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Abstract: Accurate identification of partial discharge (PD) and its types is essential for assessing the
operating conditions of electrical equipment. To enhance PD pattern recognition under imbalanced
and limited sample conditions, a method based on a Deep Autoencoder-embedded Generative
Adversarial Network (DAE-GAN) is proposed. First, the Deep Autoencoder (DAE) is embedded
within the Generative Adversarial Network (GAN) to improve the realism of generated samples.
Then, complementary PD data samples are introduced during GAN training to address the issue of
limited sample size. Lastly, the model’s discriminator is fine-tuned with augmented and balanced
training data to enable PD pattern recognition. The DAE-GAN method is used to augment data and
recognize patterns in experimental PD signals. The results demonstrate that, under imbalanced and
small sample conditions, DAE-GAN generates more authentic PD samples with improved probability
distribution fitting compared to other algorithms, leading to varying levels of enhancement in pattern
recognition accuracy.

Keywords: partial discharge; data augmentation; DAE; GAN; DAE-GAN

1. Introduction

Electrical equipment is a critical element of power systems, and its safety and stability
have a significant effect on the overall reliability of system operations [1–3]. Proper identi-
fication of partial discharge (PD) and its various types is fundamental for evaluating the
operational health of electrical equipment [4].

For effective pattern recognition, it is crucial to have a sufficient quantity of training
samples with a well-balanced category distribution [5,6]. However, the available PD
samples for electrical equipment are limited, and the category distribution is uneven [7,8].
The small sample size reduces the available information about the PD sample probability
distribution, making it difficult to develop a reliable pattern recognition model. This
imbalance causes the minority class samples to receive inadequate attention, resulting in
poor recognition accuracy for these samples.

The current mainstream method for solving the problem of sample imbalance is to
perform data augmentation on the sample [9]. In data augmentation methods, under-
sampling [10], random over-sampling [11] (ROS), and the synthetic minority oversampling
technique [12] (SMOTE) can lead to missing or biased probability distributions of the
generated imbalanced samples, resulting in overfitting of the classifier. Sample generation
methods based on deep learning have emerged in imbalanced sample oversampling meth-
ods in recent years [13,14]. Yang H et al. [15] utilized a Variational Autoencoder (VAE) for
PD data matching. VAE-generated samples tend to be smooth but face challenges such

Algorithms 2024, 17, 487. https://doi.org/10.3390/a17110487 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a17110487
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0001-6657-0880
https://doi.org/10.3390/a17110487
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a17110487?type=check_update&version=1


Algorithms 2024, 17, 487 2 of 16

as inter-class blurriness and mode collapse, which limits the diversity of the generated
data [16]. The Boundary Equilibrium Generative Adversarial Network (BEGAN) [17],
utilizing an autoencoder as its discriminator along with a balancing strategy, allows for
quick and stable convergence. While BEGAN generates PD samples that closely resemble
the originals, issues like mode collapse and limited diversity persist. Zheng M et al. [18]
applied the Conditional Wasserstein GAN with gradient penalty (CWGAN-GP) to augment
transformer fault samples, using the Wasserstein distance as the objective function with a
gradient penalty term. This approach effectively mitigates gradient vanishing and mode
collapse and supports multi-class sample generation. However, CWGAN-GP struggles
with slow convergence when generating high-dimensional samples, often leading to ei-
ther overly sharp or noisy outputs. In comparison, models like VAE and BEGAN tend
to produce more realistic samples. The currently proposed generative models aim solely
at approximating the distribution of samples within the same class without utilizing the
probabilistic information in the sample supplement set, indicating room for improvement
in the accuracy of fitting the target distribution.

To enhance PD pattern recognition accuracy in scenarios with imbalanced and small
sample sizes, this paper proposes a data augmentation and recognition method based on a
Generative Adversarial Network integrated with a Deep Autoencoder (DAE-GAN) [19].
The approach uses denoised PD pulses as input and embeds a deep autoencoder into the
sample generation process of CWGAN-GP. The DAE improves the realism of generated
samples while addressing sample imbalance by creating additional PD samples. During
training, complementary samples are introduced to utilize probabilistic information in the
dataset, aiding in better probability distribution fitting and mitigating the small sample
issue. The generated data is then used to fine-tune the discriminator, which serves as a clas-
sifier for PD pattern recognition. Experimental results indicate that the proposed method,
under imbalanced and small sample conditions, significantly enhances sample authenticity,
improves probability distribution fitting, and boosts PD pattern recognition accuracy.

