
Citation: Wu, L.; Lin, K.; Lin, X.; Lin, J.

List-Based Threshold Accepting

Algorithm with Improved Neighbor

Operator for 0–1 Knapsack Problem.

Algorithms 2024, 17, 478. https://

doi.org/10.3390/a17110478

Academic Editor: Roberto

Montemanni

Received: 7 September 2024

Revised: 17 October 2024

Accepted: 21 October 2024

Published: 25 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

List-Based Threshold Accepting Algorithm with Improved
Neighbor Operator for 0–1 Knapsack Problem
Liangcheng Wu 1,2, Kai Lin 1,2, Xiaoyu Lin 1 and Juan Lin 1,2,*

1 College of Computer and Information Science, Fujian Agriculture and Forestry University,
Fuzhou 350002, China; 5221139006@fafu.edu.cn (L.W.); 12311093026@fafu.edu.cn (K.L.);
xiaoyulin@fafu.edu.cn (X.L.)

2 Key Laboratory of Smart Agriculture and Forestry, Fujian Province University, Fuzhou 350002, China
* Correspondence: juan.lin@fafu.edu.cn

Abstract: The list-based threshold accepting (LBTA) algorithm is a sophisticated local search method
that utilizes a threshold list to streamline the parameter tuning process in the traditional threshold
accepting (TA) algorithm. This paper proposes an enhanced local search version of the LBTA
algorithm specifically tailored for solving the 0–1 knapsack problem (0–1 KP). To maintain a dynamic
threshold list, a feasible threshold updating strategy is designed to accept adaptive modifications
during the search process. In addition, the algorithm incorporates an improved bit-flip operator
designed to generate a neighboring solution with a controlled level of disturbance, thereby fostering
exploration within the solution space. Each trial solution produced by this operator undergoes a
repair phase using a hybrid greedy repair operator that incorporates both density-based and value-
based add operator to facilitate optimization. The LBTA algorithm’s performance was evaluated
against several state-of-the-art metaheuristic approaches on a series of large-scale instances. The
simulation results demonstrate that the LBTA algorithm outperforms or is competitive with other
leading metaheuristics in the field.

Keywords: list-based; threshold accepting method; 0–1 knapsack problem; local search; hybrid
greedy repair operator

1. Introduction

The list-based threshold accepting (LBTA) algorithm [1] falls under the category of
threshold accepting (TA) algorithms [2]. In a manner analogous to simulated annealing
(SA), LBTA accepts suboptimal solutions to prevent being trapped in local optima. Instead
of setting to a fixed temperature, LBTA utilizes an adaptive threshold list that is updated
iteratively based on the search space topology. This allows LBTA to achieve better results
with fewer tuning parameters compared with SA and other local search methods. Owing
to its flexibility, LBTA is effectively utilized in solving both combinatorial and continuous
optimization problems, such as the vehicle routing problem (VRP) and its variants [3],
the job shop scheduling problem (JSSP) [4], the zero-wait scheduling problem [5], and the
traveling salesman problem (TSP) [6].

The 0–1 KP, which is recognized as a classic NP-hard problem in combinatorial opti-
mization, has practical applications in various decision-making domains [7]. The problem
involves a collection of n items, labeled from 1 to n; each item has a weight wi and a value
vi, as well as a maximum capacity c for the knapsack. The aim is to maximize the sum of
the values of the items in the knapsack while making sure that the sum of the weights does
not surpass the knapsack’s capacity, as follows (see Equation (1)):

max f (x) = ∑n
i=1 vixi

s.t. ∑n
i=1 wixi ≤ c ∧ xi ∈

{
0, 1

} (1)

Algorithms 2024, 17, 478. https://doi.org/10.3390/a17110478 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a17110478
https://doi.org/10.3390/a17110478
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://doi.org/10.3390/a17110478
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a17110478?type=check_update&version=1

Algorithms 2024, 17, 478 2 of 16

where xi represents the number of items i included into the knapsack, and f (x) is the
target function.

Aiming to fill the gap in the literature, this paper introduces a binary LBTA designed
for tackling the 0–1 KP. The proposed algorithm features a feasible threshold list that effec-
tively narrows the search space, alongside a hybrid greedy repair operator that surpasses
traditional density-based operator regarding optimization and convergence. Moreover,
a bit-flip mutation operator is employed to generate trial solutions, which provides an
elastic local search area and a sufficient perturbation to escape local minimum. Extensive
experimental evaluations demonstrate the efficacy and competitiveness of the LBTA algo-
rithm, with comparative results on two large 0–1 KP instances highlighting its advantages.

The remainder of this paper is structured as follows: Section 2 offers a brief intro-
duction of the basic LBTA algorithm, the 0–1 KP, and algorithms for the 0–1 KP. Section 3
presents the proposed LBTA algorithm, while Section 4 analyzes its behavior. In Section 5,
the performance of the LBTA algorithm is compared with other state-of-the-art metaheuris-
tics. Finally, Section 6 summarizes the findings of this study and outlines potential avenues
for future research.

2. Related Work
2.1. List-Based Threshold Algorithm

LBTA is a random search algorithm that explores the solution space by employing a
neighborhood search strategy. It allows the acceptance of suboptimal candidate solutions
based on a predefined threshold value. As an extension of the TA metaheuristic, LBTA
maintains a unique list of threshold values that decrease over the process of the iteration.
This enables the algorithm to balance diversification and intensification without the need
for an additional intervention or parameter configuration. The procedure consists of two
main components: the initialization and updating of the threshold value list and a local
search process.

2.1.1. Initialize the List of Threshold Values

During the first stage, an initial list of threshold values is generated through a particu-
lar local search method. The procedure then begins with the following steps: (i) selecting
a neighboring solution s′ from a present solution s by applying a local search move and
(ii) calculating and normalizing the changing in the fitness function as follows:

T = | f (s′)− f (s)|/ f (s) (2)

The newly generated threshold T is continually added to the list until it reaches its max-
imum length, which is controlled solely by the parameter L, representing the length of
the list. In the initial phase, the local search procedure gathers information from the
search space, while the normalization procedure helps to ensure a gradual decrease in the
threshold values for the following iteration.

2.1.2. Iteration of the Algorithm

During the second stage, the iteration begins by generating a neighboring solution
s’ from the initial randomized solution s using a local search move. This moving strategy
may be the same one adopted in the initialization, or a new method may be used. If the
solution s’ is better than the original s, then s is updated with s’, or a new threshold value
T is generated using Equation (2). If T is less than the current largest threshold value Tmax,
s’ is accepted as the new solution, and T replaces Tmax and enters the list. Otherwise, s’ is
abandoned, and the algorithm proceeds with the original solution s in the next iteration.
This process is repeated until a stopping condition is satisfied.

2.1.3. Conservation of Threshold Strategy

In [1], to facilitate the ability to break free from local minima and enhance the chance
of obtaining a better solution, this algorithm employs a strategy to save the threshold. This

Algorithms 2024, 17, 478 3 of 16

involves keeping the values in the list sufficiently high by periodically updating the list
with the maximum normalized threshold values discovered within a predefined number
of feasible moves. This delay factor helps to slow down the adaptation of list values and
avoid premature convergence to suboptimal solutions.

2.1.4. Pseudocode of LBTA

The pseudocode of LBTA is shown in Algorithm 1. We assume that the problem
solved here is a maximization optimization problem that is consistent with the 0–1 KP.
The algorithm is composed of two parts: initialization and iteration. In the initialization
phase, a preliminary list of threshold values is established through a specific local search
method, where L represents the length of the list. In the iteration phase, the algorithm
generates a new solution by performing a local search move and updates the current
solution and threshold list based on an acceptance criterion. The iteration continues until
the maximum number of iterations G is achieved.

