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Abstract: In this paper, we propose an efficient method called the response-aided score-matching
representative (RASMR) approach to facilitate massive data model selection and data analysis with
generalized linear models (GLMs) and a predetermined data partition due to data localization. Similar
to the original score-matching representative (SMR) approach, RASMR constructs an artificial data point,
called the representative, for each data block. It then fits a GLM on the representative dataset, which
provides not only an efficient approach for massive data analysis but also an ideal solution in response to
privacy concerns by avoiding the transfer of sensitive data. By further splitting the data blocks according
to the values of the response variables, RASMR can obtain more accurate parameter estimates than SMR.
Furthermore, by theoretical justifications and simulation studies, we show that RASMR can be more
efficiently utilized for model selection and variable selection for a massive dataset by approximating the
Akaike information criterion (AIC) and the aggregated prediction errors for cross-validation, which are
commonly used for choosing the most appropriate statistical model and drawing reliable conclusions.
We also apply the proposed RASMR approach to the airline on-time performance data, which consists of
371 data files labeled by month, and show that RASMR can be successfully used for selecting the most
appropriate model for real massive data analysis.

Keywords: cross-validation; data localization; distributed data; model selection; variable selection

1. Introduction

The numerous innovations in data analysis in the last decade have dramatically
affected the technologies used in our daily lives. Datasets with unprecedented sizes and
complexities are rapidly generated and collected from a great variety of resources [1].
While big datasets bring us incredible opportunities for new discoveries, many traditional
methods that perform well for moderate sample sizes are no longer realistic for analyzing
massive amounts of data [2].

To address the big data challenges, many traditional statistical tools have been rein-
vented or adapted to deal with the gigantic volume or size of big data, which is a major
goal of our work. Comprehensive reviews, such as [3,4], have been provided for algorith-
mic solutions to big data problems, including divide-and-conquer, subsampling-based
approaches, stochastic gradient descent, and online updating.

Divide-and-conquer approaches split the big data into manageable blocks, extract
local summaries from each data block, and then generate overall insight. Various types of
algorithms have been proposed to adapt classic statistical tools to big data problems [5–12].

Subsampling-based approaches draw subsamples from the original data by elaborately
designed sampling mechanisms and then perform downstream inference and prediction
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based on the subsamples. For example, leveraging for big data regression, [13] constructed
nonuniform sampling probabilities so that influential data points were sampled with high
probabilities, and [14] proposed a novel method called information-based optimal sub-data
selection (IBOSS), which selects samples from a big dataset based on the D-optimality
criterion; it has been extended to various statistical models, such as logistic regression [15].

When multiple subsamples of the original data are available, different approaches have
been proposed to aggregate the estimates obtained from different subsamples, including bag-
ging or bootstrap aggregating [16], stacking [17,18], magging or maximin aggregating [19],
neagging or normalized entropy aggregating [20,21]. These aggregation approaches are
especially useful for inhomogeneous large-scale data under regression analysis.

Stochastic gradient descent (SGD) algorithms [22–24] update in a sequential manner
based on a noisy gradient. Local SGD is the key building block of different federated
learning algorithms [25,26], which were discussed for both homogeneous nodes [27–32]
and heterogeneous nodes [29,33–42].

As stated in [43], new challenges in the big data era involve data security and local-
ization legislation. According to [44,45], legislation on data localization has emerged as
a global trend, with more nations developing laws that prohibit the transfer of sensitive
data. Data localization may not kill global cooperation in data science, but it will un-
doubtedly create unpleasant barriers to data communication. A novel approach called the
score-matching representative (SMR) was proposed by [43] for analyzing big data under
communication restraints. Given an existing data partition, such as data blocks labeled by
countries, regions, or sources, SMR constructs model-specified data representative(s) for
each block and performs downstream analysis on the constructed representatives. Unlike
the divide-and-conquer or subsampling approaches, SMR does not require communicating
the actual data but rather their representatives, which are not part of the original data and,
thus, avoid their transfer. Comprehensive studies show that the accuracy of the estimated
model parameters based on SMR can be comparable to the full data estimates [43]. Accord-
ing to [43], the computational complexity of SMR is O(Np) given the sample size N and
the number p of model parameters.

Nevertheless, there are three hidden traps in [43]’s SMR method (see Section 2.1 for
more details), as follows: (1) there can be multiple solutions to the score-matching equations;
(2) the constructed representatives may be quite far away from their data blocks; and (3) the
SMR algorithm may fail to converge. Due to these issues, SMR may not be accurate enough
for more elaborate tasks, such as model selection and variable selection.

In this paper, we develop a new representative approach, called the response-aided
score-matching representative (RASMR) approach, for big data analysis under generalized
linear models (GLMs). It improves SMR significantly by splitting the data blocks further
with the aid of the response variable (see Figure 1 for a graphical display). Since the refined
data blocks yield only one solution to the score-matching equation, RASMR ensures the
uniqueness of the data representatives. Compared with SMR, RASMR can not only provide
much more accurate estimates for model parameters but also be used for model selection
and variable selection efficiently, which are critical for data scientists to draw reliable
conclusions from data analysis.
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Figure 1. Graphical display for SMR and RASMR.

2. RASMR for Big Data Analysis under GLM
2.1. SMR Approach for GLM

In this section, we review the key components of the original SMR approach proposed
by [43], along with its potential issues.

Following the notation of [43], the original data {(xi, yi), i = 1, . . . , N} are provided
with an index partition {I1, . . . , IK} of I = {1, . . . , N}, where xi ∈ Rd represents the ith
covariate vector, yi ∈ R is the corresponding response, and I = ∪K

j=1 Ij, Ij ̸= ∅ for each j,
and Ii ∩ Ij = ∅ for each i ̸= j.

Under a generalized linear model (GLM) [46,47], there is a link function g, p known
predictor functions h1, . . . , hp, and p unknown regression parameters β1, . . . , βp, such that
the expectation of the response variable Yi given xi satisfies the following:

E(Yi | xi) = µi and ηi = g(µi) = XT
i β, (1)

where Xi = (h1(xi), . . . , hp(xi))
T , i = 1, . . . , N, and β = (β1, . . . , βp)T .

Given the GLM (1), we denote the kth data block by Dk = {(Xi, yi), i ∈ Ik} and let
sk(β) = ∑i∈Ik

[yi − G(ηi)]ν(ηi)Xi be the contribution made by the kth data block to the
score function s(β) = ∑K

k=1 sk(β) [43,46], where G(η) = g−1(η), ν(η) = G′(η)/h(η), and
h(ηi) = Var(Yi) are functions of η or ηi . According to Section 2.5 of [46], the maximum
likelihood estimate (MLE) of β solves the score equation s(β) = 0. The SMR algorithm [43]

was designed to find ỹk ∈ R and X̃k ∈ Rp solving sk(β) = nk[ỹk − G(η̃k)]ν(η̃k)X̃k
△
= s̃k(β),

where nk = |Ik| is the size of Ik, and η̃k = X̃T
k β. More specifically, the SMR algorithm first

chooses the following:

ỹk =

[
∑
i∈Ik

ν(ηi)ηi

]−1

∑
i∈Ik

ν(ηi)ηiyi , (2)

then solves the score-matching equation as follows:

nkν(η̃k)[ỹk − G(η̃k)]η̃k = ∑
i∈Ik

ν(ηi)[yi − G(ηi)]ηi (3)

for η̃k ∈ R, and then constructs the kth representative (X̃k, ỹk) by calculating the following:

X̃k = {nkν(η̃k)[ỹk − G(η̃k)]}−1 ∑
i∈Ik

ν(ηi)[yi − G(ηi)]Xi . (4)
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Then the score function s(β) = ∑N
i=1[yi − G(ηi)]ν(ηi)Xi = ∑K

k=1 sk(β) = ∑K
k=1 s̃k(β)

△
=

s̃(β). The MLE β̂ of β based on the full data, which solves the score equation s(β) = 0, is
expected to be the same as the SMR estimate β̃ based on the weighted representative data
{(nk, X̃k, ỹk), k = 1, . . . , K}, which solves the matched score equation s̃(β) = 0. In practice,
since β is unknown, the SMR algorithm first solves the matched score function s̃(β) = 0
with some initial representatives for β̃, and then solves the score-matching Equation (3) for
the representatives. The procedure may continue iteratively until reaching a predetermined
accuracy level. Three iterations were suggested by [43] for general applications, whose
computational complexity is O(Np).

