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Abstract: We develop a polynomial time algorithm for the single-source all destinations shortest
paths problem for interval temporal graphs (ITGs). While a polynomial time algorithm for this
problem is known for contact sequence temporal graphs (CSGs), no such prior algorithm is known
for ITGs. We benchmark our ITG algorithm against that for CSGs using datasets that can be solved
using either algorithm. Using synthetic datasets, experimentally, we show that our algorithm for
ITGs obtains a speedup of up to 32.5 relative to the state-of-the-art algorithm for CSGs.

Keywords: interval temporal graphs; contact sequence temporal graphs; shortest paths

1. Introduction

Temporal graphs are dynamic graphs that can change over time. Edges and Vertices
in a temporal graph may evolve over time and thus have temporal information associated
with them. Temporal graphs can be used to model many real-world problems such as
modeling the spread of viral diseases, traffic flow in road networks, information flow in
social networks and other such problems representing dynamic connectivity [1–7]. Recently,
temporal graphs have been used in machine learning as temporal graph neural networks
(TGNs) [8].

Different models can be used to represent a temporal graph [3]. One such popular
model is a contact sequence temporal graph (CSG). Every instance of time when a commu-
nication can be initiated from a vertex u to a vertex v is represented by a unique temporal
edge (u, v, t, λ) in the CSG model. t is the departure time and λ is the travel time along
this edge, such that the arrival time at v when departing u along this edge would be t + λ.
Figure 1 shows an example of a CSG.

An alternate representation of a temporal graph is an interval temporal graph (ITG).
Temporal information on an edge connecting two vertices (u, v) in an ITG is modeled as a
vector of contiguous time intervals i = (si, ci), with an associated travel time λi for each
interval i. Figure 2 illustrates an example of an ITG. Communication from u to v may be
initiated at any time t such that si ≤ t ≤ ci for one of the intervals i along this edge.

While every CSG has an equivalent ITG, the reverse is true only when time is discrete.
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Figure 1. Contact sequence temporal graph.

Figure 2. Interval temporal graph.

Some applications of temporal graphs are described below:
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1. Intelligent Transportation Systems—Road networks can be modeled by temporal graphs
where vertices represent street intersections [9]. Varying traffic and street conditions
are represented as temporal edges. Such temporal graphs enable building intelligence
in transportation systems to improve safety, mobility and efficiency.

2. E-health and bioinformatics—Temporal graphs can be used to model pandemic spread
by building proximity networks [10–12]. This kind of modeling can help understand
the source of pandemic spread and the best methods to contain the pandemic spread.

3. Social Networks—Social networks are usually large dynamic graphs. Refs. [1,13]
present a framework for modeling social networks. Santoro et al. [5] propose an
approach for studying temporal metrics in social graphs using temporal graphs.

4. Artificial Intelligence—Graph Neural Networks (GNNs) have become popular in recent
times due to their ability to learn complex systems of relations or interactions. They
provide a framework for deep learning models on graphs. Recently, new frameworks
have been proposed for deep learning on dynamic or temporal graphs. For example,
Rossi et al. [8] propose a framework for deep learning on temporal graphs that they
call Temporal Graph Networks (TGNs). Smith et al. [14] propose a novel architecture
for online learning with temporal neural networks.

Path and walk problems on temporal graphs are studied, for example, in [9,15–20].
While [16,18,19] focus on ITGs, Refs. [15,17,20,21] use the CSG model. Wu et al. [15]
demonstrate that the studied path problems can be solved faster using the algorithms
proposed by them on the CSG representation when compared to the algorithms proposed
on the ITG representation by Xuan et al. [16]. However, Jain et al. [18,19] subsequently
developed algorithms for ITGs that outperform the CSG algorithms of Wu et al. [15]
for most of the studied path problems as well as the ITG algorithms of Xuan et al. [16].
Gheibi et al. [20] proposed an alternate TRG data structure for representing CSGs that
results in faster algorithms than the algorithms of Wu et al. [15] for most of the studied
path problems.

Bentert et al. [17] developed a polynomial time algorithm, for CSGs, to compute walks
that optimize any linear combination of the optimization criteria studied by [15,16,18,20]
with min and max waiting time constraints at each vertex. Jain et al. [19] show that
a linear combination of multiple criteria can be used to find walks and paths with a
secondary optimization criterion for, e.g., min-hop foremost (mh f ) paths or min-wait
foremost (mw f ) walks.

Jain et al. [19] present algorithms for dual criteria min− hop− f oremost (mh f ) and
min−wait− f oremost (mw f ) for ITGs. Their ITG algorithms solve the mh f and mw f prob-
lems in less time than when the algorithm of Bentert et al. [17] is used on the corresponding
CSGs and the coefficients of the linear combination optimization criteria in Bentert et al.’s
algorithm are chosen so as to compute mh f and mw f walks. Jain et al. [21] also develop an
algorithm to compute walks optimizing any linear combination of the criteria considered
by Bentert et al. [17] with waiting time constraints, outperforming the algorithm by Bentert
et al. by up to a factor of 77. However, the limitation of the algorithm by Jain et al. is that it
only works on CSGs with no zero-duration cycle.

