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S1. Generating Data Blocks

As a stagewise optimization algorithm to conquer big data modeling problems, score-
matching representative (SMR) approaches highly depend on the partition of the original
data. In the original SMR framework [1], data are partitioned using K-means clustering,
an algorithmic approach that clusters the data points based on their distance from each
other. K-means clustering is an ideal way to bring informative data blocks to the SMR
algorithm since the data points in those data blocks are more similar to each other than
the points outside. Intuitively, the harmony inside the data blocks from K-means would
make the corresponding representative more convincing since the data points are relatively
homogeneous. While the benefit of K-means clustering is significant, there is a price to
pay. K-means is computationally expensive especially when the data are massive and the
dimension is high. In those cases, the K-means clustering itself would be computationally
intractable. To make the proposed RASMR more practically useful, we recommend two
alternative solutions to replace K-means clustering.

The first solution is called the small K-means clustering, which is essentially the subset
clustering strategy recommended by [1]. This strategy starts with drawing a subset of
a small proportion of the original data. A small proportion of data can be generated by
simple random sampling or stratified sampling (see, for example, [2]) if the original data
have some inherent natural structures. Instead of performing K-means clustering on the
entire dataset, we implement K-means on a small subset. This subset could be 5%, 10%, or
20% of the original dataset in practice. Once the clusters are produced, the remaining data
in the entire dataset can be clustered according to the produced K-means cluster centers.
Apparently, the small K-means clustering consumes much less computational resources.
Our simulation studies show that—under the seven distributional settings—the small
K-means clustering serves the RASMR and SMR approaches almost equally well compared
with the full data K-means clustering.

One disadvantage of the small K-means clustering is that it highly depends on the
quality of the subset drawn from the entire dataset. If the subset represents the structure of
the entire dataset reasonably well, we can expect that the performance of the small K-means
would be comparable with the K-means clustering on the full dataset. Nevertheless, if
the size of the subset is not large enough to reveal the structure of the entire dataset, or
if the subset unfortunately contains some inherent bias, the performance of the RASMR
algorithms may not be satisfactory.

The second solution to efficiently generate data blocks is the correlation-based quantile
split strategy. This approach is similar to the decision tree type of algorithms. Instead
of using loss functions, such as cross-entropy loss [3], to determine a variable, and a
location to cut, the correlation-based quantile split ranks the covariates or predictors by
their correlations with the response in descending order, and then cuts at the median
starting from the top of the variable list. This is computationally much cheaper with the
time complexity O(kN log(N)), where k is the number of variables to cut and N is the
number of data points in the entire dataset. It generates a sufficiently large number of data
blocks much faster than the K-means clustering, sometimes almost instantly, which makes
it very competitive with a massive data size or a moderate number of variables.

Although the clusters obtained from the correlation-based quantile split approach may
not be as elegant or informative as those from K-means clustering, particularly with highly
skewed or high-dimensional data, this is not a significant problem as long as the resulting
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data blocks effectively serve the RASMR algorithms. Since RASMR typically has a very
good convergence rate in most cases, any temporary disadvantages from clustering can be
compensated for by increasing the number of RASMR iterations and configuring a suitable
learning rate scheduling strategy (see Section 2.5).

Two possible modifications can be made to fulfill specific requirements in practice.
First, when the number of variables is not large, the number of data blocks 2k from a binary
cut may not be enough to produce a sufficient amount of representatives. In this case, the
binary cut may be replaced with a quantile split using the quartiles Q1, Q2, and Q3 (see
Section 5.3 for such an example). Another aspect is that, when the dataset contains a large
number of variables, one does not need to exhaust the entire list of variables for binary cuts.
We can simply go from the top of the variable list ranked by correlations and stop at the kth
variable where 2k is large enough to fit the model.

The advantage of the correlation-based quantile split is its cheap computational ex-
pense. It makes this strategy practically useful with a large number of variables. Based on
our experience, performing binary cuts on 15 out of 100 total variables is almost instanta-
neous. In contrast, whether using full data or a small subset, K-means clustering becomes
computationally very expensive or intractable when K exceeds 5000. Although the clusters
obtained may not be as well separated as those from K-means clustering, this can be quickly
compensated by increasing the number of iterations and carefully configuring the learning
rate schedule.

These facts put us into a situation where we need to choose between the two model-
fitting tactics. That is, whether we fit the model with fewer iterations but finer data blocks,
or we fit the model with more iterations with cheaper data blocks. In practice, based on our
experience, we suggest that, when the number of variables is small, we may use the small
K-means as the clustering approach along with a small number of iterations to achieve a
good estimation. As for the situations with a moderately large number of variables, we
suggest using the correlation-based quantile split for faster data partitioning with more
data blocks and then increasing the number of iterations to obtain a satisfactory result.

S2. More on the Delta Ratio Split

In this section, we provide more discussions and justifications for Algorithm 2 with
the delta ratio split.

Figure S1. (a) Empirical distribution of the delta ratio δ̃k for SMR and RASMR with mzNormal data.

Figure S1 (a)∼(g) show the empirical distributions of the delta ratio δ̃k for simu-
lated data under seven different distribution settings (see Section 4 and Section S5 in the
Supplementary Materials for more detailed explanations of the seven distributions). For
each subgraph labeled from (a) to (g), the top panel (original SMR) and the bottom panel
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Figure S1. (b) Empirical distribution of the delta ratio δ̃k for SMR and RASMR with nzNormal data.

Figure S1. (c) Empirical distribution of the delta ratio δ̃k for SMR and RASMR with ueNormal data.

(RASMR) display the histogram, boxplot, and fitted density curves of the 1000 delta ratios
based on SMR and RASMR, respectively, calculated from the 1000 data blocks. We observe
that most SMR representatives are located outside of their data blocks (that is, δ̃k > 1).
Moreover, in many cases, the delta ratio could be as large as several hundred, which means
that those SMR representatives are dramatically distant from their data blocks. In contrast,
RASMR produces representatives that make much more sense. The delta ratios of RASMR
representatives are significantly smaller than those of SMR, which explains why RASMR
performs better in estimating parameters and approximating the maximum likelihood.
Another phenomenon is that the delta ratio tends to inflate when the distribution of vari-
ables is more extreme or complicated. For the ueNormal distribution—whose range is
tremendously wide—the delta ratios of RASMR representatives spread out a lot, while in
other settings, the delta ratios are typically much smaller than 1.

Figure S2 shows four examples of data blocks with large delta ratios from ueNormal
data. These data blocks have delta ratios greater than 1, which means that the repre-
sentatives stay outside their corresponding data blocks. We consider these data blocks
underrepresented. From Figure S2, we can see a common feature of those blocks. This
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Figure S1. (d) Empirical distribution of the delta ratio δ̃k for SMR and RASMR with mixNormal data.

Figure S1. (e) Empirical distribution of the delta ratio δ̃k for SMR and RASMR with T3 data.

suggests that Equation (3) almost has a second solution for the data blocks, indicating the
potential existence of another representative.

Figure S3 shows four well-represented examples of data blocks, whose delta ratios are
small. In those examples, Equation (3) yields a unique solution.

Based on the definition of the delta ratio δ̃k, we may use it as a measure of the
qualification of a representative to speak for its data block. If the delta ratio is greater
than a predefined threshold, we consider the data block to be underrepresented and the
representative to lack qualification. Our method for addressing underrepresented data
blocks involves further splitting the block based on the assigned threshold. The threshold
can be assigned based on the complexity of the distribution of variables. In general, the
more complex the structure of the data, the smaller the threshold for delta ratios is preferred.
Nevertheless, in practice, if the likelihood approximation is not a serious concern, we may
set the threshold equal to one, which ensures the representative stays inside its data block.
Once a representative is identified as unqualified, we split its data block at the mean of all
data points in the block. That is, we calculate ηi = Xi β̃

(t) for each i ∈ Ik and use the mean
η̄k of ηi’s as the cutoff point for the split. Here, we choose the mean of ηi’s to split the data
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Figure S1. (f) Empirical distribution of the delta ratio δ̃k for SMR and RASMR with EXP data.

Figure S1. (g) Empirical distribution of the delta ratio δ̃k for SMR and RASMR with BETA data.

block over the median because the mean is more sensitive to outliers. Using η̄k as the split
cutoff point enables us to separate the outliers from the majority points in the data block.

S3. More on Link Function Selection

In this section, we provide more technical details to support the discussion in Sec-
tion 3.2. the objective is to select the most appropriate link function for a GLM given a
massive dataset.

In our study, we utilize information-based criteria, such as AIC and BIC, for the
link function selection. The key step is the precise estimation of the maximum likelihood.
In Section 3.1, we develop two methods to estimate the maximum likelihood. Theorem1
guarantees the convergence of the estimate using the RASMR-estimated parameters and the
full dataset. Theorem2 ensures the convergence of estimates using the RASMR-estimated
parameters and representatives.

The first method of calculation involves plugging the parameters estimated from
RASMR and the complete dataset into the explicit likelihood function. The ÃIC and
B̃IC, which are estimates of their full-data counterparts, can be readily produced once the
likelihood function value is obtained. The main advantage of this method is the outstanding
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Figure S2. Equation (3) of four data blocks with large delta ratios from ueNormal data.