Given the successful applications of SMR in estimating parameter values for big
data analysis using a GLM, its accuracy level may not be high enough for more delicate
applications, including model selection and variable selection, due to the following three
issues. Firstly, there can be more than one solution for Equation (3) (see Section 2.2). SMR
chooses the solution whose representative is closest to the mean representative (MR, that
is, X̄k = n−1

k ∑i∈Ik
Xi , ȳk = n−1

k ∑i∈Ik
yi), which, however, may not match the likelihood

well. Secondly, the predictor representative X̃k obtained from Equation (4) may be far away
from its corresponding data block (see Section S2 in the Supplementary Materials), which
may not represent its data block well. Thirdly, the SMR algorithm may not converge well
in practice, which may occur along with misspecified link functions or highly skewed
predictor distributions (see Section 4).

2.2. Solving the Score-Matching Equation with Splitting Points

In this section, we investigate the number of solutions for the score-matching Equa-
tion (3) and explain why more stable and accurate solutions can be obtained for Equation (3)
by further splitting the data blocks, which is our motivation to propose the RASMR algo-
rithms in later sections.

According to Equations (2) and (4), the kth representative (X̃k, ỹk) can be obtained
as weighted averages of the kth data block Dk = {(Xi, yi), i ∈ Ik}. The weights of yi’s
and Xi’s are ν(ηi)ηi and ν(ηi)[yi − G(ηi)], respectively. To stabilize the constructed repre-
sentatives, we propose to keep the weights with the same sign (that is, all positive or all
negative) in each individual data block. That is, besides splitting the data block according
to sgn(ηi), as suggested in Remark 3.1 of [43], we suggest further splitting the data blocks
by sgn(yi − G(ηi)).

Now, we investigate the number of solutions to Equation (3) and how to further split
the data block to ensure a unique solution. Following [43], we denote S(η) = ν(η)[ỹk −
G(η)]η. According to the proof for Theorem 3.1 in [43], Equation (3) can be rewritten
as follows:

S(η̃k) =
1
nk

∑
i∈Ik

S(ηi). (5)

We further denote η∧
k = mini∈Ik{ηi} and η∨

k = maxi∈Ik{ηi}. If both ν(η) and G(η)
are continuous, then there exists a solution η∗ ∈ [η∧

k , η∨
k ] that solves Equation (5) (see

Theorem 3.1 in [43]).
Examples of ν(η) and G(η) for commonly used GLMs can be found in Table 1 of [43],

which are all continuous. If S(η) is strictly monotone on [η∧
k , η∨

k ], then there exists a unique
η∗ ∈ [η∧

k , η∨
k ] that solves (3) (see Theorem A1 in Appendix A).

If ν(η) is a constant, such as for the normal model with an identity link, the Bernoulli
model with a logit link, the Poisson model with a log link, the gamma model with a
reciprocal link, and the inverse Gaussian model with an inverse-square link, without
any loss of generality, we rewrite S(η) = [ỹk − G(η)]η. Then, its first derivative S′(η) =

ỹk − [G(η) + G′(η)η], with its key component T(η)
△
= G(η) + G′(η)η. In this case, we have

the following: ỹk =
∑i∈Ik

ηiyi

∑i∈Ik
ηi

=
n−1

k ∑i∈Ik
ηiyi

η̄k
, where η̄k = n−1

k ∑i∈Ik
ηi corresponds to the
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mean representative (MR). We denote the following: G̃k =
∑i∈Ik

ηiG(ηi)

∑i∈Ik
ηi

=
n−1

k ∑i∈Ik
ηiG(ηi)

η̄k
.

Then, we have the following:

S̄
△
=

1
nk

∑
i∈Ik

S(ηi) =
1
nk

∑
i∈Ik

[ỹk − G(ηi)]ηi = η̄k(ỹk − G̃k). (6)

For the normal model with an identity link, that is, the usual linear model, there can
be up to two solutions to (3) (see Theorem A2 in Appendix A).

For Bernoulli models (see Table 1 of [43]), yi ∈ {0, 1} and G(ηi) ∈ (0, 1) for all i. Then,
yi < G(ηi) always implies yi = 0, and yi > G(ηi) always implies yi = 1. Suppose (i)
either ηi > 0 for all i ∈ Ik or ηi < 0 for all i ∈ Ik; and (ii) either yi > G(ηi) for all i ∈ Ik or
yi < G(ηi) for all i ∈ Ik . Then, ỹk is either 0 or 1. Depending on ỹk = 0 or 1, we denote S(η)
as S0(η) or S1(η), and the potential splitting point as ηl or ηr (see Table 1), respectively. For
Bernoulli models with logit, probit, cloglog, loglog, or cauchit links, a data block Ik after
splitting at ηl or ηr yields a unique solution solving (3) (see Theorem A3 in Appendix A and
Lemmas S1–S5 in Section S6 of the Supplementary Materials). We summarize in Table 1 the
potential splitting points ηl for blocks with ỹk = 0 and ηr for blocks with ỹk = 1.

Table 1. Splitting points for Bernoulli models with different links.

Link Function ηl for S0(η) ηr for S1(η)

logit −1.278464542761 1.278464542761
probit −0.839923675692 0.839923675692
cloglog −1 0.729114174900
loglog −0.729114174900 1
cauchit −0.801916425045 0.801916425045

For the Poisson model with a log link, if either ηi > 0 for all i ∈ Ik or ηi < 0 for all
i ∈ Ik, then there are up to two solutions solving (3) (see Theorem A4 in Appendix A).

For the gamma model with a reciprocal link, η̄k = n−1
k ∑i∈Ik

ηi is the unique solution
solving (3) (see Theorem A5 in Appendix A).

For the inverse Gaussian model with an inverse-square link, in general, there are up
to two solutions solving (3) (see Theorem A6 in Appendix A).

In conclusion, the score-matching Equation (3) often yields two solutions for commonly
used GLMs, confirming the first hidden trap mentioned in the Introduction section for
the original SMR algorithm. On the other hand, there are, at most, two solutions for
Equation (3) (see Theorems A2–A6 in Appendix A), which motivates us to further split the
corresponding data block in a way that each sub-block yields a unique solution.

2.3. Response-Aided Score-Matching Representative Approach

In this section, we propose a new algorithm (see Algorithm 1 for its pseudocode)
with further splits based on the response variable yi’s, and call it the response-aided score-
matching representative (RASMR) approach. This suggests that further splits may at most
quadruple the original number of data blocks. Since the time complexity of the original
SMR is O(Np) [43], which does not depend on the number of data blocks, the RASMR
algorithm consumes no significantly more time than the SMR algorithm (see Section 4.2).
Its time complexity is O(Np) as well.
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Algorithm 1: RASMR.
Data: D = {(Xi , yi), i = 1, . . . , N} with a partition of K blocks indexed by {I1, . . . , IK}. Denote the kth

data block Dk = {(Xi , yi), i ∈ Ik}.
Result: Parameter estimate β̃ of a given GLM with a predetermined number T of iterations.

Calculate the initial weighted representative data: D̃ (0) = {(nk , X̃(0)
k = X̄k , ỹ(0)k = ȳk)}K

k=1 with
X̄k = n−1

k ∑i∈Ik
Xi and ȳk = n−1

k ∑i∈Ik
yi , that is, the mean representatives;

Implement the iteratively reweighted least squares (IRLS) procedure [48] on D̃ (0) to obtain the initial
estimate β̃(0);

for t = 1,. . . ,T do
for k = 1,. . . ,K do

(1) Compute ηi = XT
i β̃(t−1) for each i ∈ Ik ;

(2) Split Dk to sub-blocks by (2.1) the sign of ηi ; (2.2) further by the sign of yi − G(ηi);
(3) Suppose Dk is split to {Dkl , l = 1, . . . , mk} with index blocks Ikl ⊆ Ik .
for each Ikl do

(3.1) compute ỹ(t)kl by (2);

(3.2) solve (3) for η̃
(t)
kl ;

(3.3) while η̃
(t)
kl is not unique do

compute η̃
(t)
kl−MAX = arg max

η̃kl

ν(η̃kl)[ỹ
(t)
kl − G(η̃kl)]η̃kl ;

split Dkl further by the sign of ηi − η̃
(t)
kl−MAX , and then return to (3.1);

end

(3.4) compute X̃(t)
kl by (4);

end
end
Implement the IRLS on the updated weighted representative dataset:

D̃ (t) = {(nkl , X̃(t)
kl , ỹ(t)kl ), k = 1, . . . , K; l = 1, . . . , mk} to obtain β̃(t);

end
Report β̃ = β̃(T)

Remark 1. The iteratively reweighted least squares (IRLS or IWLS) procedure has been widely
used for finding the MLE of a GLM [48–50]. Nevertheless, some more robust variants of IRLS have
been proposed to make the estimates less sensitive to outliers (see [51] and references therein). One
may choose a more robust procedure than IRLS in Algorithm 1, given that the targeted parameter
estimate β̂ is under the same criterion.