2. Partial Discharge Test and Signal Preprocessing

Four discharge models are developed to simulate common transformer insulation
defects: tip discharge, surface discharge, bubble discharge, and floating discharge [20]. The
cardboard used for the tip, surface, and floating discharge models has a thickness of 2 mm,
while the bubble discharge model consists of three layers of cardboard with thicknesses of
0.5 mm, 2 mm, and 0.5 mm. The dimensions and structures of the discharge models are
illustrated in Figure 1 [21].

The partial discharge pulses were measured using the high-frequency current
method [22], and the experimental circuit is shown in Figure 2. The experiments were
conducted in an electromagnetic shielding room, and high-frequency partial discharge
signals were collected from the grounding wire using the high-frequency current method.
A synchronized acquisition card was employed to ensure the synchronization between the
collected partial discharge signals and the reference voltage signals. After applying the
target voltage, sampling began once the discharge signals stabilized. A triggered sampling
method was used, where samples were collected when the discharge amplitude exceeded
the trigger threshold. The sampling bandwidth was 100 MHz, and discharge signals over
100 power frequency cycles were continuously collected as long-term signal samples. In
order to further improve the quality of the PD test signal, the research group proposes
an adaptive weighted-frame fast sparse-representation denoising method [23], which has
smaller amplitude error and waveform distortion and higher efficiency. This method is also
used to denoise the partial discharge test samples. The single-pulse partial discharge was
extracted using an adaptive double-threshold extraction method [24]. The time–domain
waveforms of the four types of single-pulse partial discharge are shown in Figure 3 [21].
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To replicate the characteristics of limited samples in the real PD signal dataset, the
PD single-pulse samples for each discharge type were proportionally reduced to create



Algorithms 2024, 17, 487 4 of 16

a training sample library. The distribution of each pulse type in the library is shown in
Table 1.

Table 1. Sample distribution of PD pulse training sample datasets.

Type Number of Training Set
Pulse Samples

Number of Test Set
Pulse Samples

Tip discharge 200 3000
Floating discharge 50 1200
Bubble discharge 120 2200
Surface discharge 80 1600

3. Data Augmentation and Pattern Recognition Method Based on DAE-GAN
3.1. Deep Self-Encoder and CWGAN-GP Model

The Deep Autoencoder (DAE) is based on the autoencoder architecture, with ad-
ditional layers added to both the encoder and decoder to enhance their encoding and
decoding capabilities. The DAE is optimized to minimize reconstruction error. The loss
function for the DAE is defined in Equation (1).

^
xi = De[En(xi)]

lossDAE =
n
∑

i=1

(
xi −

^
xi

)T(
xi −

^
xi

) (1)

In Equation (1), En and De represent the encoding and decoding functions, respectively,
while xi and xi denote the original data and the reconstructed data, respectively.

CWGAN-GP is an enhanced version of GAN, utilizing the Wasserstein distance as
its objective function and incorporating a gradient penalty to enforce the 1-Lipschitz
condition [25]. This addresses issues such as multi-class generation, gradient vanishing,
and mode collapse in GANs. The CWGAN-GP loss function is presented in Equation (2).

LG = −Ez∼Pz [D(G(z|c)|c)]
LD = Ez∼Pz [D(G(z|c)|c)]−

Ex∼Pr [D(x|c)] + GP|x̂

GP|x̂ = λE^
x∼P^

x

(∥∥∥∥∇^
x
D
(

^
x
∣∣∣∣c)∥∥∥∥

p
− 1

)2


(2)

In Equation (5), LG represents the generator loss function, LD represents the discrim-
inator loss function, Pz denotes the prior distribution of the random noise z, GP|x̂ is the
gradient penalty term, and λ is the regularization coefficient.

