 10−4

For Pressure (bar) 7.02 × 10−2 6.53 × 10−2 5.41 × 10−2 6.4 × 10−2 8.44 × 10−2

The comparison between CO2 saturation and pressure distribution for the blind case
in the first layer obtained from SRM and the numerical simulation is shown in Figure 13.
The CO2 saturation and pressure predictions of the proxy models show high consistency
with the results of the numerical simulation. The CO2 saturation prediction error is either
zero or less than 0.1, in addition to a few points with a difference of about 0.2–0.3, just like
the training examples. The absolute percentage error of grid cells pressure is between 0 and
1 percent. Furthermore, the error maps depicted in Figure 13 exhibit significant similarity
to the maps shown in Figures 11 and 12.
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4.3. Optimization

The GA identified the optimal population consisting of 100 individuals after under-
going 100 generations replacement. A total of 10,000 iterations were completed within
a time frame of 50 min, while a single simulation of CO2 injection in Smeaheia using
ECLIPSE100 [66] and SRMs required 6 h and 1 min, respectively. The minimal computa-
tional cost is obtained by utilizing SRMs and restricting the simulation region to target grid
cells. This is possible because SRMs can simulate the properties of each cell independently
from other cells. The first individual in the last population represents the optimal rate and
injection period that results in the highest volume of injected CO2, while still adhering
to the given limitations. Table 6 displays the initial 20 individuals from the most recent
population. Based on the data presented in this Table, injecting CO2 at the optimal rate
of 4.683495 × 106 Sm3/day for a duration of 50 years will securely store approximately
170 million Mt of CO2. Consequently, about 3.2 Mt CO2 must be supplied annually.

Table 6. The final population of the optimization.

Rank Rate (Sm3/day) Time Step Injected Volume (Sm3)

1 4.683495 × 106 100 8.5473 × 1010

2 4.683444 × 106 100 8.5472 × 1010

3 4.683330 × 106 100 8.5470 × 1010

4 4.682244 × 106 100 8.5450 × 1010

5 4.681683 × 106 100 8.5440 × 1010

6 4.681379 × 106 100 8.5435 × 1010

7 4.681288 × 106 100 8.5433 × 1010

8 4.680804 × 106 100 8.5424 × 1010

9 4.680091 × 106 100 8.5411 × 1010

10 4.678354 × 106 100 8.5379 × 1010

11 4.677049 × 106 100 8.5356 × 1010

12 4.67539 × 106 100 8.5325 × 1010

13 4.673537 × 106 100 8.5292 × 1010

14 4.673406 × 106 100 8.5289 × 1010

15 4.671223 × 106 100 8.5249 × 1010

16 4.669713 × 106 100 8.5222 × 1010

17 4.668789 × 106 100 8.5205 × 1010

18 4.667985 × 106 100 8.5190 × 1010

19 4.666322 × 106 100 8.5160 × 1010

20 4.665829 × 106 100 8.5151 × 1010

The CO2 saturation constraint is approximate, so assessing the CO2 plume migration
in the post-injection interval is required. Therefore, a 3D numerical simulation case with the
optimal values of CO2 injection rate and time was run not only to validate the SRM during
injection but also to monitor CO2 distribution in the post-injection period. In the designed
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case, the injection started in 2022 until 2072, when no further production activity occurred;
the behavior of the system was simulated until 2100 considering no injection/production
operations. Figure 14 illustrates the distribution of CO2 saturation in 2100, showing no
indication of CO2 movement towards zone Beta. As a result of the closure of wells WP1,
WP2, and WP5 in 2060, the depletion impact in the southern part of the storage area is
the most significant. The CO2 plume tends to move towards the southern region of the
model when the depletion wave of well WP1 diminishes. The injection rate and period that
yielded the best results were used to confirm the accuracy of the optimization in Figure 15.
The SRM and numerical model estimated the pressure and CO2 saturation after 50 years of
injection at a rate of 4.683495 × 106 Sm3/day. CO2 saturation mean, absolute difference,
and pressure absolute percentage error were mapped to demonstrate the models’ supreme
accuracy in optimization.
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5. Discussion

In order to achieve Net Zero Emissions (NZE), it is imperative to prioritize the imple-
mentation of safe and effective geological CO2 storage. In this context, it is necessary to
conduct a sensitivity analysis to examine the challenges associated with candidate sites and
impose constraints on them while optimizing the process. This study employed SRMs as a
replacement for the standard numerical simulation approach in order to reduce computa-
tional time while preserving accuracy. The objective was to facilitate rapid investigation
and management of CO2 storage in the Smeaheia saline aquifer.