In this paper, we develop an algorithm to find the shortest paths in ITGs. A shortest
path between any two vertices A and B in a temporal graph is a feasible path for which the
travel time to reach from A to B is minimum. Xuan et al. [16] propose a polynomial time
algorithm to find min-hop paths in ITGs. A min-hop path from vertex A to B is a feasible
path that travels through the minimum number of edges to reach B. Such a path is also the
shortest path from A to B when all edges have the same travel time. However, in general,
travel times on the edges of an interval temporal graph may be different. No algorithm has
been proposed for finding the shortest paths when the temporal graph is expressed as an
ITG. Wu et al. [15], Bentert et al. [17], Jain et al. [21] and others proposed algorithms that
can be used to find the shortest paths when temporal graphs are expressed as CSGs. As
noted earlier, ITGs cannot be expressed as CSGs when time is continuous. Further, even
when time is discrete, the size of the CSG corresponding to a given ITG could be quite
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large (when the time intervals of edges are large). This paper fills this gap by providing a
polynomial time shortest path algorithm for ITGs.

Experimentally, it is demonstrated that as the contiguous time intervals that allow
travel on edges in temporal graphs become larger, our ITG shortest path algorithm shows
increasing performance gains over the algorithm by Wu et al. [15] running on the same
temporal graph expressed as a CSG.

Our main contributions are as follows:

1. We develop a polynomial time algorithm to find the shortest paths in an ITG. To the
best of our knowledge, no such algorithm is presently available in the literature.

2. We provide the complexity analysis of our shortest path algorithm.
3. We benchmark our algorithm for ITGs against that of Wu et al. [15] for finding the

shortest paths in CSGs. Experimentally, we show that as the activity factor in a
temporal graph increases due to large contiguous travel intervals, our algorithm
shows increasing performance gains over that of Wu et al. [15] on equivalent temporal
graphs expressed as CSGs. Using synthetic datasets, we show that our algorithm
for ITGs obtains a speedup of up to 32.5 relative to the state-of-the-art algorithm
for CSGs.

2. Problem Description
Definitions

Definition 1 (Contact sequence temporal graph). In a contact sequence temporal graph
G = (V, E), each edge e ∈ E is a tuple (u, v, t, λ), where t is a permissible departure time for
travel from u to v along the edge e and λ is the amount of time it takes to travel on edge e
from u to v when departing at time t. Thus, v is reached at time t + λ. If there are m time
instances when departures from u to v are permissible, there will be m such temporal edges
[(u, v, t1, λ1); (u, v, t2, λ2) . . . ; (u, v, tm, λm)]. m is the amount of activity on the connection (u, v).

Definition 2 (Interval temporal graphs). In an interval temporal graph G = (V, E), each
edge e ∈ E is represented by a tuple (u, v, intvls). This tuple represents a connection from u to v.
intvls is a time-ordered non-overlapping vector of tuples [(s1, c1, λ1); (s2, c2, λ2); . . . ; (sn, cn, λn)].
The ith interval starts at time si and closes (ends) at time ci; λi is the time it takes to traverse the
edge when departing u at a time t if [si ≤ t ≤ ci] (v is reached at time t + λi). The intervals are in
ascending order of start times si, and collectively, they define the permissible departure times from u.

The permissible travel intervals for any edge of an ITG (Definition 2) can be ad-
justed such that for any two consecutive intervals [(si, ci, λi); (si+1, ci+1, λi+1)] we have
(ci + λi ≤ si+1 + λi+1). This transformation is explained in Jain and Sahni [18]. In this pa-
per, we assume that the intervals associated with each edge of an ITG satisfy this constraint.

As is evident from Figures 3 and 4, a given temporal graph may need a much larger
number of edges to be expressed as a CSG versus an ITG. This is especially true when the
graph has large contiguous travel intervals on the edges. Jain et al. [18] demonstrated that
several temporal path and walk problems on CSGs may be polynomial in the size of the
input graph but NP-hard for the equivalent ITG graph.
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Figure 3. Interval temporal graph with large intervals.

Figure 4. High-activity contact sequence graph.
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Definition 3 (Temporal paths and walks). A path (equivalently, valid path, feasible path,
temporal path or time-respecting path), p = {u1, t1, u2, t2, ..., uk}, in a temporal graph is an
alternating sequence of vertices and departure times from those vertices starting from a source vertex
u1 to a destination vertex uk such that no vertex appears more than once in this sequence. ti is a
permissible departure time from ui to ui+1 and (ti + λi) ≤ ti+1, 1 ≤ i < k. (ti + λi) is the arrival
time at ui+1 when departing ui at ti, 1 ≤ i < k. For path p, u1 is the source or start vertex and uk
is the destination vertex. The number of hops is k− 1. When vertices are permitted to repeat in p,
p is a walk. Note that every path is also a walk but some walks are not paths.