The network structures of the DAE and CWGAN-GP are shown in Figure 4:
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3.2. DAE-GAN Network and Its Training Process

The DAE is incorporated into the GAN’s sample generation process to impose con-
straints, enhancing the authenticity of the generated data. A strong inverse relationship
exists between a set and its complementary set, allowing the latter to provide additional
probabilistic information for the same class. During the generation process, samples from
other classes are introduced as complementary data to further enhance the process. The
DAE-GAN network structure is depicted in Figure 5 [21], with red dashed lines showing
the flow of generated data.
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In DAE-GAN, the generator not only improves the quality of generated data through
the constraints of the DAE but also introduces complementary data to provide an additional
reference for minority classes. This mechanism allows the generator to produce diverse,
high-quality samples even in data-scarce scenarios, thereby enhancing the generalization
for minority class samples. With its strengths in noise reduction, increasing sample di-
versity, addressing data imbalance, and handling small-sample challenges, DAE-GAN
is particularly suited for managing limited and unevenly distributed partial discharge
samples in electrical equipment.

The CWGAN-GP models serve as the basis for sample generation. Since xr, y, and
xo are in the same space, they share a common distance–cost function. Consequently, the
Kantorovich–Rubinstein dual form [26] of the Wasserstein distance in CWGAN-GP is given
in Equation (3). 

W
(

Pr, Pg
)
= max

∥D∥L≤1
E[D(xr|c)]−

E[D(G(z|c)|c)]
W(Pr, Po) = max

∥D∥L≤1
E[D(xr|c)]−

E[D(xo|c)]

(3)

Using the discriminator D as the distance–cost function, the generative network should
satisfy both distance equations in Equation (3) simultaneously [27]. The decoder must also
both deceive the discriminator and satisfy Equation (1). The loss functions for each module
are provided in Equation (4).

In Equations (4) and (5), LEn, LDe, LD, and LG represent the loss functions for the
encoder, decoder, discriminator, and latent code generator, respectively. γ1 and γ2 are
adaptive coefficients for multi-objective functions, balancing the optimization progress
between the discriminator and decoder to prevent mode collapse. β1 and β2 are set to
1 × 10−10 to avoid division by zero, which could cause algorithm failure. Lmargin represents
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the reconstruction error penalty, ensuring the error is not dominated by the gradient. M is
the penalty factor, ma is the reconstruction error margin, and max{·} is the max function.

LEn = min
En

n
∑

i=1

(
xri −

^
xri

)T(
xri −

^
xri

)
LDe = min

De
M · Lmargin − γ2Ez∼Pz

[
D
(

x f

∣∣∣c)]+
n
∑

i=1

(
xri −

^
xri

)T(
xri −

^
xri

)
LD = min

D
{−(1 + γ1)Exr∼Pr [D(xr|c)]+

γ1Exo∼Po [D(xo|c)]+

Ez∼Pz

[
D
(

x f

∣∣∣c)]}
LG = min

G

{
−Ez∼Pz

[
D
(

x f

∣∣∣c)]}

(4)

where 

x f = De(G(z|c))

dis1 = Exr∼Pr [D(xr|c)]− Ez∼Pz

[
D
(

x f

∣∣∣c)]
dis2 = Exr∼Pr [D(xr|c)]− Exo∼Po [D(xo|c)]

γ1 =

√
{dis1}2

{dis2}2+β1

γ2 =

√√√√√
[

n
∑

i=1

(
xri−

^
xri

)T(
xri−

^
xri

)]2

Ez∼Pz [D( x f |c)]2+β2

Lmargin = max

{
n
∑

i=1

(
xri −

^
xri

)T(
xri −

^
xri

)
− ma, 0

}
(5)

In Equation (4), both LEn and LDe include
n
∑

i=1
(xri − x̂ri)

T(xri − x̂ri). This section is

dedicated to mapping the decoder from low-dimensional latent vectors to their correspond-
ing high-dimensional sample vectors. The primary objective of this process is to ensure
that the generated samples closely resemble real ones by minimizing any discrepancies
between them, thus enhancing the overall authenticity and accuracy of the generated data.