Remark 2. Following the splits described in (2) of Algorithm 1, according to Theorems A2–A6
in Appendix A, many sub-blocks yielded a unique solution to (3). There are still leftover cases for
normal/linear, Bernoulli, Poisson, and inverse Gaussian models, under which, some sub-blocks may
yield up to two solutions to (3). For those cases, according to the proofs of Theorems A2–A4 and
A6 (see Section S6 in the Supplementary Materials), we may further split such a block into two
sub-blocks according to the peak value η of S(η), which is 1

2 ỹkl for normal/linear models, ηl or ηr
for Bernoulli models, u(ỹkl) for the Poisson models, or (4ỹ2

kl)
−1 for the inverse Gaussian models.

Based on our experience, such a split often leads to data blocks with a unique solution to (3).

2.4. RASMR with the Delta Ratio Split

As we will demonstrate in Section 4.2, RASMR significantly improves upon SMR
in estimating model parameters. However, it may not perform sufficiently well when
approximating likelihood with non-Gaussian covariates xi or predictors Xi for model
selection purposes.

To investigate this, we start with the mean representative (MR) of the predictors in
block Ik, X̄k = n−1

k ∑i∈Ik
Xi , which is a natural choice for the block center. Then, the pre-

dictor radius of Ik can be defined as ∆k = max
i∈Ik

∥Xi − X̄k∥, where ∥·∥ is the Euclidean norm.

We call the relative distance of X̃k from X̄k, the delta ratio, defined as δ̃k =
∥∥X̃k − X̄k

∥∥/∆k.
By definition, δ̃k = 0 if nk = 1. If δ̃k > 1 for some Ik, then its predictor representative

X̃k is outside the corresponding data block, which implies that it may not be a good
representative for calculating the likelihood. Compared with SMR, RASMR’s delta ratios
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are significantly smaller (see Figure S1 in the Supplementary Materials), which partly
explains why RASMR improves SMR significantly. Nevertheless, the delta ratios of RASMR
may tend to inflate when the distribution of covariates is too extreme or complicated (see
Section S2 in the Supplementary Materials for more details).

If δ̃k is greater than a predefined threshold δ0, a fourth layer of further splitting at
the mean η̄k = n−1

k ∑i∈Ik
ηi of ηi’s may be applied. Since the sample mean is sensitive to

outliers, using η̄k as the cutoff point of the split may enable us to separate the outliers from
the majority of the data block, which will make the leftover members in the data blocks
closer to each other. In other words, we may identify the minorities of data points in the
original data block and separate them into their own data block.

In practice, if the likelihood approximation is not a serious concern, setting the thresh-
old for delta ratios to be one is a conservative choice, since it only requires the representa-
tives to stay inside its data block, not necessarily very close to the center (see Section 4.3
for further discussion on choosing δ0). The pseudocode of the RASMR algorithm with the
delta ratio split is described in Algorithm 2.

Algorithm 2: RASMR algorithm with the delta ratio split.
Data: D = {(Xi , yi), i = 1, .., N} with a partition of K blocks indexed by {I1, . . . , IK}. Denote

Dk = {(Xi , yi), i ∈ Ik} as the kth data block. Set the delta ratio threshold δ0 > 0 (e.g., δ0 = 1).
Result: Parameter estimate β̃ of a given GLM with a predetermined number T of iterations.
Generate the mean representative for each data block to form the initial weighted data:

D̃ (0) = {(nk , X̃(0)
k = X̄k , ỹ(0)k = ȳk)}K

k=1;
Implement the IRLS on D̃ (0) for the initial estimate β̃(0);
for t = 1,. . . ,T do

for k = 1,. . . ,K do
(1) Compute ηi = XT

i β̃(t−1) for each i ∈ Ik ;
(2) Split Dk by the sign of ηi and the sign of yi − G(ηi);
(3) Suppose Dk is split to {Dkl , l = 1, . . . , mk} with index blocks Ikl ⊆ Ik .
for each Ikl do

(3.1) compute ỹ(t)kl by (2);

(3.2) solve (3) for η̃
(t)
kl ;

(3.3) while η̃
(t)
kl is not unique do

compute η̃
(t)
kl−MAX = arg max

η̃kl

ν(η̃kl)[ỹ
(t)
kl − G(η̃kl)]η̃kl ;

split Dkl further by the sign of ηi − η̃
(t)
kl−MAX , and then return to (3.1);

end

(3.4) compute X̃(t)
kl by (4) ;

(3.5) compute X̄kl , ∆kl = max
i∈Ikl

∥Xi − X̄kl∥, and the delta ratio δ̃kl =
∥∥∥X̃(t)

kl − X̄kl

∥∥∥/∆kl ;

(3.6) while δ̃kl > δ0 do
split Dkl by the sign of ηi − η̄kl , where η̄kl = n−1

kl ∑i∈Ikl
ηi , and then return to (3.1);

end
end

end

Implement the IRLS on the weighted dataset D̃ (t) = {(nkl , X̃(t)
kl , ỹ(t)kl ), k = 1, . . . , K; l = 1, . . . , mk} to

obtain β̃(t);
end
Report β̃ = β̃(T)

2.5. Learning Rate Scheduling

As an iterative method to maximize the log-likelihood function, the RASMR approach
may suffer from a convergence issue, since the solution at each iteration may be far away
from the global maximizer, or jump back and forth at the final stages (see Figure S13 in the
Supplementary Materials for such an example).

The convergence issue of RASMR comes from various reasons. It could be caused by a
bad initial estimate via the mean representative (MR). A small number of data blocks may
also make the convergence poor (see Figure S12 in the Supplementary Materials for such
an example; see also Section S1 for generating data blocks), especially when the number of
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parameters is moderately large (see Figure S13). The inherent complexities of the original
data, such as ultra-high-dimensional, highly skewed, or heavily tailed distributions of
covariates or predictors, may cause similar problems as well.

To make the RASMR approach more robust and practically useful for big data analysis,
we adopt a learning rate scheduling strategy, which is a popular idea in the modern devel-
opment of machine learning and artificial intelligence to resolve convergence issues (see,
e.g., [52,53], and references therein). More specifically, we update the RASMR parameter
estimates with an exponential learning rate decay as follows:

β(t) = β(t−1) + e−θt(β̃(t) − β(t−1)), (7)

where β̃(t) is the original RASMR parameter estimate after the tth iteration, θ > 0 is a
hyperparameter to control the learning rate e−θt. Apparently, if θ = 0 or with the learning
rate 1, (7) yields the original RASMR estimates. A larger value of θ posts a quicker rate
of decay, and will force the convergence of iterative parameter estimates. On the other
hand, if the learning rate quickly shrinks to zero, the estimate may be updated very slowly,
making the improvement of later iterations negligible. To overcome the issue that the
learning rate decays too fast, we suggest truncating the learning rate at, say, the 10th
iteration and making the learning rate constant afterward. The truncation strategy for the
exponential learning rate decay works well when the number of variables is as large as 100
(see Figure S13).

3. Model Selection and Variable Selection Using RASMR
3.1. Information-Based Criteria and Model Selection

During the process of RASMR parameter estimation by Algorithms 1 and 2, two
very useful side products are also generated, namely the response representative ỹk and
the predictor representative X̃k . The quadruple (nk, ỹk, X̃k, β̃) provides information for
approximating the maximum likelihood, which is a key component for information-based
criteria, such as the Akaike information criterion (AIC, [54,55]) and Bayesian information
criterion (BIC, [55]).

Recall that the log-likelihood function l(β; y, X) through the full dataset y = (y1, . . . ,
yN)

T and X = (X1, . . . , XN)
T attains its maximum at the MLE β̂. We denote the log-

likelihood approximated through the RASMR representative quadruple set {(nk, ỹk, X̃k, β̃),
k = 1, . . . , K} by l(β̃; ỹ, X̃), where ỹ = (ỹ1, . . . , ỹK)

T , and X̃ = (X̃1, . . . , X̃K)
T .

Denoting ∆̃ = maxk maxi∈Ik

∥∥Xi − X̃k
∥∥, the maximum Euclidean distance of predictor

vectors away from their corresponding predictor representatives across all data blocks, the
following theorem guarantees the consistency of the estimated log-likelihood l(β̃; y, X), as
∆̃ goes to zero.

Theorem 1. Suppose the log-likelihood function l(β; y, X) is twice differentiable and strictly
concave on a compact set C ⊂ RP, with its maximum not located on the boundary of C. Suppose
β̃ is the estimate obtained by Algorithms 1 or 2, and ỹk = n−1

k ∑i∈Ik
yi + O(∆̃) for each k, then

l(β̃; y, X)− l(β̂; y, X) = O(∆̃1/2) as ∆̃ → 0.

