
Citation: Pintér, J.D.; Castillo, I.;

Kampas, F.J. Nonlinear Optimization

and Adaptive Heuristics for Solving

Irregular Object Packing Problems.

Algorithms 2024, 17, 480. https://

doi.org/10.3390/a17110480

Academic Editor: Roberto

Montemanni

Received: 18 July 2024

Revised: 28 September 2024

Accepted: 16 October 2024

Published: 25 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Nonlinear Optimization and Adaptive Heuristics for Solving
Irregular Object Packing Problems
János D. Pintér 1,* , Ignacio Castillo 2 and Frank J. Kampas 3

1 Department of Management Science and Information Systems, Rutgers University, Piscataway, NJ 08854, USA
2 Lazaridis School of Business and Economics, Wilfrid Laurier University, Waterloo, ON N2L 3C7, Canada;

icastillo@wlu.ca
3 Physicist at Large Consulting LLC, Bryn Mawr, PA 19010, USA; frank@physicistatlarge.com
* Correspondence: jpinter@business.rutgers.edu

Abstract: We review and present several challenging model classes arising in the context of finding
optimized object packings (OP). Except for the smallest and/or simplest general OP model instances,
it is not possible to find their exact (closed-form) solution. Most OP problem instances become in-
creasingly difficult to handle even numerically, as the number of packed objects increases. Specifically,
here we consider classes of general OP problems that can be formulated in the framework of nonlin-
ear optimization. Research experience demonstrates that—in addition to utilizing general-purpose
nonlinear optimization solver engines—the insightful exploitation of problem-specific heuristics can
improve the quality of numerical solutions. We discuss scalable OP problem classes aimed at packing
general circles, spheres, ellipses, and ovals, with numerical (conjectured) solutions of non-trivial
model instances. In addition to their practical relevance, these models and their various extensions
can also serve as constrained global optimization test challenges.

Keywords: optimized object packings; general (irregular) packings; scalable models of packing circles,
spheres, ellipses, and ovals; model implementations; nonlinear optimization; heuristics; illustrative
numerical results

1. Introduction, Technical Challenges, and Contributions
1.1. Introduction

Given a finite collection of objects, a typical packing goal is to place these objects
in a non-overlapping configuration into an optimized container(s). This concise generic
problem statement covers a vast range of packing problems of theoretical and practical
significance. Finding optimized object packings is among the significant applications of
Operations Research and Management Science.

Object-packing problems, questions, and puzzles have been of interest for a long
time. Aste and Weaire [1] explore the history of packing various objects and structures in
the context of mathematics, physics, chemistry, and biology. To appreciate some packing
challenges, visit, e.g., the websites of Friedman [2] and Specht [3], or Wikipedia’s topical
page [4], with links to a selection of further websites.

Many of the packing problems presented by these websites deal with packing identical
objects—such as triangles, squares, circles, and spheres—into two- or three-dimensional
optimized containers such as minimal-size polygons, circles, semi-circles, spheres, and
boxes. In some alternative model formulations, given a certain type of container of unit size,
the goal is to find the maximal size for a given set of identical items that can be packed into
the container: consult, e.g., Castillo et al. [5] for a circle packing model with a unit square
container, with reference to related model versions. The assumption of identical packing
objects leads to a problem structure that has substantial symmetries: such structures can
often be exploited, to find promising initial configurations—in some cases, even to find
provably optimal packings.

Algorithms 2024, 17, 480. https://doi.org/10.3390/a17110480 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a17110480
https://doi.org/10.3390/a17110480
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0003-4909-7619
https://orcid.org/0000-0003-2932-5100
https://orcid.org/0000-0001-6749-7136
https://doi.org/10.3390/a17110480
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a17110480?type=check_update&version=1

Algorithms 2024, 17, 480 2 of 19

Our article focuses on packing problems with a finite number of general (in principle,
arbitrary) objects to be packed into various types of finite-size containers. Such models are
often somewhat informally referred to as irregular packings. Irregular packing needs arise
in many practical applications such as additive manufacturing, communication network
design, crystallography, dashboard layout design, engineering design, facility dispersion,
facility layout, facility location, fiber optic cabling (and other types of cabling) design,
furniture making, garment and shoe manufacturing, material design, optimized (bin,
cargo, container, pallet, vehicle) loading, and raw material cutting. Important and hard-to-
handle additional considerations can be related to load configuration, balancing, loading
preferences, sequencing, and scheduling aspects. Without going into further details here,
consult, e.g., Alvarez-Valdes et al. [6], Bennell and Oliveira [7], and Scheithauer [8], with
extensive reference lists.

Let us also mention some specific examples of OP applications. The contributing
authors of the volume edited by Fasano and Pintér [9] discuss the packing of hazardous
containers on ships, dynamic packings for datacenter resource management, the optimized
packing of free-form objects in engineering design, non-standard packing problems arising
in space engineering applications, cutting and packing problems with placement con-
straints, container loading using heuristics, the design of optimal LED streetlights, approxi-
mate packing approaches, robust designs for circle coverings of a square, the optimized
packing of jobs in spatial scheduling, optimized object packings using quasi-Φ-functions,
graph-coloring models, and metaheuristics for packing applications.

1.2. Technical Challenges

Object-packing problems—including irregular packings—are notoriously hard due to
their combinatorial complexity, combined with the computational difficulty of enforcing
non-overlap and containment constraints. Direct analytical approaches are not viable to
solve such general problems to optimality (except in certain cases, for the smallest prob-
lem instances). The symmetry structure implied by packing identical objects is absent,
and good-quality numerical solution “guesses” may not be readily available. Therefore,
in order to find conjectured (approximate) numerical solutions, continuous and com-
binatorial optimization—typically in combination with problem-specific insight, rules,
and heuristics—have become the tools of choice. To illustrate this point, consult, e.g.,
Dowsland et al. [10], Bennell and Oliveira [7,11], Fasano [12,13], Stoyan et al. [14–16],
Leao et al. [17], and Oh et al. [18], with further examples cited later on in this work.

The joint consideration of continuous and combinatorial optimization aspects of pack-
ing problems can be handled by appropriately tailored mixed-integer linear or nonlinear
optimization models and solution techniques. Scheithauer [8] discusses the fundamental
concepts, modeling, and solution approaches to several standard allocation, cutting, and
packing problems. The corresponding models are handled by various techniques such as
mixed-integer linear programming, nonlinear programming, constraint programming, and
problem-dependent heuristics.

1.3. Contributions

In this article, we present broad classes of irregular packing problems and discuss
approaches to their numerical solution. We focus on packing problems in which all objects
can be freely positioned within the container. For this reason, we omit the discussion of
decisions related to positioning items along a (small) set of fixed directions, which would
require the introduction of integer decision variables. First, we introduce a continuous
nonlinear optimization modeling framework applicable to a broad range of OP problems.
Next, we provide a concise review of algorithmic approaches to packing problems, focusing
on irregular packings. We introduce and discuss several scalable packing problem classes
and their implementation in optimization modeling environments. The numerical solution
of the resulting models is frequently based on nonlinear optimization combined with
problem-specific heuristics. We present illustrative numerical test results for several scalable

Algorithms 2024, 17, 480 3 of 19

model types. These numerical results were obtained using our (average capacity) personal
computers running under Windows OS versions, with Intel processors, and with 16 to 32
Gigabytes of RAM. All results are available upon request.

2. Continuous Nonlinear Optimization
2.1. Problem Statement

The object configuration problems discussed in this article can be formulated by
applying the following nonlinear programming (NLP) model framework.

NLP:

(1) Minimize f (x) under the conditions x ∈ D.
The feasible set D is defined as

(2) D :=
{

x : li ≤ xi ≤ ui for i = 1, . . . , n, gj(x) ≤ 0 for j = 1, . . . , m
}

.

Here, x = (x1, . . . , xn) ∈ Rn denotes the n-vector of decision variables; we assume
that the objective function f : Rn → R is continuous, without further specifications at
this point. We also assume that the set of feasible solutions D is non-empty, closed, and
bounded: D is defined by n pairs of finite box constraints li ≤ xi ≤ ui for i = 1, . . . , n, and
m general functional constraints g = (g1, . . . , gm). The vectors l ∈ Rn, u ∈ Rn define the
component-wise lower and upper bounds of x; g : Rn → Rm is the m-vector of continuous
function constraints. In the context of our discussion, we can assume that f and/or some
components gj of g are nonlinear functions. Note also that while in purely box-constrained
optimization problems m = 0, in OP problems typically m > 0.

For completeness, we remark that binary variables y ∈ {0, 1} can be formally han-
dled by models with continuous variables, e.g., by adding the constraints 0 ≤ y ≤ 1
and y(1 − y) ≤ 0. The added nonlinear constraint is nonconvex, thereby numerically
inconvenient: here, we only wish to point out the formal handling of a binary variable
by a continuous variable. Similarly, more general integer variables can be deduced into
continuous variables following their binary decomposition. Therefore, continuous non-
linear optimization models formally cover the entire class of mixed-integer nonlinear
programming models.

2.2. Global Optimization for Object Packings

Notice the absence of the frequently postulated model convexity assumptions: con-
vexity would be implied, e.g., by requiring that f and all components gj, j = 1, . . . , m,
are convex functions, leading to essentially unimodal problems (in terms of their unique
optimum value). In the absence of such convexity guarantees, instances of models (1)–(2)
could have multiple local optima: consequently, we are interested in finding the globally
optimal solution(s)—as opposed to finding one of the local optima. In object configuration
problems, model convexity cannot be assumed: the OP model examples discussed in this
work are all non-convex.

Observe next that—by the classical extreme value theorem of Weierstrass—the pos-
tulated assumptions (D is compact, f is continuous) guarantee that the NLP model has a
globally optimal solution set X∗. Each x∗ ∈ X∗ is a globally optimal solution; f ∗ = f (x∗)
the global optimum value. The set X∗ often—but not always—consists of a single point
x∗: we think that this is the typical scenario in irregular object-packing problems without
symmetries, while models with identical objects have many equivalent global solutions.

Generally speaking, OP problems are notoriously hard. Finding the solution set
X∗—or finding just one global solution x∗ ∈ X∗—of model (1)−(2) using a purely analytical
solution methodology is not possible. Finding X∗ numerically can also become very
challenging, since—as a rule—the difficulty of solving larger model instances is rapidly
increasing. Additional challenges arise due to the typically “complicated” feasible set D.
To illustrate the latter aspect, note that the no-overlap constraints are often nonconvex, and
that their number increases quadratically as a function of the number of packed objects.
Given these potentially massive difficulties, a local scope search for the best configuration
is clearly insufficient on its own. A global search strategy—if carried out efficiently—leads

Algorithms 2024, 17, 480 4 of 19

to high-quality feasible solutions, sometimes even to the true numerical global solution!
These observations are also supported by our numerical results, based on solving various
instances of hard packing problems, reviewed later in this article.