Algorithm 1: List-based threshold accepting algorithm

1 Initialize a feasible solution s, a best solution sbest, Tmax = +∞, and an empty
priority threshold list;

2 while the length of list is less than L do
3 Generate a neighbor solution s;
4 Use Equation (2) to generate threshold value T;
5 Insert T into the threshold list;
6 end
7 for g=1 to G do
8 Generate a neighbor solution s′;
9 if f (s′) > f (s) then

10 Update s with s′;
11 if f (s) > f (sbest) then
12 Update sbest with s;
13 end
14 else
15 Generate T with Equation (2);
16 if T < Tmax then
17 Replace Tmax with T ;
18 Update s with s′;
19 end
20 end
21 end

2.2. 0–1 KP

As a constrained optimization problem, dealing with the infeasible solution in the
0–1 KP requires an additional operator. Two the most commonly used methods in the
literature are the penalty function and repair operation. The former involves designing a
penalty function that assigns a lower fitness value to infeasible solutions, reducing their
chance of being included in the next generation [8]. The repair operation is more widely
used and typically involves a two-step greedy approach [9]. In step 1, when an infeasible
solution is encountered, a greedy drop operator is applied to remove some items according
to specific rules until the solution becomes feasible. In step 2, items are added back in
until the solution becomes infeasible again. The most commonly used rule is based on
profit density, which intuitively suggests that items with higher value and lower weight
have a greater change in maximizing the total profits [10]. Algorithms 2 and 3 describe
these steps respectively. In Algorithm 2, if the current solution is infeasible, the greedy
drop operator checks every item in increasing order of vi/wi and changes xi from 1 to 0

Algorithms 2024, 17, 478 4 of 16

so that the lower density item can be removed at the very beginning. On the contrary, in
Algorithm 3, the greedy add operator checks the items in descending order of vi/wi to
include the higher profit density item in the first place.

Algorithm 2: Greedy drop operator
Input: An infeasible solution x, the sorted items H
Output: A new feasible solution x

1 w = ∑n
i=1 wixi;

2 for i = n to 1 do
3 if xH[i] = 1 and w > c then
4 xH[i] = 0;
5 w = w− wH[i];
6 end
7 end

Algorithm 3: Greedy add operator
Input: An feasible solution x, the sorted items H
Output: An new feasible solution x

1 w = ∑n
i=1 wixi;

2 for i = 1 to n do
3 if xH[i] = 0 and w <= c then
4 xH[i] = 1;
5 w = w + wH[i];
6 end
7 end

Early exact algorithms for the 0–1 KP, such as the dynamic programming approach [11],
the branch and bound approach [12], and the enumeration approach [13], were designed for
small-to-medium instances. As the size of instances increased, these methods failed to tackle
the problem within an acceptable timeframe. Therefore, a wide range of metaheuristics
have been put forward to tackle large-scale 0–1 KPs. Depending on the inspirational origins,
these algorithms can be classified into four major categories: swarm-intelligence (SI)-based,
bio-inspired, chemistry-based, and physics-based [14].

In the field of SI, traditional SI algorithms include the genetic algorithm (GA) [15],
ant colony optimization (ACO) [16], and particle swarm optimization (PSO) [17]. Recently,
a variety of novel SIs have proved to be very efficient in solving the 0–1 KP, such as the spider
algorithm (BSSA), monkey algorithm (MA), whale optimization algorithm (WOA), cuckoo
search (CS), chicken swarm optimization (CSO), wolf pack algorithm (WPA), and monarch
butterfly optimization (MBO). Most of them design a binary version within the general
algorithm framework, and use the aforementioned repair operator to fix the infeasible solution.

For example, a binary MBO (BMBO) [18] uses real-valued vectors and binary vectors
to define search space and solution space separately. In chaotic MBO (CMBO) [19], 12 one-
dimensional chaotic maps are utilized to adjust the migration procedures, and a Gaussian
mutation operator is imposed on the worst solution to prevent premature convergence.
A generalized opposition-based learning (OBL) MBO (OMBO) [20] employs OBL to speed
up the convergence. Gaussian perturbation is also included to escape from a local optimum.

In the field of bio-inspired algorithms, a modified discrete shuffled frog leaping
algorithm (MDSFLA) [21] includes a PSO-like technique and shuffled complex evolution
to carry on local search. A binary version of differential evolution (BDE) [22] enriches the
exploration and exploitation with four components: capability with the dual representation
of solutions, an improved mapping method, enhanced mutation and one-point crossover,
and a diversity mechanism.

Algorithms 2024, 17, 478 5 of 16

In terms of chemistry-based methods, a binary chemical reaction optimization (CRO)
framework is commonly applied for the 0–1 KP [8,23]. In the field of physics-based algo-
rithms, a series of improved harmony search (HS) algorithms have emerged. A CS algorithm
with global HS (CSGHS) [24] combines the exploration of global HS and the exploitation of
CS to address the 0–1 KP. Good performance is obtained by comparing CS, SFLA, and DE in
terms of search accuracy and convergence speed. A simplified binary HS (SBHS) [25] utilizes
the distinctions among harmonies to generate new solutions and dynamically modifies
the harmony memory consideration rate with the size of the dimension. An improved
HS (IHS) [26] employs a feasible parameter-tuning way to generate new solution vectors
so as to improve the correctness and convergence. A global-best HS (GHS) [27] adjusts
the pitch-adjustment step through a global best harmony and adds a social dimension
so that the solution can use the global best and local best information at the same time.
Self-adaptive HS (SAHS) [28] uses harmony memory to automatically adjust parameters.
A low-discrepancy sequence is exploited to the traditional pseudo-random initialization of
the harmony memory. A list-based SA (LBSA) replaces the traditional temperature-based
descent method with a practical list to manage the convergence pattern [29]. In our algo-
rithm, we included a bit-flip mutation operator that generates trial solutions, which has
been shown to offer an effective search space. Additionally, the noising method (NM) is
another variant of SA. NM with six variants of NMs for the 0–1 KP has been proposed
to address the 0–1 KP. These variants include two noise strategies, two noise variations of
objective solutions, and two decreasing strategies [30]. Both LBSA and NM algorithms incor-
porate a hybrid greedy optimization operator that combines a density-based operator and a
value-based operator, which has been proved to enhance algorithm performance. Therefore,
we have also adopted this hybrid operator in our algorithm as a replacement for the traditional
single optimization operator to improve the effectiveness of the algorithm.

Furthermore, in recent years, many novel algorithms have emerged to handle these
problems, such as the reptile search algorithm (RSA) [31], binary slime mould algorithm
(BSMA) [32], binary Archimedes optimization algorithm (BAOA), binary tunicate swarm
algorithm (BTSA) [33], binary Harris Hawks optimization (BHHO) [34], binary marine
predators algorithm (BMPA) [35], and binary elephant herding optimization (BinEHO) [36].
These algorithms have demonstrated significant potential in addressing complicated opti-
mization problems due to their ability to effectively explore large search spaces and locate
near-optimal solutions. We also include these algorithms and make a comparison with
them in Section 5 to show the competitiveness of our proposed algorithm.

3. LBTA Algorithm with Enhanced Local Search for 0–1 KP

In this study, we introduce a novel version of the LBTA algorithm to tackle the 0–1 KP.
The main framework can be summarized as follows: Initially, we redefine the solution
representation for the 0–1 KP. Subsequently, we devise a rule for generating the threshold
list, which adapts based on the evolving search landscape, thus enabling a more efficient
exploration of the solution space. Following this, a bit-flip mutation operator is utilized
to generate a diverse set of candidate solutions. These candidates are then refined using a
hybrid greedy optimization operator, which employs both value-based and density-based
strategies to repair and optimize the quality of the solutions.