The proof of Theorem 1, as well as all other proofs in this paper, has been relegated to
Section S6 of the Supplementary Materials.

We denote the AIC and BIC values calculated based on l(β̃; y, X) as ÃIC and B̃IC,
respectively. As a direct conclusion of Theorem 1, we have the following corollary:

Corollary 1. For a generalized linear model under the same technical conditions of Theorem 1, the
values of ÃIC and B̃IC converge to the original values of AIC and BIC, respectively, as ∆̃ → 0.
Moreover, ÃIC = AIC + O(∆̃1/2), and B̃IC = BIC + O(∆̃1/2).



Algorithms 2024, 17, 456 9 of 22

The computation of l(β̃; ỹ, X̃) only requires the K representatives rather than the whole
dataset. Its accuracy not only depends on the estimate β̃ of the parameters but also on
the representatives ỹ and X̃. The next theorem confirms that the estimated log-likelihood
l(β̃; ỹ, X̃) based on RASMR algorithms is consistent as ∆̃ goes to zero.

Theorem 2. Under the same technical conditions of Theorem 1, l(β̃; ỹ, X̃)− l(β̂; y, X) = O(∆̃1/2),
as ∆̃ → 0.

We denote the AIC and BIC calculated with l(β̃; ỹ, X̃) as ˜̃AIC and ˜̃BIC, respectively.
As a direct conclusion of Theorem 2, we have the following corollary:

Corollary 2. For a generalized linear model under the same technical conditions of Theorem 1, the

values of ˜̃AIC and ˜̃BIC converge to the original values of AIC and BIC, respectively, as ∆̃ → 0.

Moreover, ˜̃AIC = AIC + O(∆̃1/2), and ˜̃BIC = BIC + O(∆̃1/2).

Corollary 2 ensures that ˜̃AIC and ˜̃BIC can be used to approximate the original value
of AIC and BIC, and the error vanishes along with the maximum size of data blocks.

Both SMR and RASMR algorithms can be used to generate ˜̃AIC and ˜̃BIC, but numerical
experiments overwhelmingly favor RASMR as it improves both the parameter estimates
and the representatives.

3.2. Link Function Selection

For GLM (1), the link function g plays a key role in modeling the relationship between
a linear combination of predictors and the expectation of the response variable. It is
critical for data analysis to choose the most appropriate link function for a given dataset.
An information-based approach, such as AIC or BIC, requires precise estimation of the
maximum likelihood. Theorem 2 and Corollary 2 provide theoretical justifications for using
˜̃AIC or ˜̃BIC to select the most appropriate link function.

In our simulation studies (see Section S3 in the Supplementary Materials), SMR fails to
choose the logit link function from its competitors (see Table S1), due to the low quality of its
representatives. The RASMR with the delta ratio split (Algorithm 2) outperforms SMR with

representatives of better quality, making the corresponding ˜̃AIC and ˜̃BIC more reliable (see
Table S2).

3.3. Variable Selection

Variable selection is an essential step in statistical data analysis, including subset
selection and stepwise selection (see, for example, [55]).

RASMR can be directly extended for subset selection in big data variable selection
problems with a moderate number p of predictors. In the steps involving model fitting and
evaluating information criteria (AIC or BIC), RASMR can be implemented readily on the
dataset to draw accurate results (see Section S5.1 in the Supplementary Materials).

To balance the processing time and performance of variable selection, we introduce a
quick variable screening process using the mean representatives (MR, see Section S4 in the
Supplementary Materials). The information criteria AIC and BIC based on MR perform
sufficiently well (see Table S1).

For forward stepwise variable selection, we recommend using RASMR to perform a finer
selection until the stopping criterion is met (see Section S4 in the Supplementary Materials).

3.4. Cross-Validation

Cross-validation is a widely used data-driven technique for evaluating model perfor-
mance (see, for example, [55]). For big data analysis under GLMs, we extend RASMR for
V-fold cross-validation (VFCV) in the big data analysis as follows:

1. Data {(Xi, yi), i = 1, . . . , N} are given with a partition I1, . . . , IK of {1, . . . , N}.
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2. A random partition A1, . . . , AV of {1, . . . , N} is given for V-fold cross-validation.
3. For j = 1, . . . , V, fit the target model on the training set {(Xi, yi), i /∈ Aj} using

RASMR with blocks I1 \ Aj, . . . , IK \ Aj after removing empty ones, and then calculate
the aggregated prediction errors R̂VFCV

j when applying the fitted model on the testing
set {(Xi, yi), i ∈ Aj}.

4. Report N−1 ∑V
j=1 R̂VFCV

j as the estimated average predictor error.

Note that we do not need to run the same number of iterations on each model fitting.
Since RASMR is an iterative approach that can benefit from good initial values of parameter
estimates, the estimate from the previous model fitting can be used as the initial values
for the next model fitting procedure. Due to this reason, we may set a larger number of
iterations for the first RASMR model fitting and then use a smaller number of iterations for
later model fitting (see Section S5.2 in the Supplementary Materials).

4. Simulation Studies and Numerical Justifications
4.1. Simulation Setup and Evaluation Method

To justify the performance improvement of the RASMR algorithm on data of massive
sizes, we conduct extensive simulations on a main-effects GLM as follows:

E(Yi) = µi and ηi = g(µi) = XT
i β = β0 + β1xi1 + · · ·+ βdxid , (8)

where i = 1, . . . , N. Following [43,56], we choose d = 7, β0 = 0, and β1 = · · · = β7 = 0.5.
The feature variables xi = (xi1, xi2, . . . , xid)

T are randomly generated from one of seven
different distributions, namely mzNormal, nzNormal, ueNormal, mixNormal, T3, EXP, and
BETA (see Section S5 in the Supplementary Materials for more details).

For Bernoulli regression models (see Example 1 in Section 4.2), we consider four
commonly used link functions, namely logit, cloglog, probit, and cauchit. We first simulate
N = 106 data points from each of the seven distributions, respectively, under the logit
link. We then obtain the data blocks I1, . . . , IK using K-means clustering with K = 1000. By
assuming each of the four link functions, we obtain the corresponding parameter estimates
using the MR, SMR, and RASMR algorithms, respectively. We then compare the estimate
β̃i with the full data estimate β̂i under the corresponding link function. The performance of
estimation is measured by the root mean square error (RMSE, that is, [∑7

i=1(β̃i − β̂i)
2/7]1/2).

A smaller RMSE indicates a better approach.
Similarly, we consider a Poisson regression model with a log link (see Example 2 in

Section 4.2) and a Gamma regression model with a reciprocal link (see Example 3 in Section 4.2).
For each example in Sections 4.2 and 4.3, the corresponding simulation is repeated 100 times.
The summarized results, including the average RMSE and the sample standard deviation (std
in parenthesis) of 100 RMSEs, are listed in the corresponding tables.

Note that the K-means clustering algorithm performed for each simulation study is
used for illustration purposes. It generates a partition with blocks whose data points are
homogeneous. Other clustering methods, such as k-medoids (see, for example, [57] and
references therein), may be used for the same purpose as well. Our goal here is to evaluate
the performance of MR, SMR, and RASMR given the same partition, not to compare
different clustering algorithms.

For SMR, each simulation study recommends a number of iterations, T, set to 3,
as suggested by [43], as improvement beyond the third iteration is often negligible (see
Figure S12 in the Supplementary Materials). In contrast, RASMR typically continues to
improve its parameter estimates as T increases, provided the number of data blocks is
sufficiently large (see Figure S12). Overall, we recommend setting T to 10 for RASMR
algorithms to balance estimation accuracy with computational time. It should be noted that
RASMR still outperforms SMR even with the same number of iterations (see Table 6).
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4.2. Performance of RASMR, Algorithm 1

In this section, we evaluate the performance of Algorithm 1 on Bernoulli, Poisson, and
gamma regression models, respectively.

Example 1. In this example, we consider Bernoulli regression models (see (8)) for binary classifica-
tions, with one of four commonly used link functions, namely logit, cloglog, probit, and cauchit. The
goal is to check not only the estimation performance of RASMR when the link function is correctly
specified but also its performance when the link function is misspecified, which is crucial when
selecting the link function.

The results of the corresponding simulation study as described in Section 4.1 are summarized
in Table 2. In almost all scenarios, the RMSEs of RASMR are significantly lower than those of the
mean representative (MR) approach or the original SMR approach, which implies that the RASMR
algorithm (Algorithm 1) outperforms MR and the original SMR algorithm in this example. The
estimates based on RASMR are not only much more accurate than the estimates using MR or SMR
but also more robust.