In recent decades, global optimization (GO) has become a well-established research
area: there exists a large number of books and thousands of articles that are devoted to
the subject of GO. Here we only refer to the Handbook of Global Optimization volumes
edited by Horst and Pardalos [19] and Pardalos and Romeijn [20]. The key theoretical
results regarding the most important GO model types and algorithmic solution strategies
have been followed by software implementations that are used to handle a range of GO
applications. Interested readers should consult, e.g., Pintér [21–23] for discussions with
extensive references to GO algorithms, software, benchmarking, and applications.

The development and verification of robust and efficient GO software requires prac-
tically important and challenging test problems. The most widely used “classical” GO
test problems are small-scale, either box-constrained models, or have only a handful of
constraints: consult, e.g., Floudas et al. [24]. Hence, their numerical solution does not
pose a serious challenge to state-of-the-art GO software on today’s computing platforms.
The scalable object-packing models discussed in this article are—or can become—useful
addenda to GO test libraries.

3. A Review of Approaches to Irregular Object Packings
3.1. Algorithmic and Heuristic Approaches

We discuss these approaches together, since they are often utilized in problem-type
dependent combinations.

Dowsland and Dowsland [25] offer an early survey on the application of Operational
Research techniques to the solution of packing problems. Their survey is focused on the
modeling and solution of practically motivated problems in two and three dimensions:
both exact and heuristic solution approaches are reviewed. They point out the well-
known fact that even the “simple” rectangular packing problem class is known to be
“hard” (in technical terms, NP-complete). Therefore, it is often impossible to provide exact
solutions for sizeable problems within a reasonable computational time. Two-dimensional
rectangular packing, pallet loading, one- and two-dimensional bin packing, strip packing,
and three-dimensional container-packing problems are discussed, with references. For
handling the more difficult problem types, common sense-based insights and heuristic
approaches are also utilized. In the case of packing non-rectangular objects, the approaches
vary according to their geometry. The authors also note the potential of stochastic modeling
and randomized solution approaches: an observation that remains valid for the case of
handling irregular packings. Let us emphasize that irregular packings typically lead to even
far more difficult problem types than the rectangular packings discussed by the authors.

Bennell and Oliveira [11] present a tutorial with the goal of covering the core geometric
approaches and methods employed by researchers in the cutting and packing of irregular
shapes. They note the need for geometric tools to handle the wide variety and complexity
of shapes that need to be packed. The paper describes the operations of several different
approaches for dealing with the geometry required in the solution of packing problems.
The methods discussed include raster methods (which divide the continuous stock sheet
into discrete areas), trigonometric analysis (of packed polygons), no-fit polygons (used
to check whether two polygons overlap or not), and Φ-functions (used to represent all
mutual positions of two objects, to decide whether they overlap or not). Let us add here
that Bennell et al. [26] provide a review of some earlier studies that use Φ-functions, more
recent applications will be referred to in this work.

Bennell and Oliveira [7] discuss irregular shape nesting (packing) problems. They
emphasize the essential need for utilizing heuristic approaches. They also propose dividing
the approaches into methods that work with partial solutions, building these up to a final
design (constructive heuristics), and methods that work with complete proposed solutions
where changes are made in order to find improvements (improvement heuristics). The

Algorithms 2024, 17, 480 5 of 19

order in which the pieces are selected for inclusion in a constructive heuristic can be based
on fixed rules, dynamic selection, and randomization, with or without backtracking options.
These choices can have a significant influence on the resulting (proposed) solution. Working
with complete solutions requires the design and application of some efficient local search
heuristics, which depend on the problem representation. The problem can be considered
in its entirety (physical layout), or as a sequence of the objects to pack to arrive at the
final layout. Moves can be based on swapping objects and inserting objects. The authors
summarize their findings in an insightful diagram (cf. [7], Figure 18), which displays a
proposed organization of nesting solution approaches.

Fasano [12] presents and discusses research carried out in support of the cargo accom-
modation of space vehicles. The typical goal of such studies is to maximize the loaded
cargo, while also considering additional requirements. The packed items can often be mod-
eled as parallelepipeds, but this approximation is frequently not acceptable. Additional
considerations, such as load balancing, give rise to even more challenging non-standard
packing problems. The article first considers the orthogonal packing of “Tetris-like” items
within a convex domain, and then the packing of polygons with continuous rotations in a
convex domain. The proposed solution approaches are based on mixed-integer linear or
nonlinear programming (MILP, MINLP).

Fasano [13] summarizes the results of his research aimed at tackling non-standard
packing issues arising in space engineering and logistics. In these applications, the necessity
of exploiting the spacecraft load capacity, as much as possible, represents a paramount
challenge. He proposes a global optimization framework based on MILP, MINLP, and
heuristic strategies. His study offers insights related to possible applications across several
engineering and industrial sectors, from transportation to manufacturing.

Jones [27] describes a general algorithm for nesting irregular shapes. The key idea
is to inscribe a selection of circles in each irregular shape and then relax the non-overlap
constraints for the shapes by replacing them with non-overlap constraints for the inscribed
circles. A specialized branch-and-bound algorithm with added heuristics is introduced to
find the initial inscribed circles that approximate the shapes. This work shows an interesting
connection between general circle packings (with possible overlaps among the circles) and
general irregular packings.

Leao et al. [17] review mathematical models for handling irregular packing problems.
These hard nesting problems had been addressed earlier, both in the scientific literature and
in real-world applications, applying heuristic and meta-heuristic techniques. More recently,
a variety of mathematical models have been proposed for nesting problems. These models
can be used either to prove optimal solutions for certain types of nesting problems or can
frequently serve as the basis of problem type-specific heuristic approaches to improve the
approximate solution found by optimization.

Pankratov et al. [28] consider packing irregular solid objects in a cuboid of minimum
volume. Each considered object type is composed of a number of convex shapes, such
as oblique and right circular cylinders, cones, and truncated cones. New analytical tools
are introduced to state placement constraints for oblique shapes. Using the Φ-function
technique originally proposed by Stoyan and subsequently utilized in studies with his
colleagues, the packing problem is formulated as a nonlinear programming problem. The
solution approach is illustrated by numerical examples.

3.2. An Algorithm Framework for Object Packings

Based on the literature reviewed and the preceding discussion, a conceptual frame-
work for developing object-packing algorithms can be summarized as follows (obviously,
implementations will be problem-specific).

1. Create an initial feasible solution, or—more generally—a set of candidate solutions.
It is possible to build candidate solutions sequentially (adding objects piecewise) or to
create complete candidate solutions. Both deterministic and stochastic approaches can be
used to find such initial packing configurations. The availability of feasible solutions leads

Algorithms 2024, 17, 480 6 of 19

to establishing bounds related to the quality of the current best solution, which can be
compared to estimates of the best possible solution (simple estimates are often easy to find).
Let us point out that finding credible solution estimates can be straightforward in certain
model types: notable cases are some scalable models discussed later on in this work.

2. Using the initial feasible solution(s), solve numerically the resulting optimization
model. Depending on the model type considered, solution approaches may involve global
or local NLP with continuous decision variables, integer programming (IP) with discrete
decision variables, or mixed variable (MILP and MINLP) models. In all these cases, finding
high-quality feasible and near-optimal solutions to packing models typically requires global
scope search techniques. Since it can be very hard to solve OP models to global optimality,
the solution obtained is typically only an approximation of the optimal solution.

3. In order to improve solution quality, one can apply various heuristic approaches.
Such methods can be based on meta-heuristic algorithms that help find approximate
solutions to complex optimization problems, with a computational effort that is deemed
reasonable. Examples of heuristic methods that can be put to good use in OP are basin
hopping, differential evolution, genetic algorithms, greedy randomized adaptive search,
neighborhood search, simulated annealing, swarm intelligence algorithms, and tabu search.
Problem-specific insight can motivate object sequencing, swapping, backtracking, and
other strategies, which become part of tailored meta-heuristic algorithms. A simple but
generally valid observation is that applying more insightful and sophisticated heuristics
can assist in finding higher-quality solutions to hard OP problems.

4. While executing stages 2 and 3, one can always compare the current candidate
solution(s) to the estimated best solution (we will comment later on finding solution
estimates). Such comparisons can be effectively used to establish algorithmic search
termination criteria. Obviously, this is most useful since in OP problems with continuous
decision variables the global scope search for the best solution theoretically could go on
infinitely, while in discrete variable spaces, the solution effort is subject to the “curse of
dimensionality”.

In addition to the cited OP-specific literature, we refer to three relevant volumes on
heuristics: Martí et al. [29], Gendreau and Potvin [30], and Taillard [31]. There are many
other works devoted to this very useful (and very fashionable) topic.

Next, we illustrate the application of various algorithmic approaches by numerically
solving instances from several OP model types.

4. General Circle Packings
4.1. Problem Statement

The general circle packing (GCP) problem discussed here is defined as follows. Given
N (in principle, arbitrary size) circles with radii ri for i = 1, . . . , N, find the minimum radius
r0 of the circular container that contains these N circles in a non-overlapping arrangement.
Assuming that the container is centered at the origin, we introduce the decision variables

(xi, yi) for the center of circle i, in addition to r0. Denote by eij =
√(

xi − xj
)2

+
(
yi − yj

)2

the Euclidean distance between the centers of circles i and j. Then, a possible model
formulation is

GCP:

(3) Minimize r0

(4) x2
i + y2

i ≤ (r0 − ri)
2 for i = 1, . . . , N

(5) (r i + rj
)2 ≤ eij

2
for i, j = 1, . . . , N, i < j.

The GCP model has 2N + 1 decision variables, N convex constraints (see (4)), and
N(N − 1)/2 nonconvex constraints (see (5)). The GCP model is an example of a scalable
object-packing model class: for a given N and given sequence of radii ri for i = 1, . . . , N,
we can directly create the corresponding model instance.

Algorithms 2024, 17, 480 7 of 19

4.2. GCP Literature Review

The GCP problem—including the special case in which all circles have the same
radius—has been studied by many researchers over several decades: some of these works
are cited next. We mention first the book by Szabó et al. [32] which presents an introduction
and history to the problem of packing equal circles into a square and some other containers,
with further packing examples. This work discusses both exact methods and stochastic
algorithms that can be applied or generalized to address packing problems.

Next, we highlight a few representative articles devoted to handling GCP problem
instances, using exact and heuristic methods. All cited works demonstrate the merits of
their proposed strategies, in terms of solution quality and computational efficiency on
specific model instances. As noted earlier, numerical difficulty rapidly increases as N
increases, and in most cases, only tentative (“best known”) solutions are presented. This
comment also applies to the forthcoming—more difficult—model classes discussed here.

