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Abstract: This paper presents numerical works on estimating some logistic models using particle
swarm optimization (PSO). The considered models are the Verhulst model, Pearl and Reed general-
ization model, von Bertalanffy model, Richards model, Gompertz model, hyper-Gompertz model,
Blumberg model, Turner et al. model, and Tsoularis model. We employ data on commercial and rural
banking assets in Indonesia due to their tendency to correspond with logistic growth. Most banking
asset forecasting uses statistical methods concentrating solely on short-term data forecasting. In bank-
ing asset forecasting, deterministic models are seldom employed, despite their capacity to predict
data behavior for an extended time. Consequently, this paper employs logistic model forecasting. To
improve the speed of the algorithm execution, we use the Cauchy criterion as one of the stopping
criteria. For choosing the best model out of the nine models, we analyze several considerations such
as the mean absolute percentage error, the root mean squared error, and the value of the carrying
capacity in determining which models can be unselected. Consequently, we obtain the best-fitted
model for each commercial and rural bank. We evaluate the performance of PSO against another
metaheuristic algorithm known as spiral optimization for benchmarking purposes. We assess the
robustness of the algorithm employing the Taguchi method. Ultimately, we present a novel logistic
model which is a generalization of the existence model. We evaluate its parameters and compare the
result with the best-obtained model.

Keywords: banking data; logistic growth model; parameter estimation; particle swarm optimization;
Taguchi method

1. Introduction

The logistic growth model, or simply the logistic model, becomes an important part
of multidisciplinary science that deals with modeling data that have a tendency to grow
exponentially in the early phase, and in the next phase, it saturates and slows down until
the growth stops. In mathematical biology, the logistic model is often used in modeling
the growth of a population [1,2], the growth of some species size [3–6], and the cases of an
endemic disease [7,8]. Meanwhile, in banking and finance, the model is used to model the
growth of deposits and loans of a bank [9–12]. The benefit of using logistic model-to-model
data is usually to know the prediction of the peak growth and when it occurs and to predict
some number called carrying capacity.With this prediction, a policy can be made to deal
with the control of the growth of the data.

The logistic model was first introduced by Pierre-François Verhulst in the middle of
the nineteenth century [13]. Later, in 1911 and 1920, it was rediscovered by McKendrick
and Pai and Pearl and Reed, respectively. McKendrick and Pai studied the rate of the
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multiplication of micro-organisms that must be proportional to the current number and
the lack of foods [4]. Pearl and Reed derived the logistic function for representing the U.S.
population growth [1]. Two years later, Pearl and Reed made a generalization by taking the
growth rate parameter as a function of time [2].

Years later, for empirical purposes, many researchers modified the logistic model
directly or indirectly from the previous researchers. For instance, von Bertalanffy studied
the growth of length and weight of guppy fish (Lebistes reticulatus) [14] and the connections
between metabolism and the growth rate of living organisms [15], Richards extended the
von Bertalanffy model to become more flexible and tested the plant data [16], Blumberg
proposed a modification in the Verhulst model for modeling the population or organism
size [17], Turner et al. presented the generalization called generic growth model [18], and
then Tsoularis generalized the generic growth model in [19]. It also needs to be noted that
there is a Gompertz function [20] that belongs to the family of logistic functions. In [18],
Turner et al. also discussed the hyper-Gompertz function.

