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Abstract: We study numerical methods and algorithms for time-dependent fractional-in-space
diffusion problems. The considered anomalous diffusion is modelled by the fractional Laplacian
(−∆)α, 0 < α < 1, following the integral definition. Fractional diffusion is non-local, and the finite
element method (FEM) discretization in space leads to a dense stiffness matrix. It is well known
that numerically solving such non-local boundary value problems is expensive. Difficulties increase
significantly when the problem is time-dependent. The aim of the article is to develop computationally
efficient methods and algorithms. There are two main features of our approach. Hierarchical semi-
separable (HSS) compression is applied for an approximate solution of the arising linear systems.
For time discretization, we use an adaptive forward–backward Euler scheme. The properties of
the composite algorithm thus obtained are investigated. In particular, the block representation of
HSS compression allowed us to upgrade the HSS solver to efficiently handle varying diagonally
perturbed transition matrices corresponding to changing time steps. The contribution of the paper is
threefold. The methods are completely constructive, which allows for a clearly structured description
of the algorithms. A theoretical estimate of the computational complexity is presented. It shows the
advantages of the adaptive time stepping in combination with the HSS solver. Theoretical results
are supported by representative numerical experiments. Both sequential and parallel scalability
and efficiency are analyzed. The presented results provide convincing proof of the concept of the
proposed methods and algorithms.

Keywords: fractional parabolic problems; fractional Laplacian; adaptive time stepping

1. Introduction

Anomalous diffusion has many applications in science and engineering. It is observed
in flows in strongly heterogeneous porous media, superconductivity, diffusion of polymers
in supercold media [1]; the electrodiffusion of ions into nerve cells [2] and photon diffu-
sion diagnostics [3]; image processing and machine learning [4]; and the spread of viral
diseases, computer viruses, and crime [5], to name a few. A more exhaustive review of its
applications can be found in [6]. Anomalous diffusion is mathematically modelled with
the fractional Laplace operator (−∆)α, where α is the fractional power. There are different
approaches regarding the definition of fractional Laplacian. For example, the Balakrishnan
formula, a formula involving semi-group, and the Dynkins definition based on probabilistic
considerations are discussed in [7,8]. It is shown that they are all equivalent in the whole
space Rd but differ significantly when homogeneous Dirichlet boundary conditions in a
bounded domain are enforced. The work of comparing the properties of relevant models is
an ongoing process in which various aspects of nonlocal phenomena are analyzed as well
as how they describe the available experimental data. In recent years, mathematicians have
been particularly active in developing numerical methods for multidimensional boundary
value problems in computational domains of general geometry, applying and comparing

Algorithms 2024, 17, 453. https://doi.org/10.3390/a17100453 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a17100453
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0001-8858-831X
https://orcid.org/0000-0002-2102-826X
https://doi.org/10.3390/a17100453
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a17100453?type=check_update&version=2


Algorithms 2024, 17, 453 2 of 18

results for different definitions of fractional Laplacian. In [9], a comparison between the
spectral and integral definitions can be found. In this work, we will concentrate on the
following integral definition of (−∆)α:

(−∆)αu(x) = C(d, α) P.V.
∫
Rd

u(x)− u(y)
|x − y|d+2α

dy, α ∈ (0, 1).

Here P.V. stands for principal value, d is the number of spatial dimensions, α is the
fractional power, and C(d, α) is the following constant

C(d, α) =
22ααΓ

(
α + d

2

)
πd/2Γ(1 − α)

,

where Γ is the gamma function. The fractional Laplacian is a non-local operator, and after
applying a suitable discretization in space, the associated boundary value problems are
reduced to solving systems of linear algebraic equations with dense matrices. For real-life
problems, solving such systems can be computationally very expensive. If a standard LU or
Cholesky decomposition is applied, the computational complexity to solve such a system is
O(N3), where N is the number of degrees of freedom in space. For the considered parabolic
problem, we need to solve a series of such linear systems, and the complexity becomes
O(mN3), where m is the number of time steps. The aim of this research is to develop a
more efficient numerical method with significantly less computational complexity.

In this work, we do not impose any special constraints on the geometry of the space
computational domain Ω. Also, in the finite element method (FEM) discretization, the
mesh is unstructured by default. This formulation of the problem excludes the possibility
of using more specialized linear algebra methods, which are based on a special structure of
the stiffness matrix.

In computational mathematics, numerical methods for evolution problems are nat-
urally based on the best available solvers for the corresponding elliptic boundary value
problems. In the case of standard (local) diffusion, the stiffness matrix is sparse, and the
developed near-optimal implicit methods for parabolic problems use fast preconditioned
iterative solution methods (such as algebraic multigrid) for the emergent linear systems.
The situation changes substantially when fractional diffusion is involved. The matrices are
dense, and the concept of iterative solvers is not applicable in the general case. Furthermore,
it turns out that there are specific difficulties depending on the definition of the fractional
Laplacian used.