The development of an ANN-based SRM in this study commenced by employing
the cascading method. This method involves dividing the simulation time into numerous
time steps and training a separate model for each time step. Subsequently, the strategy
was altered to a non-cascading way due to the drawbacks associated with the cascading
approach. When using a cascade proxy, multiple models need to be trained and optimized
for each parameter. This process can be complex and demanding in terms of computational
resources. As previously stated, the approach is particularly hindered by error accumula-
tion, which is especially problematic during long-term simulations. To predict 50 years of
CO2 storage, 50 models need to be trained, each with a 1-year time step. MAE was around
1 × 10−2 for training and testing a single CO2 saturation model, whereas it reached 0.9
for sequential blind evaluation of cascading SRM. Additionally, the developed proxy is
intended for an optimization study that needs to predict all models’ parameters prior to
the desirable time step in the cascading approach. If the proxy models were constructed
using the cascade technique, it would require approximately 50 min to sequentially forecast
the last time step. Although the cascading method is still faster than numerical simulation
(which took 6 h with a dynamic memory allocation of 4000 MB), the non-cascading proxy
model simulated each dynamic parameter in only 30 s. It should be mentioned that this
study was performed using a computer system with Intel(R) Core (TM) i7-4710HQ CPU
2.50 GHz and 16 GB RAM.

The dataset is influenced by the amount of training scenarios (simulation cases), time
step, features, and sampling technique. Multiple time-step durations were examined in
order to create the most precise model. No significant improvement was noticed when
reducing the time step from 6 months to 3 months. However, by increasing the number of
training scenarios, the model was able to accomplish generalization.

The only input features excluded are the cell distance from the boundary and the
bottom-hole pressure owing to additional computational efforts compared to the model
improvement, and lack of well-based SRM, respectively. It is advisable to integrate this
model with a well-established SRM in the future in order to incorporate bottom-hole
pressure into the grid-based SRM and assess its effects. Besides that, the well placement,
injectivity, wellhead pressure, tubing size, as well as perforation length and position can be
assessed and optimized.

The sampling method depends on the dynamic behavior and distribution of the
properties. The pressure model’s input was sampled by considering the fluctuation in
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property values between time steps. This means that only the points near the injection
and production wells were chosen, resulting in overfitting and a large inaccuracy for
sites located far from the wells. The utilization of random sampling across the reservoir
effectively reduced the absolute percentage error of pressure to below 0.5% in the majority
of cells by selecting points from various locations.

Amini and Mohaghegh [22] proposed the use of an ANN with a single hidden layer
to construct cascading proxies. Nevertheless, when employing the non-cascading ap-
proach with a substantial dataset consisting of 1.75 × 107 rows and 31 columns, a ba-
sic ANN (resulting in underfitting) was unable to discover the solution. Expanding
the model network significantly reduced the model loss. It is important to note that a
significant expansion of the ANN can result in overfitting and decreased accuracy in
predicting outcomes.

Considering the problem framework, ReLU and Sigmoid are the optimal activation
functions. When comparing the two, ReLU performs better in the hidden layer. However,
its use in the output layer leads to the algorithm becoming stuck in a plateau and training
very slowly. Utilizing the sigmoid function in the output layer resolved the issue. In
addition, the model training was extremely responsive to the learning rate, as it was
exclusively conducted using the beginning rate of 5 × 10−4. However, to ensure consistent
learning, a learning rate decay function was utilized instead of a constant training rate,
which led to the successful convergence of the solution.

The absolute difference in the CO2 saturation model is generally less than 0.1 in
practically all cells. However, it is mostly accumulated in cells located at the periphery of
the CO2 plume. This issue becomes more pronounced when CO2 is delivered at the greatest
injection rate in the training scenarios. A maximum rate that is beyond the maximum rate
used for model application may be employed to train the model.