In this paper, we use the logistic model to model banking assets growth. Many
banking asset forecasting methods employ statistical methodologies that focus exclusively
on short-term data predictions, such as [21–23]. Deterministic models are rarely utilized
in banking asset forecasting, despite their ability to project data behavior over prolonged
periods. Therefore, this work utilizes logistic model prediction. We use Indonesian banking
data from the period January 2007–January 2020. The rationale for using the logistic model
in analyzing the growth of banking assets is as follows. For a healthy bank, the amount
of assets has a tendency to always go up exponentially, although, in some parts, it also
fluctuates. However, for several reasons of the bank’s internal and external limitations,
there should be an upper threshold number for banking asset growth which can be seen as
the carrying capacity in the logistic model. A bank is a financial institution with a main
intermediary function, which is accepting deposits and providing loans. A bank can be
classified as a commercial bank or a rural bank. The objects of this study are the data
of assets of Indonesian commercial and rural banks. Commercial banks carry out their
business activities conventionally or according to Sharia,in which there are also services
in payment transmission services, while rural banks do not provide services in payment
transmission. Commercial banks also have a wider range of financial products than rural
banks, such as foreign exchange, insurance businesses, and equity participation. In terms
of service areas, commercial banks can serve at the village, city, provincial, national, and
international levels, and on the other hand, rural banks’ service areas are limited to districts
or cities. Therefore, the total assets of commercial banks are certainly far greater than rural
banks; see Figure 1a,b. The monthly fluctuation of the assets can be seen in Figure 1c,d.
The reason why we need to distinguish between commercial and rural bank data, without
collecting them into a single data unit, is that we want to see whether the dynamics of
growth in commercial banking assets (big banks) are different or the same as the dynamics
of rural banking (small banks) asset growth. Whether the two data will fit into the same or
different logistic models is our concern.

In the application of a logistic model to modeling data, the problem of estimating the
model’s parameters is unavoidable. In the logistic model, it can be said that the parameters
can be divided into two groups, the first group is the parameters with a small estimated
value, and the second group is the carrying capacity parameter which may have a very large
value. The gap between the two groups causes parameter estimation problems in a search
area that is in the form of a very long rectangle. Such a search area will complicate classical
numerical methods; for example, Newton’s method with its gradient and Hessian which
requires guessing the initial value. The large value of carrying capacity will interfere with
the performance of the Newton method. Meanwhile, a metaheuristic algorithm such as the
spiral optimization (SpO) algorithm [24,25], which is very powerful for an optimization
problem in a square search area as it has an iteration update in the form of spiral rotation,
will also experience weaknesses in estimating the parameters of the logistic model because
the update in each iteration will create search points that exit the search area.
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(a) (b)

(c) (d)

Figure 1. Total assets of (a) commercial banks and (b) rural banks in Indonesia in the period January
2007−January 2020. The monthly fluctuation of total assets of (c) commercial banks and (d) rural banks.

Particle swarm optimization (PSO), an optimizer based on the bird or fish-flocking
behavior in search of optimal food resources, is one of the metaheuristic methods that is
unaffected by the size of the search area because the updating of search points in the PSO
method can adapt to the size of the search area. Thus, the algorithm will be very suitable for
estimating the parameters of logistic models. To avoid discovering search points outside
the search area, the PSO method might include a condition that ensures all search points
remain within the search area. In this study, numerous logistic models’ parameters are
estimated using PSO. In order to reduce the time required to complete iterations, we employ
the Cauchy criterion in addition to the maximum number of iterations as a stop condition.
Using the Cauchy criterion, we can automatically halt the algorithm if we suspect that
it has attained convergence. Although there have been so many variants of PSO in the
literature, including recent developments in [26–29], this paper uses the standard PSO
algorithm with a decreasing inertia weight [30,31]. To check the algorithm’s robustness, we
apply the Taguchi method [32,33] to determine the optimal parameters for PSO.
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The organization of this paper is as follows. In Section 2, we present a review of nine
logistic models used in this paper. Section 3 provides the PSO algorithm. Section 4 describes
the implementation of the logistic models’ parameter estimation as well as the strategy
for the optimization problems. Section 5 presents the numerical result of the parameter
estimation and determines the best logistic models for the commercial and rural bank data.
In Section 6, we compare the result of PSO with the SpO algorithm as a benchmark. In
Section 7, we check the robustness of PSO by tuning the parameters using the Taguchi
method. In Section 8, we propose a new logistic model as the generalization of the existence
model. We estimate this new model and compare the result with the best models obtained
from Section 5. Section 9 discusses and concludes this study.