The history of the development of efficient (near-optimal) numerical methods for
space-fractional diffusion problems in multidimensional domains of general geometry is
less than ten years. And despite the considerable number of publications in this field, there
are few results of this type for parabolic problems. Without pretending to be exhaustive, we
will briefly touch on some of them. The case of spectral fractional diffusion is considered
in [10–14] . The common feature of these results is that they can all be interpreted in terms
of certain rational approximations. A further step in the development of this approach,
significantly expanding the scope of the investigated problems, can be found in [15–18].
These works mainly focus on convergence analysis, with less discussion of algorithmic
implementation and computational complexity. The same applies to [19], where finite
element approximations for integral-fractional evolution problems are analysed. This paper
is thematically closest to the parabolic equation we are considering.

Here, we use a rather different pure algebraic approach. Hierarchical semi-separable
(HSS) compression is applied to approximately solve the arising linear systems. Earlier
results based on HHS compression have been published in [20], where the case of a uniform
time step is experimentally analysed.

In this paper, we implement an adaptive forward–backward Euler scheme for dis-
cretization in time. The aim is to automatically adapt the method to the evolution of
the regularity of the solution. The obtained composite algorithm is analysed. The block
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representation of HSS compression is used to upgrade the HSS solver. This allows us
to efficiently handle different diagonally perturbed transition matrices corresponding to
changing time steps. The main contributions of the paper are as follows. The method is
fully constructive, leading to a well-structured algorithmic implementation. The theoretical
estimate of the computational complexity clearly shows the efficiency of the adaptive
time stepping in combination with the HSS solver. The presented numerical experiments
support the theoretical results. Both sequential and parallel scalability and efficiency are
analyzed. The conclusion is that a convincing proof of concept of the proposed method
and algorithm is presented.

In short, the fundamental novelties of the results that will be presented are the complex
solutions obtained as a result of the developed composite algorithm. The time discretization
is optimized, where the variable time step size adapts to the dynamics in the behavior of the
solution. The hidden structure of the dense fractional diffusion stiffness matrix is shown to
fit well with the stochastic HSS compression approach, thereby allowing attractive parallel
scalability to be reached.

The rest of the paper is organized as follows. The fractional-in-space parabolic problem
is presented in the next section, which concludes with the adaptive forward–backward
Euler scheme for time discretization. Section 3 is devoted to hierarchical semi-separable
compression. A key aspect here is the construction of a modified algorithm for diagonally
perturbed matrices. The most important from a theoretical point of view is Section 4, where
the computational complexity of the composite algorithm is analysed. The test problem
for numerical experiments is then discussed in the next section. An analysis of the results
of the conducted sequential and parallel numerical tests is presented in Sections 6 and 7,
respectively. In the next section, the relative error behaviour of the HSS solver is analyzed.
The paper ends with a brief discussion of the results obtained.

2. Fractional-in-Space Parabolic Equation
2.1. Continuous Problem

The following parabolic problem with unknown function u(x, t), (x, t) ∈ Ω × [0, T]
is considered∣∣∣∣∣∣∣∣

∂u(x, t)
∂t

+ (−∆)αu(x, t) = f (x, t), x ∈ Ω, t ∈ (0, T)

u(x, t) = 0, x ∈ Ω∁, t ∈ (0, T)
u(x, 0) = u0(x), x ∈ Ω.

(1)

Here, Ω is the open space domain, Ω∁ = Rd \ Ω is the complement of Ω, and the open
time domain is denoted with t ∈ (0, T).

2.2. Finite Element Approximation in Space

For the discretization in space of the (−∆)α operator, we use a finite element scheme
as outlined by Acosta in [21]. Let us consider an admissible triangulation on Ω with NT as
number of linear conforming elements. We will denote with {φ1, . . . , φN} ⊂ Vh the nodal
basis corresponding to the internal nodes {x1, . . . , xN}. The basis functions have the form
φi(hj) = δ

j
i , i, j ∈ [1, N], where δ is the Kronecker delta. Thus, the (−∆)α operator (1) is

approximated by the fractional stiffness matrix K = (Kij) ∈ RN×N such that

Kij =
C(d, α)

2
⟨φi, φj⟩Hα(Ω).

where Hα(Ω) is the following Sobolev space

Hα(Ω) = {v ∈ L2(Ω) : |v|Hα(Ω) < ∞}.

It is defined with the Aronszajn–Slobodeckij seminorm
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|v|Hα(Ω) =

(∫∫
Ω×Ω

(v(x)− v(y))2

|x − y|d+2α
dxdy

) 1
2

.

The integrals that must be calculated in order to compute Kij are carried out over the
unbounded domain Rd. A ball-shaped domain B is introduced around Ω to facilitate their
calculations. The distance between the boundary ∂Ω and the compliment B∁ is discussed
in [21]. An auxiliary admissible triangulation TA is introduced on B \ Ω with nA elements.
We will denote with nT̃ = n + nA the number of elements on the combined triangulation
T̃ = T ∪ TA. Thus, the coefficients of K can be written as

Kij =
C(d, α)

2

nT̃

∑
l=1

( nT̃

∑
k=1

Ii,j
l,k + 2Ji,j

l

)
, l, k ∈ [1, nT̃ ].