Nevertheless, for the case with the cauchit link and nzNormal distribution, the RASMR algorithm
performs as poorly as other methods. In Section 4.3, we will show further improvement by using Algorithm 2.

Table 2. Average (std) of RMSEs (10−3) over 100 simulations for binary classification.

Simulation Binary Classification, K-Means (K = 1000), True Link Function = Logit

Representatives MR Original SMR RASMR

Setup Logit Cloglog Probit Cauchit Logit Cloglog Probit Cauchit Logit Cloglog Probit Cauchit

mzNormal 17.9 9.2 9.2 33.4 1.8 1.6 1.0 2.4 3.7 × 10−5 2.3 × 10−1 6.4 × 10−5 1.0 × 10−2

(0.3) (0.3) (0.2) (1.2) (0.6) (0.5) (0.3) (2.4) (1.0 × 10−5) (1.8 × 10−1) (2.6 × 10−5) (4.2 × 10−3)
nzNormal 14.3 5.0 7.0 135 4.0 0.8 1.5 51.6 1.5 × 10−3 2.5 × 10−2 2.5 × 10−4 69.6

(0.7) (0.3) (0.3) (45.8) (1.1) (0.4) (0.5) (34.6) (5.0 × 10−4) (3.0 × 10−2) (7.4 × 10−5) (20.0)
ueNormal 211 114 110 455 3.3 11 2.1 19.4 7.2 × 10−5 4.3 4.7 × 10−4 10.4

(1.4) (1.5) (0.7) (5.2) (1.4) (3.4) (1.1) (10.1) (3.3 × 10−6) (1.2) (9.9 × 10−5) (10.2)
mixNormal 17.5 8.6 8.6 48.1 3.0 1.8 1.2 3.2 3.6 × 10−4 5.0 × 10−1 1.6 × 10−4 1.9 × 10−1

(0.4) (0.6) (0.2) (3.1) (0.9) (0.7) (0.3) (2.5) (1.6 × 10−4) (1.8 × 10−1) (1.8 × 10−4) (5.5 × 10−2)
T3 12.2 10.1 7.8 10.0 10.7 15.0 6.7 8.6 6.3 × 10−2 1.2 × 10−1 5.2 × 10−2 2.8 × 10−2

(3.1) (2.6) (1.9) (2.7) (3.1) (39.5) (1.9) (2.7) (3.5 × 10−2) (7.2 × 10−2) (5.2 × 10−2) (2.8 × 10−2)
EXP 12.4 3.9 6.2 10.4 5.8 1.4 2.8 4.5 1.4 × 10−6 3.3 × 10−4 5.3 × 10−6 9.6 × 10−3

(0.9) (0.5) (0.5) (1.4) (1.0) (0.3) (0.5) (1.4) (3.3 × 10−7) (8.1 × 10−5) (6.9 × 10−7) (4.4 × 10−3)
BETA 3.1 1.3 1.7 7.6 2.0 0.9 1.0 11.3 9.2 × 10−7 4.7 × 10−5 2.7 × 10−5 5.6 × 10−3

(0.8) (0.4) (0.5) (1.7) (0.7) (0.3) (0.3) (2.3) (6.2 × 10−7) (2.4 × 10−5) (2.6 × 10−6) (6.7 × 10−3)

Example 2. In this example, we consider Poisson regression with its canonical link function,
namely, log link. The corresponding simulation is repeated for 100 times and the results are
summarized in Table 3.

From Table 3 we can see that (1) In terms of the average RMSE (the smaller, the better),
the original SMR outperforms MR, and RASMR further improves the accuracy of estimates
impressively, although not as accurate as the full data estimate in this case (see Table 3 in [43]); (2)
In terms of the percentage of NAs (the smaller, the more robust) out of 100 simulations, both MR
and RASMR achieve 0% and outperform the original SMR.

Example 3. In the example, we consider Gamma regression with its canonical link function, namely,
reciprocal link. Since Gamma regression with reciprocal is relatively fragile on the distribution of
features, we only consider features generated from Beta distribution. Again, the data clusters are
generated from K-means clustering with K = 1000. Similar to Examples 1 and 2, we obtain the
RMSE of the MR, SMR, and RASMR estimates from the full data estimate and summarize the
results in Table 4. The pattern of the results is similar to the ones in Table 3, which confirms the
significant improvement of RASMR against both MR and SMR under Gamma regression models.
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Table 3. Average (std) of RMSEs (10−3) over 100 simulations for the Poisson regression.

Simulation Poisson Regression, K-Means (K = 1000)

Representatives MR Percentage of NAs Original SMR Percentage of NAs RASMR Percentage of NAs

mzNormal 37.5 (12.9) 0% 13.2 (10.2) 0% 2.0 (0.5) 0%
nzNormal 37.5 (12.9) 0% 23.6 (15.7) 3% 0.2 (3.6 × 10−2) 0%
ueNormal 82.5 (25.9) 0% 9.5 (7.2) 69% 8.5 × 10−2 (2.3 × 10−2) 0%

mixNormal 49.9 (20.7) 0% 29.5 (17.7) 1% 0.7 (0.1) 0%
T3 298 (458) 0% 97.2 (144) 10% 31.3 (79.1) 0%

EXP 31.2 (0.7) 0% 6.2 (1.0) 0% 1.9 × 10−4 (5.8 × 10−5) 0%
BETA 0.5 (0.2) 0% 2.3 (0.3) 0% 1.2 × 10−7 (1.8 × 10−9) 0%

Table 4. Average (std) of RMSEs (10−3) over 100 Simulations for Gamma Regression.

Simulation Gamma Regression, K-Means (K = 1000)

Representatives MR Percentage of NAs Original SMR Percentage of NAs RASMR Percentage of NAs

Beta 7.4 (0.7) 0% 5.8 (1.2) 11% 2.0 × 10−2

(0.2)
0%

In [43], extensive comparisons between SMR and other big data approaches have been
made in terms of computing speed. According to [43], given a partition of data, SMR is
noticeably faster than a divide-and-conquer (DC) approach proposed by [5], but slower
than the subsampling approach under A-optimality [56] for logistic regression. Using their
results of computing time comparison as a reference, we compare the computing speed of
RASMR with SMR for binary classification with four link functions: logit, cloglog, probit,
and cauchit. The covariates are generated from the seven distributions described previously
and the computation is conducted on a PC running Windows 10 Home (Version 2004) with
2.80 GHz 4-core Intel i7-7700HQ and 16 GB of memory. The simulation is repeated 100 times
and the average CPU time for one iteration of SMR and RASMR is recorded in Table 5.

Table 5. Average CPU time (seconds) over 100 simulations for binary classification.

Simulation Binary Classification, K-Means (K = 1000), True Link Function = Logit

Representatives SMR (T = 3) RASMR (T = 3)

Setup Logit Cloglog Probit Cauchit Logit Cloglog Probit Cauchit

mzNormal 6.04 8.95 11.09 6.51 7.32 9.75 12.95 7.63
nzNormal 5.99 8.90 12.82 6.22 6.60 9.82 13.65 6.70
ueNormal 6.75 10.33 13.55 7.14 7.68 10.38 15.82 7.79

mixNormal 5.90 8.52 11.26 6.22 6.63 9.52 12.64 7.02
T3 6.32 8.43 8.10 6.36 6.77 9.06 8.50 7.00

EXP 5.66 7.98 10.51 6.24 6.55 9.20 12.11 6.90
BETA 5.66 7.96 10.73 6.36 6.51 9.10 12.57 7.01

According to Table 5, RASMR is slightly slower than SMR. It is because additional
splits are made on a proportion of data blocks, which result in a larger number of data
blocks in RASMR, given the same partition of data. Nevertheless, based on our experience,
most of the RASMR split requirements are not fulfilled, thus the resulting final number of
data blocks of RASMR is only slightly larger than that of SMR.

Similar to [43], we calculate the corresponding RMSE from the full data estimate
[∑7

i=1(β̃i − β̂i)
2/7]1/2 and the RMSE from the true parameter values [∑7

i=1(β̃i − βi)
2/7]1/2,

respectively. The simulation follows the same settings as in Example 1, and the comparisons
are among MR, SMR with T = 3, RASMR with T = 3, and DC with K = 1000. The results
are listed in Table 6.
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Table 6. Average (std) of RMSEs (10−3) over 100 simulations from full data estimates or true parameter
value.