3.1. Solution Representation

The solution for the 0–1 KP is represented by an object s with three attributes: s.x, s.v,
and s.w. The n-bit binary array s.x is generated randomly from [0, 1], where s.xi = 1 indicates
that the corresponding item is included in the knapsack. s.v represents the overall value of
items in the knapsack, while s.w represents the overall weight of the items in the knapsack.

3.2. The Initialization and Update of Threshold List

The threshold list is an essential part in the LBTA, which is responsible for providing a
flexible search space. In the traditional LBTA, the list is generated through stochastic local

Algorithms 2024, 17, 478 6 of 16

search, and the threshold values are normalized and stored in the list. In our proposed ap-
proach, we adopt a simpler and more efficient method: randomly selecting item values and
inserting them into the list until the list is full, without the need to calculate fitness values.

To achieve a thorough and delicate search with a uniformly descending threshold list,
we modify the basic framework of LBTA by utilizing a Markov chain to perform a series
of local search, similar to SA. During each inner iteration, the decision to accept a worse
solution is based on the current maximum value in the threshold list Tmax. If the worst
solution is adopted, the difference between the current solution and the candidate solution
is accumulated, and the number of acceptance times is recorded. After completing the local
search, we replace Tmax with the average of cumulative differences. This approach provides
a flexible threshold list that enables a border search space, occasional upward moves that
promote escaping from local maximum points at the beginning, and a decreasing list of
threshold values that lead to a thorough search and eventually reach the global maximum.

3.3. Improved Neighbor Operator

Apart from the threshold list, another crucial part of LBTA is the local search strategy.
An effective strategy should be powerful enough to help the algorithm to break away from
the attraction of the current solution while also being gentle enough to avoid becoming a
stochastic local search. In particular, for the 0–1 KP, changing only one item at a time would
result in a weak perturbation, leading to slow convergence, while changing too many items
would result in a blind search. To address these issues, a feasible bit-flip mutation operator
is proposed. During each local search, we randomly select items to include or exclude from
the backpack. Two parameters, namely, FT and DT, are used to control the amount flipping
and dropping times, respectively. Algorithm 4 outlines the process. Within the flipping
number of FT, a random item index i is selected. If the current item has not been included
yet, we flip s.xi from 0 to 1. Alternatively, if the current dropping number is less than DT,
we exclude the item by setting s.xi from 1 to 0. The maximum flipping and dropping times
are satisfied by iterating until the limits are reached.

Algorithm 4: A bit-flip mutation operator
Input: A solution s, flipping times FT, dropping times DT
Output: A new solution s

1 f tTimes = 0, dtTimes = 0;
2 while f tTimes < FT do
3 select an item i randomly;
4 if s.xi == 0 then
5 s.xi = 1;
6 s.w = s.w + wi;
7 s.v = s.v + vi;
8 f tTimes ++;
9 else

10 if s.xi == 1 and dtTimes < DT then
11 s.xi = 0;
12 s.w = s.w− wi;
13 s.v = s.v− vi;
14 dtTimes ++;
15 end
16 f tTimes ++;
17 end
18 end
19 return s

Algorithms 2024, 17, 478 7 of 16

3.4. Hybrid Greedy Repair and Optimized Operator

A traditional greedy repair operator only utilizes the profit density as the sole metric
to determine the priority of item selection. One of the drawbacks of this approach is that
it is challenging for high-value and high-weight items to be selected, which may lead to
a local minimum. To solve this problem, we design a hybrid method that combines the
greedy repair operator with an optimizing operator that considers both density and value.
The hybrid approach involves two arrays, HD and HV, which keeps items organized in
descending order based on the density of vi/wi and the value of vi, respectively. During the
first stage, we use only HD to drop items with lower density first. In the optimizing process,
an additional parameter p is introduced to determine which array is used to invoke the
greedy drop and greedy add operator (see Algorithm 5). The reason for dropping items
using only HD is to preserve as much beneficial information as possible. If we choose the
hybrid arrays, items possessing a higher value tend to be removed more often, and these
items would need to be re-added during the optimization process, which would be a waste
of iterations.

Algorithm 5: Hybrid greedy optimization operator
Input: A solution s, the probability p to select HD and HV
Output: A new feasible solution s

1 Use HD to call Algorithm 2 to repair s;
2 Produce a random number r ∈ [0, 1);
3 if r < p then
4 Use HD to call Algorithm 3 to optimize s;
5 else
6 Use HV to call Algorithm 3 to optimize s;
7 end
8 return s

3.5. The Framework of the LBTA Algorithm for 0–1 KP

The framework of the LBTA algorithm is presented in Algorithm 6. Start with initializ-
ing the threshold list; a primary solution is generated randomly, repaired, and optimized
using the hybrid greedy operator. In the inner iteration, a candidate solution s′ is generated
using the bit-flip mutation operator. If s′ is better than s, or if the deviation between s′.v
and s.v is less than −Tmax, s is replaced with s′. After the number of local search iterations
meets the Markov chain length, the current maximum threshold value is replaced with
the average of the accumulation of deviation. The algorithm then starts a new local search
until the global iteration limit is reached.

Algorithms 2024, 17, 478 8 of 16

Algorithm 6: The framework of LBTA
Input: The number of generation G, Markov chain length M, L, p, FT, and DT
Output: A best solution sbest

1 for i = 1 to L do
2 Randomly select an item i;
3 insert the value of the item vi into the list;
4 end
5 Randomly produce a solution s;
6 Repair and optimize s with Algorithms 2 and 3;
7 sbest ← s;
8 for g = 1 to G do
9 sum = 0, count = 0;

10 for m = 0 to M do
11 Fetch Tmax from the list;
12 Produce a candidate solution s′ with Algorithm 4;
13 Repair and optimize s′ with Algorithm 5;
14 di f = s′.v− s.v;
15 if di f > 0 then
16 s← s′;
17 if sbest.v > s.v then
18 sbest ← s;
19 end
20 else
21 if di f > −Tmax then
22 s← s′;
23 sum = sum + di f ;
24 count = count + 1;
25 end
26 end
27 end
28 remove current Tmax from the list, insert −sum/count into the list;
29 end
30 return sbest

4. Behaviors Analysis

In this section, we present a series of experiments conducted to analyze the behavior of
the LBTA algorithm. The experiments were performed on three sets of large 0–1 knapsack
instances presented in [20]. These instances are classified by three types based on their
features, as shown in Table 1. Each group consists of five instances of the 0–1 knapsack
problem, along with the instance name; the number of items in each instance and the
best solution for each instance are listed in Table 2. The optimal values are emphasized
in bold. Instances KP01—KP05 represent uncorrelated cases, KP06–KP10 represent weakly
correlated cases, and KP11–KP15 represent strongly correlated cases. The experiments
were run on an Intel Core i7 CPU and an 8 GB RAM, using Java implementation, and each
instance was run independently 50 times.

Table 1. Characteristics of three categories of large-scale 0–1 KP instances.

Correlation Weight wi Value vi Capacity c

Uncorrelated rand (10, 100) rand (10, 100) 0.75 * sum of weights

Weakly correlated rand (10, 100) rand (wi− 10, wi + 10) 0.75 * sum of weights

Strongly correlated rand (10, 100) wi + 10 0.75 * sum of weights

Algorithms 2024, 17, 478 9 of 16

4.1. Parameters Settings

To validate the behavior of LBTA, we divided the parameters into two groups. The first
group consisted of parameters for the basic LBTA framework, which included the number
of generations G, the Markov chain length M, and the threshold list length L. The second
group consisted of parameters for the local search, which included the probability p of the
hybrid repair operator, the number of flipping times FT, and the number of dropping times
DT. The total number of fitness evaluations was fixed at G ∗M = 40,000.