The integrals I and J are

Ii,j
l,k =

∫
Tl

∫
Tm

(
φi(x)− φi(y)

)(
φj(x)− φj(y)

)
|x − y|d+2α

dxdy

Ji,j
l =

∫
Tl

∫
B∁

φi(x)φj(x)

|x − y|d+2α
dydx.

(2)

Computing Ii,j
l,k and Ji,j

k is a numerically complex task. For this purpose, specialized
methods and algorithms are utilized. Specifically, singular integrands are involved in the
computation of I, while J is calculated over an unbounded domain. The derivation of the I
and J integrals as well as the theoretical analysis of the described finite element scheme is
given in [21].

2.3. Backward Euler Discretization in Time

The unconditionally stable backward Euler scheme is implemented, in which the
lumped mass matrix ML is used. ML is obtained by summing all off-diagonal elements of
the mass matrix M into the diagonal. In this way,

ML
ii =

N

∑
j=0

Mij, i = 1, . . . N,

and thus, the time-stepping method is written in the form

ML uj+1 − uj

τj
+ Kuj+1 = ML fj+1 + fj

2
, j = 0, . . . , m − 1. (3)

Here, ω = {t0 = 0, t1, . . . , tm = T} is the finite difference mesh in the interval [0, T], m
is the number of time steps and τj the size of the jth step. The superscript j means that the
value of the mesh function is taken at the node tj. The implementation of the scheme (3)
reduces to solving m systems of linear algebraic equations

K̃uj+1 = b̃j+1, j = 0, . . . m − 1, (4)

where

K̃j = K +
ML

τj
, b̃j = ML

(
fj+1 + fj

2
+

uj

τj

)
.

Let us assume that the mesh of the time stepping scheme is uniform; that is, τj = τ.
Then, the matrix K̃j = K̃ does not depend on j, and if, for example, LU factorization is
applied to solve the linear systems in (4), only one factorization of K̃ will be needed. The



Algorithms 2024, 17, 453 5 of 18

computational complexity of the factorization is O(N3) and the complexity of solving
the system with the factorized matrix is O(N2). Thus, the computational complexity
of the backward Euler scheme under consideration will be O(N3 + mN2). The parallel
performance of LU- and HSS-based solvers for the case of a uniform time stepping is
studied in [20].

The parameters τj control the time discretization error. When the regularity of the
problem varies significantly with time, it may be advantageous to apply variable time steps,
thus balancing the error. From a computational point of view, the motivation for using
variable time steps is to significantly reduce their number compared to the uniform time
step case while maintaining the required accuracy of the numerical solution. Such are, for
example, the cases of an initial condition with jumps or jumps in time of the right-hand side.
Let us assume that in a (by default) small number of subintervals of the time domain, we
uniformly refine the step size. Then, the computational complexity of the LU-based solver
method becomes O(qN3 + mN2) , where q denotes the number of times to perform the LU
factorization, which corresponds to the number of times, when τj ̸= τj+1, including the
first step τ1. The performance of this method for LU- and HSS-based solvers is examined
in [22].

2.4. Adaptive Forward–Backward Euler Discretization in Time

The local refinement discussed above implies a more specific regularity of the solution
in time that is a priori known. We do not need any such assumptions in this paper. The
developed adaptive time stepping algorithm estimates the current error and automatically
adjusts the next step size based on it. The procedure is as follows. The approximate
solution is calculated using the stable backward Euler scheme (3), while a forward Euler
scheme is used to estimate the size of the next time step. This type of methods are widely
used in standard (local) diffusion problems. For example, adaptive time stepping for
coupled multiscale problems is studied in [23,24], where the solution dynamics arise from
nonlinear transitions of material properties. A parabolic equation with a jumping right-
hand side is considered in [25], which is closest to the test problem we used in our numerical
experiments. The time step adaptation algorithm explored in this paper is largely in the
spirit of [25]. The great challenge and novelty of the results presented here are due to the
non-locality of fractional diffusion.

Let us consider the semi-discrete Cauchy problem

∂U
∂t

+ KU = F (5)

corresponding to the FEM discretization in space of (1), where the vectors U and F represent
the nodal functions of the unknown solution u(x, t) and the right-hand side f (x, t) on T .
The error zi+1 of the backward Euler scheme for (5) can be estimated by

||zi+1|| ≤
j

∑
i=0

τi+1||Ψi+1||, (6)

where the truncation error Ψi+1 has the form

Ψi+1 = Fi+1 − Ui+1 − Ui

τi+1
− KUi+1.

Following the notations introduced in the fully discrete case, the superscript j means
that the values are taken in the node tj ∈ ω. Now, let δ > 0 be the parameter defining the
desired accuracy. We are looking for such a time step τi+1 that the inequality

Ψi+1 ≤ τi+1δ (7)
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holds. If (7) is satisfied, from (6), we conclude that the error accumulates linearly and is
majorized by

||zi+1|| ≤ δti+1.