Simulation Binary Classification, K-Means (K = 1000), True Link Function = Logit
Benchmark RMSE from Full Data Estimate RMSE from True Parameter Value

Setup
Methods Representative Approaches DC Full Data Representative Approaches DCMR SMR (T = 3) RASMR (T = 3) MR SMR (T = 3) RASMR (T = 3)

mzNormal 17.98(0.31) 1.92(0.62) 0.054(0.018) 6.93(0.12) 3.72(1.08) 18.40(1.02) 4.17(1.16) 3.72(1.08) 7.90(1.04)
nzNormal 14.30(0.70) 4.53(1.18) 0.29(0.085) 20.20(0.35) 7.23(2.05) 16.04(1.74) 8.58(2.02) 7.24(2.07) 21.49(1.64)
ueNormal 211.17(1.44) 3.83(1.57) 0.72(0.018) 13.12(0.26) 2.11(0.82) 211.17(1.35) 4.41(1.77) 2.22(0.84) 13.24(1.24)

mixNormal 17.37(0.33) 2.79(0.83) 0.14(0.043) 11.20(0.20) 4.96(1.33) 17.94(1.05) 5.91(1.48) 4.96(1.33) 12.09(1.15)
T3 12.23(3.13) 11.3(3.23) 1.89(0.74) 12.06(0.34) 16.00(4.43) 20.51(5.44) 20.03(5.54) 16.03(4.51) 19.63(3.76)

EXP 12.4(9.15) 6.58(0.82) 0.014(0.0013) 16.88(0.31) 6.18(1.67) 14.5(2.18) 9.25(2.02) 6.18(1.67) 18.25(2.30)
BETA 3.03(0.80) 2.34(0.68) 0.00031(0.000090) 5.92(0.20) 7.49(2.38) 7.89(2.30) 7.73(2.34) 7.49(2.38) 9.31(2.54)

According to Table 6, with the same number of iterations (T = 3), RASMR still
outperforms MR, SMR, and DC. When the comparison is made with respect to the true
parameter values, RASMR performs almost as well as the full data estimate with negligible
differences. Recall that the data contain the entire information for estimating the parameters
and the RASMR approach achieves its theoretical extreme in terms of estimation accuracy
in this case.

4.3. Performance of RASMR with the Delta Ratio Split, Algorithm 2

In Section 2.4, we develop Algorithm 2 for estimating the maximum likelihood bet-
ter, especially for non-Gaussian covariates or predictors. To justify the improvement of
Algorithm 2 against RASMR, in this section, we employ the same simulation setting as
described in Section 4.1 (see Example 1). For illustration purposes, the threshold δ0 for
delta ratio split is chosen to be 0.05, 0.1, 0.5, and 1, respectively. We fit the logistic regression
model using SMR, RASMR, and RASMR with the delta ratio split and various thresholds.
The estimated maximum log-likelihood approaches the full data value as the threshold
of the delta ratio decreases, except in the T3 case, where the improvement is negligible
(see Figure S11 in the Supplementary Materials). One reason is that in the case of T3, the
delta ratios are much smaller than those in other cases (see Figure S1 in the Supplementary
Materials), and even 0.05 does not capture a good amount of blocks.

To evaluate how the delta ratio split impacts the accuracy of parameter estimates, we
choose K = 100, 500, and 1000 for K-means clustering, respectively. With moderately large
K, such as K = 500 or 1000, RASMR with a delta ratio split performs roughly the same as
the original RASMR (see Figure S12 in the Supplementary Materials), and both RASMR
and RASMR with a delta ratio split outperform SMR. Nevertheless, when K is as small as
100, the RASMR algorithms may fail for some data structures, such as nzNormal (where
the data have imbalanced responses), T3 (where the data distribute with heavy tails), or
mixNormal (where the data come from a mixture of two distributions).

In Table 7, we list the performance of RASMR with the delta ratio split and δ0 = 0.1
when the link function is misspecified. Comparing Table 7 with Table 2, we can see that
RASMR with the delta ratio split (Algorithm 2) is, in general, better than or comparable
with Algorithm 1 in terms of estimation accuracy. The improvements are significant in the
unbalanced or heavy-tailed cases, such as nzNormal with cauchit link, and ueNormal with
cloglog or cauchit links (see Section S5 in the Supplementary Materials for more details).
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Table 7. Average (std) of RMSEs (10−3) over 100 simulations using RASMR with the delta ratio split.

Simulation K-Means (K = 1000), True Link Function = Logit

Approach RASMR with the Delta Ratio Split, Threshold = 0.1

Setup Logit Cloglog Probit Cauchit

mzNormal 4.0 × 10−5 3.2 × 10−2 6.1 × 10−5 8.2 × 10−3

(9.9 × 10−6) (3.7 × 10−2) (2.4 × 10−5) (3.2 × 10−3)
nzNormal 1.6 × 10−3 1.5 × 10−2 2.7 × 10−4 8.8

(5.6 × 10−4) (1.4 × 10−2) (8.5 × 10−5) (4.5)
ueNormal 2.0 × 10−4 9.9 × 10−2 1.2 × 10−3 2.3 × 10−2

3.4 × 10−3 9.6 × 10−1 2.4 × 10−3 3.3 × 10−2

mixNormal 3.8 × 10−4 1.9 × 10−1 1.8 × 10−4 7.3 × 10−2

(1.5 × 10−4) (1.4 × 10−1) (1.8 × 10−4) (3.0 × 10−2)
T3 6.3 × 10−2 1.0 × 10−1 5.2 × 10−2 2.7 × 10−2

3.4(×10−2) (5.6 × 10−2) (2.5 × 10−2) (1.5 × 10−2)
EXP 2.3 × 10−6 4.2 × 10−4 5.8 × 10−6 1.4 × 10−2

(1.8 × 10−6) (9.0 × 10−5) (7.7 × 10−7) (9.7 × 10−3)
BETA 4.6 × 10−6 7.3 × 10−5 2.6 × 10−5 1.0 × 10−2

(3.9 × 10−7) (3.4 × 10−5) (3.4 × 10−6) (3.8 × 10−3)

5. Real Data Analysis

In this section, we use a real example—the airline on-time performance data—collected
from the Bureau of Transportation Statistics (https://www.transtats.bts.gov/, accessed on 31
August 2018), to illustrate how RASMR works for analyzing real data with a massive size.

5.1. The Airline On-Time Performance Data

The airline on-time performance data contain detailed information on US domestic
flights since October 1987. The original data are saved in individual files labeled by month.
For illustration purposes, in this study, we use data from between October 1987 and August
2018, 371 files/months in total, which contain 182,751,882 flights. After removing the
records with missing or invalid inputs, N = 179,528,198 is actually considered in this study.

Following [43], we formulate the data into a binary classification problem aiming
to model the flight delay status, a binary response ArrDelayLabel (arrival delay label),
which is generated by cutting the continuous variable ARRIVAL DELAY at the 15-min
point. For simplicity, the departure time block DepTimeBlk, originally a factor of 17 levels,
is regrouped into a factor with 4 levels (1 for 12:00 a.m.–05:59 a.m., 2 for 06:00 a.m.–
11:59 a.m., 3 for 12:00 p.m.–05:59 p.m., and 4 for 06:00 p.m.–11:59 p.m.). Moreover, three
categorical variables (QUARTER, DayOfWeek, and DepTimeBlk) and three continuous
variables (DISTANCE, DepDelay, and CRSTimeElapsed) are used as illustrations to explain
the status of flight arrival delays (see Table S8 in the Supplementary Materials for a list of
the variables).

5.2. Model Selection

In this section, we select the most appropriate model for the airline data, which consists
of 371 months and 179,528,198 flight records.

As described in Section 3.2, we first perform the link function selection using ˜̃AIC and
five-fold cross-validation based on RASMR with the delta ratio split (Algorithm 2). In this
step, all variables listed in Table S8 are included, and the candidate link functions include
logit, cloglog, probit, and cauchit.

According to the link function selection results listed in Table 8, we select the logit link
for our model (see Figure S14 in the Supplementary Materials for the fitted model based on
“glm2” function in [58] and the RASMR representative data).

https://www.transtats.bts.gov/
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Table 8. Link function selection using ˜̃AIC and 5-fold cross-validation with RASMR.

Link Function Logit Cloglog Probit Cauchit

˜̃AIC 90284022 97172503 95844750 113052242
5-fold CV with Cross-entropy Loss 1.38441 1.7491 1.8228 2.1535

As described in Section 3.3, we further perform the variable selection for the airline
data by implementing the stepwise selection strategy with an initial screening based on
MR and fine selection using RASMR (see Section S4 in the Supplementary Materials). The

selection criterion is ˜̃AIC again. When using “glm2”, we estimate the dispersion parameter
by Pearson’s Chi-square statistic divided by its degree of freedom (see Figure S15 in the
Supplementary Materials). If n, N, and p represent the number of representatives, the full
data size, and the number of parameters in the model, respectively, the degrees of freedom
for Pearson’s Chi-square test are n − p for RASMR and N − p for the full data. To estimate
the dispersion parameter of full data, the RASMR dispersion parameter estimate needs
to be adjusted by the degrees of freedom, i.e., ϕ̂ = ϕ̂RASMR · (n − p)/(N − p), where ϕ̂ is
the dispersion parameter estimated from the full data and ϕ̂RASMR is the estimate from
the RASMR representative dataset. After such an adjustment, the estimated dispersion
parameters are 3291.14 and 3341.67 for the model with all variables and the model with the
selected variables, respectively, which indicates strong over-dispersion.