In the preliminary experiments, we determined the parameter values in the initial
LBTA framework. For the other parameters, we set p = 1, FT = 1, and DT = 1 to ensure
that these parameters did not cause interference. Specifically, we tried five values (50,
100, 200, 400, and 800) for G and ten values from 10 to 100 with 10 increments for L. We
found that G = 800, M = 50, L = 10, and p = 0.2 were suitable for LBTA to achieve
good performance.

4.2. Performance Tuning for the Feasible Bit-Flip Operator

To determine an appropriate combination for the number of bit flips, we conducted
tests across a range of values for FT and DT. We recorded the number of functions that
achieved a 100% success rate for each iteration, as most of these combinations were able to
produce optimal results for the majority of instances. However, when FT = 1 and DT = 1,
none of the functions were able to achieve the optimal result with a 100% success rate.
Therefore, we adjusted the values to set FT from 10 to 80 with 10 increments and DT from
0 to 5 with 1 increment.

When an item is excluded from the knapsack, it still has the chance to be re-included.
However, if DT is the same value as FT, numerous items may be repeatedly included and
excluded, leading to unnecessary iteration. Thus, we aim to fill up the knapsack as quickly
as possible while also introducing local disturbance. This is why we set DT to be much
lower than FT.

The histograms in Figure 1 depict the simulation results for the different combinations
of FT and DT. From these histograms, we obtained the following results: (1) For FT, there
is an insignificant difference between 15 functions. When FT equals 40, 50, 70, and 80, 14 of
15 functions achieve a 100% success rate, while for FT equal to 30 and 60, 13 of 15 functions
obtain a 100% success rate. For the remaining values, 12 of 15 functions reach a 100%
success rate. (2) For DT, there is a significant difference between six values. When DT = 1,
all FT values were able to produce the best results. (3) In general, the value of FT should
not be too large to avoid random search. Based on the simulation results, we selected
FT = 40, DT = 1 for the following simulations.

Algorithms 2024, 17, 478 10 of 16

Table 2. Comparison of the LBTA algorithm on the first set of 15 instances.

HGGA (2020) NM (2021) CMBO (2018) LBTA

Instance BKV Best Mean Worst SD Best Mean Worst SD Best Mean Worst SD Best Mean Worst SD

KP01 40,686 40,686 40,685.00 40,685 6.00 × 10−2 40,685 40,684.88 40,684 2.20 × 10−1 40,686 40,683.00 40,683 7.10 × 10−1 40,686 40,685.07 40,685 2.46 × 10−3

KP02 50,592 50,592 50,592.00 50,592 0.00 50,592 50,592.00 50,592 0.00 50,592 50,590.00 50,590 4.90 × 10−1 50,592 50,592.00 50,592 0.00
KP03 61,846 61,846 61,845.90 61,845 3.70 × 10−1 61,846 61,845.32 61,845 4.40 × 10−1 61,845 61,841.00 61,840 1.38 61,846 61,845.33 61,845 1.62 × 10−3

KP04 77,033 77,033 77,033.00 77,033 0.00 77,033 77,032.92 77,032 1.50 × 10−1 77,033 77,031.00 77,031 3.10 × 10−1 77,033 77,032.77 77,032 1.30 × 10−3

KP05 102,316 102,316 102,315.99 102,3165 2.00 × 10−2 102,316 102,316.00 102,316 0.00 102,316 102,314.00 102,313 1.11 102,316 102,315.53 102,314 1.96 × 10−3

KP06 35,069 35,069 35,069.00 35,069 0.00 35,069 35,069.00 35,069 0.00 35,069 35,067 35,064 1.47 35,069 35,069.00 35,069 0.00
KP07 43,786 43,786 43,786.00 43,786 0.00 43,786 43,785.96 43,785 8.00 × 10−2 43,786 43,784.00 43,781 1.34 43,786 43,786.00 43786 0.00
KP08 53,553 53,553 53,552.48 53,552 5.00 × 10−1 53,553 53,552.02 53,552 4.00 × 10−2 53,552 53,552.00 53,552 0.00 53,553 53,552.10 53,552 1.87 × 10−3

KP09 65,710 65,710 65,709.11 65,709 2.00 × 10−1 65,709 65,709.00 65,709 0.00 65,710 65,709.00 65,708 5.80 × 10−1 65,710 65,709.13 65,709 1.52 × 10−3

KP10 118,200 118,200 118,200.00 118,200 0.00 108,200 108,200.00 108,200 0.00 108,200 108,200.00 108,200 0.00 118,200 118,200.00 118,200 0.00
KP11 40,167 40,167 40,167.00 40,167 0.00 40,167 40,167.00 40,167 0.00 40,167 40,167.00 40,166 1.40 × 10−1 40,167 40,167.00 40,167 0.00
KP12 49,443 49,443 49,443.00 49,443 0.00 49,443 49,443.00 49,443 0.00 49,433 49,432.00 49,433 2.49 49,443 49,443.00 49,443 0.00
KP13 60,640 60,640 60,640.00 60,640 0.00 60,640 60,640.00 60,640 0.00 60,640 60,640.00 60,639 1.40 × 10−1 60,640 60,640.00 60,640 0.00
KP14 74,932 74,932 74,932.00 74,932 0.00 74,932 74,932.00 74,932 0.00 74,932 74,932.00 74,931 2.70 × 10−1 74,932 74,932.00 74932 0.00
KP15 99,683 99,683 99,683.00 99,683 0.00 99,683 99,683.00 99,683 0.00 99,683 99,682.00 99,672 2.23 99,683 99,683.00 99,683 0.00

order 15 12 14 10 13 9 12 10 13 1 2 2 15 11 13 11

rank 1 3 3 1

Algorithms 2024, 17, 478 11 of 16

Figure 1. Performance comparison of LBTA with the different numbers of bit-flip operators.

5. Competitiveness of the LBTA Algorithm

To access the competitive performance of the LBTA algorithm, we reviewed a broad
range of references and selected two widely used benchmark sets from recent studies.
The first set comprises three types of 0–1 KPs, as described in the previous section. The sec-
ond set, more frequently used in recent references, was sourced from [25] and included
instances with sizes ranging from 100 to 6400. The results were directly obtained from
the original literature. In all experiments, the maximum number of generations was set to
40,000, and each instance was evaluated using 50 independent experiments. The perfor-
mances of various algorithms were assessed using the best, worst, average, and standard
deviation (SD) of the solution values. The optimal values are emphasized in bold.

5.1. Competitiveness of the LBTA Algorithm on the First Set of Instances

In this subsection, the performance of LBTA was evaluated against three state-of-the-
art metaheuristics: CMBO algorithm [19], NMs [30], and HGGA [37]. The comparisons are
presented in Table 2. The results show that HGGA and LBTA outperform NMs and CMBO.
Regarding the best solution, the two algorithms yield comparable results. NMs failed to
obtain the best solution for KP01 and KP09, while CMBO did not find the best solution
for KP03 and KP08. Only HGGA and LBTA were successful in obtaining the best solution
for every instance. Regarding the worst, mean solution, and SD, HGGA and LBTA also
outperformed the other two algorithms.