Unfortunately, it is not possible to apply (6) and (7) directly. This is because, to calculate
the truncation error, we need the exact solution U = U(t), which is of course unknown. In
the algorithm for the time step selection presented below, we use an approximate truncation
error. For this purpose, an auxiliary forward Euler step is performed.

Thus, the numerical solution of the parabolic problem is calculated by applying as
the main discretization tool the unconditionally stable forward Euler scheme. Importantly,
the additionally included inverse-free forward scheme is significantly cheaper from a
computational point of view. It should be noted that this scheme is unstable, which is not a
problem, however, because we only apply it locally to estimate τi+1.

Algorithm for Time Step Selection

The adaptive size of τi+1 is computed in the following three steps:

1. Prognostic solution. Calculation of ũi+1 in t̃i+1 = ti + τ̃i+1 using the forward Euler
scheme (8).

2. Prognostic error. The prognostic solution ũi+1 is used to compute the prognostic
truncation error Ψ̃i+1 given by (9).

3. Step size selection. The time step τi+1 is selected based on the prognostic error and
the parameter δ that defines the desired accuracy.

When choosing a predictive time step, we always aim to increase the previous one by
multiplying it by a predetermined factor γ > 1 as follows:

τ̃i+1 = γτi.

The prognostic solution ũi+1 is then calculated by the forward Euler scheme

ML ũi+1 − ui

τ̃i + 1
+ Kui = fi. (8)

Here, the approximate truncation error at the prognostic time step is computed in
the form

Ψ̃i+1 = f̃i+1 − ML ũi+1 − ui

τ̃i+1
− Kui (9)

where f̃i+1 is the right-hand side at the prognostic time t̃i+1 = ti + γτi. That is how
we obtain

τi+1 =
δ

||Ψ̃i+1||
γτi.

Finally, we apply the constraints that the time step τi+1 cannot be less than τ0 and
cannot exceed the estimated time step, and so we obtain

τi+1 =


τ0, if τi+1 < τ0,
τ̃i+1, if τi+1 > τ̃i+1,
τi+1, otherwise.

We also introduce the threshold parameter θ and impose the following step
change constraint:

if min
{∣∣∣∣τi+1 − τi

τi

∣∣∣∣, ∣∣∣∣τi − τi+1

τi+1

∣∣∣∣} < θ then τi+1 := τi.

This rule allows us to avoid too small relative changes in the time steps.
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One time step of the forward Euler scheme involves matrix-vector multiplication
with computational complexity of O(N2), while the backward Euler scheme requires
additionally solving a dense system of linear algebraic equations that has computational
complexity of O(N3) in the general case when using LU factorization (or any other Gaussian
elimination-type method). Thus, the total computational complexity of the discussed
adaptive time-stepping method, if a LU factorization solver is used in the implementation,
is O(mN3). The rest of the paper is aimed at improving the performance of the method by
using HSS compression instead of LU factorization.

In conclusion, we note that, in general, the number of time steps m will be much
smaller with the adaptive stepping scheme than if we use a uniform scheme with τ = τ0.

3. Hierarchical Semi-Separable Compression

Hierarchical compression methods were introduced by Hackbusch in [26] with the
H-matrix (see also [27]). The main hypothesis here is that a data-sparse matrix A can
be approximated by a matrix in compressed form H. Here, by data-sparse, we mean a
matrix where the off-diagonal blocks can be expressed as a product of smaller vectors
and matrices. In this work, we use the hierarchically semi-separable compression (HSS)
method introduced by Martinsson in [28] and for the numerical experiments, we use the
implementation within the STRUctured Matrices PACKage (STRUMPACK) [29,30].

Hierarchical compression was first introduced to solve systems of linear algebraic
equations arising from the application of the boundary element method. It is noted by
Acosta in [21] that the integrals (2) involved in the computation K are similar to those
produced by discretization with the boundary element method. This makes K likely to be a
a suitable candidate for hierarchical compression. In [31], we have experimentally verified
the suitability of HSS compression for elliptic fractional diffusion problems.

3.1. Basic Relations and Algorithmic Steps

A system of linear algebraic equations in the form Ax = b is solved with HSS in
three steps.

1. Hierarchical semi-separable compression. The matrix A is divided in four blocks, and
the off-diagonal blocks are approximated by a product of three matrices (also called
generators) as follows:

A ≈
(

D1 U1B1,2V2
U2B2,1V1 D2

)
For a suitable matrix A (with low off-diagonal blocks), U generators have few columns,
B are small and square or rectangular, and V have few rows. The diagonal blocks D
can also be compressed in a similar way and so on recursively until a threshold for the
smallest block to be compressed is reached. The maximum rank r of the off-diagonal
blocks occurring in the HSS compression of A is calculated. The computational
efficiency of the compression can be roughly measured by comparing r to the size
of the matrix N. For suitable problems r ≪ N. In general, HSS compression is
approximate, where random sampling is applied to calculate the generators. The user
must supply a relative threshold εrel and an absolute one εabs. The computational
complexity of the HSS compression is O(rN2).