Definition 4 (Shortest paths). A shortest path p in a temporal graph is a feasible temporal path
from a start vertex u1 to a destination vertex uk with minimum length, where the length, len(p), of
a path p is the sum of the travel times λi on the edges ei on this path.

len(p) =
k−1

∑
i=1

λi (1)

By contrast, a fastest path from u1 to uk is a temporal path that minimizes the difference
between the arrival time at uk and the departure time from u1. Such a path accounts for
wait times at all intermediate vertices. Algorithms for fastest paths in interval and contact
sequence temporal graphs may be found in [15–17,21]. Shortest paths are of interest in
applications where there is a cost associated with traveling on an edge but no cost associated
with waiting at a vertex. For example, the fuel cost depends on the sum of the λis and is
independent of the wait times at the vertices.

It is to be noted that the shortest path p from vertex u1 to uk in a temporal graph is
also the shortest walk from u1 to uk. To see this, assume there is a walk w of shorter length.
The walk w can be converted to a path p′ from u1 to uk by removing all of its cycles. Since
edge travel times are non-negative, len(p′) ≤ len(w) < len(p), contradicting the fact that p
is a shortest path from u1 to uk.

3. Shortest Paths

We need to find the shortest paths p from a start vertex s to all possible destination
vertices uk in a given ITG.

3.1. Dominance Criteria

Let p1 and p2 be two paths from the start vertex s to the same end vertex v. We say
that p1 dominates p2 iff every valid extension of p2 is also a valid extension of p1 and has
the same or smaller length. A valid extension of a path p from s to v is a valid path p′ from
s to v′, such that p′ goes through v and is the same as p from s to v. Let the arrival time and
length of a path p from s (to its end vertex) be denoted by arr(p) and len(p), respectively.
It is easy to see that when Equation (2) is true, p1 dominates p2 (see Figure 5).

arr(p1) ≤ arr(p2)

len(p1) ≤ len(p2)
(2)

When the arrival times and lengths of the paths p1 and p2 are as in Equation (3), then
neither of the paths dominates the other. When neither path dominates the other, we say
that p1 and p2 are pairwise non-dominant.

arr(p1) < arr(p2)

len(p1) > len(p2)
(3)
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Figure 5. p1 dominates p2.

3.2. Algorithm

We propose a hop-by-hop algorithm to determine a shortest path from a start vertex
s to all possible destinations uk in an ITG. At every hop count k, we construct a list of
non-dominated paths from s to every reachable vertex v by extending the list of such paths
for hop count k − 1. The algorithm terminates after a maximum of n − 1 hops, where
n is the total number of vertices in the ITG or when no new non-dominated paths are
discovered in a given hop.

3.3. Overview

Let P(v, k) be the list of pairwise non-dominant r-hop paths (t, l) from s to v that arrive
at v at time t and have length l, r ≤ k; the paths are in increasing order of t (equivalently,
decreasing order of l). Let Pnew(v, k) be the list of non-dominated k-hop paths from s to v.
A high-level description of our shortest paths algorithm can be found in Algorithm 1.

The lists P(v, 0) and Pnew(v, 0) are initialized in lines 1 and 2 to be lists of 0-hop paths
from s to v. The (k− 1)-hop paths in Pnew(u, k− 1) are extended to k-hop paths by adding
an outgoing edge (u, v) in lines 8 and 10. Line 8 considers one edge extensions that use the
interval (i.st, i.c) for the case t < i.st. Of the possible extensions using this interval, the one
that departs u at time i.st dominates the others and so only this one is added to Pnew(v, k).
Line 10 considers the remaining case for a legitimate extension, i.st ≤ t ≤ i.c. Again, only
the single non-dominated extension is added to Pnew(v, k). Line 13 removes dominated
paths from Pnew(v, k). In Line 14, the paths in P(v, k− 1) and Pnew(v, k) are merged to obtain
P(v, k) (recall that P(v, k) is to contain only non-dominated paths). Additionally, paths in
Pnew(v, k) that are dominated by a path in P(v, k− 1) are eliminated from Pnew(v, k).
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Algorithm 1 Shortest Paths Pseudocode

1: P(s, 0)← {(0, 0)}, shrtstP(s) = (0, 0) ;∀v ̸= s, P(v, 0)← ∅, shrtstP(v) = ∅
2: Pnew(s, 0)← {(0, 0)} ;∀v ̸= s, Pnew(v, 0)← ∅
3: for k = 1, . . . , n− 1 do
4: ∀v, Pnew(v, k) = ∅
5: for every edge (u, v)|Pnew(u, k− 1) ̸= ∅ do
6: for all (t, l) ∈ Pnew(u, k− 1) do
7: ∀i ∈ (u, v)|t < i.st add (t′, l′) =
8: (i.st + i.λ, l + i.λ) to Pnew(v, k)
9: If there is an i, such that i.st ≤ t ≤ i.c, add