In conclusion, the GLM after variable selection contains only one variable, namely, De-
pDelay (departure delay in minutes), which is the most informative variable for predicting
the arrival delay of a flight.

5.3. Comparison Analysis

For performance evaluation and comparison purposes, we create an oracle model by
fitting a logistic regression model using data from between March 2012 and February 2017,
60 months in total, utilizing all explanatory variables listed in Table S8. Then, the oracle
response of ArrDelayLabel for the entire dataset is generated accordingly based on the
oracle model.

Assuming that we do not know the true link (i.e., logit), we fit the Bernoulli model
with one of four different links (namely, logit, cloglog, probit, and cauchit) using four
approaches: (1) iterative reweighted least square (IRLS) on the combined data; (2) the mean
representative (MR) approach; (3) the score-matching representative (SMR) approach; and
(4) RASMR with the delta ratio split and exponential learning rate decay.

The data blocks for MR, SMR, and RASMR are created by the following strategy. The
original airline data are saved in monthly files, which are regarded as natural data blocks.
Before applying MR, SMR, or RASMR, we further split each of the monthly files according
to the distinct values of three categorical variables, namely, QUARTER, DayOfWeek, and
DepTimeBlk. Then, each monthly file is divided into 4 × 7 × 4 = 112 sub-blocks. We
then split each sub-block further according to the three continuous variables via one of
the following two schemes. The first scheme is a correlation-based quantile split. That
is, we split each data block at the 25%, 50%, and 75% quantiles of the three continuous
variables as the cutting points, and obtain 4 × 4 × 4 = 64 sub-blocks. The second scheme is
to apply K-means clustering to the three continuous variables with K = 64. As a result, each
monthly file is divided into 112× 64 = 7168 sub-blocks (see Section S1 in the Supplementary
Materials for more discussion).

We compare MR, SMR, and RASMR with four different data sizes, namely, 60 months,
120 months, 240 months, and 371 months. The IRLS estimates on the combined data are
referred to as the full data estimate, but only available for 60-month and 120-month datasets.
As a result, in Tables 9 and 10, we list RMSE of MR, SMR, and RASMR (with the delta ratio
split) from the IRLS estimates for 60 months and 120 months, and their RMSE from the
oracle parameter values for 240 months and 371 months.
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Table 9. Average (std) of RMSEs (10−3) over 10 simulations of the airline on-time performance data
using K-means clustering.

Simulation Binary Classification, K-Means (K = 64), True Link Function = Logit

Representatives MR SMR RASMR

Setup Logit Cloglog Probit Cauchit Logit Cloglog Probit Cauchit Logit Cloglog Probit Cauchit

60 months 28.4 44.3 12.1 135.7 29.3 212.3 (NA
removed) 12.6 115.5 1.6 3.0 0.3 34.3

(4.5× 10−4) (4.6× 10−5) (1.2× 10−4) (7.0× 10−4) (2.2× 10−3)
8.7 (NA

removed) (7.6× 10−4) (1.6× 10−2) (1.0× 10−5) (8.5× 10−6) (2.0× 10−6) (2.5× 10−5)

120 months 28.3 44.3 12.2 135.4 29.3 212.1 (NA
removed) 12.6 115.3 1.6 3.0 0.3 34.3

(4.5× 10−4) (4.5× 10−5) (1.2× 10−4) (7.0× 10−4) (2.2× 10−3)
8.6 (NA

removed) (7.6× 10−4) (1.6× 10−2) (1.0× 10−5) (8.5× 10−6) (2.0× 10−6) (2.5× 10−5)

240 months 24.7 41.8 9.0 111.4 33.2 219.8 (NA
removed) 12.7 142.0 1.6 3.2 0.3 31.1

(3.3× 10−4) (2.6× 10−5) (8.9× 10−5) (7.4× 10−4) (4.3× 10−3)
9.4 (NA

removed) (7.6× 10−4) (2.2× 10−2) (9.7× 10−6) (1.0× 10−5) (2.8× 10−6) (1.7× 10−5)

371 months 24.2 41.4 9.0 111.2 35.9 216.1 (NA
removed) 12.7 140.3 1.6 3.2 0.3 31.2

(3.1× 10−4) (2.6× 10−5) (8.9× 10−5) (7.4× 10−4) (6.2× 10−3)
9.4 (NA

removed) (7.6× 10−4) (2.0× 10−2) (9.7× 10−6) (1.0× 10−5) (2.8× 10−6) (1.6× 10−5)

Notes: RMSEs of 60 months and 120 months are calculated with respect to the IRLS estimates; RMSEs of
240 months and 371 months are calculated with respect to the oracle parameter values.

Table 10. Average (std) of RMSEs (10−3) over 10 simulations of the airline on-time performance data
using correlation-Based quantile split

Simulation Binary Classification, Correlation-based Quantile Split, True Link Function = Logit

Representatives MR SMR RASMR

Setup Logit Cloglog Probit Cauchit Logit Cloglog Probit Cauchit Logit Cloglog Probit Cauchit

60 months 62.7 182.8 30.1 376.4 150.1 239.2 49.1 384.0 21.3 20.6 2.4 37.2
(1.9× 10−3) (7.9× 10−2) (1.5× 10−2) (4.2× 10−2) 0.7 0.4 (2.6× 10−2) 1.5 (1.5× 10−4) (1.1× 10−3) (1.2× 10−4) (6.6× 10−3)

120 months 62.5 182.7 30.1 374.2 150.0 239.5 49.4 384.7 21.3 20.6 2.4 37.2
(1.9× 10−3) (7.9× 10−2) (1.5× 10−2) (4.2× 10−2) 0.7 0.4 (2.6× 10−2) 1.5 (1.5× 10−4) (1.1× 10−3) (1.2× 10−4) (6.6× 10−3)

240 months 60.4 180.4 27.7 385.4 147.3 242.1 48.4 373.5 20.2 20.8 2.4 36.9
(1.1× 10−3) (8.1× 10−2) (1.0× 10−2) (4.4× 10−2) 0.7 0.4 (2.7× 10−2) 1.4 (1.4× 10−4) (1.1× 10−3) (1.2× 10−4) (6.4× 10−3)

371 months 60.3 180.1 27.7 385.2 147.3 242.1 48.4 373.4 20.2 20.84 2.4 36.9
(1.1× 10−3) (8.1× 10−2) (1.0× 10−2) (4.4× 10−2) 0.7 0.4 (2.6× 10−2) 1.4 (1.4× 10−4) (1.1× 10−3) (1.2× 10−4) (6.4× 10−3)

Notes: RMSEs of 60 months and 120 months are calculated with respect to the IRLS estimates; RMSEs of
240 months and 371 months are calculated with respect to the oracle parameter values.

According to Tables 9 and 10, RASMR produces consistently more accurate estimates,
regardless of the sample size or clustering scheme.

To further compare the convergence properties of SMR and RASMR under different
link functions, we plot log (RMSE) based on SMR or RASMR with K-means clustering
in Figure 2 and quantile split clustering in Figure 3, respectively, against the number of
iterations. Both Figures 2 and 3 show that RASMR has a better convergence property
than the original SMR in this case, which makes RASMR benefit considerably from the
increasing number of iterations.

Figure 2. Trend of log(RMSE) for SMR and RASMR under different link functions for the first
60 months with K-means clustering.



Algorithms 2024, 17, 456 17 of 22

Figure 3. Trend of log(RMSE) for SMR and RASMR estimations under different link functions for the
first 60 months with quantile split clustering.

6. Conclusions

The proposed RASMR approach manages to generate more accurate estimates of
parameters due to better-quality representatives after additional model-specific splitting.
The estimation accuracy improves along with the increasing number of iterations. For
data with a relatively simple structure, typically a small number of iterations can provide
accurate enough estimates for further data analysis, including model selection. For data
with a more complicated structure or a larger number of parameters, we recommend an
increased number of iterations and an exponential learning rate decay to ensure better
convergence behavior.

For a practical implementation of RASMR, K-means clustering may consume a con-
siderable amount of time. When a natural partition is not available, we recommend small
K-means clustering or correlation-based quantile split for a faster clustering process (see
Section S1 in the Supplementary Materials for more details). When the number of covariates
or predictors is large, we recommend the correlation-based quantile split strategy due to its
fast speed.