2. ULV-like factorization. A special form of LU factorization called ULV-like factorization
can be applied to the thus compressed matrix H. The compression implemented
within STRUMPACK uses the structure of the generators, unlike the original ULV fac-
torization, which uses orthogonal transformations [30]. The computational complexity
of ULV-like factorization is O(r2N).

3. Solving a factorized matrix system. A system of linear algebraic equations with matrix H
can be solved by ULV-like factorization with computational complexity O(rN).

The compressed form of the matrix allows faster performance of linear algebraic
operations. Thus, multiplying a vector by H has a computational complexity of O(rN). It
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should also be noted that HSS compression is sensitive to the order of the unknowns. In
this work, we use the recursive bisection algorithm to obtain a more suitable off-diagonal
structure. This choice is based on results from [31,32].

3.2. Modified Algorithm for Diagonally Perturbed Matrices

We will recall that for the backward Euler scheme, we solve a series of systems of
linear algebraic Equation (3). The matrix of each system has the form

K̃i =
ML

τi
+ K, i = 1, . . . , m.

It should be noted that the lumped mass matrix is diagonal and the only part of K̃i
that would differ between time steps is the main diagonal, and only when the time step
changes τi ̸= τi−1. On the other hand, we can notice that HSS compression does not change
the diagonal values. Thus, we can compress the stiffness matrix K once. Then, only the
diagonal is updated when needed. The developed modified Algorithm 1 is implemented
using STRUMPACK functionalities.

Algorithm 1 Algorithm for diagonally perturbed matrices with HSS compression

Input: K, ML, t = [0, T], fi = f (t), θ, u0 = u(0), γ, δ
Output: ui, τi, m
i = 0, t = 0
H = compress(K) ▷ Apply HSS compression on the stiffness matrix
while t ≤ T do

τ̃i+1 = τiγ ▷ Increase prognostic step
ũi+1 : ML ũi+1−ui

τ̃i+1 + Kui = fi ▷ Compute prognostic solution

Ψ̃i+1 = f̃i+1 − ML ũi+1−ui

τ̃i+1
− Kui ▷ Compute truncation error

τi+1 = δ
||Ψ̃i+1||

γτi ▷ Calculate time step

if τi+1 < τ0 then ▷ Apply size limitations to new time step
τi+1 = τ0

else if τi+1 > τ̃i+1 then
τi+1 = τ̃i+1

else if | τi+1−τi
τi

| < θ or | τi+1−τi
τi+1

| < θ then
τi+1 = τi

end if
if t + τi+1 > T then

τi+1 = T − t
end if

if τi+1 ̸= τi then
H = ML

τi+1
+ H ▷ Perturb the diagonal of H with ML and τi+1

ULV = factor(H) ▷ Calculate the ULV factorization of H
end if
b̃i = ML

(
fi+1+fi

2 + ui

τi

)
▷ Compute right hand side

ui+1 = solve(ULV, b̃i+1) ▷ Compute the solution at time t + τi+1

i = i + 1, t = t + τi+1 ▷ Prepare parameters for next time step
if τi+1 ̸= τi then

H = H − ML

τi+1
▷ Restore original compressed matrix

end if
end while
m = i
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4. Computational Complexity of the Time Stepping Algorithms

Here, we briefly compare the computational complexity of the considered time-
stepping algorithms.

LU factorization (or any direct Gaussian elimination method) for solving dense linear
systems requires O(N3) arithmetic operations. More precisely, the computational complex-
ity of the factorization (forward elimination step) is O(N3) while solving the system with
the factorized matrix (backward substitution step) costs O(N2) operations.

Alternatively, as discussed in Section 3, the solver based on HSS compression requires
O(rN2) arithmetic operations, where r is the maximum rank of the off-diagonal blocks
generated in the compression process. The costs of the three consequential steps here are as
follows: HSS compression—O(rN2); ULV-like factorization—O(r2N); solving system with
a factorized matrix—O(rN).

Let us first consider the case of the backward Euler scheme with a uniform time step
τ. Then, the matrix K̃ = K + ML/τ does not change during the time-stepping procedure,
that is, the factorization is performed only once. Thus, the following estimates of the
computational complexity of the time-stepping algorithm hold:

Nuniform LU = O(N3) + O(mN2),

Nuniform HSS = O(rN2) + O(mrN).

A numerical comparison between these two methods can be found in [22]. Then,
in [20], a special case of different time steps is considered, where the time domain is divided
into (by default) a small number of subdomains with piecewise constant time steps.

The performance analysis that will be presented in the rest of the paper only applies
to the case of adaptive time stepping. In the forward–backward Euler adaptive scheme,
the matrix K̃i can generally change at each time step. In practice, this does not allow us to
reuse the factorization computed at the previous time step.

Let us write the number of time steps m in the form

m = m1 + m2,

where m1 denotes the number of times the adaptive forward–backward Euler scheme has
changed the step size. Then,

Nadaptive LU = O(m1N3 + mN2).

As shown in Section 3.2, the HSS compression is performed only once for the adaptive
scheme, while the ULV-like factorization must be performed m1 times. Therefore, the
computational complexity Nadaptive HSS can be estimated by

Nadaptive HSS = O(rN2 + m1r2N + mrN).