The training process of the DAE-GAN network is as follows:
Step 1: Begin by pre-training the DAE network with real samples, and establish the

reconstruction error obtained at the conclusion of pre-training as the threshold for further
processing.

Step 2: Optimize the network modules based on Equation (4).
Step 3: Repeat Step 2 until the GAN reaches Nash equilibrium, then stop the iterations.

3.3. Algorithm Workflow

The DAE-GAN network has the capability to generate PD time-domain samples,
and its discriminator, following transfer learning, is able to recognize partial discharge
patterns. Figure 6 illustrates the framework used for partial discharge data augmentation
and pattern recognition through the DAE-GAN model. The key steps involved in this
process are outlined as follows:
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Step 1: Data preprocessing. Apply wavelet denoising to the 20 ms PD signals and
segment the pulses to create the training sample library for different types of PD signals as
outlined in Table 1.

Step 2: Data augmentation. Input the training samples into the DAE-GAN network
and proceed with training. Use the trained generator (G) and decoder (De) to generate
varying quantities of samples based on the original data imbalance, expanding the training
sample library.

Step 3: Partial discharge pattern recognition. Fine-tune the classifier D trained in Step 2
using the augmented training sample library. Use the average value between the minimum
classification score for samples of the same class and the maximum classification score for
samples of other classes as the classification criterion. Input the PD pulses extracted during
actual operation into the classifier D for recognition.

4. Case Analysis
4.1. Subsection

After extensive testing, it was found that setting the latent code dimension to 13 yields
minimal reconstruction error upon convergence. With this result, the structure and parame-
ters of each module within the DAE-GAN network have been established accordingly, as
detailed in Table 2.

Table 2. Network structure and parameter setting.

Network Module Type Number of
Channels

Activation
Function

Encoder Fully connected
layer × 5

200-5000-5000-
4000-13 LeakyReLU

Generator
Decoder Fully connected

layer × 5
13-4000-5000-

5000-200 Tanh

Latent code generator Fully connected
layer × 5

13-500-1000-
500-13 ReLU

Discriminator Fully connected
layer × 4

200-5000-
400-1 ReLU

Hardware Environment: Desktop computer (Windows 10 operating system, CPU
model: AMD Ryzen 5 3600, GPU model: 1660 Super Ultra).

Software Environment: The model development was carried out in the PyTorch
framework. The Adam optimizer was employed for optimization, with learning rates
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configured at 5 × 10−6 for both the encoder and decoder, while the momentum factors
were set to 0.9 and 0.99, respectively. As for the discriminator and latent code generator,
the learning rates were adjusted to 5 × 10−5, with momentum factors of 0.5 and 0.9. The
pre-training phase consisted of 2000 iterations, followed by 5000 iterations for training the
complete DAE-GAN network.

4.2. Evaluation of Data Augmentation Capability of the DAE-GAN Model

The effectiveness of data augmentation in the DAE-GAN model is dependent on
its ability to generate samples, which is primarily evaluated by the authenticity of the
generated data and how well the probability distributions are fitted. To provide a clear
comparison of the model’s generative capabilities, this study contrasts it with three other
models: CWGAN-GP, BEGAN, and VAE. The performance of these models is assessed
based on two main factors: the diversity of the samples generated and their similarity
to real-world samples. Each of these models was trained using the sample library data
presented in Table 1.

4.2.1. Evaluation of Similarity of Generated Samples by the Model

As shown in Figure 7, the four types of PD waveforms: tip discharge, floating dis-
charge, bubble discharge, and surface discharge are presented. A real sample was randomly
selected, and the correlation coefficient was employed as the evaluation criterion. For com-
parison, the PD pulse time–domain waveform with the highest similarity to the real sample,
generated by each model, was chosen based on this criterion.
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As observed in Figure 7, both BEGAN and VAE generate relatively smooth samples;
however, VAE loses some of the original sample’s fluctuations. The waveform generated
by CWGAN-GP contains some noise-like fluctuations. In contrast, the samples generated
by DAE-GAN are also relatively smooth and do not suffer from the issue of losing parts of
the original sample’s fluctuations, as seen with VAE.