5.2. Competitiveness of the LBTA Algorithm on the Second Set of Instances

First, we made a comparison on 25 small instances where the size varied between 8 and
24. Details of these 25 KPs were obtained from David Pisinger’s research [38]. To evaluate
the effectiveness and accuracy of LBTA, it is assessed in relation to recent studies, including
BEO [35] , BinEHO [36], BMPA [39], BinRSA [31], BSMA [32], BHHO [34], BTSA [33],
and BAOA [40]. In Table 3, the average results and gap values of each algorithms are
provided. The proposed method demonstrates superior or equal performance compared
with other algorithms across all 25 problems, as indicated by the gap results. Notably, LBSA
outperforms all competing algorithms, achieving the best solution in 100% of the instances.

Algorithms 2024, 17, 478 12 of 16

While algorithms such as BMPA, BSMA, and BEO also obtain the best solution in 100% of
the 24 instances, their performance falls slightly short of LBSA on specific problems—BMPA
and BEO on the P24 instance and BSMA on the P9 instance. Additionally, although BinRSA
achieves the best average in 20 instances, and BinEHO, BHHO, BTSA, and BAOA secure the
best results in 17 out of 25 instances, none match the consistent and optimal performance
of LBSA across all test cases.

Furthermore, the LBTA algorithm was evaluated on large-scale instances from David
Pisinger’s optimization codes [41]. The datasets used in this study fall into three differ-
ent categories: datasets 1–6 are high dimensional uncorrelated, datasets 7–12 are high
dimensional weakly correlated, and datasets 13–18 are high dimensional strongly corre-
lated. In Table 4, a comparison of the performance of the LBTA algorithm with that of
IGA-SA [42], BinRSA [31], BSMA [32], BTSA [33], BAOA [40], and BHHO [34] is presented.
The results, as shown in Table 4, demonstrate that LBSA performs similarly as or better
than other algorithms in 14 out of 18 problems according to the mean results, matching or
exceeding the number of optimal solutions obtained by the other algorithms. While the
BinRSA algorithm achieves the same number of optimal solutions, our proposed LBTA
ranks first overall when all algorithms are considered, with BinRSA ranking third behind
BSMA. The results clearly show that LBTA performs only slightly worse than BinRSA in
the KP1_5000, KP2_5000, and KP3_5000 instances, and its performance in the KP1_2000
instance is marginally worse than those of BSMA, BAOA, and BHHO. However, LBTA
outperforms all algorithms in the median items for the KP2_500 instance and matches the
best value achieved by other algorithms in 13 other instances.

In conclusion, the LBTA algorithm demonstrated strong performance across multiple
large-scale instances, particularly on high-dimensional weakly correlated and strongly
correlated datasets, showcasing its robust competitiveness. Although it performed slightly
less effectively than certain algorithms on a few specific instances, it ranked first overall,
proving the effectiveness and robustness of the LBTA algorithm in solving 0–1 KPs.

Algorithms 2024, 17, 478 13 of 16

Table 3. Comparison of LBTA on the second set of 18 large-scale instances.

Problem BEO (2020) BinEHO (2020) BMPA (2021) BinRSA (2023) BSMA (2021) BHHO (2019) BTSA (2020) BAOA (2021) LBTA

No. Instance BKV Mean Gap (%) Mean Gap (%) Mean Gap (%) Mean Gap (%) Mean Gap (%) Mean Gap (%) Mean Gap (%) Mean Gap (%) Mean Gap (%)

P1 KP_8a 3,924,400 3,924,400.00 0.00 3,924,400.00 0.00 3,924,400.00 0.00 3,924,400.00 0.00 3,924,400.00 0.00 3,924,400.00 0.00 3,924,400.00 0.00 3,924,400.00 0.00 3,924,400.00 0.00
P2 KP_8b 3,813,669 3,813,669.00 0.00 3,813,669.00 0.00 3,813,669.00 0.00 3,813,669.00 0.00 3,813,669.00 0.00 3,813,669.00 0.00 3,801,149.00 3.28 × 10−1 3,810,772.00 7.60 × 10−2 3,813,669.00 0.00
P3 KP_8c 3,347,452 3,347,452.00 0.00 3,347,452.00 0.00 3,347,452.00 0.00 3,347,452.00 0.00 3,347,452.00 0.00 3,347,452.00 0.00 3,347,452.00 0.00 3,347,452.00 0.00 3,347,452.00 0.00
P4 KP_8d 4,187,707 4,187,707.00 0.00 4,187,707.00 0.00 4,187,707.00 0.00 4,187,707.00 0.00 4,187,707.00 0.00 4,187,707.00 0.00 4,187,707.00 0.00 4,187,707.00 0.00 4,187,707.00 0.00
P5 KP_8e 4,955,555 4,955,555.00 0.00 4,955,555.00 0.00 4,955,555.00 0.00 4,955,555.00 0.00 4,955,555.00 0.00 4,955,555.00 0.00 4,955,555.00 0.00 4,955,555.00 0.00 4,955,555.00 0.00
P6 KP_12a 5,688,887 5,688,887.00 0.00 5,688,757.34 2.28 × 10−3 5,688,887.00 0.00 5,688,757.34 2.28 × 10−3 5,688,887.00 0.00 5,688,887.00 0.00 5,682,416.00 1.14 × 10−1 5,688,887.00 0.00 5,688,887.00 0.00
P7 KP_12b 6,498,597 6,498,597.00 0.00 6,498,597.00 0.00 6,498,597.00 0.00 6,498,597.00 0.00 6,498,597.00 0.00 6,496,784.00 2.79 × 10−2 6,498,597.00 0.00 6,498,597.00 0.00 6,498,597.00 0.00
P8 KP_12c 5,170,626 5,170,626.00 0.00 5,170,626.00 0.00 5,170,626.00 0.00 5,170,626.00 0.00 5,170,626.00 0.00 5,170,626.00 0.00 5,170,626.00 0.00 5,170,626.00 0.00 5,170,626.00 0.00
P9 KP_12d 6,992,404 6,992,404.00 0.00 6,992,404.00 0.00 6,992,404.00 0.00 6,992,404.00 0.00 6,941,564.00 7.27 × 10−1 6,941,564.00 7.27 × 10−1 6,941,564.00 7.27 × 10−1 6,939,908.00 7.51 × 10−1 6,992,404.00 0.00
P10 KP_12e 5,337,472 5,337,472.00 0.00 5,337,472.00 0.00 5,337,472.00 0.00 5,337,472.00 0.00 5,337,472.00 0.00 5,337,472.00 0.00 5,337,472.00 0.00 5,337,472.00 0.00 5,337,472.00 0.00
P11 KP_16a 7,850,983 7,850,983.00 0.00 7,850,224.60 9.66 × 10−3 7,850,983.00 0.00 7,850,983.00 0.00 7,850,983.00 0.00 7,850,983.00 0.00 7,831,459.00 2.49 × 10−1 7,850,983.00 0.00 7,850,983.00 0.00
P12 KP_16b 9,352,998 9,352,998.00 0.00 9,352,998.00 0.00 9,352,998.00 0.00 9,352,998.00 0.00 9,352,998.00 0.00 9,352,998.00 0.00 9,332,841.00 2.16 × 10−1 9,352,998.00 0.00 9,352,998.00 0.00
P13 KP_16c 9,151,147 9,151,147.00 0.00 9,151,147.00 0.00 9,151,147.00 0.00 9,151,147.00 0.00 9,151,147.00 0.00 9,140,752.50 1.14 × 10−1 9,151,147.00 0.00 9,145,012.50 6.70 × 10−2 9,151,147.00 0.00
P14 KP_16d 9,348,889 9,348,889.00 0.00 9,345,961.48 3.13 × 10−2 9,348,889.00 0.00 9,348,889.00 0.00 9,348,889.00 0.00 9,348,889.00 0.00 9,348,889.00 0.00 9,348,889.00 0.00 9,348,889.00 0.00
P15 KP_16e 7,769,117 7,769,117.00 0.00 7,766,509.36 3.36 × 10−2 7,769,117.00 0.00 7,769,117.00 0.00 7,769,117.00 0.00 7,769,117.00 0.00 7,762,520.00 8.49 × 10−2 7,769,117.00 0.00 7,769,117.00 0.00
P16 KP_20a 10,727,049 10,727,049.00 0.00 10,727,049.00 0.00 10,727,049.00 0.00 10,727,049.00 0.00 10,727,049.00 0.00 10,727,049.00 0.00 10,727,049.00 0.00 10,716,101.00 1.02 × 10−1 10,727,049.00 0.00
P17 KP_20b 9,818,261 9,818,261.00 0.00 9,818,261.00 0.00 9,818,261.00 0.00 9,818,261.00 0.00 9,818,261.00 0.00 9,818,261.00 0.00 9,814,002.00 4.34 × 10−2 9,818,261.00 0.00 9,818,261.00 0.00
P18 KP_20c 10,714,023 10,714,023.00 0.00 10,713,587.70 4.06 × 10−3 10,714,023.00 0.00 10,713,993.98 2.71 × 10−4 10,714,023.00 0.00 10,713,149.00 8.16 × 10−3 10,714,023.00 0.00 10,714,023.00 0.00 10,714,023.00 0.00
P19 KP_20d 8,929,156 8,929,156.00 0.00 8,929,156.00 0.00 8,929,156.00 0.00 8,928,880.80 3.08 × 10−3 8,929,156.00 0.00 8,924,769.30 4.91 × 10−2 8,929,156.00 0.00 8,927,679.40 1.65 × 10−2 8,929,156.00 0.00
P20 KP_20e 9,357,969 9,357,969.00 0.00 9,357,751.44 2.32 × 10−3 9,357,969.00 0.00 9,357,953.46 1.66 × 10−4 9,357,969.00 0.00 9,357,969.00 0.00 9,357,969.00 0.00 9,357,969.00 0.00 9,357,969.00 0.00
P21 KP_24a 13,549,094 13,549,094.00 0.00 13,546,986.14 1.56 × 10−2 13,549,094.00 0.00 13,549,094.00 0.00 13,549,094.00 0.00 13,546,249.00 2.10 × 10−2 13,549,094.00 0.00 13,547,058.00 1.50 × 10−2 13,549,094.00 0.00
P22 KP_24b 12,233,713 12,233,713.00 0.00 12,233,713.00 0.00 12,233,713.00 0.00 12,233,713.00 0.00 12,233,713.00 0.00 12,233,713.00 0.00 12,233,713.00 0.00 12,233,713.00 0.00 12,233,713.00 0.00
P23 KP_24c 12,448,780 12,448,780.00 0.00 12,448,780.00 0.00 12,448,780.00 0.00 12,448,780.00 0.00 12,448,780.00 0.00 12,448,780.00 0.00 12,448,780.00 0.00 12,448,780.00 0.00 12,448,780.00 0.00
P24 KP_24d 11,815,315 11,814,367.00 8.02 × 10−3 11,810,682.68 3.92 × 10−2 11,811,630.20 3.12 × 10−2 11,814,367.48 8.02 × 10−3 11,815,315.00 0.00 11,814,208.00 9.37 × 10−3 11,814,108.00 1.02 × 10−2 11,814,072.00 1.05 × 10−2 11,815,315.00 0.00
P25 KP_24e 13,940,099 13,940,099.00 0.00 13,940,099.00 0.00 13,940,099.00 0.00 13,940,099.00 0.00 13,940,099.00 0.00 13,933,743.00 4.56 × 10−2 13,940,099.00 0.00 13,938,971.00 8.09 × 10−3 13,940,099.00 0.00