Figure S3. Equation (3) of well-represented data blocks with small delta ratios from ueNormal data.

accuracy of the RASMR estimates. Even in complex scenarios, the estimated parameters by
RASMR can still be extremely accurate. However, this method requires an extra plug-in
step using the complete dataset, which consumes additional computational resources to
process the entire dataset. This can be fairly slow when the data size is ultra-large.

The second method of calculation more elegantly inherits the spirit of representative
approaches. It utilizes not only the estimated parameters from RASMR but also the
representatives of data blocks. The maximum likelihood can be calculated via an explicit
expression of the likelihood function using the parameter estimates and the representatives
from RASMR. The advantage of this approach is that the likelihood estimation is integrated
with the model-fitting process, which means that the estimation of the full-data information
criteria is immediately available once the model-fitting process ends. No additional steps

need to be taken to obtain ˜̃AIC and ˜̃BIC. This saves a considerable amount of time with
massive datasets. Despite the computational benefits, ˜̃AIC and ˜̃BIC may suffer from higher
bias and variance than ÃIC and B̃IC because uncertainty is introduced into the likelihood
calculation from both the parameter estimates and the representatives.

In our numerical experiments, we mainly focus on testing the performances of ˜̃AIC
and ˜̃BIC, as these approaches are more practically useful in big data analysis. Similarly to
Example 1, we consider seven extensively used distributions to generate the covariates. The
underlying model is a logistic regression model. For each of the 100 simulations, N = 106

data points are generated and clustered into K = 1, 000 data blocks by K-means clustering.
Table S1 shows the performance of link function selection using AIC. Selection based

on the full data directly delivers perfectly correct rates without any doubt, with the true link
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Table S1. Correct rate for selecting the true link function using AIC over 100 simulations.

Data Block K-means (K = 1000)
Method Full data . MR SMR

Setting up Logit VS Cloglog Logit VS Probit Logit VS Cauchit Logit VS Cloglog Logit VS Probit Logit VS Cauchit Logit VS Cloglog Logit VS Probit Logit VS Cauchit
mzNormal 100% 100% 100% 100% 100% 100% 100% 100% 0%
nzNormal 100% 100% 100% 100% 100% 100% 74% 77% 100%
ueNormal 100% 100% 100% 100% 0% 100% 100% 8% 0%

mixNormal 100% 100% 100% 100% 100% 100% 100% 81% 100%
T3 100% 100% 100% 100% 100% 100% 81% 72% 0%

EXP 100% 100% 100% 100% 100% 100% 0% 0% 0%
BETA 100% 100% 100% 100% 99% 100% 0% 6% 0%

Table S2. Correct rate for selecting the link function based on RASMR data blocks
.

Data Block K-means (K = 1000) plus Delta Ratio Split with δ0 = 0.05
Representatives Full data . MR RASMR

Setting up Logit VS Cloglog Logit VS Probit Logit VS Cauchit Logit VS Cloglog Logit VS Probit Logit VS Cauchit Logit VS Cloglog Logit VS Probit Logit VS Cauchit
mzNormal 100% 100% 100% 100% 100% 100% 100% 100% 100%
nzNormal 100% 100% 100% 100% 100% 100% 100% 100% 100%
ueNormal 100% 100% 100% 100% 100% 100% 100% 100% 100%

mixNormal 100% 100% 100% 100% 100% 100% 100% 100% 100%
T3 100% 100% 100% 100% 99% 100% 100% 100% 100%

EXP 100% 100% 100% 100% 100% 100% 100% 100% 100%
BETA 100% 100% 100% 100% 100% 100% 100% 100% 100%

function, logit, selected 100% under all circumstances. As a relatively naive representative

approach, ˜̃AIC with the mean representative (MR) performs surprisingly well, except
in the case of Logit vs. Probit with ueNormal distribution, where the covariates exhibit
increasingly wild variances. This fact makes MR less favorable when the data structure is

complex. For ˜̃AIC with the original score-matching representative (SMR) approach, the
performance in link function selection is rather disappointing. Under various conditions,
SMR fails to choose the logit link function over its competitors. Despite its accurate
parameter estimation, SMR is much less reliable for model selection. This unreliability
also motivates our proposal of the response-aided score-matching representative (RASMR)
approach.

As explained in Sections 2.4 and S2, we recommend using RASMR with the delta ratio
split for the link function selection, especially when the data exhibit complex structures. The
delta ratio split imposes an additional rule on splitting data blocks to ensure high-quality
representatives. As the threshold of the delta ratio split decreases, the estimated maximum
likelihood using RASMR parameter estimates and representatives approaches the true

maximum likelihood, making ˜̃AIC more reliable.
In our numerical experiment, we split the K-means data blocks further based on

RASMR with the delta ratio split δ0 = 0.05. The results are shown in Table S2. We can see
that MR achieves a considerable improvement in the correct rate of link function selection

based on the RASMR data blocks, while ˜̃AIC with RASMR achieves a 100% correct rate for
all cases.

For comparison purposes, we also apply a divide-and-conquer (DC) approach with
majority voting to conduct the link function selection. For each of the 100 simulations,
K = 1000 randomly generated data blocks are fed to the DC algorithm for modeling and
the link function is selected by majority voting. The results are shown in Table S3, which
implies that the DC with majority voting manages to select the true logit link in the first
four settings but fails in T3, EXP, and BETA.

Table S3. Percentage of candidate link functions chosen by DC and majority voting based on AIC.

Simulation K = 1000 Randomly Generated Data Blocks
Setting up Logit cloglog Probit Cauchit
mzNormal 100% 0% 0% 0%
nzNormal 100% 0% 0% 0%
ueNormal 100% 0% 0% 0%

mixNormal 100% 0% 0% 0%
T3 0% 55% 45% 0%

EXP 0% 100% 0% 0%
BETA 0% 100% 0% 0%
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S4. More on Variable Selection Using RASMR

In this section, we provide more technical details to support the discussion in Section
3.3. the objective is to apply RASMR for subset selection and stepwise variable selection for
massive data analysis.

When analyzing massive data, traditional statistical methods may not be feasible,
including variable selection. The variable selection process requires not only reliable model-
fitting capabilities but also highly accurate statistical inference. RASMR provides both
extremely accurate estimates of parameters and likelihood function values, making it ideal
for facilitating the variable selection task. Nevertheless, we still need to consider several
important factors to make the algorithms more applicable and time-efficient in practice.

First, the subset selection process requires fitting candidate models multiple times,
which is very time-consuming if each model fitting takes a noticeable amount of time. This
fact presents a paradox in the application of RASMR. To make better decisions on variables,
more accurate results are needed from RASMR. However, as an iterative optimization
algorithm, RASMR requires more iterations to deliver better parameter estimations and
high-quality representatives, which can considerably slow down the variable selection
process. So, we need to find a balance between processing time and the performance
of variable selection. We address this problem by introducing a fast variable screening
process with the mean representatives (MRs). That is, the MR is first implemented in the
forward selection process (see, for example, [3]) to obtain an initial result of the variable
selection. Denoted by AIC and BIC, the information criteria are estimated by using the
mean representative and the corresponding estimates of parameters. We continue the
variable selection process until there is no further reduction of AIC or BIC is detected.
Recall the experiment results listed in Table S1. MR performs sufficiently well in the
link function selection using information-based criteria. Based on our experiences, MR
preserves the order of likelihood and makes correct decisions based on information criteria
in many cases. For this reason, we recommend MR for a quick initial screening in variable
selection. Then, we may implement a forward stepwise selection process using RASMR for
a finer selection.

Another important aspect is the data clustering strategy. Prior to the implementation
of RASMR, the data blocks need to be provided. Two data clustering techniques can be
used to generate the data blocks. They are K-means clustering and correlation-based binary
cut (see also Section S1). The K-means clustering generates more elegant data blocks but
also consumes more computational resources. The correlation-based binary cut (that is,
cut at the mean value of each variable) is computationally much cheaper but would be
less informative given the same number of clusters. However, this shortcoming can be
accommodated by increasing the number of clusters. According to their unique advantages,
respectively, we propose two solutions to generate the data blocks for implementing
RASMR in variable selection.

Solution one: We perform a one-time partition on the entire dataset using K-means
clustering. All the candidate models in the variable selection process are fitted with RASMR
using this universal partition.

Solution two: In each step of the forward stepwise selection using RASMR, we perform
the correlation-based binary cut on the current set of active variables. For example, at the
tth step, given the currently active set Vt of variables, we perform the correlation-based
binary cut on Vt ∪ {i} for some i /∈ Vt to move forward, or on Vt \ {j} for some j ∈ Vt to
move backward.

Solution one is ideal for handling variable selection tasks for big data with a small
number of variables. A well-tuned group of data blocks from K-means using the complete
set of variables would be sufficient to facilitate the RASMR model-fitting process by pro-
viding a good global view of the data structure. Solution two is recommended to handle
variable selection tasks for big data with a moderately large number of variables.

Let the total number of covariates or predictors under selection be p. Denote the index
set of all variables under selection by V and denote the index set of the selected variables
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at the tth step by Vt . For illustration purposes, the practical algorithm using the global
K-means clusters for variable selection with RASMR is described as follows:

1. Generate data blocks using K-means based on the complete set V of variables.
2. Do variable screening using the forward selection with the mean representative.