In one of the earliest GCP studies, George et al. [33] discuss the problem of packing
circles into a rectangle using heuristic rules in different combinations. Due to the binary
consideration of whether to include a circle in the packing or not (after assigning priority
“weights” to each circle), they formulate an MINLP problem and propose heuristic proce-
dures to approximately solve it. Test models with up to 40 circles are based on the intended
application of the study (fitting pipes of different diameters into a shipping container).

Pintér and Kampas [34] propose the use of “pure” global optimization—without
heuristic enhancements—to test its applicability to selected identical CP and GCP problems.
For the GCP case, illustrative results are presented for packing 20 circles (without claiming
global optimality). They note the potential benefits of utilizing structural considerations
and heuristic initial arrangements.

Huang et al. [35] propose two new heuristics to solve the GCP problem. The first
one is a core heuristic, which selects the next circle to place according to the maximal hole
degree rule. The second heuristic uses a look-ahead strategy to improve the first one.

Addis et al. [36] combine monotonic basin hopping, randomized search, population-
based diversification, and local optimization to solve a given set of GCP problems. Basin
hopping (Wales and Doye [37]) is a global scope heuristic optimization technique that iter-
ates by performing random perturbations of candidate solutions, followed by efficient local
optimization. It is a particularly useful approach to global optimization in high-dimensional
landscapes with many close-to-optimal solutions, such as finding the minimum energy
structure for molecules, or—in the present context—solving irregular packing problems.
Addis et al. also apply variable space reduction by initially discarding the smallest circles to
pack. Their combination of exact and heuristic approaches led to the best overall solution
set for the Zimmermann GCP competition [38], based on a given set of model instances
with up to 50 circles.

To illustrate the point of finding ever-improving tentative solutions for model in-
stances, note that years after the GCP competition—which drew the attention of many
expert researchers—improved best known solutions have been found, as documented by
Specht [3]. This remark is also pertinent regarding the other model classes presented here,
which are substantially more difficult than the GCP model class.

Castillo et al. [5] discuss several circle-packing problem types with their industrial
applications and refer to exact and heuristic strategies for their solution. They review
related earlier research and present illustrative numerical results using global optimization
software packages. The results obtained are improved by implementing an a posteriori
refinement strategy that—based on a high-quality initial circle configuration—swaps all
pairs of adjacent-sized circles until no further local improvement is possible. They report
close-to-best-known numerical results for a GCP test problem class with up to 35 circles.

Al-Mudahka et al. [39] present an adaptive algorithm that incorporated nested parti-
tioning within a tabu search framework and apply diversification strategies to approximate
the global optimum in GCP problems. The tabu search component serves to identify

Algorithms 2024, 17, 480 8 of 19

the ordering of the packed circles, then nested partitioning is applied to determine the
circle positions.

Specht [40] proposes a method to detect voids in general circle packing configurations.
He notes that smaller circles often get stuck in trapped positions. Hence, the knowledge of
the structure of unoccupied areas or holes inside a packing is important to be able to move
trapped circles into free circular places or voids. The proposed algorithm for detecting such
voids in two-dimensional circle packings is based on a decomposition of the contact graph
of the circles. Combined with heuristic methods like object jumping, swaps, and shifts, this
approach can increase the solution quality significantly.

Romanova et al. [41] consider the GCP problem under additional balancing and
distance conditions, arising in the context of 3D printing. Two problems are studied: the
first minimizes the container’s radius, while the second maximizes the minimal distance
between circles, as well as between circles and the boundary of the container. Mathematical
models and solution strategies are presented and illustrated with computational results.

Without going into further details on the GCP problem and its variants, we refer to
several other studies that combine nonlinear optimization with various heuristics: consult,
e.g., Grosso et al. [42], Lü and Huang [43], Hifi and M’Hallah [44], López and Beasley [45],
Ryu et al. [46], He et al. [47], and Stoyan et al. [16].

4.3. Solving GCP Instances: Illustrative Results

Optimization model development environments can be used to efficiently formulate
and solve scalable object configuration problems. Scalable models require only some input
parameter changes (in GCP, the number of circles to pack and their sizes), in order to create
new instances. Typically, a range of global and local NLP solver engines are linked to the
leading optimization model development environments. This allows flexible solver option
changes and directly supports the comparative assessment of solver capabilities for a given
set of models. In our OP studies discussed here, we have been using the optimization
model development environment AMPL [48] and the scientific-technical computing system
Mathematica [49] with several available solver options.

The GCP model class is the simplest among the scalable OP models considered here.
However, it already poses a numerical challenge to solvers—even for the smallest model
instances. The results presented below illustrate this point, based on using six solver
options (CONOPT, IPOPT, LGO, LOQO, MINOS, and SNOPT) linked to AMPL.

Let us note here that the solver LGO is capable of determining high-quality numerical
solutions to global optimization problems that have (possibly many) locally optimal solu-
tions: for theoretical background and implementation details, consult [50–53]. The other
solvers CONOPT, IPOPT, LOQO, MINOS, and SNOPT are widely used local optimization
solvers: for summary information, consult, e.g., the AMPL website [48].

Table 1 includes the best-known results retrieved from [3], for instances of the GCP
model class with ri = i, for i = 1, . . . , N, N = 5, . . . , 10. The rate of deviation of the solver
solution f s from the best-known solution f ∗ is defined as f s

f ∗ : for high-precision solutions,
this rate is close to 1, while larger values indicate less precise numerical solutions.

Table 1. Comparison of solver performance on small GCP model instances.

No. of Circles 5 6 7 8 9 10

Best known 9.001397746 11.05704040 13.46211068 16.22174668 19.23319391 22.00019301

conopt 9.001397746 11.27687246 13.69914165 16.89847646 19.55248862 24.27842228
ipopt 9.001397671 11.53266465 13.69914153 16.63722613 20.15497158 23.37559224
lgo 9.001397749 11.05704040 13.69914165 16.22174668 19.76606329 22.55237926

loqo 9.001397757 11.53266476 13.69914168 16.63722632 20.15497177 23.38725283
minos 9.001397746 11.53266474 13.69914165 16.44050689 20.27681461 23.42606205
snopt 9.001397746 11.53266474 13.69913854 16.63722700 20.15497175 23.42606205

Algorithms 2024, 17, 480 9 of 19

Table 1. Cont.

No. of Circles 5 6 7 8 9 10

Deviation from best known

conopt 1.0000000 1.0198816 1.0176073 1.0417174 1.0166012 1.1035550
ipopt 1.0000000 1.0430155 1.0176073 1.0256125 1.0479264 1.0625176
lgo 1.0000000 1.0000000 1.0176073 1.0000000 1.0277057 1.0250992

loqo 1.0000000 1.0430155 1.0176073 1.0256125 1.0479264 1.0630476
minos 1.0000000 1.0430155 1.0176073 1.0134856 1.0542614 1.0648117
snopt 1.0000000 1.0430155 1.0176070 1.0256126 1.0479264 1.0648117

As these results indicate, all solvers easily handle the smallest GCP model instance
included here, but thereafter, all the local solvers fail to find the best solution. LGO, a global
scope solver—used here without any added heuristics—fares better than the local solvers:
in default usage mode, LGO finds the global solution in three out of six cases, but it misses
the global solution by 1.8% to 2.8% in the other three cases.

Table 1 merely serves to illustrate the optimization challenge implied by the proposed
model class, noting again that GCP is the simplest model class discussed here. The runtimes
for the local solvers—including LGO when used in local solver mode—for each of these
small-scale problems are just a fraction of a second. The LGO runtime—when used in
global solver mode—is 12.53 s for the largest model (with N = 10) included above.

To visualize the numerical solution of a GCP model, see Figure 1 below, which corre-
sponds to the 10-circle model instance from the Zimmermann GCP challenge. To handle
GCP models, we also used LGO linked to Mathematica with the product name MathOptimizer
Professional [53]. All visual illustrations in this article were produced using Mathematica.

Algorithms 2024, 17, x FOR PEER REVIEW 9 of 20

Table 1. Comparison of solver performance on small GCP model instances.

No. of Circles 5 6 7 8 9 10
Best known 9.001397746 11.05704040 13.46211068 16.22174668 19.23319391 22.00019301

conopt 9.001397746 11.27687246 13.69914165 16.89847646 19.55248862 24.27842228
ipopt 9.001397671 11.53266465 13.69914153 16.63722613 20.15497158 23.37559224
lgo 9.001397749 11.05704040 13.69914165 16.22174668 19.76606329 22.55237926

loqo 9.001397757 11.53266476 13.69914168 16.63722632 20.15497177 23.38725283
minos 9.001397746 11.53266474 13.69914165 16.44050689 20.27681461 23.42606205
snopt 9.001397746 11.53266474 13.69913854 16.63722700 20.15497175 23.42606205

Deviation from best known
conopt 1.0000000 1.0198816 1.0176073 1.0417174 1.0166012 1.1035550
ipopt 1.0000000 1.0430155 1.0176073 1.0256125 1.0479264 1.0625176
lgo 1.0000000 1.0000000 1.0176073 1.0000000 1.0277057 1.0250992

loqo 1.0000000 1.0430155 1.0176073 1.0256125 1.0479264 1.0630476
minos 1.0000000 1.0430155 1.0176073 1.0134856 1.0542614 1.0648117
snopt 1.0000000 1.0430155 1.0176070 1.0256126 1.0479264 1.0648117

As these results indicate, all solvers easily handle the smallest GCP model instance
included here, but thereafter, all the local solvers fail to find the best solution. LGO, a
global scope solver—used here without any added heuristics—fares better than the local
solvers: in default usage mode, LGO finds the global solution in three out of six cases, but
it misses the global solution by 1.8% to 2.8% in the other three cases.

Table 1 merely serves to illustrate the optimization challenge implied by the proposed
model class, noting again that GCP is the simplest model class discussed here. The
runtimes for the local solvers—including LGO when used in local solver mode—for each
of these small-scale problems are just a fraction of a second. The LGO runtime—when
used in global solver mode—is 12.53 s for the largest model (with 𝑁 = 10) included
above.

To visualize the numerical solution of a GCP model, see Figure 1 below, which cor-
responds to the 10-circle model instance from the Zimmermann GCP challenge. To handle
GCP models, we also used LGO linked to Mathematica with the product name MathOpti-
mizer Professional [53]. All visual illustrations in this article were produced using Mathe-
matica.

Figure 1. A solved GCP model instance.

Figure 1. A solved GCP model instance.