order 24 17 24 20 24 17 17 17 25

rank 2 9 4 5 3 7 8 6 1

Table 4. Comparison of LBTA on the second set of 25 instances.

IGA-SA (2019) BinRSA (2023) BSMA (2021) BTSA (2020) BAOA (2021) BHHO (2019) LBTA

Instance BKV Mean Gap (%) Mean Gap (%) Mean Gap (%) Mean Gap (%) Mean Gap (%) Mean Gap (%) Mean Gap (%)

KP1_100 9147 8575.00 6.25 9147.00 0.00 9147.00 0.00 9147.00 0.00 9147.00 0.00 9147.00 0.00 9147.00 0.00
KP1_200 11,238 8576.00 23.69 11,238.00 0.00 11,238.00 0.00 11,238.00 0.00 11,238.00 0.00 11,238.00 0.00 11,238.00 0.00
KP1_500 28,857 12,072.00 58.17 28,857.00 0.00 28,857.00 0.00 28,849.00 0.03 28,852.00 0.02 28,850.00 0.02 28,857.00 0.00
KP1_1000 54,503 14,563.00 73.28 54,503.00 0.00 54,503.00 0.00 53,301.00 2.21 53,574.00 1.70 53,396.00 2.03 54,503.00 0.00
KP1_2000 110,625 27,645.00 75.01 110,587.55 0.03 110,625.00 0.00 95,619.00 13.56 110,625.00 0.00 110,625.00 0.00 110,615.40 0.01
KP1_5000 276,457 49,306.00 82.17 276453.6 0.00 274,569.00 0.68 272,923.00 1.28 274,385.00 0.75 273,961.00 0.90 276,438.47 0.01
KP2_100 1514 1217.00 19.62 1514.00 0.00 1514.00 0.00 1514.00 0.00 1514.00 0.00 1514.00 0.00 1514.00 0.00
KP2_200 1634 1347.00 17.56 1634.00 0.00 1634.00 0.00 1634.00 0.00 1634.00 0.00 1634.00 0.00 1634.00 0.00
KP2_500 4566 3038.00 33.46 4557.5 0.19 4565.30 0.02 4537.20 0.63 4549.40 0.36 4518.70 1.04 4565.30 0.02

KP2_1000 9052 5435.00 39.96 9051.05 0.01 9052.00 0.00 8346.80 7.79 9052.00 0.00 8835.60 2.39 9052.00 0.00
KP2_2000 18,051 10,938.00 39.41 18,046.75 0.02 17,557.00 2.74 14,902.00 17.45 15,885.00 12.00 15,729.00 12.86 18,050.20 0.00
KP2_5000 44,356 27,387.00 38.26 44,353.15 0.01 44,312.00 0.10 42,972.00 3.12 44,206.00 0.34 43,276.00 2.43 44,352.83 0.01
KP3_100 2397 1481.00 38.21 2397.00 0.00 2397.00 0.00 2395.20 0.08 2396.50 0.02 2396.40 0.03 2397.00 0.00
KP3_200 2697 1495.00 44.57 2697.00 0.00 2697.00 0.00 2692.10 0.18 2695.10 0.07 2694.70 0.09 2697.00 0.00
KP3_500 7117 3412.00 52.06 7117.00 0.00 7117.00 0.00 6999.50 1.65 7117.00 0.00 7117.00 0.00 7117.00 0.00

KP3_1000 14,390 5589.00 61.16 14,390.00 0.00 14,390.00 0.00 14,191.00 1.38 14,279.00 0.77 14,225.00 1.15 14,390.00 0.00
KP3_2000 28,919 10,818.00 62.59 28,919.00 0.00 28,919.00 0.00 28,919.00 0.00 28,597.00 1.11 28,657.00 0.91 28,919.00 0.00
KP3_5000 72,505 27,304.00 62.34 72,505.00 0.00 72,075.00 0.59 71,018.00 2.05 71,579.00 1.28 71,826.00 0.94 72,487.83 0.02

order 0 14 13 5 7 6 14

rank 7 3 2 6 4 5 1

Algorithms 2024, 17, 478 14 of 16

6. Conclusions

This paper presents an enhanced local search algorithm, LBTA, tailored to effectively
address the 0–1 knapsack problem (KP). The LBTA algorithm employs several key mecha-
nisms to improve the performance in both solution quality and computational efficiency.
By incorporating a feasible threshold list, this algorithm is able to regulate convergence
speed, ensuring that the search process balances between intensification and diversifica-
tion. The integration of a bit-flip mutation operator further strengthens the exploration
capabilities, enabling a more comprehensive search for the solution space and reducing
the likelihood of premature convergence. Moreover, the algorithm incorporates a hybrid
repair operator that merges value-based and density-based greedy strategies. This hybrid
operator enhances the quality of candidate solutions by guiding the search towards more
optimal areas of the solution space. Through this combination of strategies, LBTA demon-
strates its capability to provide high-quality solutions for the 0–1 knapsack problem while
maintaining simplicity in its implementation.