(a) Generate the mean representative for each data block.
(b) Initiate V0 = ∅. For each variable xi, i ∈ V , evaluate the AIC or BIC for the

corresponding univariate model based on xi with the mean representative and
the estimates of parameters. Suppose the univariate model with xi∗ attains the
smallest AIC or BIC. Let V1 = {i∗}.

(c) At the (t + 1)th step, for each i /∈ Vt, evaluate the AIC or BIC of the model
based on variables {xj, j ∈ Vt ∪ {i}} with the mean representative and the
estimated parameters.

(d) Suppose xi∗ , i∗ /∈ Vt attains the smallest AIC or BIC in the (t + 1)th step. If the
smallest AIC or BIC in the (t + 1)th step is strictly less than the AIC or BIC
at the tth step, let Vt+1 = Vt ∪ {i∗}. Otherwise, stop the selection process and
settle with {xi, i ∈ Vt}.

3. Do stepwise variable selection using RASMR.

(a) Initiate V′
0 to be the index set of the selected variables from the variable screen-

ing step.
(b) At the (t + 1)th step, given that V′

t ̸= V , to move forward, find the best

variable xi∗ , i∗ /∈ V′
t that minimizes ˜̃AIC or ˜̃BIC of the model based on variables

{xi, i ∈ V′
t ∪ {i∗}} and RASMR.

(c) At the (t + 1)th step, given that V′
t ̸= ∅, to move backward, find the best

variable xj∗ , j∗ ∈ V′
t that minimizes ˜̃AIC or ˜̃BIC of the model based on variables

{xj, j ∈ V′
t \ {j∗}} and RASMR.

(d) Compare the smallest ˜̃AIC or ˜̃BIC obtained in (b) and (c) with their counter-

parts based on V′
t . If a strict reduction in ˜̃AIC or ˜̃AIC is detected, update V′

t+1
accordingly and go to the (t + 2)th step. Otherwise, stop the selection process
and settle with the variable index set V′

t .

S5. More Simulation Studies

As described in Section 4, the feature variables xi = (xi1, xi2, . . . , xid)
T are generated

from one of the following seven distributions (see also [1]):

(1) mzNormal Nd(0, Σ), where Σ is a d × d matrix with diagonal 1 and off-diagonal 0.5.
(2) nzNormal Nd(1.5, Σ), which leads to imbalanced responses.
(3) ueNormal Nd(0, Σu), where Σu is a d × d matrix with diagonals 12, . . . , d2 and off-

diagonal 0.5.
(4) mixNormal 0.5Nd(−1, Σ) + 0.5Nd(1, Σ), representing a bimodal case.
(5) T3 multivariate t with 3 degrees of freedom t3(0, Σ)/10, which is heavy-tailed.
(6) EXP IID exponential distribution with a rate parameter λ = 2, which has a heavy tail

on the right.
(7) BETA IID Beta(α = 0.5, β = 0.5), which is a bounded and U-shaped.

Note that in distributions (1) mzNormal, (3) ueNormal, (4) mixNormal, and (5) T3, the
distribution of each component of xi is symmetric about zero. If β0 = 0, then the linear
predictor ηi defined in Model (8) (see Section 4.1) also has a distribution that is symmetric
about zero.
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S5.1. Comparing Different Variable Selection Strategies

In this section, we first test the performances of variable selection strategies using the
mean representative (MR) approach only. Consider a logistic regression model with its
linear predictor, as follows:

ηi = xi1β1 + xi2β2 + · · ·+ xi,20β20 .

Suppose the true parameter values are βi = 0.5, for i = 1, 2, .., 7, and β j = 0 for j = 8, .., 20.
This configuration matches the true model described in Section 4.

The predictors xi are generated from one of the seven distributions mentioned earlier.
The average number of variables selected, the average false positive rate (FPR), the average
true positive rate (TPR), and their corresponding standard deviations are recorded and
shown in Table S4.

Table S4. Variable selection comparison between representative approaches and others

.

Simulation MR for Variable Selection with K-means Clustering and AIC
Method Forward Backward Stepwise
Settings No.Selected FPR TPR No. Selected FPR TPR No. Selected FPR TPR

mzNormal 7.4(0.70) 2.9%(0.05) 100%(0) 9.3(1.33) 16.4%(0.096) 100%(0) 7.4(0.70) 2.9%(0.05) 100%(0)
nzNormal 8.1(0.57) 7.9%(0.041) 100%(0) 10.1(1.52) 22.1%(0.109) 100%(0) 8.1(0.57) 7.9%(0.041) 100%(0)
ueNormal 8.5(1.08) 10.7%(0.077) 100%(0) 10.9(1.73) 27.8%(0.123) 100%(0) 8.5(1.08) 10.7%(0.077) 100%(0)

mixNormal 8.1(0.88) 7.9%(0.063) 100%(0) 9.8(0.92) 20.0%(0.066) 100%(0) 8.1(0.88) 7.9%(0.063) 100%(0)
T3 7.2(0.98) 1.4%(0.03) 100%(0) 9.4(1.17) 17.1%(0.084) 100%(0) 7.2(0.98) 1.4%(0.03) 100%(0)

EXP 13.0(1.63) 42.8%(0.117) 100%(0) 14.4(1.64) 52.9%(0.118) 100%(0) 13.0(1.63) 42.8%(0.12) 100%(0)
BETA 9.2(1.03) 15.7%(0.074) 100%(0) 8.9(1.52) 13.6%(0.109) 100%(0) 9.2(1.03) 15.7%(0.074) 100%(0)

(a) Ave (Std) of FPR and TPR of variable selection using MR and AIC.

Simulation MR for Variable Selection with K-means Clustering and BIC
Method Forward Backward Stepwise
Settings No.Selected FPR TPR No. Selected FPR TPR No. Selected FPR TPR

mzNormal 7.0(0) 0%(0) 100%(0) 7.0(0) 0%(0) 100%(0) 7.0(0) 0%(0) 100%(0)
nzNormal 7.1(0.32) 0.7%(0.023) 100%(0) 7.3(0.48) 2.1%(0.035) 100%(0) 7.1(0.32) 0.7%(0.023) 100%(0)
ueNormal 7.2(0.42) 1.4%(0.030) 100%(0) 7.2(0.42) 1.4%(0.030) 100%(0) 7.2(0.42) 1.4%(0.030) 100%(0)

mixNormal 7.0(0) 0%(0) 100%(0) 7.0(0) 0%(0) 100%(0) 7.0(0.14) 0%(0) 100%(0)
T3 7.0(0) 0%(0) 100%(0) 7.0(0) 0%(0) 100%(0) 7.0(0) 0%(0) 100%(0)

EXP 8.1(0.32) 7.9%(0.023) 100%(0) 7.1(0.32) 0.71%(0.023) 100%(0) 7.1(0.32) 0.7%(0.023) 100%(0)
BETA 8.0(0) 7.1%(0) 100%(0) 7.0(0) 0%(0) 100%(0) 7.0(0) 0%(0) 100%(0)

(b) Ave (Std) of FPR and TPR of Variable Selection Using MR and BIC

Simulation MR+RASMR for variable selection with K-means clustering and AIC
Method Forward MR Screening + Stepwise RASMR Backward MR Screening + Stepwise RASMR Stepwise MR Screening + Stepwise RASMR
Settings No.Selected FPR TPR No. Selected FPR TPR No. Selected FPR TPR

mzNormal 7.0(0) 0%(0) 100%(0) 9.0(1.33) 14.3%(0.095) 100%(0) 7.0(0) 0%(0) 100%(0)
nzNormal 7.4(0.84) 2.9%(0.060) 100%(0) 9.1(1.66) 15.0%(0.119) 100%(0) 7.4(0.84) 2.8%(0.060) 100%(0)
ueNormal 8.0(0.82) 7.1%(0.058) 100%(0) 9.1(1.37) 15.0%(0.098) 100%(0) 8.0(0.82) 7.1%(0.058) 100%(0)

mixNormal 8.0(0.94) 7.1%(0.067) 100%(0) 9.7(1.06) 19.2%(0.076) 100%(0) 8.0(0.94) 7.1%(0.067) 100%(0)
T3 7.1(0.32) 0.71%(0.023) 100%(0) 8.9(1.29) 13.6%(0.092) 100%(0) 7.0(0) 0%(0) 100%(0)

EXP 10.8(2.53) 27.1%(0.181) 100%(0) 11.0(1.94) 28.6%(0.139) 100%(0) 10.8(2.53) 27.1%(0.181) 100%(0)
BETA 8.7(1.06) 12.1%(0.076) 100%(0) 7.9(0.99) 6.4%(0.071) 100%(0) 8.0(0) 7.1%(0.067) 100%(0)

(c) Ave (Std) of FPR and TPR of variable selection using MR + RASMR and AIC.