We should note that the number of steps of the adaptive method m as well as the part m1
will depend on the parameters set by the user and the behaviour of the right-hand side f (x, t).

In conclusion, the computational complexity analysis shows that we can expect the
adaptive scheme to outperform the uniform one if the number of adaptive time steps m
is significantly smaller than the number of uniform steps required to cover the same time
domain muniform = T/τ0 and also when m < N.

5. Test Problem for Numerical Experiments

The test problem is defined in terms of the parabolic Equation (1), such that
Ω = (−1, 1) × (−1, 1), T = 0.1, and an initial condition u0(x) = 0. In all numerical
experiments, α = 0.5, which is considered as a representative case to prove the concept of
the analysed methods and algorithms.
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We denote by f̄ (x) the checker-board function on Ω \ ∂Ω = (−1, 1)× (−1, 1)

f̄ (x) =
{

1 if x1x2 > 0
−1 otherwise

. (10)

Then the right-hand side of f (x, t) ∈ L2(Ω × (0, T)) has the form

f (x, t) =


100 f̄ (x) if t ∈ (0, t̃1]
200 f̄ (x) if t ∈ (t̃2, t̃3]

0 otherwise
, (11)

where t̃1 = 0.01, t̃2 = 0.05 and t̃3 = 0.06. For the adaptive time stepping scheme,
we set the parameters γ = 1.5, δ = 0.01, and θ = 0.1. We also apply successive re-
finement of FEM meshes, resulting in an increase in degrees of freedom in space with
N = 2131, 4167, 8030, 12,805, 16,184, 24,892, 32,302.

In the case of adaptive time stepping, the accuracy in time is controlled by the initial
time-step τ0, which must be aligned with the FEM accuracy in space. Furthermore, in the
context of our test problem, τj must agree on jump points of f (t).

In the performance analysis, we use also results for the backward Euler algorithm
with uniform step τ. For this purpose, the relative error in the norm l2 is used

Rj =

∥∥uj − uj+1
∥∥

l2∥∥uj
∥∥

l2

=

√
∑N

i=1(u
j+1
i − uj

i)
2√

∑N
i=1(u

j
i)

2
,

where the solution uj is obtained with m = 200 × 2j, j = 0, 1, 2, . . . . In the considered
example, there are several points where f has jumps. To fit them, we add additional checks
that will not allow the time step to go beyond these two points. If ti < 0.01 and t̃i+1 > 0.05,
we lower τ̃i such that t̃i + τ̃i = 0.05. In a similar way, we treat the interval [0.05, 0.06].

In Figure 1, we present the relative errors for N = 2131 with decreasing constant time
step τ (the behaviour is quite similar for all seven variants of N). The results shown are for
t = 0.025, 0.05, 0.075, 0.1. The relative error between two consecutive values of the time
steps becomes smaller than 10−3 at m = 6400 and smaller than 10−4 at m = 204,800. Based
on this simple observation, in the numerical experiments for the adaptive scheme, we will
consider the cases mmax = 6400 and mmax = 204,800, which correspond to τ0 = 1.5625× 10−5

and τ0 = 4.8828125× 10−7. As you will see in the next section, the two chosen options for τ0
turn out to be very representative for the purposes of the presented performance analysis.

Figure 1. Backward Euler method with uniform time step: reduction in relative error Rj versus
decrease in τ for N = 2131.
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Finally, for the absolute and relative threshold used in the HSS compression imple-
mented in STRUMPACK, we will use a fixed εabs = 10−8 and vary εrel = 10−2, 10−4, 10−6

and 10−8.

6. Comparative Analysis of Sequential Performance

Here, we analyse the performance of the adaptive scheme compared to the backward
Euler algorithm with uniform time step τ = τ0. Figure 2 shows the computation times of the
sequential algorithms with the LU factorization solver. We see that the adaptive time step-
ping scheme has a clear advantage in the case of a smaller time step τ0 = 4.8828125 × 10−7.
This experimental result is fully consistent with the theoretical conclusion in Section 4 that
the adaptive method has better computational complexity when m < N. The number
of steps generated by the adaptive algorithm is presented in Figure 3. We observe that
although the minimum step size is reduced by two orders of magnitude, the amount of
adaptive time steps is increased by only a factor of approximately two. In other words, the
discussed adaptive strategy leads to a logarithmic increase in the total number of time steps
with respect to τ0, that is, m = O(| log τ0|). This explains the much better computational
times of the adaptive method when τ0 is small enough.

(a) mmax = 6400; τ0 = 1.5625 × 10−5 (b) mmax = 204,800; τ0 = 4.8828125 × 10−7

Figure 2. Sequential computational times of the uniform and adaptive schemes with LU factorization
from the MKL package.

Figure 3. Number of adaptive steps used for both minimum step sizes.

Let us recall that the adaptive forward–backward Euler method developed is explicit.
We do not need inner iterations to fit the error estimator. Avoiding inner iterations is an
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important sought-after property of the algorithm, taking into account the non-locality of
the fractional diffusion and the fact that the stiffness matrix is dense.