2. Logistic Models Review
2.1. Verhulst Model

The Verhulst model is given by

dy
dt

= ry
(

1 − y
K

)
, (1)

where r is the growth rate parameter, and K is the carrying capacity of the environment.
The right-hand of (1) can be written as

ry − r
K

y2 = (r1 − r2)y − r3y2.

In the study of the population of organisms, r1 means the birth rate, r2 means the death rate,
and r3 means the resultant between competition and cooperation rate among them [34].

By separating variables, the differential Equation (1) has solution

y(t) =
K

1 +
(K−y(0)

y(0)

)
exp(−rt)

. (2)

The value of y that causes the right side of (1) to become maximum is called the
inflection point,and the time when that happens is called inflection time. In the study
of an epidemic, the inflection time can be viewed as the date when the daily cases reach
maximum numbers. The inflection point of the logistic model can be found by solving the
following equation for y,

d2y
dt2 = 0. (3)

Let y = yinf be the solution of (3), i.e., the inflection point. Then, by solving (2) for t so that

y(t) = yinf, (4)

we will have the inflection time. Let us denote the inflection time with tinf.
The Verhulst model has inflection point yinf =

K
2 and inflection time tinf =

1
r ln

(K−y(0)
y(0)

)
.

2.2. Pearl and Reed Generalization Model

By rearranging (1) into
K

y(K − y)
dy
dt

= r, (5)

the left-hand side of (5) varies in time due to the changing of y. Assume that parameter
K is constant (for discussion K is not conctant, K = K(t), see [34,35]). Hence, parameter r
must vary in time. This leads Pearl and Reed [2] generalizing (1) to be

dy
dt

= r(t)y
(

1 − y
K

)
. (6)



Algorithms 2024, 17, 507 5 of 20

Integrating (5) gives

y(t) =
K

1 + C exp(−
∫

r(t)dt)
, (7)

where C =
(K−y(0)

y(0)

)
exp(R(0)), with R(t) =

∫
r(t)dt.

For Pearl and Reed’s generalization model, we need to find tinf first by solving

0 =
d2y
dt2 = r′(t)y(t)

(
1 − y(t)

K

)
+ r(t)

(
1 − 2

K
y(t)

)
y′(t)

= r′(t)y(t)
(

1 − y(t)
K

)
− r(t)2y(t)

(
1 − y(t)

K

)(
1 − 2

K
y(t)

)
,

or
0 = r′(t) + r(t)2

(
1 − 2

K
y(t)

)
.

Then, we calculate yinf =
( r′(tinf)

r(tinf)2 + 1
) K

2 . When r(t) is constant, then we obtain yinf =( 0
r2 + 1

) K
2 = K

2 same as from the Verhulst model.
In their paper, Pearl and Reed take r(t) as a polynomial, r(t) = ∑N

n=1 nantn−1.
Then, (7) becomes

y(t) =
K

1 +
(K−y(0)

y(0)

)
exp(−∑N

n=1 antn)
. (8)

In the numerical works of this paper, we use r(t) = a1 + a2t + a3t2. It is the same r(t) that
is used in [2,8].

2.3. Von Bertalanffy Model

Ludwig von Bertalanffy derived his logistic model based on physiological reasons for
modeling guppy fish growth and modified the Verhulst model so that it can accommodate
the crude metabolic types of the fish [14,19]. The paper [5] uses the von Bertalanffy model
to determine the length of Pacific bonito fish based on age and vice versa. The model is
given below

dy
dt

= ry
2
3

(
1 −

[ y
K

] 1
3
)

. (9)

The number 2
3 in dy/dt = ry

2
3 − (rK− 1

3 )y expresses the surface rule for a certain organism,
i.e., the rate of the entire animal’s metabolism is proportional to the 2

3 power of its body
weight [15].