Simulation Penalized Logistic Regression with Majority Vote
Configuration K=1000, w=500 K=20, w=10

Settings No. Selected FPR TPR No. Selected FPR TPR
mzNormal 7(0) 0%(0) 100%(0) 7(0) 0%(0) 100%(0)
nzNormal 0(0) 0%(0) 0%(0) 7(0) 0%(0.02) 100%(0)
ueNormal 7(0) 0%(0) 100%(0) 9.67(1.64) 19.1%(0.117) 100%(0)

mixNormal 6.43(1.58) 0%(0) 91.2%(0.23) 20(0) 100%(0) 100%(0)
T3 0(0) 0%(0) 0(0) 0.02(0.14) 0%(0) 0.3%(0.02)

EXP 0(0) 0%(0) 0(0) 0(0) 0%(0) 0%(0)
BETA 0(0) 0%(0) 0(0) 0(0) 0%(0) 0%(0)

(d) Ave (Std) of FPR and TPR of penalized logistic regression with majority vote, 1000 data blocks.

The forward selection strategy with the mean representative is implemented to select
informative variables from the 20 variables in total. Estimated information criteria AIC and
BIC based on MR are tested separately. The results are shown in Tables S4a and S4b. We can
see that MR performs extremely well in controlling the true positive rate (TPR). MR does
not miss any informative variables under all circumstances in the numerical experiments.
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This fact indicates that MR is capable of working as an initial variable screening tool to
facilitate finer selection later. The results also suggest that the BIC criterion, which posts a
penalty on the number of variables, produces even better results on false positive rates.

We further test the performance of variable selection using various subset selection
strategies with MR for initial screening and stepwise selection with RASMR for finer
selection. The RASMR is iterated four times for model fitting and information criteria
estimation. The results are shown in Table S4c for AIC.

We also performed variable selection using the divide-and-conquer LASSO logistic
regression with majority voting [4] under the same settings for comparison. The results are
shown in Table S4d. The side-by-side comparison of MR+RASMR and divide-and-conquer
LASSO logistic regression is shown in Table S5.

Table S5. Ave (Std) of FPR and TPR of penalized logistic regression and MR + RASMR
.

Simulation Penalized Logistic Regression with Majority Vote, 1000 Data Blocks Forward MR Screening + Stepwise RASMR
Details K=1000, w=500 K=20, w=10 BIC
Settings No. Selected Variables FPR TPR No. Selected Variables FPR TPR No. Selected Variables FPR TPR

mzNormal 7(0) 0%(0) 100%(0) 7(0) 0%(0) 100%(0) 7(0) 0%(0) 100%(0)
nzNormal 0(0) 0%(0) 0%(0) 7(0) 0%(0.02) 100%(0) 7(0) 0%(0) 100%(0)
ueNormal 7(0) 0%(0) 100%(0) 9.67(1.64) 19.1%(0.117) 100%(0) 7.1(0.32) 0.7%(0.023) 100%(0)

mixNormal 6.43(1.58) 0%(0) 91.2%(0.23) 20(0) 100%(0) 100%(0) 7(0) 0%(0) 100%(0)
T3 0(0) 0%(0) 0(0) 0.02(0.14) 0%(0) 0.3%(0.02) 7(0) 0%(0) 100%(0)

EXP 0(0) 0%(0) 0(0) 0(0) 0%(0) 0%(0) 7.1(0.32) 0.7%(0.023) 100%(0)
BETA 0(0) 0%(0) 0(0) 0(0) 0%(0) 0%(0) 7(0) 0%(0) 100%(0)

From the experimental results, we can see that the metrics for variable selection per-
formance are further improved with finer selection using RASMR. TPR remains at 100%
in all cases, while the FPR consistently decreases. In terms of information criteria, BIC
outperforms AIC in controlling FPR. Generally, we recommend using forward selection
with MR and stepwise selection with RASMR, accompanied by BIC, for variable selec-
tion. Compared with the results from the divide-and-conquer LASSO logistic regression
with majority voting, our proposed algorithm demonstrates advantages in stability when
handling variables with various distributions. The divide-and-conquer LASSO logistic
regression, with the two configurations considered in this experiment, manages to select
the true variables perfectly in some scenarios but fails in others.

S5.2. Simulation Experiments for Cross-Validation

In this section, we provide simulation studies for cross-validation using RASMR, as
described in Section 3.4. To test how well RASMR works for VFCV, we apply RASMR to
five-fold cross-validations for the link function selection. We follow the same setting as in

Section S3, where ˜̃AIC is utilized to do the selection. The true logit link function is tested
against its competitors, namely, cloglog, probit, and cauchit, with covariates simulated
from one of the seven distributions. For this binary classification problem, we employ the
cross-entropy loss (see, for example, [3]). The results are summarized in Tables S6 and S7.
One can see that the mean representative (MR) approach performs well in most of the cases,
but fails completely to select logit over probit when the data are generated from ueNormal.
SMR also works perfectly in most cases just like MR does, but sometimes fails to identify
logit versus probit under ueNormal. In contrast, RASMR manages to select the truth, and
logit link, under all circumstances, the same as the full data cross-validation.

Table S6. Correct rate over 100 simulations for the link function selection using five-fold cross-
validation.

Data Blocks K-means (K = 1000)
Method Full data . MR SMR

Setting up Logit VS Cloglog Logit VS Probit Logit VS Cauchit Logit VS Cloglog Logit VS Probit Logit VS Cauchit Logit VS Cloglog Logit VS Probit Logit VS Cauchit
mzNormal 100% 100% 100% 100% 100% 100% 100% 100% 100%
nzNormal 100% 100% 100% 100% 100% 100% 100% 100% 100%
ueNormal 100% 100% 100% 100% 0% 100% 100% 30% 100%

mixNormal 100% 100% 100% 100% 100% 100% 100% 100% 100%
T3 100% 100% 100% 100% 100% 100% 100% 100% 100%

EXP 100% 100% 100% 100% 100% 100% 100% 100% 100%
BETA 100% 100% 100% 100% 100% 100% 100% 100% 100%
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Table S7. Correct rate over 100 simulations based on RASMR for cross-validation.

Data Blocks K-means (K = 1000) plus RASMR
Representatives RASMR

Setting up Logit VS Cloglog Logit VS Probit Logit VS Cauchit
mzNormal 100% 100% 100%
nzNormal 100% 100% 100%
ueNormal 100% 100% 100%

mixNormal 100% 100% 100%
T3 100% 100% 100%

EXP 100% 100% 100%
BETA 100% 100% 100%

S6. Proofs and Relevant Lemmas

Proof of Theorem 1: The major difference between a RASMR algorithm (Algorithm 1 or 2)
and the original SMR algorithm is the carefully designed response-aided partition scheme,
making the RASMR algorithm stabler, more accurate, and practical. But fundamentally
they are derived to solve the same equation, the score-matching equation of η. Theorem 3.2
in [1] has established the convergence property of the SMR algorithm, which is essentially
held for RASMR as well. That is, ∥β̃ − β̂∥ = O(∆̃1/2). Since l(β; y, X) is twice differentiable
in C, then ∥∇l(β; y, X)∥ ≤ M for all β ∈ C, where M > 0 is some constant. Since
l(β̃; y, X)− l(β̂; y, X) = ∇l(cβ̃ + (1 − c)β̂; y, X) · (β̃ − β̂) for some c ∈ (0, 1), according to
the mean value theorem with several variables, the convergence rate of the likelihood
function l(β̃; y, X) to l(β̂; y, X) is the same to the convergence rate of β̃ to β̂ only up to a
constant M. So, we have l(β̃; y, X)− l(β̂; y, X) = O(∆̃1/2) as ∆̃ → 0. □

Proof of Theorem 2: Follow the notation in Section 2.5 of [5], a general form of the log-
likelihood function of a generalized linear model can be expressed as follows:

l(β; y, X) =
N

∑
i=1

[
yiθ(XT

i β)− b(θ(XT
i β))

a(ϕ)
+ c(yi, ϕ)

]
,

where a(·), b(·), and c(·, ·) are known functions, ϕ is the dispersion parameter, and θ(·) =
(b′)−1(g−1(·)). For the kth data block individually, the exact log-likelihood contribution
based on the full data set is as follows:

lk(β) = ∑
i∈Ik

a(ϕ)−1
[
yiθ(XT

i β)− b(θ(XT
i β))

]
,

while the contribution of the kth representative (nk, X̃T
k , ỹk) to the log-likelihood l(β̃; ỹ, X̃)

based on the representative data points is as follows:

l̃k(β) = nka(ϕ)−1
[
ỹkθ(X̃T

k β)− b(θ(X̃T
k β))

]
= a(ϕ)−1

(
nk ỹk − ∑

i∈Ik

yi

)
θ(η̃k) + ∑

i∈Ik

a(ϕ)−1
[
yiθ(X̃T

k β)− b(θ(X̃T
k β))

]
= ∑

i∈Ik

a(ϕ)−1
[
yiθ(X̃T

k β)− b(θ(X̃T
k β))

]
.

since ỹk = n−1
k ∑i∈Ik

yi .
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We compare the absolute difference between l̃k(β) and lk(β) using the Cauchy–
Schwarz inequality. The l̃k is approximated by its first-order Taylor expansion about
X̃k at Xi .

|l̃k(β)− lk(β)| =
∣∣∣∣∣∑i∈Ik

{[
(yi − G(XT

i β))ν(XT
i β)

]
(X̃k − Xi)

T β + o(
∥∥X̃k − Xi

∥∥)}∣∣∣∣∣
≤
(

∑
i∈Ik

(yi − G(XT
i β))2ν(XT

i β)2 · ∑
i∈Ik

∥∥X̃k − Xi
∥∥2 · ∥β∥2

)1/2

+ ∑
i∈Ik

o(
∥∥X̃k − Xi

∥∥)
≤ nk∆̃∥β∥

(
n−1

k ∑
i∈Ik

(yi − G(XT
i β))2ν(XT

i β)2

)1/2

+ ∑
i∈Ik

o(∆̃).