The LBTA algorithm’s performance has been systematically tested on two large in-
stances of the 0–1 KP, and its results have been compared with those of several cutting-edge
metaheuristics found in the existing literature. The outcomes of these simulations reveal
that LBTA is not only straightforward to implement but also exhibits remarkable efficiency
in solving the 0–1 knapsack problem. A limitation observed in the initial testing instances
indicates that the performance of LBTA is slightly less stable compared with those of other
algorithms, which may be attributed to the random flip mutation operator used during the
neighborhood search. While this operation introduces search diversity, it may also lead to a
degree of blind searching. Consequently, in our next steps, we plan to integrate all operators
with a status feedback mechanism. This approach will allow for the adaptive selection of
operators, each serving distinct purposes, based on the current evolutionary status, thereby
facilitating a more balanced and effective search. Additionally, we aim to expand the LBTA
algorithm to address more complicated and practical real-world optimization problems,
further enhancing its applicability and effectiveness in various domains.

Author Contributions: J.L. and L.W. conceived and designed the experiments; K.L. performed the
experiments; J.L. and K.L. analyzed the data; X.L. contributed analysis tools; L.W. wrote the paper.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Nature Science Foundation of Fujian Province of China
(No. 2023J01078).

Data Availability Statement: Our research datas are shared in https://github.com/LiangchengWu1/
(accessed on 17 October 2024).

Conflicts of Interest: Liangchen Wu, Kai Lin, Xiaoyu Lin, Juan Lin declare no conflict of interest. The
founding sponsors had no role in the design of the study; in the collection, analyses, or interpretation
of data; in the writing of the manuscript, and in the decision to publish the results.

References
1. Tarantilis, C.D.; Kiranoudis, C.T. A list-based threshold accepting method for job shop scheduling problems. Int. J. Prod. Econ.

2002, 77, 159–171. [CrossRef]
2. Dueck, G.; Scheuer, T. Threshold accepting: A general purpose optimization algorithm appearing superior to simulated annealing.

J. Comput. Phys. 1990, 90, 161–175. [CrossRef]
3. Tarantilis, C.D.; Ioannou, G.; Kiranoudis, C.T.; Prastacos, G.P. Solving the open vehicle routeing problem via a single parameter

metaheuristic algorithm. J. Oper. Res. Soc. 2005, 56, 588–596. [CrossRef]
4. Lee, D.S.; Vassiliadis, V.S.; Park, J.M. A novel threshold accepting meta-heuristic for the job-shop scheduling problem. Comput.

Oper. Res. 2004, 31, 2199–2213.
5. Lee, D.S.; Vassiliadis, V.S.; Park, J.M. List-based threshold-accepting algorithm for zero-wait scheduling of multiproduct batch

plants. Ind. Eng. Chem. Res. 2002, 41, 6579–6588. [CrossRef]
6. Ilhan, I.; Gökmen, G. A list-based simulated annealing algorithm with crossover operator for the traveling salesman problem.

Neural Comput. Appl. 2022, 34, 7627–7652. [CrossRef]
7. Cho, M. The knapsack problem and its applications to the cargo loading problem. Anal. Appl. Math. 2019, 48.

 https://github.com/LiangchengWu1/
http://doi.org/10.1016/S0925-5273(01)00231-6
http://dx.doi.org/10.1016/0021-9991(90)90201-B
http://dx.doi.org/10.1057/palgrave.jors.2601848
http://dx.doi.org/10.1021/ie010570n
http://dx.doi.org/10.1007/s00521-021-06883-x

Algorithms 2024, 17, 478 15 of 16

8. Truong, T.K.; Li, K.; Xu, Y. Chemical reaction optimization with greedy strategy for the 0-1 knapsack problem. Appl. Soft Comput.
J. 2013, 13, 1774–1780. [CrossRef]

9. Chu, P.C.; Beasley, J.E. A genetic algorithm for the multidimensional knapsack problem. J. Heurist. 1998, 4, 63–86. [CrossRef]
10. Dantzig, G.B. Discrete-variable extremum problems. Oper. Res. 1957, 5, 266–288. [CrossRef]
11. Martello, S.; Pisinger, D.; Toth, P. Dynamic programming and strong bounds for the 0-1 knapsack problem. Manag. Sci. 1999,

45, 414–424. [CrossRef]
12. Kolesar, P.J. A branch and bound algorithm for the knapsack problem. Manag. Sci. 1967, 13, 723–735. [CrossRef]
13. Cabot, A.V. An enumeration algorithm for knapsack problems. Oper. Res. 1970, 18, 306–311. [CrossRef]
14. Fister, I., Jr.; Yang, X.S.; Fister, I.; Brest, J.; Fister, D. A brief review of nature-inspired algorithms for optimization. arXiv 2013,

arXiv:1307.4186.
15. Yadav, R.K.; Gupta, H.; Jhingran, H.; Agarwal, A.; Gupta, A. An Enhanced Genetic Algorithm to Solve 0/1 Knapsack Problem.

Int. J. Comput. Sci. Inf. Secur. (IJCSIS) 2017, 15, 150–154.
16. Alzaqebah, A.; Abu-Shareha, A.A. Ant Colony System Algorithm with Dynamic Pheromone Updating for 0/1 Knapsack Problem.

Int. J. Intell. Syst. Appl. 2019, 11, 9. [CrossRef]
17. Nguyen, P.; Wang, D.; Truong, T.K. A new hybrid particle swarm optimization and greedy for 0–1 knapsack problem. Indones.

Electr. Eng. Comput. Sci. 2016, 1, 411–418. [CrossRef]
18. Feng, Y.; Wang, G.G.; Deb, S.; Lu, M.; Zhao, X.J. Solving 0-1 knapsack problem by a novel binary monarch butterfly optimization.

Neural Comput. Appl. 2015, 28, 1619–1634. [CrossRef]
19. Feng, Y.; Yang, J.; Wu, C.; Lu, M.; Zhao, X.J. Solving 0-1 knapsack problems by chaotic monarch butterfly optimization algorithm

with Gaussian mutation. Memetic Comput. 2016, 10, 135–150. [CrossRef]
20. Feng, Y.; Wang, G.G.; Dong, J.; Wang, L. Opposition-based learning monarch butterfly optimization with Gaussian perturbation

for large-scale 0-1 knapsack problem. Comput. Electr. Eng. 2018, 67, 454–468. [CrossRef]
21. Bhattacharjee, K.K.; Sarmah, S.P. Shuffled frog leaping algorithm and its application to 0/1 knapsack problem. Appl. Soft Comput.