The following Figure 4 plays a key role in the experimental proof-of-concept of the
approach proposed in this paper. Here, we present a comparison of the computational
times of the adaptive algorithm with LU-based and HSS-based solvers. For both variants
of the minimum time step τ0, hierarchical compression performs much better. It should
be noted that there is little difference between the results with τ0 = 1.5625 × 10−5 and
τ0 = 4.8828125 × 10−7. The reason for this is that most of the steps are relatively larger,
except for the locally refined ones around the jump points of f (x, t). Figure 5 illustrates
this behaviour of the adaptive step sizes over the entire time interval. We also see the
monotonically increasing time steps in the subintervals where the right-hand side does not
change. This is consistent with the evolving smoothness of the solution.

(a) mmax = 6400; τ0 = 1.5625 × 10−5 (b) mmax = 204,800; τ0 = 4.8828125 × 10−7

Figure 4. Sequential computational times of adaptive scheme with LU factorization and HSS compression.

Figure 5. Adaptive time step size over the whole time interval for N = 2131 and τ0 = 1.5625 × 10−5

with LU solver.

7. Parallel Scalability

For large-scale problems, the efficient implementation of computing systems with
parallel architecture becomes an increasingly important issue. Solving dense linear sys-
tems with block LU-based solvers is a commonly accepted standard for measuring the
performance of supercomputers. This approach is used in the well-known LINPACK TOP
500 ranking [33]. And although numerical linear algebra is the backbone of computing in
general, evaluating the overall performance of a real-life problem is always a more complex
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task than benchmarking a single routine. Ensuring a transparent comparison, we follow
the steps from Section 6 here, now analyzing the parallel performance. Let us also recall
that MKL and STRUMPACK were developed as parallel software packages.

In Figure 6, we present the parallel times for the backward Euler method with a
uniform time step and the adaptive forward–backward Euler time stepping scheme. The
block LU-based solver from MKL is used. The tests were run on a single server with 16
threads. Similar to the sequential tests, the adaptive scheme has better times for all N
values at smaller τ0; see the graph on the right-hand side. However, we also observe a
relative improvement in parallel times in the case of τ0 = 1.5625 × 10−5. This is because
the solution with the already factorized system has a lower parallel speed-up, which can
be seen in Figure 7. With 16 threads, the adaptive method achieves up to ∼14 times better
computation time than the sequential one, while the speed-up for the uniform time step
method is only ∼5. Further details on the parallel speed-up of the LU factorization step
and then of the solution step with the factorized matrix system can be found in [22].

(a) mmax = 6400; τ0 = 1.5625 × 10−5 (b) mmax = 204,800; τ0 = 4.8828125 × 10−7

Figure 6. Parallel computational times of the uniform and adaptive LU solvers from MKL.

(a) Uniform with LU. (b) Adaptive with LU.

Figure 7. Parallel speed-up (parallel time divided by sequential time) of the uniform and adaptive
methods with an LU factorization-based solver. The speed-up is calculated for τ0 = 4.8828125 × 10−7

experiments but is similar to the other value of τ0.
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In Figure 8, we present the parallel times with LU factorization and HSS-compression-
based solvers for the adaptive method. For all experiments, HSS compression outperforms
LU factorization. This means that the stiffness matrix obtained from the FEM discretization
of the fractional Laplacian is suitable for hierarchical semi-separable compression. Overall,
the adaptive algorithm with the HSS compression solver has a lower parallel speed-up of ∼6
(see Figure 9) compared to the adaptive method with LU factorization (see Figure 7), but its
better performance is due to the substantially lower computational complexity.

(a) mmax = 6400; τ0 = 1.5625 × 10−5 (b) mmax = 204,800; τ0 = 4.8828125 × 10−7

Figure 8. Parallel times of the uniform and adaptive schemes with HSS compression and ULV-like
factorization from the STRUMPACK package.

(a) HSS with εrel = 10−2 (b) HSS with εrel = 10−4

(c) HSS with εrel = 10−6 (d) HSS with εrel = 10−8

Figure 9. Parallel speed-up of the HSS compression and ULV-like factorization-based solver for the
adaptive algorithm.
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8. Analysis of Relative Errors of the HSS Compression Solver

The hierarchical semi-separable compressed representation of matrices is approximate.
In the numerical experiments, we presented computational times and speed-up with four
values of the relative threshold that is used in the compression algorithm implemented
in the STRUMPACK package. In Figure 10, we show the relative errors with respect to
the reference solution obtained by the uniform method with LU factorization. For the
backward Euler method with a uniform time step, this relative error is of the order εrel
(see [20]). Here, we show the calculated values of Rj at the time points T/4, T/2, 3T/4,
and T, recalling that T = 0.1. What we see is that for the adaptive method, decreasing the
relative threshold after 10−4 does not improve the relative error. And this is exactly what
we should expect from the numerical tests, where the desired accuracy parameter was set
to δ = 0.01.