10: (t′, l′) = (t + i.λ, l + i.λ) to Pnew(v, k)
11: end for
12: end for
13: ∀v, eliminate dominated paths from Pnew(v, k)
14: ∀v, merge Pnew(v, k) and P(v, k− 1) to get P(v, k) eliminating dominated paths from

P(v, k− 1) as well as paths in Pnew(v, k) that are dominated by paths in P(v, k− 1)
15: ∀v|Pnew(v, k) ̸= ∅, shrtstP(v) = P(v, k).shrtst()
16: If ∀v, Pnew(v, k) = ∅ terminate!
17: end for
18: return shrtstP[]

3.4. Pseudocode Example Walk-Through

We will walk through the pseudocode in Algorithm 1 with an example graph of
Figure 6. We are to find the shortest paths from s to all destination vertices v ∈ {a, b, c, d} in
Figure 6. The lists P(v, 0) and Pnew(v, 0) are initialized as ∅ in lines 1 and 2 for v ∈ {a, b, c, d}
as 0-hop paths. P(s, 0) and Pnew(s, 0) are initialized as {(0, 0)}. shrtstP(s) = (0, 0)

1. In hop 1, k = 1. The condition in line 5 evaluates to true only for the edge (s, a). There-
fore, lines 6 to 11 add two new paths to Pnew(a, 1) as {(2, 1), (4, 1)}, extending (0, 0)
along the two available intervals on edge (s, a). Line 13 eliminates the path (4, 1) from
Pnew(a, 1) as it is dominated by the path (2, 1) as per Equation (2). Merging Pnew(a, 1)
with P(a, 0) = ∅ in line 14 gives P(a, 1) = Pnew(a, 1) = {(2, 1)}. shrtstP(a) = (2, 1)

2. In hop 2, k = 2. Line 5 evaluates to true for edges (a,b) and (a, c) since Pnew(a,1) = {(2,1)}.
Hence, (2, 1) is extended along each of these edges in lines 6 to 11.

(a) Extending (2, 1) along the two intervals on edge (a, b) gives Pnew(b, 2) =
{(3, 2), (17, 5)}

(b) Extending (2, 1) along the two intervals on edge (a, c) gives Pnew(c, 2) =
{(6, 3), (10, 2)}

Line 13 eliminates the dominated path (17, 5) from Pnew(b, 2), whereas none of the
paths are dominated in Pnew(c, 2). Lists Pnew(b, 2) and Pnew(c, 2) are merged with
P(b, 1) = ∅ and P(c, 1) = ∅, respectively, in line 14. Therefore, at the end of this
iteration, Pnew(b, 2) = P(b, 2) = (3, 2) and Pnew(c, 2) = P(c, 2) = {(6, 3), (10, 2)}.
shrtstP(b) = (3, 2); shrtstP(c) = (10, 2).

3. In hop 3, k = 3. We have Pnew(b, 2) and Pnew(c, 2) as non-empty. Therefore, line 5
evaluates to true for edges (b, d) and (c, d).

(a) Extension of paths in Pnew(b, 2) = {(3, 2)} along the intervals on edge (b, d)
gives Pnew(d, 3) = {(5, 4)}.

(b) Extension of paths in Pnew(c, 2) = {(6, 3), (10, 2)} along the intervals on
edge (c, d) appends {(11, 4), (11, 3)} to Pnew(d, 3). Therefore, Pnew(d, 3) =
{(5, 4), (11, 4), (11, 3)}.

Line 13 eliminates the dominated paths from Pnew(d, 3). Therefore, the paths surviving
are Pnew(d, 3) = {(5, 4), (11.3)}. After merging Pnew(d, 3) with P(d, 2) = ∅ in line 14
we obtain, Pnew(d, 3) = P(d, 3) = {(5, 4), (11, 3)}. shrtstP(d) = (11, 3).
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Line 5 does not evaluate to true for any other edges when k = 4, as even though Pnew(d, 3)
is non-empty, there are no outgoing edges from d. Therefore, the algorithm terminates. The
shortest paths to each of the vertices (s, a, b, c, d) are available in the array shrtstP.

Figure 6. Shortest paths in ITG example.

3.5. Detailed Algorithm

Algorithm 2 is a refinement of Algorithm 1 that provides a greater level of detail.
The function nextI((u, v), (t, l)) (line 12 of Algorithm 2) finds the earliest possible

departure time f stout and corresponding interval iF on the edge (u, v). If t is in the interval
(iF.st, iF.c), f stout is the same as t, otherwise it is iF.st. The lists of paths (t, l) arriving at
a vertex are always kept in increasing order of t. In a list of non-dominated paths, the
increasing order of t is the same as the decreasing order of l due to the dominance criteria
of Section 3.1. In line 17, prpendDom(P′′new(v, k), (t′, l′)) prepends extended path (t′, l′) to
the list P′′new(v, k) since paths (t, l) from the predecessor vertex u are extended in decreasing
order of t. After prepending (t′, l′) to P′′new(v, k), prependDom eliminates any subsequent
paths in the list that (t′, l′) dominates.