The aforementioned real sample and the PD samples generated by each model were
subjected to FFT transformation [28], with a time window length of 137 sampling points
to obtain two-dimensional time-frequency diagrams for each sample. For a quantitative
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assessment of the similarity between the time–frequency diagrams, the Multi-scale Struc-
tural Similarity (MS-SSIM) [29] metric was employed. This method measures the visual
similarity between two images at different scales, where a higher MS-SSIM value signifies
a greater resemblance between the two samples. The detailed comparison results obtained
from this analysis are provided in Table 3.

Table 3. MS-SSIM index of different models.

Tip
Discharge

Floating
Discharge

Bubble
Discharge

Surface
Discharge

MS-SSIM
Mean Value

CWGAN-GP 0.9175 0.9449 0.9732 0.9728 0.9521
BEGAN 0.9197 0.7932 0.9995 0.9551 0.9169

VAE 0.8470 0.9023 0.956 0.9383 0.9109
DAE-GAN 0.9504 0.9993 0.9995 0.9763 0.9814

As shown in Table 3, the MS-SSIM values for the samples generated by VAE are
generally lower due to the loss of some fluctuations. For BEGAN, the MS-SSIM value is the
lowest for the floating discharge waveform because of mode collapse. The MS-SSIM values
and mean MS-SSIM values for the waveforms generated by DAE-GAN are the highest for
all types of discharge, indicating the highest similarity between its generated waveforms
and the original samples.

4.2.2. Evaluation of Model-Generated Sample Diversity and Distribution Similarity

Taking surface discharge as an illustrative example, the t-distributed stochastic neigh-
bor embedding (t-SNE) algorithm [30] was utilized to perform dimensionality reduction
on both real samples and a selection of generated samples from each model. This method
allows for visualizing the high-dimensional data in a more interpretable, low-dimensional
space. The resulting visual representations of these samples are provided in Figure 8.
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As clearly shown in Figure 8, both BEGAN and VAE models experienced mode
collapse, with the generated samples concentrated in a small area near the real samples.
In contrast, CWGAN-GP and DAE-GAN, which account for the 1-Lipschitz continuity
condition, have their generated samples scattered within the distribution range of the real
samples, indicating better diversity.
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While diversity gives an indication of variety, another crucial aspect of generative
model evaluation is how well the generated samples align with the original data’s under-
lying distribution. A well-performing generative model should not only produce diverse
samples but also accurately replicate the statistical properties of the real data. In this
context, examining the probability distribution of the generated samples provides deeper
insights into how closely the model captures the real data structure. Therefore, it is essential
to assess not only the spread of the generated samples but also their probability density
relative to the original dataset.

The generative capability of a model is primarily reflected in the accuracy of fitting the
original distribution. Evaluating model performance solely based on diversity has certain
limitations. Using the ‘ksdensity’ function in MATLAB to approximate the distribution
of the dimensionally reduced samples, the probability distributions of the real samples
and the generated samples from each model are compared in Figure 9. The 3D probability
distribution plot illustrates the distribution of samples after dimensionality reduction.
The X-axis and Y-axis represent the two dimensions of the samples, while the Z-axis
and color indicate the probability density of the samples at different positions. This
visualization helps to intuitively display the distribution characteristics and correlations
between variables.
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A comparison of subfigures (a) and (b) in Figure 9 shows that the probability dis-
tributions of samples generated by BEGAN and VAE are confined to specific regions,
displaying significant differences from the distribution of real samples. While CWGAN-GP
generates probabilities closer to the real samples, some small areas exhibit excessively high
probabilities. The 3D visualizations reveal that the probability distribution of samples
generated by DAE-GAN closely aligns with that of real samples. The reason is that the
autoencoder first reduces the dimensionality of the original samples and then maps them
back to the high-dimensional sample space. This two-step process allows the model to
preserve the essential features of the original data while effectively reconstructing them
in higher dimensions. As a result, the generated samples maintain key characteristics of
the real data, leading to a probability distribution that more accurately reflects that of the
original samples.