The solution of (9) is

y(t) =
[
K

1
3 −

(
K

1
3 − y(0)

1
3
)

exp
(
− 1

3
rK− 1

3 t
)]3

, (10)

with inflection point yinf =
8

27 K and inflection time tinf =
3K1/3

r ln
( 3[K1/3−y(0)1/3]

K1/3

)
.

Comparing the von Bertalanffy model with the Verhulst model, for assumption y(t) >
1 for all t, yields

ry(t)
2
3

(
1 −

[y(t)
K

] 1
3
)
< ry(t)

(
1 − y(t)

K

)
for all t.

So, if we set the same parameters value r and K for both models, the von Bertalanffy model
needs more time to reach its carrying capacity. Therefore, if we want to make the von
Bertalanffy model close to the Verhulst model, we need to set the parameter r of the von
Bertalanffy model bigger than the parameter r of the Verhulst model.
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2.4. Richards Model

Inspired by the von Bertalanffy model, Richards modified the Verhulst model to be
more flexible for the empirical use of fitting plant data [16]. The model is written below

dy
dt

=
r
α

y
(

1 −
[ y

K

]α)
, (11)

where α > 0 is called the shape parameter. The Richards model is sometimes called the
generalized logistic equation following Nelder in [36].

The solution of (11) is

y(t) =
K[

1 +
(
− 1 +

[ K
y(0)

]α) exp(−rt)
]1/α

, (12)

with inflection point yinf =
K

(α+1)1/α and inflection time tinf =
1
r ln

( [K/y(0)]α−1
α

)
.

2.5. Gompertz Model

In 1825, Benjamin Gompertz sent a letter to Francis Baily about the nature of a designed
function to describe the law of human mortality [20]. Later, the function was called the
Gompertz function.

The following differential equation

dy
dt

= ry ln
(K

y

)
, (13)

is referred to as the Gompertz model. The model can be viewed as a derivation of Richards
differential Equation (11), in which α tends to zero.

The solution of (13) is

y(t) = K
(y(0)

K

)exp(−rt)
, (14)

and it is called the Gompertz function. The model has inflection point yinf =
K

exp(1) and

inflection time tinf =
1
r ln

(
ln

( K
y(0)

))
.

2.6. Hyper-Gompertz Model

Turner et al. [18] studied a model which they called the hyper-Gompertz model, by
putting γ as the power of ln(K/y) in (13), where γ > 0 and γ ̸= 1. The hyper-Gompertz
model is given by

dy
dt

= ry
[

ln
(K

y

)]γ
. (15)

By manipulating (15) in the following way,

d
dt

(
ln

[ y
K

])
=

1
y

dy
dt

= r
[

ln
(K

y

)]γ
= (−1)γr

[
ln

( y
K

)]γ
,

the solution of (15) is

y(t) = K exp
([

(−1)γ(−γ + 1)rt +
[

ln(
y(0)

K
)
]−γ+1

] 1
−γ+1

)
. (16)

It has the inflection point yinf =
K

exp(γ) and inflection time tinf =
(−γ)−γ+1−[ln(y(0)/K)]−γ+1

(−1)γ(−γ+1)r .
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2.7. Blumberg Model

Another modification of the logistic model is proposed by Blumberg [17], written
below

dy
dt

= ryβ
(

1 − y
K

)γ
. (17)

Because of the difficulties of solving (17) analytically, the differential Equation (17) will be
solved numerically using the Runge–Kutta method.

The inflection point of the Blumberg model is yinf =
βK

β+γ . Meanwhile, the inflection
point tinf is taken numerically by solving

min
i=0,...,T

|y(ti)− yinf|,

with y(ti) is the Runge–Kutta approximation, ti = i∆t, ∆t > 0.

2.8. Turner et al. Model

In a more general way than the Blumberg model, Turner et al. offered this differential
equation

dy
dt

= ry1+α(−γ+1)
(

1 −
[ y

K

]α)γ
, (18)

which they called a generic growth model [18]. The parameters α and γ are positive and
yield −1 + γ < 1/α. γ ̸= 1. Unlike (17), the model (18) has an analytical solution.