5. Further Scalable Object Configuration Problems
5.1. Scalable Models

Conceptually, scalable object packings can be characterized by postulating that all
packed objects have a similar or identical geometric structure—while their sizes and shapes
still are or can be different to some extent, depending on the type of the objects. For
example, one can think of collections of circles, spheres, ellipses, or ovals to pack: next, we
will present models for the last three types of problems.

To create scalable optimization models of interest, we have to guarantee by suitable
model parameterization that the resulting models do not become “too simple” to handle.
Although infinite tessellations created in finite regions can have wonderful aesthetic value
(think of some historical mosaic designs or modern works by M.C. Escher and followers),
here we want to define finite packings, which become unbounded in size as the number
of objects increases. For example, in the GCP model class, we can consider a collection of
circles with radii ri = i1/2, or ri = i for i = 1, . . . , N to be packed into a corresponding

Algorithms 2024, 17, 480 10 of 19

container circle. In both of these cases, the size of the corresponding optimal container will
approach infinity, as N → ∞ .

Without going into further details, we remark that properly combined scalable OP
models directly lead to new scalable OP models. As an example, think of packing finite
collections of object types—each defined by iterative formulas—into a container.

In scalable OP problems with objects having the same basic geometry (such as collec-
tions of circles, or spheres, ellipses, ovals, triangles, rectangles, polygons, etc.), the number
of decision variables that serve to jointly describe the object positions is typically a linear
function of the number of objects considered. The number of constraints is partially dic-
tated by the pairwise non-overlapping criterion: the number of such constraints increases
quadratically with the number of packed objects. Additional variables and constraints may
be present, depending on the problem definition and structure. The GCP model class can
serve to illustrate the above observations.

For conceptual clarity, we refer to the typology of cutting and packing problems
suggested by Wäscher et al. [54], which facilitates the organization and categorization
of the OP literature. In terms of their problem classification, the GCP problem class and
each of the scalable model classes presented here are strongly heterogeneous assortment
problems with non-identical packed items and non-orthogonal layouts with free rotations
allowed, where one container is considered with a single objective (volume minimization)
in the presence of additional no-overlap and strict containment constraints.

To illustrate further scalable OP model classes, next, we discuss specific cases and
examples based on our related studies [5,55–60]. While [55] is a direct extension of the GCP
model, the three other model-types discussed are more complicated to describe: therefore,
for these models, only concise problem formulations are presented and illustrated here,
with reference to our related works.

For further examples of irregular OP problems with numerical solutions, consult, e.g.,
Fasano [12,13], Pankratov et al. [28], Romanova et al. [41], Duriagina et al. [61].

5.2. General Sphere Packings in Rd

This model type is a direct generalization of the GCP problem for arbitrary dimension
d > 2. Given a finite collection of d-dimensional spheres, our goal is to find the smallest
sphere in Rd that contains the given spheres in a non-overlapping arrangement. For
i = 1, . . . , N, let Si ⊂ Rd denote a d-sphere with radius ri > 0. Let S0 denote the container
d-sphere with radius r0. Similarly to the GCP model, we set c0 = 0 ∈ Rd as the center
of the container sphere and denote the (to be optimized) center position of sphere Si by
ci =

{
xi,1, xi,2, . . . , xi,d

}
. The Euclidean distance between the pair of d-sphere centers ci

and cj is denoted by eij = ||ci − cj||, where ||ci|| =
√

∑d
k=1 x2

i,k.
Applying this notation, the general sphere packing (GSP) model is formulated as

follows.
GSP:

(6) Minimize r0

(7) ||ci||2 ≤ (r0 − ri)
2 for i = 1, . . . , N

(8) (r i + rj
)2 ≤ eij

2
for i, j = 1, . . . , N, i < j.

To illustrate the numerical solution of GSP instances, below we present optimized
sphere configuration results with up to N = 50 spheres with radii ri for i = 1, . . . , N in
dimension d = 3. In our study, we used Mathematica and LGO linked to Mathematica on
one of our personal computers. For comparison, we also present results using a hybrid
heuristic optimization approach. For further details, consult Pintér et al. [55].

For d = 2, our numerical results are, on average, within 1% of the entire set of best-
known results for the Zimmermann [38] model instances in R2. We found new (conjectured)
sphere packings for previously unexplored generalizations of the same model class in Rd

with d = 3, 4, 5, as can be seen in the examples in Table 2. As an example, Figure 2 displays
the numerically optimized 10-sphere instance in R3.

Algorithms 2024, 17, 480 11 of 19

Table 2. Sphere packings in Rd with d = 3, 4 : illustrative results.

LGO Result Hybrid Result

Rd N Objective r0 Time (s) Objective r0 Time (s)

R3 10 19.5361 2.1 19.5361 23
15 31.1456 6.6 31.3662 51.6
20 44.8945 22.9 44.4319 172.5
25 59.5338 73.6 58.7339 293.4
30 74.9691 202.4 74.2992 232.9
50 144.317 4231.9 142.834 1360

R4 10 18.924 2.3 18.8575 22.9
15 30.4039 8.2 30.4039 34.6
20 41.4775 28.4 41.4858 74.3
25 53.8574 95 53.5299 83.7
30 66.5128 246.7 66.6449 102.7
50 121.820 5056.9 121.806 552.6

Algorithms 2024, 17, x FOR PEER REVIEW 11 of 20

Applying this notation, the general sphere packing (GSP) model is formulated as fol-
lows.

GSP:
(6) Minimize 𝑟଴
(7) ห|𝑐𝑖|หଶ ≤ (𝑟଴– 𝑟௜)ଶ for 𝑖 = 1, … , 𝑁
(8) (𝑟௜ + 𝑟௝)ଶ ≤ 𝑒௜௝ଶ

 for 𝑖, 𝑗 = 1, … , 𝑁, 𝑖 < 𝑗.
To illustrate the numerical solution of GSP instances, below we present optimized

sphere configuration results with up to 𝑁 = 50 spheres with radii 𝑟௜ for 𝑖 = 1, … , 𝑁 in
dimension 𝑑 = 3. In our study, we used Mathematica and LGO linked to Mathematica on
one of our personal computers. For comparison, we also present results using a hybrid
heuristic optimization approach. For further details, consult Pintér et al. [55].

For 𝑑 = 2, our numerical results are, on average, within 1% of the entire set of best-
known results for the Zimmermann [38] model instances in 𝑅ଶ. We found new (conjec-
tured) sphere packings for previously unexplored generalizations of the same model class
in 𝑅ୢ with 𝑑 = 3, 4, 5, as can be seen in the examples in Table 2. As an example, Figure 2
displays the numerically optimized 10-sphere instance in 𝑅ଷ.

Table 2. Sphere packings in 𝑅ୢ with 𝑑 = 3, 4: illustrative results.

 LGO Result Hybrid Result 𝑹𝒅 𝑵 Objective 𝒓𝟎 Time (s) Objective 𝒓𝟎 Time (s) 𝑅ଷ 10 19.5361 2.1 19.5361 23
 15 31.1456 6.6 31.3662 51.6
 20 44.8945 22.9 44.4319 172.5
 25 59.5338 73.6 58.7339 293.4
 30 74.9691 202.4 74.2992 232.9
 50 144.317 4231.9 142.834 1360 𝑅ସ 10 18.924 2.3 18.8575 22.9
 15 30.4039 8.2 30.4039 34.6
 20 41.4775 28.4 41.4858 74.3
 25 53.8574 95 53.5299 83.7
 30 66.5128 246.7 66.6449 102.7
 50 121.820 5056.9 121.806 552.6

Figure 2. A solved GSP model instance.

Without going into further details, let us point out that—similarly to generalizing
GCP to GSP—all three model classes considered next can be directly generalized to arbi-
trary dimension 𝑑 > 2, with corresponding objects and containers defined in 𝑅ௗ.

Figure 2. A solved GSP model instance.

Without going into further details, let us point out that—similarly to generalizing GCP
to GSP—all three model classes considered next can be directly generalized to arbitrary
dimension d > 2, with corresponding objects and containers defined in Rd.

5.3. General Ellipse Packings in R2

Given a set of general ellipses i = 1, . . . , N in R2, our goal here is to find their packing
into an optimized regular polygon. We will refer to this class of problems as GEP models.
Specifically, for a given set of ellipses with arbitrary size and orientation, and a given integer
M ≥ 3, our objective is to minimize the apothem (the line segment from the center of the
polygon to the midpoint of one of its sides) of the regular M-polygon container. Therefore,
packing ellipses into a regular polygon requires i) the determination of the maximal distance
from the center of all polygon faces to each ellipse boundary (in order to contain all ellipses),
and ii) the finding of the minimal distance between all pairs of the ellipses (in order to
avoid ellipse overlaps as a function of ellipse center locations and orientations). The first
requirement is necessary to determine the length of the polygon’s apothem α, which is then
to be minimized. The second requirement serves to prevent the ellipses from overlapping.
Explicit analytical formulas for the first requirement can be directly derived. However,
for the second requirement, deriving explicit analytical formulas would be complicated.
Therefore, the ellipse-packing model class is based on embedding optimization calculations,
using Lagrange multipliers λ, into the overall optimization strategy.

We summarize the key modeling steps below, referring to Kampas et al. [57] for
details. Omitting index i for simpler notation, equation e(a, b, xc, yc, θ; x, y) = 0 defines the

Algorithms 2024, 17, 480 12 of 19

boundary of an ellipse with semi-major and semi-minor axes a and b, centered at {xc, yc}
and rotated counterclockwise by angle θ. The value of e(a, b, xc, yc, θ; x, y) is negative for
all points (x, y) located inside the ellipse, zero for all points on the ellipse boundary, and
positive for all points outside the ellipse. Here, {xc, yc} and θ are the primary decision
variables for each ellipse i: these variables are denoted by

(
xc

i , yc
i
)

and θi for i = 1, . . . , N.
All pairs of packed ellipses are prevented from overlapping by requiring that the minimum
value of the ellipse equation for the first ellipse (ellipse i) for any point on the second
ellipse (ellipse j) must be greater than a sufficiently small parameter ϵ ≥ 0 (this way,
e(a, b, xc, yc, θ; x, y) is used to define the Φ-function, referred to earlier, for pairs of general
ellipses). This non-overlapping requirement between ellipses i and j is met utilizing the
embedded Lagrange multipliers λij using partial derivatives of the ellipse equation.

In terms of scalability, ellipse-packing problem instances could be generated, e.g.,
by defining the following input structure: ai = i−1/2, bi = ai/c for i = 1, . . . , N, where
c > 0 denotes the eccentricity of the ellipses. Note that with c = 1, this problem becomes
a GCP problem for circles with radii ai = 1/√i . In [57], MathOptimizer Professional as
well as IPOPT linked to Mathematica were used as solvers. IPOPT is the COIN-OR Interior
Point Optimizer [62], based on research by Wächter and Biegler [63]. The IPOPT link to
Mathematica is documented at [64].