After converting the 3D probability distribution plots into 2D grayscale images and
applying a zero-removal process, the similarity between the probability distribution of the
generated partial discharge samples and the real samples was assessed. This evaluation
was done using the Multi-Scale Structural Similarity Index (MS-SSIM). Higher MS-SSIM
values indicate greater similarity between the generated and real sample distributions. The
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specific MS-SSIM values calculated for each model are summarized in Table 4, providing a
clear comparison of how closely each model’s generated samples align with the actual data.

Table 4. MS-SSIM index of probability distribution of different models.

Model CWGAN-GP BEGAN VAE DAE-GAN

MS-SSIM values 0.8463 0.7979 0.7838 0.8680

As shown in Table 4, the MS-SSIM values for BEGAN and VAE are clearly lower than
those of the other two models. The DAE-GAN model has the highest MS-SSIM value,
indicating the highest fitting accuracy of the probability distribution for the generated
partial discharge samples.

4.3. Analysis of Network Data Augmentation and Pattern Recognition Effectiveness

To comprehensively assess the effectiveness of the proposed data augmentation
method across various classifiers and evaluate its influence on classification accuracy,
a multi-class evaluation framework based on the confusion matrix was employed. This
approach provides a thorough examination of the method’s performance in enhancing
classification outcomes. The formulas for calculating classification accuracy (λaccuracy%), F1
score (λF1%), and G-mean (λG-mean%) are provided in reference [31].

4.3.1. Applicability of DAE-GAN

To evaluate the applicability of the data augmentation method proposed, a Support
Vector Machine (SVM) [32] with a radial basis function kernel and a classifier network
structure of 13-5000-400-1 sparse autoencoder (SAE) [33] were included for comparison. The
classifiers were trained using both the original sample set and the sample set expanded with
DAE-GAN generated samples. Following the training phase, the classifiers were utilized
to conduct pattern recognition analysis on partial discharge signals, and the evaluation
metrics are compared in Table 5.

Table 5. Comparison of classification effect before and after data augmentation.

Classifier
λaccuracy% λF1% λG-mean%

Before
Augmentation

After
Augmentation

Before
Augmentation

After
Augmentation

Before
Augmentation

After
Augmentation

SVM 78.74 88.89 77.92 88.25 78.20 88.33
SAE 87.51 91.05 85.56 92.59 87.83 92.88

Classifier used 90.12 98.36 88.62 97.82 89.93 97.62

In Table 5, λaccuracy%, λF1%, and λG-mean% represent three common metrics used
to evaluate machine learning models in classification tasks, each with a distinct focus,
especially in the context of imbalanced datasets. λaccuracy% is a widely used metric for
evaluating classification models, reflecting the ratio of correctly classified samples to the
total sample size. It is particularly effective when the dataset has a relatively balanced
distribution of positive and negative samples. λF1% is a metric that combines Precision
and Recall, calculated as the harmonic mean of these two metrics. It is particularly useful
for evaluating model performance on imbalanced datasets, where the focus is on balancing
Precision and Recall. λG-mean%, on the other hand, is specifically designed for imbalanced
datasets, measuring the model’s balance between positive and negative class performance.
It is particularly effective in situations where the dataset is highly imbalanced. The selection
of these three metrics for evaluating model performance is based on their distinct focuses,
which are suitable for different data distributions and task requirements. In particular,
they offer a comprehensive evaluation of model performance in classification tasks with
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imbalanced datasets, each providing a unique perspective. This helps to avoid the bias of
relying on a single metric, thereby enhancing the credibility of the evaluation results.

By comparing the evaluation metrics of each classifier before and after data augmen-
tation in Table 5, it is evident that all classifiers show an improvement in their evaluation
metrics after DAE-GAN data augmentation. This demonstrates that the proposed data
augmentation method is effective and applicable across various classifiers, including SVM
and SAE, as well as the specific classifier utilized in this study.