Denote Fk = (n−1
k ∑i∈Ik

(yi − G(XT
i β))2ν(XT

i β)2)1/2. For all β ∈ C and ∆̃ sufficiently small,
we obtain the following:

|l̃(β; ỹ, X̃)− l(β; y, X)| ≤
K

∑
k=1

nk∆̃∥β∥Fk +
N

∑
i=1

o(∆̃)

≤ N∆̃∥β∥ · max
k

Fk + N · o(∆̃)

≤ M∆̃ (S6.1)

for some number M > 0, which is not related to the representatives or ∆̃ but relies on the
data. In conclusion, for β, in the compact set C, l̃(β; ỹ, X̃) converges to the full log-likelihood
function l(β; y, X) uniformly, as ∆̃ goes to 0. Specifically, for a small enough ∆̃,

|l̃(β̃; ỹ, X̃)− l(β̃; y, X)| ≤ M∆̃.

According to Theorem 1, l(β̃; y, X)− l(β̂; y, X) = O(∆̃1/2) as ∆̃ → 0, then we have the
following:

|l̃(β̃; ỹ, X̃)− l(β̂; y, X)|
≤ |l̃(β̃; ỹ, X̃)− l(β̃; y, X)|+ |l(β̃; y, X)− l(β̂; y, X)|
≤ M∆̃ + O(∆̃1/2)

= O(∆̃1/2).

That is, l̃(β̃; ỹ, X̃)− l(β̂; y, X) = O(∆̃1/2) as ∆̃ goes to 0. □

Proof of Theorem A1: According to the arguments in the context of Equation (5) in
Section 2.2, (3) is equivalent to (5). Let S̄ = n−1

k ∑i∈Ik
S(ηi) be the right hand of (5). Since

S(η) is strictly monotone on [η∧
k , η∨

k ], then S̄ is between S(η∧
k ) and S(η∨

k ). The continuity
of ν(η) and G(η) implies that S(η) is continuous on [η∧

k , η∨
k ]. By the intermediate value

theorem, there must exist an η∗ ∈ [η∧
k , η∨

k ] that solves (5). Since S(η) is also strictly
monotone, such an η∗ is unique. □

Proof of Theorem A2: For a GLM with Yi ∼ Normal(µi, σ2) with the identity link g(µi) =
µi, which is essentially a linear regression model, we have G(η) = η and

S′(η) = ỹk − 2η


> 0, η < 1

2 ỹk ;
= 0, η = 1

2 ỹk ;
< 0, η > 1

2 ỹk .

Apparently, S(η) is strictly monotone on [η∧
k , η∨

k ] if 1
2 ỹk /∈ (η∧

k , η∨
k ). That is, η̃k is unique

if 1
2 ỹk /∈ (η∧

k , η∨
k ). Otherwise, there might be one η̃k ∈ [η∧

k , 1
2 ỹk] and one η̃k ∈ [ 1

2 ỹk, η∨
k ]

solving (3).
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Suppose the index block Ik is obtained after the first split (ηi < 0 or ηi > 0) and the sec-
ond split (yi > G(ηi) or yi < G(ηi)). Recall that η̄k = n−1

k ∑i∈Ik
ηi and S̄ = n−1

k ∑i∈Ik
S(ηi).

Then, there are up to two solutions solving S(η) = S̄, or equivalently, (3):

η̃k,1 =
1
2

(
ỹk −

√
ỹ2

k − 4S̄
)

, η̃k,2 =
1
2

(
ỹk +

√
ỹ2

k − 4S̄
)

.

Note that we always have η̃k,1 ≤ ỹk/2 ≤ η̃k,2 .
Case (i): ηi > 0 and yi < G(ηi) for all i ∈ Ik . We claim that the solution to (5) is unique

in this case. Moreover, note that G(ηi) = ηi in this model. Then, 0 < η∧
k ≤ η̄k ≤ η∨

k < ∞,

ỹk =
∑i∈Ik

ηiyi

∑i∈Ik
ηi

<
∑i∈Ik

η2
i

∑i∈Ik
ηi

=
∑i∈Ik

η2
i

nkη̄k
,

and
S̄ =

1
nk

∑
i∈Ik

S(ηi) =
1
nk

∑
i∈Ik

(ỹk − ηi)ηi = ỹk · η̄k −
1
nk

∑
i∈Ik

η2
i < 0.

If ỹk ≤ 0, then S(η) is strictly monotone decreasing on [η∧
k , η∨

k ] and η̃k = η̃k,2 ∈ [η∧
k , η∨

k ]

is the only solution. If ỹk > 0, then S(η) ≥ 0 when η ∈ [0, 1
2 ỹk], there is no solution of

η̃k ∈ [η∧
k , 1

2 ỹk] solving S(η̃k) = S̄, or equivalently, (3). Therefore, η̃k ∈ [η∧
k , η∨

k ] solving (3) is
unique, which is η̃k,2 ∈ ( 1

2 ỹk, η∨
k ].

In summary, in this case, η̃k = η̃k,2 is the only solution.
Case (ii): ηi > 0 and yi > G(ηi) for all i ∈ Ik. In this case, (5) may not be unique in

[η∧
k , η∨

k ]. Moreover, we have 0 < η∧
k ≤ η̄k ≤ η∨

k < ∞,

ỹk =
∑i∈Ik

ηiyi

∑i∈Ik
ηi

>
∑i∈Ik

η2
i

∑i∈Ik
ηi

≥
nkη̄2

k
nkη̄k

= η̄k ,

and S̄ > 0. On the other hand, S̄ < S(η̄k) since S(η) is strictly concave. That is, we have
0 < η∧

k ≤ η̄k < ỹk and 0 < S̄ < S(η̄k). Then there exists an η̃k ∈ (η̄k, ỹk) that solves
S(η̃k) = S̄. If η∧

k ≥ ỹk − η̄k, then η̃k ∈ (η̄k, ỹk) is the unique solution in [η∧
k , η∨

k ]. Otherwise,
there might be another solution between η∧

k and ỹk − η̄k.
Case (iii): ηi < 0 and yi > G(ηi) for all i ∈ Ik. We claim that the solution to (5) is

unique in this case. Moreover, −∞ < η∧
k ≤ η̄k ≤ η∧

k < 0,

ỹk =
∑i∈Ik

ηiyi

∑i∈Ik
ηi

>
∑i∈Ik

η2
i

∑i∈Ik
ηi

=
∑i∈Ik

η2
i

nkη̄k
,

and
S̄ = ỹk · η̄k −

1
nk

∑
i∈Ik

η2
i < 0.

If ỹk ≥ 0, then S(η) is strictly monotone increasing on [η∧
k , η∨

k ] and ỹk = η̃k,1 ∈ [η∧
k , η∨

k ]

is the only solution. If ỹk < 0, then S(η) ≥ 0 when η ∈ [ 1
2 ỹk, 0], there is no solution of

η̃k ∈ [ 1
2 ỹk, 0] solving S(η̃k) = S̄, or equivalently, (3). Therefore, η̃k ∈ [η∧

k , η∨
k ] solving (3) is

unique, which is η̃k,1 ∈ [η∨
k , 1

2 ỹk).
In summary, in this case, η̃k = η̃k,1 is the only solution.
Case (iv): ηi < 0 and yi < G(ηi) for all i ∈ Ik. In this case, (5) may not be unique in

[η∧
k , η∨

k ]. Moreover, we have −∞ < η∧
k ≤ η̄k ≤ η∨

k < 0,

ỹk =
∑i∈Ik

ηiyi

∑i∈Ik
ηi

<
∑i∈Ik

η2
i

∑i∈Ik
ηi

≤
nkη̄2

k
nkη̄k

= η̄k < 0,

and S̄ > 0. On the other hand, S̄ < S(η̄k) since S(η) is strictly concave. That is, we have
−∞ < ỹk < η̄k ≤ η∨

k < 0 and 0 < S̄ < S(η̄k). Then there exists an η̃k ∈ (ỹk, η̄k) that solves
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S(η̃k) = S̄. If η∨
k ≥ ỹk − η̄k, then η̃k ∈ (ỹk, η̄k) is the unique solution in [η∧

k , η∨
k ]. Otherwise,

there might be another solution between ỹk − η̄k and η∨
k .

The conclusions can be summarized based on the above cases. □

Lemma S1. For the Bernoulli model with the logit link, S0(η) strictly increases before ηl and
strictly decreases after ηl , where ηl ≈ −1.2784645 is the unique root of the transcendent equation
1 + η + eη = 0; S1(η) strictly increases before ηr = −ηl ≈ 1.2784645 and strictly decreases after
ηr .

Proof of Lemma S1: For Yi ∼ Bernoulli(µi) with the logit link g(µi) = log
(

µi
1−µi

)
, which is

also known as the logistic regression model, ν(η) ≡ constant. In this case,

G(η) =
eη

1 + eη ,

S(η) = [ỹk − G(η)]η,

S′(η) = ỹk − T(η),

T(η) =
eη(1 + η + eη)

(1 + eη)2 ,

T′(η) =
eη

(1 + eη)3 [η + 2 − eη(η − 2)].