(a) t = T/4 (b) t = T/2

(c) t = 3T/4 (d) t = T

Figure 10. Relative errors of the solution with τ0 = 4.8828125× 10−7 of the adaptive method with HSS
compression in relation to the uniform method with LU factorization for εrel = 10−2, 10−4, 10−6, 10−8.

9. Discussion

In the case of standard (local) differential equations, there have been many years of
successful work on the development of numerical methods for parabolic problems. In
particular, the stiffness and mass matrices are sparse and positive definite if the FEM
is applied to discretization in space. Thus, explicit methods have an optimal complex-
ity with respect to N, with an analogous result obtained for implicit methods if fast
(e.g., multigrid or multilevel) PCG iterative solvers are used. The methods and algo-
rithms discussed here show how the challenges change substantially when moving from
local to non-local problems.

Complex solutions are integrated to ensure the computational efficiency of the de-
veloped method. A successful combination of the near-optimal unconditionally stable
adaptive backward–forward Euler scheme with the upgraded HSS compression-based
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solver for the diagonally perturbed stiffness matrices that appear in transient systems is
achieved. In addition, although recursive by definition, HSS compression and its implemen-
tation in the STRUMPACK software package show promising parallel scalability within
the discussed composite algorithm.

The numerical experiments show a very good agreement with the theoretical results, thus
proving the concept of the applied research methodology. We note the following conclusions:
the advantages of the adaptive scheme increase as the minimum time step decreases; the HSS
compression-based solver outperforms the LU factorization; the overall accuracy is effectively
controlled by the parameters of the adaptive scheme and the HSS compression.

10. Conclusions

In conclusion, the main contribution of the paper is determined by the development,
analysis and implementation of a new highly efficient numerical method and algorithms for
parabolic diffusion problems with a fractional Laplacian in space. The theoretical results,
including, in particular, computational complexity estimates and scalability analyses, are
clearly confirmed by the sequential and parallel numerical tests presented. The adaptive
backward–forward Euler scheme optimizes computational complexity by avoiding the
need for prior assumptions about the regularity of the solution. The algorithm essentially
uses the fact that the time derivative is standard (local). For this reason, the concept of an
adaptive time stepping will need extensive further development in the case of fractional
(nonlocal) diffusion in time.

The progress made in this paper poses new challenges and creates new opportunities
for future research in the development of numerical methods for time-dependent fractional
diffusion problems in space. In this context, the following topics are on our short-term
priority list: adaptive higher-order schemes; adaptive time steps for spectral fractional
diffusion; and combining adaptive time stepping with local mesh refinement and hp-FEM
in space.

The present investigations can naturally be extended to more general equations that
include a fractional power of the diffusion operator (e.g., the Laplacian). This applies, for
example, to the case of reaction and/or convection-type terms, where the monotonicity
conditions of the schemes may be of particular interest along with stability issues.

The nonlinear case is a separate topic of great scientific value and practical importance.
Here, there are very wide possibilities for implementing and upgrading the adaptive time-
stepping methods and algorithms. Such an example is the time-dependent fractional in a
space diffusion–reaction system of equations coupled by nonlinear reaction operators [34].
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15. Čiegis, R.; Starikovičius, V.; Suboč, O.; Čiegis, R. On Construction of Partially Dimension-Reduced Approximations for
Nonstationary Nonlocal Problems of a Parabolic Type. Mathematics 2023, 11, 1984. [CrossRef]

16. Danczul, T.; Hofreither, C.; Schöberl, J. A unified rational Krylov method for elliptic and parabolic fractional diffusion problems.
Numer. Linear Algebra Appl. 2023, 30, e2488. [CrossRef]

17. Khristenko, U.; Wohlmuth, B. Solving time-fractional differential equations via rational approximation. IMA J. Numer. Anal. 2022,
43, 1263–1290. [CrossRef]

18. Yang, Y.; Huang, J. Double fast algorithm for solving time-space fractional diffusion problems with spectral fractional Laplacian.
Appl. Math. Comput. 2024, 475, 128715. [CrossRef]

19. Acosta, G.; Bersetche, F.M.; Borthagaray, J.P. Finite Element Approximations for Fractional Evolution Problems. Fract. Calc. Appl.
Anal. 2019, 22, 767–794. [CrossRef]

20. Slavchev, D.; Margenov, S. Performance Study of Hierarchical Semi-separable Compression Solver for Parabolic Problems with
Space-Fractional Diffusion. In Large-Scale Scientific Computing; Lirkov, I., Margenov, S., Eds.; Springer: Cham, Switzerland, 2022;
pp. 71–80.

21. Acosta, G.; Borthagaray, J. A Fractional Laplace Equation: Regularity of Solutions and Finite Element Approximations. SIAM J.
Numer. Anal. 2017, 55, 472–495. [CrossRef]

22. Slavchev, D.; Margenov, S. On the Application of a Hierarchically Semi-separable Compression for Space-Fractional Parabolic
Problems with Varying Time Steps. In Numerical Methods and Applications; Georgiev, I., Datcheva, M., Georgiev, K., Nikolov, G.,
Eds.; Springer: Cham, Switzerland, 2023; pp. 289–301.
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