By rewriting (18) as follows

dy
dt

= rK−αγyα+1(Kαy−α − 1)γ,

and using an integration substitution method for Kαy−α − 1, we obtain

y(t) = K/
(

1 +
[
(γ − 1)αKα(−γ+1)rt +

([ K
y(0)

]α − 1
)−γ+1

]1/(−γ+1))1/α
. (19)

The Turner et al. model has an inflection point yinf =
[ 1+α(−γ+1)

1+α

]1/αK and inflection
time

tinf =

[( K
y(0)

)α − 1
]−γ+1 −

[ αγ
1+α(−γ+1)

]−γ+1

rα(−γ + 1)Kα(−γ+1)

2.9. Tsoularis Model

Completing the work of Turnet et al., Tsoularis in [19] generalized the generic growth
model to be like this

dy
dt

= ryβ
(

1 −
[ y

K

]α)γ
. (20)

Note that this model is the generalization of all logistic models that have been mentioned
before, of course, except the Pearl and Reed generalization. Like the Blumberg model,
the Tsoularis model also can not be solved analytically, hence the model will be solved
numerically using the Runge–Kutta method.

The inflection point of the Tsoularis model is yinf =
( β

β+αγ

)1/αK, where the inflection
time will be solved as in the Blumberg model case.

3. Particle Swarm Optimization

As a part of the swarm intelligence family, particle swarm optimization (PSO) is a
metaheuristic algorithm inspired by the way bird or fish schools find foods [37]. PSO was
first introduced by Kennedy and Eberhart in 1995 [30]. The algorithm portrays the motions
of a group of particles with some velocities and the best-remembered position for finding
the best position of the group in a closed search space. The best-remembered position acts
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as the local optimum, and the best position of the group acts as the global optimum. Shi
and Eberhart [31] acquainted an inertia weight parameter in the velocity calculation to
obtain more stability between the seeking of local optimum and global optimum. Many
papers have utilized PSO, its variants, or its hybrid with other algorithms for advanced
optimization problems; for examples, see [38–47].

The PSO algorithm for a minimization problem minx∈Rn f (x) is written in Algorithm 1.

Algorithm 1 PSO Algorithm

1: procedure
2: Initialization: I ⊂ Rn is the search space; m is the number of particles; xi(0) ∈ I

is the initial position of particle i, i = 1, 2, . . . , m; vi(0) ∈ Rn is the initial velocity of
particle i, i = 1, 2, . . . , m; c1 and c2 are the weighted coefficients; w is the inertia weight
parameter.

3: Set xbest
i (0) = xi(0) as the initial best position of particle i.

4: Set xgbest(0) = xg, where f (xg) = mini f (xi(0)), as the initial best position of the
group.

5: k = 0.
6: if the stopping criteria is not reached then
7: for ∀i ∈ {1, 2, . . . , m} do
8: Update the particle velocity:

vi(k + 1) = w × vi(k) + (c1 × random(0, 1)

× (xbest
i (k)− xi(k)))

+ (c2 × random(0, 1)

× (xgbest(k)− xi(k))).

9: Update the particle position: xnew
i = xi(k) + vi(k + 1)

10: Check whether the updated position is still in the search space or not by the
following condition:

11: if xnew
i ∈ I then

12: Set xi(k + 1) = xnew
i

13: else
14: Set xi(k + 1) = xi(k)
15: Update the best position of each particle and the best position of the group:
16: if f (xi(k + 1)) ≤ f (xbest

i (k)) then
17: xbest

i (k + 1) = xi(k + 1).
18: if f (xi(k + 1)) ≤ f (xgbest(k)) then
19: xgbest(k + 1) = xi(k + 1).
20: else
21: xgbest(k + 1) = xgbest(k).
22: else
23: xbest

i (k + 1) = xbest
i (k).