The following can be verified:

T(η)


< 0, if η < η0 ;
= 0, if η = 0;
> 0, if η > η0 ,

with η0 ≈ −1.278, T′(−η) = T′(η), and

T′(η)


< 0, if η < −η1 or η > η1 ;
= 0, if η = ±η1 ;
> 0, if η ∈ (−η1, η1),

where η1 ≈ 2.399. In other words, neither S(η) nor T(η) is monotone.

Figure S4. S(η) with different ỹk for the Bernoulli model with the logit link.

Figure S4 shows graphs of S(η) with different possible values of ỹk. Note that for the
Bernoulli models, yi ∈ {0, 1} for all i. Suppose either ηi > 0 for all i ∈ Ik or ηi < 0 for all
i ∈ Ik. Then, ỹk ∈ [0, 1].
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We further assume either yi < G(ηi) for all i ∈ Ik or yi > G(ηi) for all i ∈ Ik. Since
For the Bernoulli models, yi ∈ {0, 1} and G(ηi) ∈ (0, 1) for all i, then yi < G(ηi) always
implies yi = 0 and yi > G(ηi) always implies yi = 1.

Case (i): ηi > 0 and yi < G(ηi) for all i ∈ Ik, that is, yi = 0 for all i ∈ Ik. We claim that
the solution to (5) is unique in this case. Moreover, 0 < η∧

k ≤ η̄k ≤ η∨
k < ∞, and

ỹk =
n−1

k ∑i∈Ik
ηiyi

η̄k
= 0.

In this case, S′(η) = −T(η) < 0 for η > −η0 ≈ −1.278, that is, S(η) is strictly monotone
on [η∧

k , η∨
k ]. According to Theorem A1, the solution solving (3) is unique in [η∧

k , η∨
k ].

Case (ii): ηi > 0 and yi > G(ηi) for all i ∈ Ik, that is, yi = 1 for all i ∈ Ik. In this case,
(5) may not be unique in [η∧

k , η∨
k ]. Moreover, we have 0 < η∧

k ≤ η̄k ≤ η∨
k < ∞,

ỹk =
∑i∈Ik

ηiyi

∑i∈Ik
ηi

= 1 >
∑i∈Ik

ηiG(ηi)

∑i∈Ik
ηi

= G̃k ,

and S̄ = η̄k(ỹk − G̃k) > 0. If [η∧
k , η∨

k ] is wide enough, S(η) = S̄ may have a solution in
[η∧

k , η0] and another solution in [η0, η∨
k ], where η0 ≈ 1.278.

Case (iii): ηi < 0 and yi > G(ηi) for all i ∈ Ik, that is, yi = 1 for all i ∈ Ik. We claim
that the solution to (5) is unique in this case. Moreover, −∞ < η∧

k ≤ η̄k ≤ η∨
k < 0,

ỹk =
∑i∈Ik

ηiyi

∑i∈Ik
ηi

= 1 >
∑i∈Ik

ηiG(ηi)

∑i∈Ik
ηi

= G̃k ,

and S̄ = η̄k(ỹk − G̃k) < 0. In this case, S′(η) = 1 − T(η) > 0 for η < η0 ≈ 1.278, that is,
S(η) is strictly monotone on [η∧

k , η∨
k ]. According to Theorem A1, the solution solving (3) is

unique in [η∧
k , η∨

k ].
Case (iv): ηi < 0 and yi < G(ηi) for all i ∈ Ik, that is, yi = 0 for all i ∈ Ik. In this case,

(5) may not be unique in [η∧
k , η∨

k ]. Moreover, we have −∞ < η∧
k ≤ η̄k ≤ η∨

k < 0,

ỹk =
∑i∈Ik

ηiyi

∑i∈Ik
ηi

= 0 <
∑i∈Ik

ηiG(ηi)

∑i∈Ik
ηi

= G̃k ,

and S̄ = η̄k(ỹk − G̃k) > 0. If [η∧
k , η∨

k ] is wide enough, S(η) = S̄ may have a solution in
[η∧

k ,−η0] and another solution in [−η0, η∨
k ], where η0 ≈ 1.278.

For logit link,

S0(η) = − ηeη

1 + eη , S1(η) =
η

1 + eη .

Since S1(η) = S0(−η), we only need to show the conclusion on S0. Moreover,

S′
0(η) = −(1 + η + eη)

eη

(1 + eη)2 .

Let V(η) = −(1 + η + eη). Then, sgn(S′
0(η)) = sgn(V(η)). Note that V′(η) = −1− eη < 0

for all η. Since V(−2) = 1 − e−2 > 0 and V(0) = −2 < 0. V(η) = 0 has one and only one
solution η0 ∈ (−2, 0), which is approximately −1.278464543. Before η0, V(η) > 0 and, thus,
S′

0(η) > 0; after η0, V(η) < 0 and, thus, S′
0(η) < 0. □

Lemma S2. For the Bernoulli model with a probit link, S0(η) strictly increases before −η0 and
strictly decreases after −η0; S1(η) strictly increases before η0 and strictly decreases after η0, where
η0 ≈ 0.839924 is the unique positive root of the transcendent equation (1 − η2)Φ(η) = ηϕ(η).
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Proof of Lemma S2: For Yi ∼ Bernoulli(µi) with a probit link g(µi) = Φ−1(µi), we have
the following:

G(η) = Φ(η),

ν(η) =
ϕ(η)

Φ(η)[1 − Φ(η)]
=

ϕ(η)

Φ(η)Φ(−η)
,

S(η) = ν(η)[ỹk − G(η)]η =

 − ηϕ(η)
1−Φ(η)

, if ỹk = 0;
ηϕ(η)
Φ(η)

, if ỹk = 1.

Figure S5. S(η) with different ỹk for the Bernoulli model with the probit link.

Figure S5 shows graphs of S(η) with different possible values of ỹk. Note that For the
Bernoulli models, yi ∈ {0, 1} for all i. Suppose (i) either ηi > 0 for all i ∈ Ik or ηi < 0 for all
i ∈ Ik; and (ii) either ηi > G(ηi) for all i ∈ Ik or ηi < G(ηi) for all i ∈ Ik. Then, ỹk is either 0
or 1.

Depending on ỹk = 0 or 1, we denote S(η) as S0(η) or S1(η), respectively. Then, we
have the following:

S0(η) = − ηϕ(η)

1 − Φ(η)
= S1(−η).

In the literature, r(η) = [1 − Φ(η)]/ϕ(η) is known as Mills’ ratio of the standard normal
distribution (see [6–9]), whose reciprocal, ϕ(η)/[1 − Φ(η)], is also known as the hazard
rate (see, for example, [10]).

Since S0(η) = S1(−η), then S′
1(η) = −S′

0(−η). We only need to show the conclusion
on S0. Moreover,

S′
0(η) =

ϕ(η)

1 − Φ(η)

[
η2 − 1 − ηϕ(η)

1 − Φ(η)

]
=

1
r(η)

[
η

(
η − 1

r(η)

)
− 1
]

,

where r(η) = [1 − Φ(η)]/ϕ(η) is the so-called Mills’ ratio. Since r(η) > 0 for all η, then the
sign of S′

0(η), denoted as sgn(S′
0(η)), is the same as the sign of U(η) = η(η − r(η)−1)− 1,

where sgn(x) = −1 if x < 0; 0 if x = 0; and 1 if x > 0.
First of all, U(η) = η2 − 1 − η/r(η) > 0 if η ≤ −1. It can be verified that U(η) = 0

has a unique solution in (−1, 0), which is approximately −0.839924, denoted as −η0. On
the other hand, according to [6], r(η) < 1/η if η > 0. Then, U(η) < −1 < 0 if η > 0. □

Let ηl = −η0 ≈ −0.839924 and ηr = η0 ≈ 0.839924. A direct strategy for splitting
sub-blocks inspired by Lemma S2 is as follows:

1◦ Divide an original block into four sub-blocks: (i) ηi > 0 and ηi < G(ηi); (ii) ηi > 0 and
yi > G(ηi); (iii) ηi < 0 and yi > G(ηi); and (iv) ηi < 0 and yi > G(ηi).

2◦ For cases (i) and (iii), η̃k solving (5) is unique.
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3◦ For case (ii), if ηr /∈ (η∧
k , η∨

k ), η̃k is unique; otherwise, there are up to two solutions
solving (5). In the case when ηr ∈ (η∧

k , η∨
k ), we further divide the block according to

ηi < ηr or ηi ≥ ηr. In each of the two sub-blocks, η̃k is unique.
4◦ For case (iv), if ηl /∈ (η∧

k , η∨
k ), η̃k is unique; otherwise, there are up to two solutions

solving (5). In the case when ηl ∈ (η∧
k , η∨

k ), we further divide the block according to
ηi < ηl or ηi ≥ ηl . In each of the two sub-blocks, η̃k is unique.