4.3.2. Comparison of Classification Effectiveness of Different Data Augmentation Methods

To verify the effectiveness of the proposed data augmentation method for partial dis-
charge pulse samples, five oversampling techniques—ROS, SMOTE, CWGAN-GP, BEGAN,
and VAE—were selected for comparison. Each of these methods, along with the proposed
sample generation approach, was used to balance and expand the capacity of each partial
discharge sample type to 1500. The classifier used was then trained using the different
augmented sample libraries. The evaluation metrics for the classifier trained on the original
samples and on the samples augmented using different oversampling methods are shown
in Table 6.

Table 6. Comparison of classification effects with different data augmentation techniques.

Data Augmentation Methods λaccuracy% λF1% λG-mean%

Original samples 90.12 88.62 89.93
ROS 89.04 87.54 88.85

SMOTE 96.38 95.88 93.94
CWGAN-GP 97.57 97.58 97.20

BEGAN 97.17 97.06 96.81
VAE 96.77 96.47 94.75

DAE-GAN 98.36 97.82 97.62

As shown in Table 6, the classifier trained on the original samples exhibits low recogni-
tion accuracy due to the imbalance and small size of the partial discharge dataset. ROS does
not significantly improve classification performance. While SMOTE, BEGAN, and VAE
can enhance performance, their effects are moderate. CWGAN-GP produces more diverse
samples, resulting in a greater improvement in classification accuracy. After DAE-GAN
data augmentation, the accuracy, F1 score, and G-mean metrics are improved by 8.24%,
9.20%, and 7.69%, respectively, compared to the pattern recognition metrics trained on the
original samples. The classification accuracy also shows varying degrees of improvement
compared to other data augmentation algorithms.

4.4. Analysis of the Role of Introducing Complementary Samples

To assess the impact of incorporating complementary samples into the generative
model’s training process, the model was trained under two different conditions: one
without the inclusion of complementary samples and the other with these additional
samples. This comparative approach helps highlight the effectiveness of introducing
complementary data in enhancing the model’s performance.

By introducing a population diversity metric [34], as shown in Equation (6), the
diversity of the model-generated samples is quantitatively evaluated. In Equation (6),
lossdiv represents the diversity cost function, Ω denotes the set of real and generated
samples, ∥K∥ refers to the maximum diagonal distance in the space of Ω, and m is the total
number of elements in the set.

lossdiv =
1

m∥K∥ ∑
u∈Ω

√(
u − ¯

u
)T(

u − ¯
u
)

(6)
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Following the method outlined in Section 4.3.2, the diversity variation plots for dif-
ferent sample sizes and the MS-SSIM metrics of the probability distribution images were
obtained, as shown in Figure 10 and Table 7.

Algorithms 2024, 17, x FOR PEER REVIEW 14 of 17 
 

 
Figure 10. Diversity comparison of samples generated by models under different conditions. 

Table 7. MS-SSIM metrics for probability distribution maps under different conditions. 

Metrics Without Complementary Samples With Complementary Samples
MS-SSIM value 0.8492 0.8680 

As shown in Figure 10, the diversity evaluation metric for PD samples generated by 
DAE-GAN is consistently higher when complementary samples are included in the train-
ing compared to when they are not. The inclusion of complementary samples effectively 
enhances the diversity of the generated samples. From Table 7, it is evident that the MS-
SSIM values of the probability distribution images are significantly higher when comple-
mentary samples are included in the DAE-GAN training. This indicates that the inclusion 
of complementary samples effectively improves the fiĴing accuracy of the probability dis-
tribution and can effectively mitigate the issue of insufficient probabilistic information 
caused by the small sample characteristics of partial discharge data. 

The DAE-GAN model was employed to augment the sample data under both experi-
mental conditions, one without and one with complementary samples. These augmented 
datasets were then utilized to train the classifier for conducting pattern recognition tasks. 
The performance evaluation metrics derived from these experiments are detailed in Table 8. 

Table 8. Comparison of classification effects with complementary samples. 

Data Augmentation Method λaccuracy% λF1% λG-mean% 
Without complementary samples 97.21 96.50 96.50 

With complementary samples 98.36 97.82 97.62 

As shown in Table 8, when complementary samples are included, all classification 
performance evaluation metrics for the classifier trained with the augmented samples 
from the generative model are higher than when complementary samples are not in-
cluded. The λaccuracy%, λF1%, and λG-mean% improved by 1.15%, 1.32%, and 1.12%, respec-
tively. This demonstrates that the inclusion of complementary samples effectively en-
hances the classification performance. 