This study did not optimize the GA hyperparameters, despite making a few modifica-
tions to the population size and number of generations. These modifications were made
after confirming the functionality of the code and algorithm using a quick optimization
process with a small population and termination generation. A limited population size or a
level of termination that is below the optimum may not result in the most ideal solution, but
it will still be quite close to it. At first, the optimization was carried out with a saturation
limit on the spill point between zones Alpha and Beta. The CO2 plume moved away
from the saddle point by monitoring the post-injection period. Therefore, the constraint is
established before the spill point in order to create an empty area for the movement of CO2
after injection.

Despite SRMs exhibiting good performance in fast simulation, the optimization process
requires thousands of simulations, which still remains a computationally burdensome task.
The non-cascading approach employed by our SRMs enables the simulation of individual
cell properties independent of other cells and time steps. Consequently, by restricting the
simulation area for CO2 saturation to the vicinity of the injection well and confining the
pressure prediction region solely to the first layer of the model, the overall optimization
time was reduced to 50 min. On the other hand, when taking into account factors such as
computational time and the presence of dependent cells, the use of numerical simulation
renders the optimization unfeasible.

6. Conclusions

This study examined fast simulation and optimization of CO2 storage in Smeaheia
aquifer through the utilization of grid-based proxy models. Furthermore, the work ad-
dressed several challenges that arise in the development and application of such SRMs.
In brief:

1. In this work, a non-cascading grid-based SRM was deemed appropriate for long-term
surrogate reservoir modeling and optimization in the context of Smeaheia storage.

2. Proxy models built for replicating both CO2 saturation and pressure data showed ex-
cellent accuracy compared with the results of the numerical simulator. Data sampling
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for the former could be conducted by assessing the degree of property fluctuation
over time, as opposed to pressure data, which necessitates random samples.

3. The pressure SRM exhibited less than 0.5% error, which shows its applicability in
future studies, especially when it comes to coupling it with geomechanical models.

4. To effectively tackle the issue of accumulated error at the CO2 plume boundary
when SRM is applied at high injection rates, it is recommended to use higher max-
imum injection rates that exceed the maximum rate for model application in the
training phase.

5. By leveraging the SRMs, an optimization process consisting of 10,000 iterations was
successfully completed within a time frame of 50 min, achieved by constraining the
simulation volume. This is a huge reduction in computational time compared with
optimization using the numerical model.

6. Finally, the study demonstrated that CO2 can be injected in Smeaheia at a rate of
around 3.4 Mt per year to safely store about 170 Mt CO2 in 50 years.

Regarding the limitations of this study, SRMs are limited in generalizing to different
geological contexts (i.e., fit-for-purpose rather than one-size-fits-all). In order to utilize
SRMs for simulating a different reservoir, it is necessary to retrain the models, as per the
standard approach of proxy modeling. Non-cascading SRMs offer advantages in modeling
CO2 storage; nevertheless, they are impaired in post-injection simulation due to the fact
that the developed SRMs cannot accurately predict the final time step of the CO2 injection.
To make a post-injection prediction, it is necessary to either train an additional SRM or
retrain the current SRMs with a more extended network and additional input and output
features. Furthermore, a deterministic approach was employed in this study, neglecting
geological uncertainty. Also, since there is no historical data available for the project, the
numerical model being used is not history matched. These limitations need to be addressed
in a computationally efficient manner in future studies.
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Nomenclature

Adam adaptive moment estimation
ANN artificial neural network
b bias
CCS carbon capture and storage
CFNN cascade forward neural network
CNN convolutional neural network
d distance
DNN deep neural network
EOR enhanced oil recovery

https://co2datashare.org/dataset/smeaheia-dataset
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GA genetic algorithm
i cell number in x direction
j cell number in y direction
k cell number in z direction
kh horizental permeability
kv vertical permeability
LSTM long short-term memory
MAE mean absolute error
MSE mean squared error
Npop population size
Nvar number of optimization variables
NSGA non-dominated sorting genetic algorithm
P pressure
Q flow rate
ReLU rectified linear unit
RNN recurrent neural network
Sg gas saturation
SIMPLEX simple optimization technique by linear programming
SPM smart proxy model
SRM surrogate reservoir model
SRMG grid-based surrogate reservoir model
T time step
tanh tangent hyperbolic
W kernel
WAG water alternating gas
σ activation function
φ porosity
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