Lemma S3. For the Bernoulli model with a complementary log–log link, S0(η) strictly increases
before −1 and strictly decreases after −1; S1(η) strictly increases before ηr and strictly decreases
after ηr, where ηr ≈ 0.729114 is the unique positive root of the transcendent equation 1 + η =
exp(eη)(1 + η − ηeη).

Proof of Lemma S3: For Yi ∼ Bernoulli(µi) with complementary-log–log link g(µi) =
log(− log(1 − µi)), we have the following:

ν(η) =
exp(η)

1 − exp[− exp(η)]
,

G(η) = 1 − exp{− exp(η)},

S(η) = ν(η)[ỹk − G(η)]η =

{
−η exp(η), if ỹk = 0;

η exp(η)
exp{exp(η)}−1 , if ỹk = 1.

Figure S6. S(η) with different ỹk for the Bernoulli model with a cloglog link.

Figure S6 shows graphs of S(η) with different possible values of ỹk . Note that For the
Bernoulli models with either yi > G(ηi) or yi < G(ηi), ỹk is either 0 or 1. Depending on
ỹk = 0 or 1, we denote S(η) as S0(η) or S1(η), respectively. Then, we have the following:

S0(η) = −η exp(η), S1(η) =
η exp(η)

exp{exp(η)} − 1
.

Since S′
0(η) = −eη(1+ η), then S′

0(η) > 0 if η < −1; = 0 if η = −1; and < 0 if η > −1.
That is, S(η) strictly increases before ηl = −1 and strictly decreases after η1 = −1.

As for S1(η),

S′
1(η) =

eη

[exp(eη)− 1]2
[(1 + η)(exp(eη)− 1)− ηeη exp(eη)].

Let V(η) = (1 + η)(exp(eη)− 1)− ηeη exp(eη) = exp(eη)(1 + η − ηeη)− (1 + η). Then,
sgn(S′

1(η)) = sgn(V(η)). Note that

V′(η) = exp(eη)− 1 − η exp(eη + 2η).
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Apparently, V′(η) > 0 for all η < 0. By applying L’Hospital’s rule, we can verify that
limη→−∞ V(η) = 0. Since V(0) = e − 1 > 0, we conclude that V(η) > 0 for all η ≤ 0.
Similarly, if η ≥ 1, then V′(η) ≤ exp(eη)− 1− exp(eη)e2η < exp(eη)− exp(eη) = 0. Along
with V(1) ≈ −12.885 < 0, we conclude that V(η) < 0 for all η ≥ 1. It can be verified that
there is one and only one solution solving V′(η) = 0 in (0, 1). □

Lemma S4. For the Bernoulli model with the log–log link, S0(η) strictly increases before ηl and
strictly decreases after ηl , where ηl ≈ −0.729114 is the unique positive root of the transcendent
equation

1 − η = exp
(
e−η
)(

1 − η + ηe−η
)
;

S1(η) strictly increases before ηr = 1 and strictly decreases after ηr = 1.

Proof of Lemma S4: Consider Yi ∼ Bernoulli(µi) with the log–log link g(µi) = − log(− log µi).
Note that in this paper, we follow [5] and choose a strictly increasing link function. Then,
we have the following:

G(η) = exp{−e−η},

ν(η) =
e−η

1 − exp(−e−η)
,

S(η) =

{
ηe−η

1−exp(e−η)
, if ỹk = 0;

ηe−η , if ỹk = 1.

Figure S7. S(η) with different ỹk for the Bernoulli model with the loglog link.

Figure S7 shows graphs of S(η) with different possible values of ỹk. Note that For the
Bernoulli models with either yi > G(ηi) or yi < G(ηi), ỹk is either 0 or 1. Depending on
ỹk = 0 or 1, we denote S(η) as S0(η) or S1(η), respectively. Then, we have the following:

S0(η) =
ηe−η

1 − exp(e−η)
, S1(η) = ηe−η .

Let S(c)
0 (η) = −η exp(η), S(c)

1 (η) =
η exp(η)

exp{exp(η)}−1 , that is, the corresponding functions

with the cloglog link. Since S0(η) = S(c)
1 (−η) and S1(η) = S(c)

0 (−η), the conclusion of
Lemma S4 can be obtained as a corollary of Lemma S3. □

Lemma S5. For the Bernoulli model with the cauchit link, S0(η) strictly increases before ηl and
strictly decreases after ηl , where ηl ≈ −0.801916 is the unique root of the transcendent equation
η = (η2 − 1)[π/2 − arctan(η)]; S1(η) strictly increases before ηr and strictly decreases after ηr,
where ηr = −ηl ≈ 0.801916.
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Proof of Lemma S5: For Yi ∼ Bernoulli(µi) with the cauchit link g(µi) = tan
(

π(µi − 1
2 )
)

,
we have the following:

G(η) = arctan(η)/π + 1/2,

ν(η) =
π

(1 + η2)(π2/4 − arctan2(η))
,

S(η) =

{
− η

(1+η2)[π/2−arctan(η)] , if ỹk = 0;
η

(1+η2)[π/2+arctan(η)] , if ỹk = 1.

Figure S8. S(η) with different ỹk for the Bernoulli model with the cauchit link.

Figure S8 shows graphs of S(η) with different possible values of ỹk. Since we have
either yi > G(ηi) or yi < G(ηi), ỹk is either 0 or 1. Depending on ỹk = 0 or 1, we denote
S(η) as S0(η) or S1(η), respectively. Then, we have the following:

S0(η) = − η

(1 + η2)[π/2 − arctan(η)]
, S1(η) =

η

(1 + η2)[π/2 + arctan(η)]
.

Since S1(η) = S0(−η) in this case, we only need to justify the conclusion on S0(η).
Moreover,

S′
0(η) = (1 + η2)−2

[π

2
− arctan(η)

]−2
·
{
−η + (η2 − 1)

[π

2
− arctan(η)

]}
.

Let V(η) = −η + (η2 − 1)[π/2 − arctan(η)]. Then, sgn(S′
0(η)) = sgn(V(η)). Note that

V′(η) = 2η

[
π

2
− arctan(η)− η

1 + η2

]
.

Apparently, V′(η) < 0 if η < 0. Since V(−1) = 1 > 0 and V(0) = −π/2 < 0, then
V(η) = 0 has a unique solution ηl ∈ (−∞, 0], within (−1, 0). Therefore, V(η) > 0 for
η < ηl , and V(η) < 0 for η ∈ (ηl , 0].

As for η > 0, we set U(η) = π/2 − arctan(η)− η/(1 + η2). We claim that U(η) > 0
for all η > 0, which implies V′(η) > 0 for all η > 0. Moreover, U(0) = π/2 > 0, U′(η) =
−2(1 + η2)−2 < 0 for all η > 0, and limη→∞ U(η) = 0 since limη→∞ arctan(η) = π/2,
which imply U(η) > 0 for all η > 0.

We further claim that V(η) < 0 for all η > 0. Moreover, V(0) = −π/2 < 0. We have
established that V′(η) > 0 for all η > 0. It is enough to justify limη→∞ V(η) = 0. Moreover,
by the Taylor series, as η approaches ∞,

π

2
− arctan(η) =

1
η
− 1

3η3 + O
(

η−4
)

.
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Then, V(η) = − 4
3η + O

(
η−2)→ 0, as η goes to ∞. □

Lemma S6. Let h(y) denote the solution solving eη(1 + η) = y for y ≥ 0. Then, h(y) exists
uniquely in [−1, ∞). Furthermore, h(y) strictly increases on y ≥ 0.

Proof of Lemma S6: Let V(η) = eη(1 + η). Then, V′(η) = eη(2 + η). For y ≥ 0, since
V′(η) > 0 for all η > −2, V(η) < 0 for all η < −1, and V(−1) = 0, then h(y) exists and is
unique in [−1, ∞). As y increases, the solution h(y) solving V(η) = y strictly increases as
well.

On the other hand, V(η) < 0 for η < −1, which implies that there is no solution in
(−∞,−1) solving V(η) = y if y ≥ 0. So, h(y) exists uniquely. □

Proof of Theorem A4: For Yi ∼ Poisson(µi) with the log link g(µi) = log(µi), we have the
following:

G(η) = eη ,

ν(η) ≡ 1,

S(η) = (ỹk − eη)η,

S′(η) = ỹk − eη(1 + η).

Figure S9. S(η) with different ỹk for the Poisson model with the log link.

Figure S9 shows graphs of S(η) with different possible values of ỹk .
Let u(y) denote the solution solving eη(1 + η) = y for the given y ≥ 0. That is, u(ỹk)

solves S′(η) = 0. According to Lemma S6, u(y) exists and is unique in [−1, ∞). Specifically,
u(0) = −1 and u(1) = 0. In the mathematical literature, u(y) is associated with the Lambert
W-function, also called the omega function, which is the inverse of the function w → wew

(see, for example, [11]). Moreover, one may use the function lambertW in the R package
VGAM to calculate u(y). More specifically, u(y) can be obtained by lambertW(exp(1)*y)-1
using R.

If either ηi > 0 for all i or ηi < 0 for all i, then ỹk ≥ 0 since all yi ≥ 0 for the Poisson
model. Since S′(η) = ỹk − eη(1 + η), then S′(η) > 0 for all η < −1.