In Table 3, we present illustrative results for the above-mentioned scalable model class
with the parameters c = 2 and M = 5, 10 (corresponding to regular pentagon and decagon
containers). See Figure 3 for a solved GEP model instance.

Table 3. Illustrative GEP model results.

Container Sides N Objective α Container Area Time (s)

M = 5 5 1.3535 4.3560 22.1
6 1.3909 4.6001 29.7
7 1.4281 4.8492 40.8
8 1.4614 5.0780 52.6
9 1.4904 5.2815 72.7

10 1.5118 5.4340 85.8

M = 10 5 1.1979 4.2170 79.4
6 1.2422 4.5350 106
7 1.2777 4.7978 134
8 1.2974 4.9472 178
9 1.3255 5.1635 224.4

10 1.3481 5.3408 294.7

Algorithms 2024, 17, x FOR PEER REVIEW 13 of 20

 8 1.2974 4.9472 178
 9 1.3255 5.1635 224.4
 10 1.3481 5.3408 294.7

Figure 3. A solved GEP model instance.

For further details and numerical results, consult Kampas et al. [56] where we study
ellipse packings in an optimized circular container, and Kampas et al. [57] where we dis-
cuss the case of optimized regular polygon containers.

5.4. General Oval Packings in 𝑅ଶ

Given a set of generalized ellipses (egg-shaped objects), referred to here as ovals, our
goal is to find their packing into an optimized regular polygon in 𝑅ଶ. We will refer to this
class of problems as GOP models. As above, the objective is to minimize the area of the reg-
ular polygon that contains a given collection of ovals with arbitrary size and orientation.

The extension from packing ellipses to packing ovals is not trivial. Here we provide
only a brief summary, referring to Kampas et al. [58] for details. The perimeter of an oval
is defined by (𝑥 𝑎⁄)௣ + 𝑒௧௫(𝑦 𝑏⁄)௣ − 1 = 0, where (𝑥, 𝑦) denotes the location of a point on
the oval perimeter, parameters 𝑎 > 0 and 𝑏 > 0 are the semi-major and semi-minor axes
of the oval, 𝑝 ≥ 2 is an even integer, and 𝑡 ≥ 0 is a distortion factor. In general, an oval
can be defined with arbitrary size and orientation parameters, noting that the size and
distortion factors are constrained, in order to maintain the oval’s convexity. The input pa-
rameters to define an optimization problem instance are the number of sides for the con-
tainer and the semi-major axes, semi-minor axes, exponent, and distortion factor for each
oval to be packed.

The primary decision variables are the polygon’s apothem and the center position
and orientation of the packed ovals. There are two sets of secondary variables. The first
set consists of the positions of the distance-maximizing lines pointing from each oval
boundary to the center of each of the polygon faces. The second set is given by the posi-
tions of the points on one of each pair of ovals, which minimizes the value of the equation
describing the other oval. These secondary variables are used to define the model con-
straints. Specifically, the first set of secondary variables is used to represent the constraints
that keep the ovals inside the container. The second set of secondary variables is used to
prevent the ovals from overlapping. These constraint sets are also generated by embedded
Lagrange multiplier conditions.

Omitting index 𝑖 (for simpler notation), equation 𝑒(𝑎, 𝑏, 𝑝, 𝑡, 𝑥௖, 𝑦௖, 𝜃; 𝑥, 𝑦) = 0 de-
fines the perimeter of an oval centered at {𝑥௖, 𝑦௖} and rotated counterclockwise by angle 𝜃 . As before, together with the apothem 𝛼 , (𝑥௖, 𝑦௖) and 𝜃 are the primary decision

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

Figure 3. A solved GEP model instance.

Algorithms 2024, 17, 480 13 of 19

For further details and numerical results, consult Kampas et al. [56] where we study
ellipse packings in an optimized circular container, and Kampas et al. [57] where we discuss
the case of optimized regular polygon containers.

5.4. General Oval Packings in R2

Given a set of generalized ellipses (egg-shaped objects), referred to here as ovals, our
goal is to find their packing into an optimized regular polygon in R2. We will refer to this
class of problems as GOP models. As above, the objective is to minimize the area of the
regular polygon that contains a given collection of ovals with arbitrary size and orientation.

The extension from packing ellipses to packing ovals is not trivial. Here we provide
only a brief summary, referring to Kampas et al. [58] for details. The perimeter of an oval is
defined by (x/a)p + etx(y/b)p − 1 = 0, where (x, y) denotes the location of a point on the
oval perimeter, parameters a > 0 and b > 0 are the semi-major and semi-minor axes of the
oval, p ≥ 2 is an even integer, and t ≥ 0 is a distortion factor. In general, an oval can be
defined with arbitrary size and orientation parameters, noting that the size and distortion
factors are constrained, in order to maintain the oval’s convexity. The input parameters
to define an optimization problem instance are the number of sides for the container and
the semi-major axes, semi-minor axes, exponent, and distortion factor for each oval to
be packed.

The primary decision variables are the polygon’s apothem and the center position
and orientation of the packed ovals. There are two sets of secondary variables. The
first set consists of the positions of the distance-maximizing lines pointing from each
oval boundary to the center of each of the polygon faces. The second set is given by
the positions of the points on one of each pair of ovals, which minimizes the value of
the equation describing the other oval. These secondary variables are used to define the
model constraints. Specifically, the first set of secondary variables is used to represent the
constraints that keep the ovals inside the container. The second set of secondary variables
is used to prevent the ovals from overlapping. These constraint sets are also generated by
embedded Lagrange multiplier conditions.

Omitting index i (for simpler notation), equation e(a, b, p, t, xc, yc, θ; x, y) = 0 defines
the perimeter of an oval centered at {xc, yc} and rotated counterclockwise by angle θ. As
before, together with the apothem α, (xc, yc) and θ are the primary decision variables for
each oval. All pairs of packed ovals are prevented from overlapping by requiring that the
minimum value of the oval equation for oval i for any point on oval j has to be greater than
a sufficiently small parameter ϵ ≥ 0. This non-overlapping requirement between ovals i
and j will be met using embedded Lagrange multipliers λij using partial derivatives of the
oval equation. Let us point out that the slope of oval curve i equals the slope of oval curve
j at the point on oval j that minimizes or maximizes the value of the function describing
oval i; thus, the non-overlapping constraints emerge naturally from these conditions.

In terms of defining scalable models, oval packings (with their flexible parameteriza-
tion options) offer tremendous potential. The table below summarizes some oval-packing
test problem sets that could be used with M-polygon containers M ≥ 3. Note that by
setting p = 2, ai = bi, and t = 0, test case 1 becomes a general circle-packing problem for
circles with radii ai = i−1/2. With p = 2, ai > bi, and t = 0, test case 2 becomes a general
ellipse-packing problem for ellipses with semi-major and semi-minor axes, ai = i−1/2,
bi = ai/c with eccentricity c = 2. Test cases 1–6 and 8 consider ovals with the same
distortion factor set (t = 0, 0.5, or 1). Test case 7 considers ovals with different distortion
factors ti = i/5.

To solve the model instances shown in Table 4, IPOPT linked to Mathematica was used
as the solver. Here, we present GOP results for test case 8 and M = 5, 10 (regular pentagon
and decagon containers), see Table 5. The increasing runtimes required to find visibly good
solutions clearly indicate the challenge posed by this model class. Kampas et al. [57] include
detailed results and images of optimized configurations for hundreds of instances in total
from the four model classes presented here. See Figure 4 for a solved GOP model instance.

Algorithms 2024, 17, 480 14 of 19

Table 4. Illustrative GOP model instances.

Test Case pi (ai,bi) t_i

1 2
(

i−1/2, ai

)
0.0

2 2
(

i−1/2, ai/2
)

0.0

3 2
(

i−1/2, ai

)
0.5

4 2
(

i−1/2, ai/2
)

0.5

5 2
(

i−1/2, ai

)
1.0

6 2
(

i−1/2, ai/2
)

1.0

7 2
(

i−1/2, ai

)
i/5

8 4
(

i−1/2, ai

)
0.0

Table 5. Illustrative GOP model results.

Container Sides n Objective α Container Area Time (s)

M = 5 5 2.2389 11.9184 127.4
6 2.2976 12.5509 189.9
7 2.3291 12.898 299.6
8 2.3904 13.5858 312.7
9 2.5637 15.6268 753.6

10 2.7022 17.3613 757.5

M = 10 5 2.0385 12.2126 210.2
6 2.0892 12.8277 351.3
7 2.1804 13.9716 437
8 2.3291 15.9423 539
9 2.3294 15.9465 888.4

10 2.4129 17.1113 1493
Algorithms 2024, 17, x FOR PEER REVIEW 15 of 20

Figure 4. A solved GOP model instance.

5.5. P-dispersion Configurations of Oval Objects in 𝑅ଶ
In this problem statement, we consider allocating “sizeable” (in other words, area-

consuming) heterogeneous objects within a given feasible region in 𝑅ଶ . All objects are
modeled by general ovals, which cover circles and ellipses as special cases. The feasible
region could be convex (modeled here by regular polygons) or non-convex (modeled here
by the intersection of general ovals). Our objective is to find optimally dispersed configu-
rations, by maximizing the minimal separation between the boundaries of the oval objects
and the boundary of the feasible region instances. For brevity, we refer to this model class
as PDO (p-dispersion with ovals). Here we provide a summary of our modeling and solu-
tion approach, referring to Castillo et al. [60] for further details.

In [58], embedded Lagrange multiplier conditions have been used to produce opti-
mized oval configurations with the objective of minimizing the area of the feasible region
that contains a given collection of oval objects since our goal was to produce dense object
configurations. Now, using a similar Lagrangian framework, our aim is to produce opti-
mally dispersed configurations by maximizing the separation between the boundaries of
the oval objects and the boundary of the feasible region. A pair of oval objects is maximally
dispersed by maximizing the minimum value of the oval equation for object 𝑖 for any
point on the oval equation for object 𝑗, achieved by using embedded 𝜆௝௜ Lagrange mul-
tiplier conditions. We note that in the dispersion case considered here, the Lagrange mul-
tipliers 𝜆௝௜ must be negative to obtain the minimum: this requirement. with respect to the
sign of 𝜆௝௜, is enforced by appropriately setting variable bounds during the optimization.