5. Conclusions 
To address the issue of low accuracy in partial discharge paĴern recognition caused 

by imbalanced and limited sample sizes, this study proposes a novel approach combining 
data augmentation with paĴern recognition using DAE-GAN. The key findings of the 
study are summarized as follows: 

Figure 10. Diversity comparison of samples generated by models under different conditions.

Table 7. MS-SSIM metrics for probability distribution maps under different conditions.

Metrics Without Complementary Samples With Complementary Samples

MS-SSIM value 0.8492 0.8680

As shown in Figure 10, the diversity evaluation metric for PD samples generated by
DAE-GAN is consistently higher when complementary samples are included in the training
compared to when they are not. The inclusion of complementary samples effectively en-
hances the diversity of the generated samples. From Table 7, it is evident that the MS-SSIM
values of the probability distribution images are significantly higher when complementary
samples are included in the DAE-GAN training. This indicates that the inclusion of com-
plementary samples effectively improves the fitting accuracy of the probability distribution
and can effectively mitigate the issue of insufficient probabilistic information caused by the
small sample characteristics of partial discharge data.

The DAE-GAN model was employed to augment the sample data under both experi-
mental conditions, one without and one with complementary samples. These augmented
datasets were then utilized to train the classifier for conducting pattern recognition tasks.
The performance evaluation metrics derived from these experiments are detailed in Table 8.

Table 8. Comparison of classification effects with complementary samples.

Data Augmentation Method λaccuracy% λF1% λG-mean%

Without complementary samples 97.21 96.50 96.50
With complementary samples 98.36 97.82 97.62

As shown in Table 8, when complementary samples are included, all classification
performance evaluation metrics for the classifier trained with the augmented samples
from the generative model are higher than when complementary samples are not included.
The λaccuracy%, λF1%, and λG-mean% improved by 1.15%, 1.32%, and 1.12%, respectively.
This demonstrates that the inclusion of complementary samples effectively enhances the
classification performance.
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5. Conclusions

To address the issue of low accuracy in partial discharge pattern recognition caused by
imbalanced and limited sample sizes, this study proposes a novel approach combining data
augmentation with pattern recognition using DAE-GAN. The key findings of the study are
summarized as follows:

(1) When assessed using the key criteria of authenticity, sample diversity, and the accu-
racy with which the model fits the probability distribution, the DAE-GAN model
demonstrates a clear advantage in generative capability. It outperforms other models,
such as BEGAN, VAE, and CWGAN-GP, in these aspects, making it a more robust
choice for generating high-quality samples.

(2) After data augmentation with DAE-GAN, the pattern recognition accuracy indicators,
λaccuracy%, λF1%, and λG-mean%, increased by 8.24%, 9.20%, and 7.69%, respectively,
compared to the pattern recognition trained on the original samples. This effec-
tively improves the accuracy of partial discharge pattern recognition. Additionally,
the accuracy after DAE-GAN data augmentation is higher compared to other data
augmentation algorithms included in the comparison.

(3) The sample generation capability of DAE-GAN is enhanced by including complemen-
tary samples, effectively addressing the issue of insufficient probabilistic information
caused by the small sample characteristics of partial discharge. Compared to when no
complementary samples are included, the λaccuracy%, λF1%, and λG-mean% indicators
improved by 1.15%, 1.32%, and 1.12%, respectively. The inclusion of complementary
samples effectively improves classification performance.

The current DAE-GAN model still has several areas for improvement, particularly in
terms of the collaborative training between the DAE and GAN modules. Further in-depth
research is required to effectively coordinate the training processes of both modules to
achieve complementary and enhanced performance. Moreover, the hyperparameters of
the current model are determined through experimental adjustment, which may not be
optimal for different datasets and tasks. Therefore, designing an adaptive mechanism
that can dynamically adjust hyperparameters to meet the needs of various training stages,
while optimizing the training process and improving overall model performance, remains
a crucial challenge to be addressed.
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