In lines 11 to 24, every (t, l) is extended using an outgoing edge (u, v) and the earliest
possible departure time f stout (≥ t) from u. Then, (t, l) is also extended at i.st for every
subsequent interval i on (u, v), such that i.st < prev( f stout), where prev( f stout) is the
extension time of a previously examined path (tp, lp) at u. This is because extension of (t, l)
would be dominated by the extension of (tp, lp) if it starts at tx ≥ prev( f stout) with the
same travel time λx since lp < l.

In line 25, the list of extensions of all paths from u to v is merged with any other such
list from a different incoming edge (u′, v) in the current hop, retaining only non-dominated
paths. The resulting P′new(v, k) is added to nxtPLists, which maintains all such lists obtained
at every vertex v in hop k.
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Algorithm 2 Shortest Paths Detailed Algorithm

1: Initialize P(v, 0)← NULL, ∀v ̸= s; P(s, 0)← (0, 0)
2: Initialize newPLists as empty list. Pnew(s, 0)← (0, 0).
3: ∀v ̸= s, shrtstP[v]← (∞, ∞); shrtstP[s]← (0, 0)
4: Add [s, Pnew(s, 0)] to newPLists
5: Initialize k← 0; newPaths← 1
6: while k < n− 1 and newPaths > 0 do
7: newPaths← 0;k ++
8: for all u in newPLists do
9: for all neighbors v of u do

10: Initialize prevPath( f stout)← ∞
11: for all (t, l) ∈ Pnew(u, k− 1) in dec order of t do
12: (iF, f stout)← nextI((u, v), (t, l))
13: if f stout ≥ prevPath( f stout) then
14: continue
15: end if
16: (t′, l′)← ( f stout + iF.λ, l + iF.λ)
17: prpendDom(P′′new(v, k), (t′, l′))
18: for ({ix ∈ (u, v)|
19: iF.c ≤ ix.st < prevPath( f stout)}) do
20: (t′, l′)← (ix.st + ix.λ, l + ix.λ)
21: insrtDom(P′′new(v, k), (t′, l′))
22: end for
23: prevPath( f stout)← f stout
24: end for
25: addOrmerge([v, P′′new(v, k)],nxtPLists)
26: end for
27: end for
28: for all u in nxtPLists do
29: (P(u, k), Pnew(u, k))←
30: EvalAndMerge(P(u, k− 1), P′new(u, k))
31: shrtstP[u]← P(u, k).last()
32: if Pnew(u, k).size() > 0 then
33: newPaths ++
34: end if
35: end for
36: newPLists← nxtPLists
37: nxtPLists.clear()
38: end while
39: return shrtstP

Finally, in line 30, all P′new(u, k) at every vertex u available in nxtPLists, are evaluated
against their respective P(u, k− 1) to obtain the non-dominated paths in hops 1 through k
as P(u, k) and the new paths in current hop as Pnew(u, k).

The algorithm continues until the terminating conditions are met.

Theorem 1. Algorithm 2 finds the shortest paths from the start vertex s to all reachable vertices v.

Proof. In an n-vertex temporal graph, a shortest path from a start vertex s to any destination
vertex v is a non-dominated path with ≤ n− 1 hops. In Algorithm 2, we examine all non-
dominated paths starting from s and keep a record of the shortest path discovered in line 31.
Due to our scheme of resolving the ties described in Section 3.2, any walks with cycles
are eliminated as these are dominated by paths that have no cycles and have fewer hops.
Therefore, the shortest path obtained is a shortest valid path with no cycles.
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3.6. Complexity Analysis

We may associate a label (eid, st, h) with each path p ∈ P(v, k), v ̸= s, and k > 0, where
eid is the id of the last edge, (u, w), in p with a departure time that is the start, st, of some
travel interval of (u, w) and h is the number of hops in the path p from s to u. Note that
every p ∈ P(v, k) has such a (u, w) as the departure time for the first edge (s, x) of p is the
start of some interval of (s, x) and the number of edges in p is finite. Let pl be the portion
of p from s to u and pr that from u to v (see Figure 7). From the way our algorithm works,
it follows that pl is an h-hop path in P(u, h). Further, since the departure time for no edge
in pr is a start time of a travel interval for that edge (except st on (u, w)), pr encounters no
wait at intermediate vertices and the length, len(pr), (i.e., sum of the edge travel times) of
pr is the same as its duration (arrival time at v - departure time from u).

Figure 7. A p ∈ P(v, k) and its label (eid, st, h).

Theorem 2. No P(v, k) has two paths with the same label.

Proof. Assume there is a P(v, k) that has two paths p1 and p2 with the same label (eid, st, h).
We shall show that this assumption leads to a contradiction and so must be false. Note that
p1 and p2 are pairwise non-dominant.