In the numerical examples presented here, a heuristic global optimization strategy
(based on selecting multiple starting points) is used: we use these randomized initial so-
lutions followed by calls to the local solver IPOPT linked to Mathematica. Three key pa-
rameters guide our optimization strategy: the number of random starts, the solver seed,
and the maximum number of solver iterations (for clarity, these are not IPOPT internal
iterations; the maximum number of solver iterations takes the final result of one solver
iteration and uses it as the input for the next solver iteration). Our starting solution assigns (𝑥௜௖, 𝑦௜௖) and (𝑥௜௝, 𝑦௜௝) uniformly distributed random values with bounds that are chosen
appropriately for each model instance; assigns 𝜃௜ uniformly distributed random values
in [0,2𝜋]; and assigns 𝜆௜௝ uniformly distributed random values in [−100,0]. Setting the
solver seed parameter offers some control over the generation of the random starting
points, and it also supports the generation of identical results in repeated runs if needed.

Table 6 summarizes a set of parametric object dispersion test cases considered. Note
that by setting 𝑝 = 2, 𝑎௜ = 𝑏௜, and 𝑡 = 0.0, test case 1 serves to disperse a number of cir-
cular objects with radii 𝑎௜ = 0.25𝑟 ⋅ 𝑖ିଵ/ଶ . With 𝑞 = 2 , 𝑎௜ > 𝑏௜ , and 𝑡 = 0.0 , test case 2
serves to disperse ellipsoidal objects with semi-major axes 𝑎௜ = 0.25𝑟 ⋅ 𝑖ିଵ/ଶ and semi-

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

Figure 4. A solved GOP model instance.

5.5. P-Dispersion Configurations of Oval Objects in R2

In this problem statement, we consider allocating “sizeable” (in other words, area-
consuming) heterogeneous objects within a given feasible region in R2. All objects are
modeled by general ovals, which cover circles and ellipses as special cases. The feasible
region could be convex (modeled here by regular polygons) or non-convex (modeled
here by the intersection of general ovals). Our objective is to find optimally dispersed
configurations, by maximizing the minimal separation between the boundaries of the oval
objects and the boundary of the feasible region instances. For brevity, we refer to this model

Algorithms 2024, 17, 480 15 of 19

class as PDO (p-dispersion with ovals). Here we provide a summary of our modeling and
solution approach, referring to Castillo et al. [60] for further details.

In [58], embedded Lagrange multiplier conditions have been used to produce opti-
mized oval configurations with the objective of minimizing the area of the feasible region
that contains a given collection of oval objects since our goal was to produce dense object
configurations. Now, using a similar Lagrangian framework, our aim is to produce opti-
mally dispersed configurations by maximizing the separation between the boundaries of
the oval objects and the boundary of the feasible region. A pair of oval objects is maximally
dispersed by maximizing the minimum value of the oval equation for object i for any point
on the oval equation for object j, achieved by using embedded λji Lagrange multiplier
conditions. We note that in the dispersion case considered here, the Lagrange multipliers
λji must be negative to obtain the minimum: this requirement. with respect to the sign of
λji, is enforced by appropriately setting variable bounds during the optimization.

In the numerical examples presented here, a heuristic global optimization strategy
(based on selecting multiple starting points) is used: we use these randomized initial
solutions followed by calls to the local solver IPOPT linked to Mathematica. Three key
parameters guide our optimization strategy: the number of random starts, the solver seed,
and the maximum number of solver iterations (for clarity, these are not IPOPT internal
iterations; the maximum number of solver iterations takes the final result of one solver
iteration and uses it as the input for the next solver iteration). Our starting solution assigns(

xc
i , yc

i
)

and
(

xij, yij
)

uniformly distributed random values with bounds that are chosen
appropriately for each model instance; assigns θi uniformly distributed random values in
[0, 2π]; and assigns λij uniformly distributed random values in [−100, 0]. Setting the solver
seed parameter offers some control over the generation of the random starting points, and
it also supports the generation of identical results in repeated runs if needed.

Table 6 summarizes a set of parametric object dispersion test cases considered. Note
that by setting p = 2, ai = bi, and t = 0.0, test case 1 serves to disperse a number of
circular objects with radii ai = 0.25r · i−1/2. With q = 2, ai > bi, and t = 0.0, test case 2
serves to disperse ellipsoidal objects with semi-major axes ai = 0.25r · i−1/2 and semi-minor
axes bi = 0.6ai. For brevity, the distortion factor is not parameterized, and test cases 1–6
consider oval objects with the same distortion factor set to t = 0.0, 0.5, or 1.0. Finally, we
also illustrate that different feasible regions could be considered; for instance, a square, a
regular hexagon, a non-convex curved boundary formed in the interior of four intersecting
ovals, or a non-convex polygon formed in the interior of six intersecting polygons. In
general, test cases 1 and 2 (dispersing circular and ellipsoidal objects with no distortion)
require less computational effort than the other cases (dispersing distorted oval objects).
Also, elongated objects seem to require more computational effort, particularly test case
6 (dispersing rounded rectangular objects). On average, a square feasible region requires
less computational effort than a hexagonal feasible region. Table 7 summarizes a set of
illustrative results, cited from [60]. See Figure 5 for two solved PDO model instances.

Table 6. Illustrative PDO model instances.

Test Case pi (ai,bi) t_i

1 2
(

0.25r·i−1/2, ai

)
0.0

2 2
(

0.25r·i−1/2, 0.6ai

)
0.0

3 2
(

0.25r·i−1/2, 0.6ai

)
0.5

4 2
(

0.25r·i−1/2, ai

)
1.0

5 2
(

0.25r·i−1/2, 0.6ai

)
1.0

6 4
(

0.25r·i−1/2, 0.6ai

)
1.0

Algorithms 2024, 17, 480 16 of 19

Table 7. Illustrative PDO model results.

Square Region Hexagonal Region

Values of p, r Test Case Objective Time (s) Objective Time (s)

p = 3, r = 1.5 1 0.021305 8.4 0.028127 12.8
2 0.070798 10.1 0.090017 13.4
3 0.072242 15.2 0.090042 28.5
4 0.023848 20.7 0.029633 28.1
5 0.073014 17 0.090184 23.4
6 0.065005 85.6 0.070549 78.5

p = 10, r = 1.0 1 0.025543 212.6 0.027923 228.4
2 0.048605 277 0.052259 253.4
3 0.0492 398 0.05289 520.6
4 0.028027 347.7 0.029664 540.4
5 0.050149 386.3 0.054299 515.5
6 0.040088 1617.8 0.043147 2186.6

Algorithms 2024, 17, x FOR PEER REVIEW 16 of 20

minor axes 𝑏௜ = 0.6𝑎௜ . For brevity, the distortion factor is not parameterized, and test
cases 1–6 consider oval objects with the same distortion factor set to 𝑡 = 0.0, 0.5, or 1.0.
Finally, we also illustrate that different feasible regions could be considered; for instance,
a square, a regular hexagon, a non-convex curved boundary formed in the interior of four
intersecting ovals, or a non-convex polygon formed in the interior of six intersecting pol-
ygons. In general, test cases 1 and 2 (dispersing circular and ellipsoidal objects with no
distortion) require less computational effort than the other cases (dispersing distorted oval
objects). Also, elongated objects seem to require more computational effort, particularly
test case 6 (dispersing rounded rectangular objects). On average, a square feasible region
requires less computational effort than a hexagonal feasible region. Table 7 summarizes a
set of illustrative results, cited from [60]. See Figure 5 for two solved PDO model instances.

Table 6. Illustrative PDO model instances.

Test Case 𝒑𝒊 (𝒂𝒊, 𝒃𝒊) 𝒕_𝒊
1 2 (0.25𝑟 ∙ 𝑖ିଵ/ଶ, 𝑎௜) 0.0
2 2 (0.25𝑟 ∙ 𝑖ିଵ/ଶ, 0.6𝑎௜) 0.0
3 2 (0.25𝑟 ∙ 𝑖ିଵ/ଶ, 0.6𝑎௜) 0.5
4 2 (0.25𝑟 ∙ 𝑖ିଵ/ଶ, 𝑎௜) 1.0
5 2 (0.25𝑟 ∙ 𝑖ିଵ/ଶ, 0.6𝑎௜) 1.0
6 4 (0.25𝑟 ∙ 𝑖ିଵ/ଶ, 0.6𝑎௜) 1.0

Table 7. Illustrative PDO model results.

 Square Region Hexagonal Region
Values of 𝒑, 𝒓 Test Case Objective Time (s) Objective Time (s) 𝑝 = 3, 𝑟 = 1.5 1 0.021305 8.4 0.028127 12.8

 2 0.070798 10.1 0.090017 13.4
 3 0.072242 15.2 0.090042 28.5
 4 0.023848 20.7 0.029633 28.1
 5 0.073014 17 0.090184 23.4
 6 0.065005 85.6 0.070549 78.5 𝑝 = 10, 𝑟 = 1.0 1 0.025543 212.6 0.027923 228.4
 2 0.048605 277 0.052259 253.4
 3 0.0492 398 0.05289 520.6
 4 0.028027 347.7 0.029664 540.4
 5 0.050149 386.3 0.054299 515.5
 6 0.040088 1617.8 0.043147 2186.6

Figure 5. Two solved PDO model instances. Figure 5. Two solved PDO model instances.

All numerical results reported here or presented in our cited articles are available from
the authors.

5.6. Estimating the Quality of Numerical Solutions

In practical object-packing applications, a well-crafted, global scope search-based
solution that incorporates problem-specific insight is typically quite acceptable. The il-
lustrative results visually presented here and in our referenced works support this claim.
A satisfactory numerical solution does not necessarily imply, however, that the solution
found is within a guaranteed distance to the unknown best possible solution of some
hard packing problem, even in a probabilistic sense (our preceding discussion related to
the “simplest” GCP models illustrates this point). Therefore, estimating the quality of
conjectured solutions is a relevant issue that we briefly address here.

A simple “brute force” approach to obtaining solution estimates can be based on
solving the same packing problem a number of times using some randomization mechanism
and recording the best solution found as an estimate of the unknown solution. This general
approach can be theoretically validated by standard stochastic convergence arguments
(assuming that the sampling procedure is theoretically exhaustive in the decision variable
space, and that the sample size can be arbitrarily increased as required). Randomized
global optimization methods have been extensively studied: consult, e.g., Pintér [50],
Zabinsky [65], Zhigljavsky and Žilinskas [66].

Sophisticated extensions of the outlined global sampling approach can be based on
applying the theory of extreme-order statistics and utilizing the sampling distribution of
the optimum estimates. For details, we refer to Zhigljavsky and Žilinskas [66], de Haan
and Ferreira [67].

Algorithms 2024, 17, 480 17 of 19

In certain scalable models, optimality bounds can be based on considering the se-
quence of solved model instances (assuming the availability of sufficiently high-quality
solutions). Let us also note that for certain scalable model types, regression models can
be developed that support the estimation of the optimum value. This becomes especially
useful for estimating the optimum value in higher-dimensional model instances that may
be intractable by currently available software. To illustrate this approach, we refer to
Pintér et al. [55].