Note that S′(−1) = ỹk ≥ 0. According to Lemma S6, S′(η) = 0 has one and only
one solution u(ỹk) ∈ [−1, ∞). Since S′′(η) = −eη(2 + η) < 0 for all η > −2, that is, S′(η)
strictly decreases on η ∈ (−2, ∞), then S′(η) > 0 if η ∈ (−∞, u(ỹk)) and S′(η) < 0 if
η > u(ỹk). In other words, S(η) strictly increases before u(ỹk) and then strictly decreases
after u(ỹk).

By using the L’Hospital’s rule, we have that limη→−∞ S(η) = 0 if ỹk = 0, and −∞ if
ỹk > 0; limη→∞ S(η) = −∞. Recall that S̄ = η̄k(ỹk − G̃k) and S(η) = S̄ is equivalent to (3).
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If ỹk > 0, S(η) = S̄ yields up to two solutions. One is before u(ỹk) and the other is after
u(ỹk).

If ỹk = 0, then S(η) = −ηeη > 0 if and only if η < 0. If all ηi > 0, then ỹk < G̃k
and, thus, S̄ < 0. The only possible solution exists in [0, ∞), which can be solved in
the form of either 1 + u(−S̄/e) or P(−S̄). If all ηi < 0, then ỹk < G̃k and S̄ > 0. Since
u(0) = −1, S(η) = S̄ yields one solution in (−∞,−1] and one in [−1, 0), both of which can
be determined numerically. □

Proof of Theorem A5: We consider Yi ∼ Gamma(s, µi/s) with a reciprocal or inverse link
g(µ) = 1/µ. It has a probability density function, as follows:

f (y) =
1

Γ(s)

(
s
µi

)s
ys−1 exp

{
− s

µi
y
}

, y > 0,

where s > 0 is assumed to be known, called the shape parameter, and µi/s > 0 is called
the scale parameter. The gamma model here is described in Section 8.3.3 of [5]. In this case,

G(η) = η−1,

ν(η) ≡ −s < 0,

S(η) = s(1 − ỹkη).

For the gamma model, yi > 0 and ηi > 0 for all i. Then, ỹk > 0 and, thus, S(η) is strictly
decreasing on η > 0. According to Theorem A1, the solution η̃k solving (3) is always
unique.

The objective is to find a solution for S(η) = n−1
k ∑i∈Ik

S(ηi), which does not depend
on s. We simply let s = 1 and re-define S(η) = 1 − ỹkη. In this case, we have the following:

S̄ =
1
nk

∑
i∈Ik

S(ηi) =
1
nk

∑
i∈Ik

ν(ηi)ηi
(
ỹk − G̃k

)
= −η̄k

(
ỹk − G̃k

)
,

where η̄k = n−1
k ∑i∈Ik

ηi, and G̃k =
[
∑i∈Ik

ν(ηi)ηiG(ηi)
]
/
[
∑i∈Ik

ν(ηi)ηi

]
= η̄−1

k in this case.

Note that (3) is equivalent to S(η) = S̄, whose solution is as follows:

η̃k = η̄k =
1
nk

∑
i∈Ik

ηi .

Furthermore, if yi < G(ηi) for all i ∈ Ik, then ỹk < G̃k, S̄ > 0, and, thus, η̃k ∈ (0, ỹ−1
k ); if

yi > G(ηi) for all i ∈ Ik, then ỹk > G̃k, S̄ < 0 and, thus, η̃k ∈ (ỹ−1
k , ∞). □

Proof of Theorem A6: for the inverse Gaussian model, Yi ∼ IG(µi, ϕ) with the inverse-
square link g(µi) = µ−2

i . It has a probability density function, as follows:

f (y) = (2πϕ)−
1
2 y−

3
2 exp

{
− (y − µi)

2

2ϕµ2
i y

}
, y > 0,

where ϕ > 0 is assumed to be known, called the dispersion parameter, and µi = E(Yi) > 0
is the mean parameter (see, for example, Chapter 11 of [12]). In this case, we have the
following:

G(η) = η− 1
2 ,

ν(η) ≡ − 1
2ϕ

< 0,

S(η) =
1

2ϕ

(
η− 1

2 − ỹk

)
η.
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Since the objective is to find a solution for S(η) = n−1
k ∑i∈Ik

S(ηi), which does not depend

on ϕ > 0, we set ϕ = 1 moving forward. That is, S(η) = 1
2

(
η− 1

2 − ỹk

)
η.

Figure S10. S(η) with different ỹk for the inverse Gaussian model with the inverse-square link.

Figure S10 shows graphs of S(η) with different possible values of ỹk for the inverse
Gaussian model.

Since yi > 0 and ηi > 0 for all i, then ỹk =
[
∑i∈Ik

ηiyi

]
/
[
∑i∈Ik

ηi

]−1
> 0. Recall that

we set ϕ = 1. The following can be verified:

S′(η) =
1
2

(
1
2

η− 1
2 − ỹk

)
> 0, if 0 < η <

(
4ỹ2

k
)−1;

= 0, if η =
(
4ỹ2

k
)−1;

< 0, if η >
(
4ỹ2

k
)−1.

That is, S(η) strictly increases before
(
4ỹ2

k
)−1 and strictly decreases after

(
4ỹ2

k
)−1.

On the other hand, S(η) > 0 if and only if η ∈ (0, ỹ−2
k ). The following can be verified:

S̄ =
1
nk

∑
i∈Ik

S(η) = −1
2

η̄k
(
ỹk − G̃k

)
with η̄k = n−1

k ∑i∈Ik
ηi and G̃k =

[
∑i∈Ik

ηiG(ηi)
]
/
[
∑i∈Ik

ηi

]
.

If yi < G(ηi) for all i ∈ Ik, then ỹk < G̃k and, thus, S̄ > 0. In this case, S(η) = S̄,
which is equivalent to (3), has up to two solutions. If yi > G(ηi) for all i ∈ Ik, then
ỹk > G̃k and, thus, S̄ < 0. In this case, S(η) = S̄ has only one solution, as S(η) is strictly
decreasing on [ỹ−2

k , ∞). The corresponding formulae of solutions can be obtained by solving(
η−1/2 − ỹk

)
η = 2S̄. □

S7. More on Airline Data

Table S8 provides a list of brief definitions of variables considered in this study.

Table S8. Description of variables in the oracle model.

Variable Name Definition

ArrDelayLabel
binary response variable: "1" if flight delay is more than or equal to
15 minutes, "0" otherwise.

QUARTER
"1": Jan. 1 - Mar. 31; "2": Apr. 1 - Jun. 30; "3": Jul. 1 - Sep. 30; "4" Oct.
1 - Dec. 31.

DayOfWeek
"1": Monday; "2" Tuesday; "3": Wednesday; "4": Thursday; "5":
Friday; "6": Saturday; "7", Sunday.
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Table S8. Description of variables in the oracle model.

Variable Name Definition

DepTimeBlk
"1": 12:00 AM - 05:59 AM; "2": 06:00 AM - 11:59 AM; "3": 12:00 PM -
05:59 PM; "4": 06:00 PM - 11:59 PM.

CRSTimeElapsed CRS elapsed time of flights, in minutes.
DISTANCE the distance that flights travel, in miles.
DepDelay departure delay of flights, in minutes.

S8. More Figures

In this section, we provide more figures and output to support the previous discus-
sions.

Figure S11. Differences between log-likelihood estimated from representative approaches and the
log-likelihood directly from the full amount of data.

Figure S11 shows the simulation results relevant to Section 4.3. From this figure, it is
evident that as the threshold decreases, the performance of RASMR with the delta ratio
split generally improves in terms of approximating the maximum log-likelihood based on
the full data. However, a significantly lower threshold also implies a longer running time.
As a compromise, we recommend a delta ratio threshold of δ0 = 0.1 in this case.

Figure S12 (a) and (b) show the convergence performance of algorithms in various
cases that are relevant to Section 4.3.

Figure S13 shows the comparison among the learning rate scheduling strategies with
different numbers of variables generated from the mzNormal distribution, which is relevant
to Section 2.5. According to Figure S13, the original RASMR (i.e., RASMR with a learning
rate of 1) performs well with a small number of variables, such as 4 or 7, but not as well with
20 or 100. RASMR with a constant learning rate of 0.1 performs well with up to 20 variables
but struggles with 100. Compared to RASMR with a constant learning rate, RASMR with
an exponential learning rate performs better over a larger number of iterations, such as 20.
However, without truncation at the 10th iteration, the improvement with an exponential
learning rate is minimal after this point. Conversely, with truncation at the 10th iteration
(that is, at the learning rate e−0.3×10 ≈ 0.05), the RASMR with an exponential learning rate
still improves significantly, especially with 100 variables.

According to Figure S13, we recommend (1) the original RASMR for GLMs with a
small number of variables, such as 4 or 7; (2) the RASMR with an exponential learning rate
e−0.3i and truncation at i = 10 for GLMs with a moderate (such as 20) or large (such as 100)
number of variables.
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Figure S12. (a) Log(RMSE) of RASMR with various numbers of clusters and the delta ratio threshold.

Figure S14 provides the fitted GLM with the logit link for the airline data.
Figure S15 shows the detailed summary from the R output of the “glm2” function for

the selected model.
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Figure S14. R output for the GLM with all variables and the logit link.
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Figure S15. R output for the GLM selected by MR + RASMR.
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