1. Case h = 0. Now, p1l and p2l are empty. Thus, len(p1) = len(p1r) = arr(p1)− st
and len(p2) = arr(p2)− st. When len(p1) < len(p2), we have arr(p1) < arr(p2).
Thus, p1 dominates p2, which contradicts the fact that p1 and p2 are pairwise non-
dominant. A contradiction is similarly obtained for the cases len(p1) = len(p2) and
len(p1) > len(p2).

2. Case h > 0. Now, p1l and p2l are h-hop paths from s to the same vertex u. The first
edge of p1r and p2r is (u, w) and both these paths start from u at time st. Thus,

arr(p1) = st + len(p1r) (4)

arr(p2) = st + len(p2r) (5)

len(p1) = len(p1l) + len(p1r) (6)

len(p2) = len(p2l) + len(p2r) (7)

(a) Case len(p11) = len(p2l). Now, p1l and p2l must be the same path as, oth-
erwise, one dominates the other, which is not possible as both are in P(u, r).
If arr(p1) < arr(p2), then len(p1r) < len(p2r) (Equations (4) and (5)). Thus,
len(p1) < len(p2) (Equations (6) and (7)). Hence, p1 dominates p2, a contra-
diction. A similar proof shows that when arr(p1) > arr(p2), we obtain the
contradiction that p2 dominates p1.

(b) Case len(p1l) < len(p2l). Let p3 be the s to v path obtained by concatenating
p1l and p2r. Note that p3 is a k-hop time-respecting path with arr(p3) = arr(p2)
and len(p3) = len(p1l) + len(p2r) < len(p2) (Equation (7)). Hence, p3 domi-
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nates p2. Thus, either p3 or a path p4 that dominates both p2 and p3 must be
in P(v, k). This means that p2 cannot be in P(v, k).

(c) Case len(p1l) > len(p2l). This is similar to the previous case.

Theorem 3. No Pnew(v, k) has two paths with the same label.

Proof. This is similar to that of Theorem 2.

The number of distinct path labels (eid, st, h) is at most i ∗ n, where i is the total number
of travel intervals across all edges of the temporal graph. From Theorems 2 and 3, it follows
that |P(v, k)| ≤ in and |Pnew(v, k)| ≤ in for all v and k.

For each value of k, k > 0, the at most in paths in Pnew(u, k − 1) are considered in
increasing order of length (equivalently, decreasing order of arrival time at u) and extended
by one hop using an out edge from u. When extending using the edge (u, v) for each
of these up to in paths, a binary search is performed over the travel intervals of this
edge to determine the first interval for a valid extension (line 12 of Algorithm 2). The
remaining (larger start time) intervals are then examined serially until the first interval
that has already been used for the extension of a previously considered path in P(v, k− 1)
is encountered. Let δ be the maximum number of travel intervals on any edge. We see
that O(in log δ) time is spent performing the binary searches for the up to in paths and
O(δ + in) time in examining the remaining intervals. The total time to process (u, v) is
therefore O(in log δ) (note that δ ≤ i). The number of k-hop paths generated by extending
the paths in Pnew(u, k− 1) using the edge (u, v) is O(in + δ) = O(in).

To compute Pnew(v, k), we need to compute a list of extensions of the paths in Pnew(u, k− 1)
for all u such that (u, v) is an edge of the temporal graph and merge these lists together,
eliminating dominated paths. There are at most indegree(v) such path lists to be merged.
Each of these has O(in) paths and takes O(in log δ) time to compute. The time needed
to compute all of these lists is therefore O(in log δ ∗ indegree(v)). Pairwise merging these
path lists takes O(in ∗ indegree(v)) time (note that during the pairwise merge of two path
lists, dominated paths are eliminated, so, from Theorem 3, it follows that the list size
remains O(in); two ordered path lists may be merged in linear time eliminating dominated
paths). An alternative to pairwise merging of the path lists is to merge the indegree(v) lists
simultaneously using a loser tree. This reduces the merging time to O(in ∗ log indegree(v)).
Regardless, the total time needed to compute Pnew(v, k) is O(in log δ ∗ indegree(v)). Hence,
for any k, all Pnew(v, k)s may be computed in O(ine log δ) time, where e = ∑ indegree(v) is
the number of edges in the temporal graph.

For any k and v, Pnew(v, k) may be merged with P(v, k− 1), eliminating dominated
pairs from both lists in O(in) time as both lists are ordered by arrival time and of size O(in)
(Theorems 2 and 3). Thus, the overall time taken by Algorithm 2 for each k is O(ine log δ)
and the time over all ks is O(in2e log δ), which is polynomial in the number of inputs.