6. Concluding Remarks

The universe of nonlinear systems and processes provides a limitless source of model
development and optimization challenges: many of these problems require a global scope
optimization (GO) approach. The structural properties of practical GO challenges—including
the object-packing problems discussed here—frequently support the creation of “reason-
able” initial solutions. However, finding—or just numerically approximating—the globally
best solution remains a challenge that is not going away, in spite of the ever-increasing
computing power at hand.

In this study, we discuss five scalable general packing model classes: circle packings
(GCP), higher-dimensional sphere packings (GSP), ellipse packings (GEP), oval packings
(GOP), and p-dispersion models with oval objects (PDO). Our numerical experiments
illustrate the non-trivial nature of these model classes. Solution difficulty often dramatically
increases as the model instance size increases. Insightful modeling and the skillful combi-
nation of generic nonlinear optimization methods with heuristic strategies are essential in
order to find credible, highly optimized numerical solutions.

As a “side-benefit” of similar studies, we argue that scalable irregular object-packing
models can also become a useful source of exceptionally hard GO test challenges.

Author Contributions: Conceptualization, J.D.P., I.C. and F.J.K.; methodology, J.D.P., I.C. and F.J.K.;
software, J.D.P., I.C. and F.J.K.; validation, J.D.P., I.C. and F.J.K.; formal analysis, J.D.P., I.C. and F.J.K.;
investigation, J.D.P., I.C. and F.J.K.; resources, J.D.P., I.C. and F.J.K.; data curation, J.D.P., I.C. and F.J.K.;
writing, J.D.P., I.C. and F.J.K.; visualization, J.D.P., I.C. and F.J.K.; supervision, J.D.P., I.C. and F.J.K.;
project administration, J.D.P., I.C. and F.J.K.; funding acquisition, J.D.P., I.C. and F.J.K. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: All numerical results presented in this article are available upon request:
inquiries should be directed to the authors.

Acknowledgments: J.D.P. wishes to acknowledge Giorgio Fasano for long-standing collaboration,
for exchanging ideas on some of the topics discussed here, and for his constructive comments on
the manuscript. J.D.P. also thanks AMPL Optimization and Wolfram Research for collaboration and
technical support. The authors thank the reviewers for their constructive remarks and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Aste, T.; Weaire, D. The Pursuit of Perfect Packing, 2nd ed.; Taylor & Francis Group: Boca Raton, FL, USA, 2019. Available

online: https://www.taylorfrancis.com/books/mono/10.1201/9781420068184/pursuit-perfect-packing-tomaso-aste-denis-
weaire (accessed on 15 October 2024).

2. Friedman, E. Eric’s Packing Center. 2024. Available online: https://erich-friedman.github.io/packing/index.html (accessed on
14 June 2024).

3. Specht, E. Packomania. 2024. Available online: http://www.packomania.com/ (accessed on 14 June 2024).
4. Wikipedia. Packing Problems. 2024. Available online: https://en.wikipedia.org/wiki/Packing_problems (accessed on

19 June 2024).
5. Castillo, I.; Kampas, F.J.; Pintér, J.D. Solving circle packing problems by global optimization: Numerical results and industrial

applications. Eur. J. Oper. Res. 2008, 191, 786–802. [CrossRef]
6. Alvarez-Valdés, R.; Carravilla, M.A.; Oliveira, J.F. Cutting and packing. In Handbook of Heuristics; Martí, R., Pardalos, P.M.,

Resende, M.G., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 931–977. [CrossRef]

https://www.taylorfrancis.com/books/mono/10.1201/9781420068184/pursuit-perfect-packing-tomaso-aste-denis-weaire
https://www.taylorfrancis.com/books/mono/10.1201/9781420068184/pursuit-perfect-packing-tomaso-aste-denis-weaire
https://erich-friedman.github.io/packing/index.html
http://www.packomania.com/
https://en.wikipedia.org/wiki/Packing_problems
https://doi.org/10.1016/j.ejor.2007.01.054
https://doi.org/10.1007/978-3-319-07153-4_43-1

Algorithms 2024, 17, 480 18 of 19

7. Bennell, J.; Oliveira, J.F. A tutorial in irregular shape packing problems. J. Oper. Res. Soc. 2009, 60, S93–S105. [CrossRef]
8. Scheithauer, G. Introduction to Cutting and Packing Optimization. Problems, Modeling Approaches, Solution Methods; Springer

International Publishing AG: Cham, Switzerland, 2018. [CrossRef]
9. Fasano, G.; Pintér, J.D. (Eds.) Optimized Packings with Applications; Springer Nature: Cham, Switzerland, 2015. [CrossRef]
10. Dowsland, K.A.; Dowsland, W.B.; Bennell, J.A. Jostling for position: Local improvement for irregular cutting patterns. J. Oper.

Res. Soc. 1998, 49, 647–658. [CrossRef]
11. Bennell, J.; Oliveira, J.F. The geometry of nesting problems: A tutorial. Eur. J. Oper. Res. 2008, 184, 397–415. [CrossRef]
12. Fasano, G. A global optimization point of view to handle non-standard object packing problems. J. Glob. Optim. 2013, 55, 279–299.

[CrossRef]
13. Fasano, G. Solving Non-Standard Packing Problems by Global Optimization and Heuristics; SpringerBriefs in Optimization; Springer:

Cham, Switzerland; Berlin/Heidelberg, Germany; New York, NY, USA; Dordrecht, The Netherlands; London, UK, 2014.
[CrossRef]

14. Stoyan, Y.; Pankratov, A.; Romanova, T.; Fasano, G.; Pintér, J.D.; Stoian, Y.E.; Chugay, A. Optimized packings in space engineering
applications: Part I. In Modeling and Optimization in Space Engineering; Fasano, G., Pintér, J.D., Eds.; Springer Optimization and Its
Applications 144; Springer Nature: Cham, Switzerland, 2019. [CrossRef]

15. Stoyan, Y.; Grebennik, I.; Romanova, T.; Kovalenko, A. Optimized packings in space engineering applications: Part II. In Modeling
and Optimization in Space Engineering; Fasano, G., Pintér, J.D., Eds.; Springer Optimization and Its Applications 144; Springer
Nature: Cham, Switzerland, 2019. [CrossRef]

16. Stoyan, Y.; Yaskov, G.; Romanova, T.; Litvinchev, I.; Velarde Cantú, J.M.; Acosta, M.L. Packing spheres into a minimum-height
parabolic container. Axioms 2024, 13, 396. [CrossRef]

17. Leao, A.A.S.; Toledo, F.M.B.; Oliveira, J.F.; Carravilla, M.A.; Alvarez-Valdés, R. Irregular packing problems: A review of
mathematical models. Eur. J. Oper. Res. 2020, 282, 803–822. [CrossRef]

18. Oh, Y.; Witherell, P.; Luc, Y.; Sprock, T. Nesting and scheduling problems for additive manufacturing: A taxonomy and review.
Addit. Manuf. 2020, 36, 101492. [CrossRef]

19. Horst, R.; Pardalos, P.M. (Eds.) Handbook of Global Optimization; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1995;
Volume 1. [CrossRef]

20. Pardalos, P.M.; Romeijn, H.E. (Eds.) Handbook of Global Optimization; Kluwer Academic Publishers: Dordrecht, The Netherlands,
2002; Volume 2. [CrossRef]

21. Pintér, J.D. Global optimization: Software, test problems, and applications. In Handbook of Global Optimization; Pardalos, P.M.,
Romeijn, H.E., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002; Volume 2, pp. 515–569. [CrossRef]

22. Pintér, J.D. Software development for global optimization. In Global Optimization: Methods and Applications; Pardalos, P.M.,
Coleman, T.F., Eds.; Fields Institute Communications; American Mathematical Society: Providence, RI, USA, 2009; Volume 55,
pp. 183–204. [CrossRef]

23. Pintér, J.D. How difficult is nonlinear optimization? A practical solver tuning approach, with illustrative results. Ann. Oper. Res.
2018, 265, 119–141. [CrossRef]

24. Floudas, C.A.; Pardalos, P.M.; Adjiman, C.S.; Esposito, W.R.; Gümüş, Z.H.; Harding, S.T.; Klepeis, J.L.; Meyer, C.A.; Schweiger,
C.A. Handbook of Test Problems in Local and Global Optimization; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1999.
[CrossRef]

25. Dowsland, K.A.; Dowsland, W.B. Packing problems. Eur. J. Oper. Res. 1992, 56, 2–14. [CrossRef]
26. Bennell, J.; Scheithauer, G.; Stoyan, Y.; Romanova, T. Tools of mathematical modeling of arbitrary object packing problems. Ann.

Oper. Res. 2010, 179, 343–368. [CrossRef]
27. Jones, D.R. A fully general, exact algorithm for nesting irregular shapes. J. Glob. Optim. 2014, 59, 367–404. [CrossRef]
28. Pankratov, A.; Romanova, T.; Litvinchev, I. Packing oblique 3D objects. Mathematics 2020, 8, 1130. [CrossRef]
29. Martí, R.; Pardalos, P.M.; Resende, M.G.C. (Eds.) Handbook of Heuristics; Springer Nature: Cham, Switzerland, 2018. [CrossRef]
30. Gendreau, M.; Potvin, J.-Y. (Eds.) Handbook of Metaheuristics, 3rd ed.; Springer Nature: Cham, Switzerland, 2019. [CrossRef]
31. Taillard, É.D. Design of Heuristic Algorithms for Hard Optimization; Springer Nature: Cham, Switzerland, 2023. [CrossRef]
32. Szabó, P.G.; Markót, M.C.; Csendes, T.; Specht, E.; Casado, L.G.; Garcia, I. New Approaches to Circle Packing in a Square with Program

Codes; Springer Science + Business Media: New York, NY, USA, 2007. [CrossRef]
33. George, J.A.; George, J.M.; Lamar, B.W. Packing different-sized circles into a rectangular container. Eur. J. Oper. Res. 1995, 84,

693–712. [CrossRef]
34. Pintér, J.D.; Kampas, F.J. Nonlinear optimization in Mathematica with MathOptimizer Professional. Math. Educ. Res. 2005, 10, 1–18.
35. Huang, W.Q.; Li, Y.; Li, C.M.; Xu, R.C. New heuristics for packing unequal circles into a circular container. Comput. Oper. Res.