2014, 19, 252–263. [CrossRef]
22. Ali, I.M.; Essam, D.; Kasmarik, K. An efficient differential evolution algorithm for solving 0–1 knapsack problems. In Proceedings

of the 2018 IEEE Congress on Evolutionary Computation (CEC), Rio de Janeiro, Brazil, 8–13 July 2018; IEEE: Piscataway, NJ, USA,
2018; pp. 1–8.

23. Truong, T.K.; Li, K.; Xu, Y.; Ouyang, A.; Nguyen, T.T. Solving 0-1 knapsack problem by artificial chemical reaction optimization
algorithm with a greedy strategy. J. Intell. Fuzzy Syst. 2015, 28, 2179–2186. [CrossRef]

24. Feng, Y.; Wang, G.G.; Gao, X.Z. A Novel Hybrid Cuckoo Search Algorithm with Global Harmony Search for 0-1 Knapsack
Problems. Int. J. Comput. Intell. Syst. 2016, 9, 1174–1190. [CrossRef]

25. Kong, X.; Gao, L.; Ouyang, H.; Li, S. A simplified binary harmony search algorithm for large scale 0-1 knapsack problems. Expert
Syst. Appl. 2015, 42, 5337–5355. [CrossRef]

26. Mahdavi, M.; Fesanghary, M.; Damangir, E. An improved harmony search algorithm for solving optimization problems. Appl.
Math. Comput. 2007, 188, 1567–1579. [CrossRef]

27. Omran, M.G.; Mahdavi, M. Global-best harmony search. Appl. Math. Comput. 2008, 198, 643–656. [CrossRef]
28. Wang, C.M.; Huang, Y.F. Self-adaptive harmony search algorithm for optimization. Expert Syst. Appl. 2010, 37, 2826–2837.

[CrossRef]
29. Zhan, S.H.; Zhang, Z.J.; Wang, L.J.; Zhong, Y.W. List-Based Simulated Annealing Algorithm with Hybrid Greedy Repair and

Optimization Operator for 0-1 Knapsack Problem. IEEE Access 2018, 6, 54447–54458. [CrossRef]
30. Zhan, S.; Wang, L.; Zhang, Z.; Zhong, Y. Noising methods with hybrid greedy repair operator for 0–1 knapsack problem. Memetic

Comput. 2019, 12, 37–50. [CrossRef]
31. Ervural, B.; Hakli, H. A binary reptile search algorithm based on transfer functions with a new stochastic repair method for 0–1

knapsack problems. Comput. Ind. Eng. 2023, 178, 109080. [CrossRef]
32. Abdel-Basset, M.; Mohamed, R.; Sallam, K.M.; Chakrabortty, R.K.; Ryan, M.J. BSMA: A novel metaheuristic algorithm for

multi-dimensional knapsack problems: Method and comprehensive analysis. Comput. Ind. Eng. 2021, 159, 107469. [CrossRef]
33. Kaur, S.; Awasthi, L.K.; Sangal, A.L.; Dhiman, G. Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm

for global optimization. Eng. Appl. Artif. Intell. 2020, 90, 103541. [CrossRef]
34. Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications.

Future Gener. Comput. Syst. 2019, 97, 849–872. [CrossRef]
35. Abdel-Basset, M.; Mohamed, R.; Mirjalili, S. A binary equilibrium optimization algorithm for 0–1 knapsack problems. Comput.

Ind. Eng. 2021, 151, 106946. [CrossRef]
36. Hakli, H. BinEHO: A new binary variant based on elephant herding optimization algorithm. Neural Comput. Appl. 2020,

32, 16971–16991. [CrossRef]
37. Chen, Z.; Zhong, Y.; Lin, J. Hybrid greedy Genetic Algorithm for solving 0-1 knapsack problem. J. Comput. Appl. 2021, 41, 87.
38. Pisinger, D. Where are the hard knapsack problems? Comput. Oper. Res. 2005, 32, 2271–2284.
39. Abdel-Basset, M.; Mohamed, R.; Chakrabortty, R.K.; Ryan, M.; Mirjalili, S. New binary marine predators optimization algorithms

for 0–1 knapsack problems. Comput. Ind. Eng. 2021, 151, 106949. [CrossRef]

http://dx.doi.org/10.1016/j.asoc.2012.11.048
http://dx.doi.org/10.1023/A:1009642405419
http://dx.doi.org/10.1287/opre.5.2.266
http://dx.doi.org/10.1287/mnsc.45.3.414
http://dx.doi.org/10.1287/mnsc.13.9.723
http://dx.doi.org/10.1287/opre.18.2.306
http://dx.doi.org/10.5815/ijisa.2019.02.02
http://dx.doi.org/10.11591/ijeecs.v1.i3.pp411-418
http://dx.doi.org/10.1007/s00521-015-2135-1
http://dx.doi.org/10.1007/s12293-016-0211-4
http://dx.doi.org/10.1016/j.compeleceng.2017.12.014
http://dx.doi.org/10.1016/j.asoc.2014.02.010
http://dx.doi.org/10.3233/IFS-141500
http://dx.doi.org/10.1080/18756891.2016.1256577
http://dx.doi.org/10.1016/j.eswa.2015.02.015
http://dx.doi.org/10.1016/j.amc.2006.11.033
http://dx.doi.org/10.1016/j.amc.2007.09.004
http://dx.doi.org/10.1016/j.eswa.2009.09.008
http://dx.doi.org/10.1109/ACCESS.2018.2872533
http://dx.doi.org/10.1007/s12293-019-00288-z
http://dx.doi.org/10.1016/j.cie.2023.109080
http://dx.doi.org/10.1016/j.cie.2021.107469
http://dx.doi.org/10.1016/j.engappai.2020.103541
http://dx.doi.org/10.1016/j.future.2019.02.028
http://dx.doi.org/10.1016/j.cie.2020.106946
http://dx.doi.org/10.1007/s00521-020-04917-4
http://dx.doi.org/10.1016/j.cie.2020.106949

Algorithms 2024, 17, 478 16 of 16

40. Hashim, F.A.; Hussain, K.; Houssein, E.H.; Mabrouk, M.S.; Al-Atabany, W. Archimedes optimization algorithm: A new
metaheuristic algorithm for solving optimization problems. Appl. Intell. 2021, 51, 1531–1551. [CrossRef]

41. Pisinger, D. Instances of 0/1 Knapsack Problem. 2018. Available online: https://github.com/likr/kplib (accessed on 17 October 2024).
42. Ezugwu, A.E.; Pillay, V.; Hirasen, D.; Sivanarain, K.; Govender, M. A comparative study of meta-heuristic optimization algorithms

for 0–1 knapsack problem: Some initial results. IEEE Access 2019, 7, 43979–44001. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s10489-020-01893-z
 https://github.com/likr/kplib
http://dx.doi.org/10.1109/ACCESS.2019.2908489

	Introduction
	Related Work
	List-Based Threshold Algorithm
	Initialize the List of Threshold Values
	Iteration of the Algorithm
	Conservation of Threshold Strategy
	Pseudocode of LBTA

	0–1 KP

	LBTA Algorithm with Enhanced Local Search for 0–1 KP
	Solution Representation
	The Initialization and Update of Threshold List
	Improved Neighbor Operator
	Hybrid Greedy Repair and Optimized Operator
	The Framework of the LBTA Algorithm for 0–1 KP

	Behaviors Analysis
	Parameters Settings
	Performance Tuning for the Feasible Bit-Flip Operator

	Competitiveness of the LBTA Algorithm
	Competitiveness of the LBTA Algorithm on the First Set of Instances
	Competitiveness of the LBTA Algorithm on the Second Set of Instances

	Conclusions
	References