4. Experimental Results

In this section, we compare the relative performance of Algorithm 2 for ITGs with the
shortest path algorithm of Wu et al. [15] running on equivalent CSGs. Our experimental
platform was an Intel Core i9-7900X CPU with a 3.30 GHz processor and 64 GB RAM. The
C++ code for the shortest path algorithm of Wu et al. was obtained from the authors of [17].
Our algorithm was also coded in C++. The codes were compiled using the g++ ver. 7.5.0
compiler with option O2. The datasets used for comparison of the relative performance are
described in Section 4.1.
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4.1. Datasets

Ref. [15] uses datasets from the Koblenz network [22]. These datasets have an (edge)
activity that ranges from a low of about 1 to a high of about 3.67, which is rather low.
Further, all λ values are 1. The Koblenz datasets are described in Table 1. These datasets
are in the form of CSGs where every allowed travel from one vertex to another is a single
time instance. To benchmark our algorithm against the shortest paths algorithm of [15]
on a wide variety of temporal graphs, we prepared synthetic datasets using the Koblenz
graphs as follows:

1. Obtain the underlying static graph from each Koblenz CSG. For this, we replaced each
temporal edge (u, v, t, λ) by the static edge (u, v) and eliminated duplicate static edges.

2. Represent the static graph obtained in the previous step as an array adjacency list.
3. On every static edge, we randomly add temporal intervals. The temporal intervals are

added using three random variables, number of allowed travel intervals I, duration
of each interval D and the travel time on each interval T. Values are assigned to
each of these random variables using a normal distribution around three parameters
(µI , µD, µT), respectively. These parameters are the mean values for the normal
distribution defining the three random variables (I, D, T), respectively.

Table 1. Koblenz graph statistics.

Dataset |V | |Es| cs − Edges Activity

epin 131.8 K 840.8 K 841.3 K 1
elec 7119 103.6 K 103.6 K 1
fb 63.7 K 817 K 817 K 1

growth 1870.7 K 39,953 K 39,953 K 1
youtube 3223 K 9375 K 9375 K 1

digg 30.3 K 85.2 K 87.6 K 1.02
slash 51 K 130.3 K 140.7 K 1.07

conflict 118 K 2027.8 K 2917.7 K 1.43
arxiv 28 K 3148 K 4596 K 1.45
enron 87,274 320.1 K 1148 K 3.58

We increase the activity factor in the temporal graph by gradually increasing the
value of the parameter µD. For each ITG obtained using the method described above, we
obtain an equivalent CSG to benchmark against the shortest path algorithm of [15]. The
synthetic datasets obtained as outlined above are described in Table 2. For the growth
dataset, the number of contact sequence edges is too large to accommodate in a 32-bit
integer for µD = 20 and µD = 50. Therefore, it was infeasible to build a corresponding CSG
and run the algorithm from [15] on it. However, we could still run our algorithm on the
ITG representation; the run times were quite reasonable. Table 3 reports the size of each
of the synthetic datasets on disk. As we increase the activity factor of the temporal graph
by increasing the µD parameter, the size of the CSG representation of the graph increases
significantly. For example, for the enron dataset, the size of the ITG is 19.5 MB for µD = 50,
as compared to 10.7 GB for the CSG representation of the same temporal graph, which is a
ratio of approximately 563.
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Table 2. Synthetic graphs’ statistics.

Graphs with µI = 4, µT = 3

Dataset |V | |Es|
cs-Edges
(µD = 5)

cs-Edges
(µD = 20)

cs-Edges
(µD = 50)

epin 131.8 K 840.8 K 17.8 M 65.2 M 160.6 M
elec 7119 103.6 K 2.2 M 8 M 19.8 M
fb 63.7 K 817 K 17.3 M 63.3 M 156 M

growth 1870.7 K 39,953 K 848.3 M – –
youtube 3.2 M 9.3 M 199 M 727.2 M 1.8B

digg 30.3 K 85.2 K 1.8 M 6.6 M 16.2 M
slash 51 K 130.3 K 2.7 M 10.1 M 24.9 M

conflict 118 K 2027.8 K 43.07 M 157.3 M 387.5 M
arxiv 28 K 3148 K 66.8 M 244.2 M 601.7 M
enron 87,274 320.1 K 6.8 M 24.8 M 61.1 M

Table 3. Synthetic graphs’ size on disk.

Dataset
ITG CSG

µD = 5 µD = 20 µD = 50 µD = 5 µD = 20 µD = 50

epin 51.93 MB 51.94 MB 51.95 MB 323 MB 1.18 GB 2.9 GB
elec 6.2 MB 6.23 MB 6.23 MB 36.1 MB 132.2 MB 325.7 MB
fb 50.5 MB 50.5 MB 50.5 MB 314.8 MB 1.1 GB 2.83 GB

growth 2.55 GB 2.55 GB 2.55 GB 17.1 GB – –
youtube 609.3 MB 609.3 MB 609.3 MB 4.2 GB 15.5 GB 38.1 GB

digg 5.2 MB 5.2 MB 5.2 MB 31.4 MB 114.8 MB 282.6 MB
slash 8 MB 8 MB 8 MB 49 M 179.4 MB 442.2 MB

conflict 126 MB 126 MB 126 MB 794.5 MB 2.9 GB 7.1 GB
arxiv 191.8 MB 191.8 MB 191.8 MB 1.15 GB 4.21 GB 10.37 GB
enron 19.58 MB 19.58 MB 19.58 MB 1.18 GB 4.3 GB 10.7 GB

4.2. Run Times

Since the CSGs are much larger in size as compared to the corresponding ITGs, the
reading time (from disk) of the CSG is also significantly larger. The comparison of the
reading times for the graphs by our algorithm and by that of Wu et al. [15] is reported
in Table 4. It is important to note that the reading times for our algorithm are almost the
same for the different values of µD. However, for the CSGs, the reading time increases
proportionately to the increase in the activity factor. This is because the number of contact
sequence edges also increases proportionately. The size of the ITG representation, however,
remains almost similar across different values of the parameter µD.