2006, 33, 2125–2142. [CrossRef]
36. Addis, B.; Locatelli, M.; Schoen, F. Efficiently packing unequal disks in a circle. Oper. Res. Lett. 2008, 36, 37–42. [CrossRef]
37. Wales, D.J.; Doye, J.P.K. Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters

containing up to 110 atoms. J. Phys. Chem. A 1997, 101, 5111–5116. [CrossRef]
38. Zimmermann, A. Al Zimmermann’s Programming Contests: Circle Packing. 2005. Available online: http://www.recmath.org/

contest/CirclePacking/index.php (accessed on 19 June 2024).

https://doi.org/10.1057/jors.2008.169
https://doi.org/10.1007/978-3-319-64403-5
https://doi.org/10.1007/978-3-319-18899-7
https://doi.org/10.1057/palgrave.jors.2600563
https://doi.org/10.1016/j.ejor.2006.11.038
https://doi.org/10.1007/s10898-012-9865-8
https://doi.org/10.1007/978-3-319-05005-8
https://doi.org/10.1007/978-3-030-10501-3_15
https://doi.org/10.1007/978-3-030-10501-3
https://doi.org/10.3390/axioms13060396
https://doi.org/10.1016/j.ejor.2019.04.045
https://doi.org/10.1016/j.addma.2020.101492
https://doi.org/10.1007/978-1-4615-2025-2
https://doi.org/10.1007/978-1-4757-5362-2
https://doi.org/10.1007/978-1-4757-5362-2
https://doi.org/10.1090/fic/055
https://doi.org/10.1007/s10479-017-2518-z
https://doi.org/10.1007/978-1-4757-3040-1
https://doi.org/10.1016/0377-2217(92)90288-K
https://doi.org/10.1007/s10479-008-0456-5
https://doi.org/10.1007/s10898-013-0129-z
https://doi.org/10.3390/math8071130
https://doi.org/10.1007/978-3-319-07153-4_43-1
https://doi.org/10.1007/978-3-319-91086-4
https://doi.org/10.1007/978-3-031-13714-3_12
https://doi.org/10.1007/978-0-387-45676-8
https://doi.org/10.1016/0377-2217(95)00032-L
https://doi.org/10.1016/j.cor.2005.01.003
https://doi.org/10.1016/j.orl.2007.03.001
https://doi.org/10.1021/jp970984n
http://www.recmath.org/contest/CirclePacking/index.php
http://www.recmath.org/contest/CirclePacking/index.php

Algorithms 2024, 17, 480 19 of 19

39. Al-Mudahka, I.; Hifi, M.; M’Hallah, R. Packing circles in the smallest circle: An adaptive hybrid algorithm. J. Oper. Res. Soc. 2011,
62, 1917–1930. [CrossRef]

40. Specht, E. A precise algorithm to detect voids in polydisperse circle packings. Proc. R. Soc. A 2015, 471, 20150421. [CrossRef]
41. Romanova, T.; Pankratov, O.; Litvinchev, I.; Stetsyuk, P.; Lykhovyd, O.; Marmolejo-Saucedo, J.A.; Vasant, P. Balanced circular

packing problems with distance constraints. Computation 2022, 10, 113. [CrossRef]
42. Grosso, A.; Jamali, A.R.M.J.U.; Locatelli, M.; Schoen, F. Solving the problem of packing equal and unequal circles in a circular

container. J. Glob. Optim. 2010, 47, 63–81. [CrossRef]
43. Lü, Z.; Huang, W. PERM for solving circle packing problem. Comput. Oper. Res. 2008, 35, 1742–1755. [CrossRef]
44. Hifi, M.; M’Hallah, R. A literature review on circle and sphere packing problems: Models and methodologies. Adv. Oper. Res.

2009, 2009, 150624. [CrossRef]
45. López, C.O.; Beasley, J.E. A formulation space search heuristic for packing unequal circles in a fixed size circular container. Eur. J.

Oper. Res. 2016, 251, 64–73. [CrossRef]
46. Ryu, J.; Lee, M.; Kim, D.; Kallrath, J.; Sugikara, K.; Kim, D.-S. VOROPACK-D: Real-time disk packing algorithm using Voronoi

diagram. Appl. Math. Comput. 2020, 375, 125076. [CrossRef]
47. He, K.; Tole, K.; Ni, F.; Yuan, Y.; Liao, L. Adaptive large neighborhood search for solving the circle bin packing problem. Comput.

Oper. Res. 2021, 127, 105140. [CrossRef]
48. AMPL Optimization. AMPL. 2024. Available online: https://ampl.com/ (accessed on 15 October 2024).
49. Wolfram Research. Mathematica (Version 14.0); Wolfram Research, Inc.: Champaign, IL, USA, 2024. Available online: https:

//www.wolfram.com/mathematica/ (accessed on 15 October 2024).
50. Pintér, J.D. Global Optimization in Action; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1996. [CrossRef]
51. Pintér, J.D. LGO—A program system for continuous and Lipschitz global optimization. In Developments in Global Optimization;

Bomze, I.M., Csendes, T., Horst, R., Pardalos, P.M., Eds.; Springer: Boston, MA, USA, 1997. [CrossRef]
52. Pintér, J.D.; AMPL Optimization. AMPL-LGO Solver Engine. 2014. Available online: https://ampl.com/products/solvers/

solvers-we-sell/lgo/ (accessed on 15 October 2024).
53. Pintér, J.D.; Kampas, F.J. MathOptimizer Professional for Mathematica. 2005. Available online: https://www.wolfram.com/

products/applications/mathoptpro/ (accessed on 15 October 2024).
54. Wäscher, G.; Haußner, H.; Schumann, H. An improved typology of cutting and packing problems. Eur. J. Oper. Res. 2007, 183,

1109–1130. [CrossRef]
55. Pintér, J.D.; Kampas, F.J.; Castillo, I. Globally optimized packings of non-uniform size spheres in Rd: A computational study.

Optim. Lett. 2018, 12, 585–613. [CrossRef]
56. Kampas, F.J.; Pintér, J.D.; Castillo, I. Optimal packing of general ellipses in a circle. In Modeling and Optimization: Theory and

Applications (MOPTA 2016); Takáč, M., Terlaky, T., Eds.; Springer: New York, NY, USA, 2017; pp. 23–37. [CrossRef]
57. Kampas, F.J.; Castillo, I.; Pintér, J.D. Optimized ellipse packings in regular polygons. Optim. Lett. 2019, 13, 1583–1613. [CrossRef]
58. Kampas, F.J.; Pintér, J.D.; Castillo, I. Packing ovals in optimized regular polygons. J. Glob. Optim. 2020, 77, 175–196. [CrossRef]
59. Kampas, F.J.; Pintér, J.D.; Castillo, I. Model development and solver demonstrations using randomized test problems. Oper. Res.

Forum 2023, 4, 13. [CrossRef]
60. Castillo, I.; Pintér, J.D.; Kampas, F.J. The boundary-to-boundary p-dispersion configuration problem with oval objects. J. Oper.

Res. Soc. 2024, 1–11. [CrossRef]
61. Duriagina, Z.; Pankratov, A.; Romanova, T.; Litvinchev, I.; Bennell, J.; Lemishka, I.; Maximov, S. Optimized packing titanium alloy

powder particles. Computation 2023, 11, 22. [CrossRef]
62. IPOPT: COIN-OR Interior Point Optimizer. 2024. Available online: https://github.com/coin-or/Ipopt (accessed on 14 June 2024).
63. Wächter, A.; Biegler, L.T. On the implementation of an interior-point filter line-search algorithm for large- scale nonlinear

programming. Math. Program. 2006, 106, 25–57. [CrossRef]
64. IPOPT Linked to Mathematica. 2024. Available online: https://reference.wolfram.com/language/IPOPTLink/guide/IPOPTLink.

html (accessed on 15 October 2024).
65. Zabinsky, Z.B. Stochastic Adaptive Search for Global Optimization; Springer Science + Business Media: New York, NY, USA, 2003.

[CrossRef]
66. Zhigljavsky, A.; Žilinskas, A. Stochastic Global Optimization; Springer Science + Business Media: New York, NY, USA, 2008.

[CrossRef]
67. De Haan, L.; Ferreira, A. Extreme Value Theory: An Introduction; Springer Science + Business Media: New York, NY, USA, 2006.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1057/jors.2010.157
https://doi.org/10.1098/rspa.2015.0421
https://doi.org/10.3390/computation10070113
https://doi.org/10.1007/s10898-009-9458-3
https://doi.org/10.1016/j.cor.2006.10.012
https://doi.org/10.1155/2009/150624
https://doi.org/10.1016/j.ejor.2015.10.062
https://doi.org/10.1016/j.amc.2020.125076
https://doi.org/10.1016/j.cor.2020.105140
https://ampl.com/
https://www.wolfram.com/mathematica/
https://www.wolfram.com/mathematica/
https://doi.org/10.1007/978-1-4757-2502-5
https://doi.org/10.1007/978-1-4757-2600-8_12
https://ampl.com/products/solvers/solvers-we-sell/lgo/
https://ampl.com/products/solvers/solvers-we-sell/lgo/
https://www.wolfram.com/products/applications/mathoptpro/
https://www.wolfram.com/products/applications/mathoptpro/
https://doi.org/10.1016/j.ejor.2005.12.047
https://doi.org/10.1007/s11590-017-1194-x
https://doi.org/10.1007/978-3-319-66616-7
https://doi.org/10.1007/s11590-019-01423-y
https://doi.org/10.1007/s10898-019-00824-8
https://doi.org/10.1007/s43069-022-00190-4
https://doi.org/10.1080/01605682.2024.2312255
https://doi.org/10.3390/computation11020022
https://github.com/coin-or/Ipopt
https://doi.org/10.1007/s10107-004-0559-y
https://reference.wolfram.com/language/IPOPTLink/guide/IPOPTLink.html
https://reference.wolfram.com/language/IPOPTLink/guide/IPOPTLink.html
https://doi.org/10.1007/978-1-4419-9182-9
https://doi.org/10.1007/978-0-387-74740-8
https://doi.org/10.1007/0-387-34471-3

	Introduction, Technical Challenges, and Contributions
	Introduction
	Technical Challenges
	Contributions

	Continuous Nonlinear Optimization
	Problem Statement
	Global Optimization for Object Packings

	A Review of Approaches to Irregular Object Packings
	Algorithmic and Heuristic Approaches
	An Algorithm Framework for Object Packings

	General Circle Packings
	Problem Statement
	GCP Literature Review
	Solving GCP Instances: Illustrative Results

	Further Scalable Object Configuration Problems
	Scalable Models
	General Sphere Packings in Rd
	General Ellipse Packings in R2
	General Oval Packings in R2
	P-Dispersion Configurations of Oval Objects in R2
	Estimating the Quality of Numerical Solutions

	Concluding Remarks
	References