When applying RASMR to the model selection, we recommend RASMR with the delta
ratio split. A default threshold of delta ratio is 1 since the delta ratios rarely go beyond
1 for typical applications. When the competing models have very close performance, we
recommend a smaller threshold, such as 0.1, to ensure better-quality representatives.

A key step with RASMR is to construct a good set of representatives and find an
accurate approximation β̃ for the MLE β̂ based on the full data. When some collinearity
exists among the covariates or predictors, β̂ may not be unique and the RASMR algorithm
may encounter an identifiability issue. It is worth exploring how to adjust RASMR for
variable selection under the presence of collinearity.

The proposed RASMR approach is especially useful for analyzing big data with
binary responses, such as intrusion detection for cyber security [59] and fraud detection for
insurance companies [60]. Nevertheless, when the responses have three or more categories,
the data may be modeled by multinomial logistic models [61–63] instead of GLMs. In
this case, it is challenging to construct representatives for given data blocks that are more
efficient than the corresponding mean representatives.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/a17100456/s1, including more discussions on S1. Generating Data Blocks;
S2. More on Delta Ratio Split; S3. More on Link Function Selection; S4. More on Variable Selection Using
RASMR; S5. More Simulation Studies; S6. Proofs and Relevant Lemmas; S7. More on Airline Data; S8.
More Figures [64–73].

https://www.mdpi.com/article/10.3390/a17100456/s1
https://www.mdpi.com/article/10.3390/a17100456/s1
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Appendix A. Theorems on Solving the Score-Matching Equation

In this appendix, we provide theorems and remarks on solving the score-matching
Equation (3), including explicit solutions for the normal/linear model (Theorem A2),
the gamma model (Theorem A5), and the inverse Gaussian model (Theorem A6). With
the suggested second split based on yi > G(ηi) and further split for Bernoulli models
(Remark A2) and Poisson model (Remark A3), we largely resolve the issue of multiple
solutions to (3) in the original SMR algorithm, as explained in Section 2.2.

Theorem A1. Suppose both ν(η) and G(η) are continuous on [η∧
k , η∨

k ]. If S(η) is strictly
monotone on [η∧

k , η∨
k ], then there exists a unique η∗ ∈ [η∧

k , η∨
k ] that solves (3).

Theorem A2. For the normal model with an identity link, that is, the usual linear model, there are
up to two solutions solving (3):

η̃k,1 =
1
2

(
ỹk −

√
ỹ2

k − 4S̄
)

, η̃k,2 =
1
2

(
ỹk +

√
ỹ2

k − 4S̄
)

, (A1)

where S̄ = η̄k ỹk − n−1
k ∑i∈Ik

η2
i and η̄k = n−1

k ∑i∈Ik
ηi . Furthermore,

(1) If ηi < 0 and yi > G(ηi) for all i ∈ Ik, then the only solution is η̃k,1 .
(2) If ηi > 0 and yi < G(ηi) for all i ∈ Ik, then the only solution is η̃k,2 .

In general, if ỹk/2 /∈ (η∧
k , η∨

k ), then the solution is unique.

Note that the essentially same explicit solutions as in (A1) are described in Sec-
tion 4.2.2.1 of [64].

Along with Theorem A1 and Lemmas S1–S5 in the Supplementary Materials (see
Section S6), we conclude the following summarized results for Bernoulli models.

Theorem A3. For Bernoulli models with logit, probit, cloglog, loglog, or cauchit links, a data block
Ik satisfying one of the following six conditions yields a unique solution solving (3):

(i) ηi < ηl and yi < G(ηi) for all i ∈ Ik;
(ii) ηl < ηi < 0 and yi < G(ηi) for all i ∈ Ik;
(iii) ηi > 0 and yi < G(ηi) for all i ∈ Ik;
(iv) ηi < 0 and yi > G(ηi) for all i ∈ Ik;
(v) 0 < ηi < ηr and yi > G(ηi) for all i ∈ Ik;
(vi) ηi > ηr and yi > G(ηi) for all i ∈ Ik,

where ηl < 0 and ηr > 0 are constants listed in Table 1. A general data block under Bernoulli
models may yield up to two solutions solving (3).

Remark A1. In practice, the “<” and “>” in Theorem A3 can be relaxed to “≤” and “≥”,
respectively, as long as “=” can only be attained by a small portion of the observations.

https://www.transtats.bts.gov/
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Remark A2. Theorem A3 suggests further split sub-blocks according to ηl or ηr, which are
constants associated with link functions. More specifically, if ηi < 0 and yi < G(ηi) for all i ∈ Ik,
we further split Ik into two sub-blocks at the splitting point ηl (see cases (i) and (ii)); if ηi > 0 and
yi > G(ηi) for all i ∈ Ik, we further split Ik at the splitting point ηr (see cases (v) and (vi)). Each
resulting block yields a unique solution solving (3), which is equivalent to solving S(η) = S̄ (see
(6)). For example, for Bernoulli models with logit link, that is, logistic regression models, we have
the following:

S(η) =

{
− ηeη

1+eη , for cases (i), (ii) and (iii);
η

1+eη , for cases (iv), (v), and (vi).

Furthermore, the solutions are associated with the Lambert W-function P(z), which solves z =
we−w (see R function lambertW in package VGAM [65]). It can be verified that, for cases (ii) and
(iii), η̃k = P(−S̄eS̄)− S̄; for cases (iv) and (v), η̃k = S̄ − P(−S̄eS̄). Nevertheless, lamberW does
not provide solutions for cases (i) and (vi) for now. One may use a quasi-Newton algorithm to
solve them.

Theorem A4. For the Poisson model with a log link, suppose either ηi > 0 for all i ∈ Ik or ηi < 0
for all i ∈ Ik . Then, there are up to two solutions η̃k,1 ∈ [η∧

k , u(ỹk)] and η̃k,2 ∈ [u(ỹk), η∨
k ] solving

(3), where u(y) ≥ −1 denotes the unique root of the transcendent equation eη(1 + η) = y given
y ≥ 0. Special cases include the following:

(i) If yi = 0 and ηi ≥ 0 for all i ∈ Ik, then there exists a unique solution η̃k = 1+ u(−S̄/e) ≥ 0.
(ii) If yi = 0 and ηi ∈ (−1, 0) for all i ∈ Ik, then there exists a unique solution in (−1, 0).
(iii) If yi = 0 and ηi ≤ −1 for all i ∈ Ik, then there exists a unique solution in (−∞,−1].

Remark A3. Theorem A4 suggests that the observations with yi = 0 be extracted and further
partitioned into three sub-blocks according to ηi ∈ (−∞,−1], (−1, 0) and [0, ∞), respectively,
or with splitting points −1 and 0. Then, η̃k solving (3) within each sub-block is unique and can
be obtained easily. Moreover, all three special cases in Theorem A4 are related to the well-known
Lambert W-function P(z), which solves z = wew. The function “lambertW" from R package VGAM
may be used for this purpose as well.

Theorem A5. For the gamma model with a reciprocal link, η̄k = n−1
k ∑i∈Ik

ηi is the unique
solution solving (3). Furthermore, if yi < G(ηi) for all i ∈ Ik, then η̄k ∈ (0, ỹ−1

k ); if yi > G(ηi)

for all i ∈ Ik, then η̄k ∈ (ỹ−1
k , ∞).

Remark A4. For the gamma model with a reciprocal link, η̃k = η̄k = X̄kβ is the only solution
solving (3), where X̄k = n−1

k ∑i∈Ik
Xi is the mean representative. In this case, ν(η) is a constant

(see Table 1 in [43]), and we have the following:

X̃k =
∑i∈Ik

(yi − η−1
i )Xi

nk(ỹk − η̄−1)
(A2)

according to (4). That is, X̃k ̸= X̄k as in (A2), even if η̃k = X̄kβ.

Theorem A6. For the inverse Gaussian model with an inverse-square link, in general, there are up
to two solutions, i.e.,

η̃k,1 =
1 − 4ỹkS̄ −

√
1 − 8ỹkS̄

2ỹ2
k

, η̃k,2 =
1 − 4ỹkS̄ +

√
1 − 8ỹkS̄

2ỹ2
k

solving (3), where S̄ = n−1
k ∑i∈Ik

1
2 (η

−1/2
i − ỹk)ηi, and η̃k,1 ≤ (4ỹ2

k)
−1 ≤ η̃k,2 . Furthermore,

if yi > G(ηi) for all i ∈ Ik, then S̄ < 0 and η̃k = (1 − 4ỹkS̄ +
√

1 − 8ỹkS̄)/(2ỹ2
k) is the only

solution.
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