Comparisons of run times (excluding the time to read in the temporal graph) of the
two algorithms on all the datasets are reported in Table 5. As expected, the run times of
our algorithm remains almost the same across the different values of µD. However, the run
times of the algorithm in [15] increases proportionately to the increase in the value of µD
and, hence, the number of contact sequence edges in the graph. Therefore, our algorithm
shows increasing performance gains in run time and in memory consumption over that
of Wu et al. [15] when the temporal graph has larger contiguous travel intervals. For our
experiments, we limited the duration of the travel intervals to follow a normal distribution
around µD = 50. This is because for much larger travel intervals, the algorithm of Wu
et al. [15] runs out of memory due to the large number of contact sequence edges. In
contrast, our algorithm comfortably handles large travel durations. One example of this
is the growth dataset for which our algorithm runs in reasonable times for the values of
µD = 20 and µD = 50, whereas it is infeasible to represent the CSG using 32-bit integers
for µD = 20.

The performance gains obtained by our algorithm over that of Wu et al. [15] with
increasing activity factor are shown in Figure 8.
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Figure 8. Performance gains with increasing activity factor.

Table 4. Synthetic graphs’ reading times in seconds.

Dataset
Ours on ITG CSG Algorithm

µD = 5 µD = 20 µD = 50 µD = 5 µD = 20 µD = 50

epin 1.03 1.03 1.03 5.6 20.2 51.5
elec 0.14 0.13 0.12 0.69 2.5 6.1
fb 1 0.99 0.97 5.4 19.2 48.8

growth 50.5 50 50.5 271.65 – –
youtube 11.8 12.09 12.34 64.4 235.1 578.1

digg 0.12 0.12 0.1 0.57 2.03 4.9
slash 0.17 0.16 0.16 0.88 3.1 7.6

conflict 2.4 2.4 2.4 13.3 48.9 121.7
arxiv 3.6 3.6 3.6 20.4 75.7 189.6
enron 0.4 0.39 0.39 2.1 7.7 19.2

Table 5. Synthetic graphs’ run time in seconds comparison.

Dataset
Ours on ITG CSG Algorithm

µD = 5 µD = 20 µD = 50 µD = 5 µD = 20 µD = 50

epin 0.78 0.77 0.91 0.66 2.27 5.8
elec 0.044 0.045 0.05 0.04 0.15 0.37
fb 0.17 0.17 0.18 0.22 0.7 1.94

growth 105 121 140 192.8 – –
youtube 0.63 0.63 0.63 2.6 8.4 20.4

digg 0.019 0.022 0.024 0.02 0.07 0.18
slash 0.1 0.1 0.11 0.1 0.27 0.76

conflict 0.57 0.53 0.64 0.9 3 7.6
arxiv 0.71 0.79 0.81 0.97 3.5 8.3
enron 0.08 0.09 0.1 0.08 0.32 0.9
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4.3. Memory Footprint

The ratio of the memory footprint of the algorithm of [15] to the memory footprint
of our algorithm is similar to the ratio of the sizes of the corresponding temporal graph
representation as CSG and ITG, respectively. This is because both algorithms require the
entire graph to be present in memory. As is evident from Table 3, this ratio increases
significantly as the activity factor increases, going as high as 560 for our synthetic graphs.

5. Conclusions

We have developed a polynomial time shortest paths algorithm for the ITG represen-
tation of temporal graphs. To the best of our knowledge, such an algorithm is not available
in the literature. Our algorithm is suitable for temporal graphs with a high activity factor
and large contiguous travel intervals. Our algorithm shows increasing performance gains
over the known state-of-the-art shortest paths algorithm for CSGs as the activity factor on
the temporal graphs increases. Using synthetic datasets, experimentally, we show that our
algorithm for ITGs obtains a speedup of up to 32.5 relative to the state-of-the-art algorithm
for CSGs. For graphs with very large activity factors, the CSG algorithm is infeasible, while
our algorithm can handle such datasets comfortably.
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The following abbreviations and notations are used in this manuscript:

ITGs Interval temporal graphs
CSGs Contact sequence (temporal) graphs
TRG Time-Respecting Graph
OSEs Ordered Sequence of Edges
G(V,E) A graph G with V vertices and E edges
λ Denotes the length or travel time of an edge in the graph
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