24: xgbest(k + 1) = xgbest(k).
25: k = k + 1.
26: w = ρ × w, where ρ is the decreasing parameter of w, 0 < ρ < 1.

return xgbest as the minimum point of f (x).

It is common to set the following PSO parameters: c1 = 2, c2 = 2, w = 1, and ρ as a
number which is very close to 1; for example, ρ = 0.99.

PSO is designed to make the global minimum of the objective function in the current
iteration less than or equal to the global minimum of the objective function in previous itera-
tions, that is f (xgbest(k)) ≤ f (xgbest(j)), for all j ≤ k. In the optimization for data fitting, the
objective function is usually the error between the data and the model. Therefore, the objec-
tive function has values greater or equal to zero, which is bounded below. The number zero
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is one of the lower bounds. Now, suppose that f ≥ 0. Thus, the sequence uk = f (xgbest(k))
is a decreasing sequence and bounded below. By the Monotone Convergence Theorem,
uk is convergent. And by the Cauchy convergence criterion, a sequence of real numbers
is convergent if and only if it is a Cauchy sequence. The Cauchy sequence is defined as
follows: a sequence uk of real numbers is said to be a Cauchy sequence if for every ϵ > 0
there exists a natural number H(ϵ) such that for all natural numbers k, j ≥ H(ϵ), the terms
xk, xj satisfy |xk − xj| < ϵ [48].

We adopt the Cauchy convergence criterion as one of the stopping criteria of the PSO.
In this paper, we use two stopping criteria: the maximum iteration number (kmax) and the
Cauchy stopping criterion. We will stop the iteration if k = kmax or the Cauchy stopping
criterion is reached. The Cauchy stopping criterion is explained as follows: set a natural
number N, if | f (xgbest(k))− f (xgbest(k − j))| < ϵ for some j ≥ 1 and ϵ > 0, and for all k
where j ≤ k ≤ j + N, then the current iteration must be stopped. So, if the iteration of the
Cauchy stopping criterion is reached, then we must stop there and do not need to continue
until maximum iteration. If this happens, much time can be saved. And if the Cauchy
criterion is too difficult to make happen, although we have reached the maximum iteration,
we will stop the iteration there rather than waiting too long for the sake of the Cauchy
criterion being reached.

4. Implementation

The test sample (banks) consists of Indonesian commercial and rural banks. The number
of commercial and rural banks in Indonesia has decreased over the years (see Figure 2, the data
are taken from the Indonesia Central Bureau of Statistics’s website https://www.bps.go.id
(accessed on 23 October 2024)) due to various factors like mergers, consolidations, and
regulatory changes. This decrease is largely due to government efforts to stabilize the banking
sector and encourage mergers among smaller banks to create stronger institutions. Despite
that, the total assets seem to increase each year; see Figure 1a,b. The data are monthly total
assets in the period January 2007–January 2020 in terms of a billion rupiah (Rp) taken from
Indonesia Financial Service Authority’s website (https://www.ojk.go.id accessed on 1 March
2020), as shown in Figure 1. Let yd(ti) be the data of banking assets at time ti, where ti = i∆t,
i = 0, 1, . . . , 156. ∆t = 1/12 is the time increment, t0 is January 2007, and t156 is January 2020.
We use the data from January 2007 until December 2018 as the training data, that is the data
that are implemented to the logistic models for gaining the parameter value of the models.
The data from January 2019 until January 2020 are used as the validation data of the models’
prediction in the future assets value.

Figure 2. The number of commercial and rural banks in Indonesia over the years.

https://www.bps.go.id 
https://www.ojk.go.id
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Parameters of logistic models can be divided into two categories. One consists of a
growth rate parameter and shape parameters which can be estimated in a short interval
of search space; for example, [0,1], [0,5], etc. The other one is a carrying capacity that may
require a very long interval of search space; for example, [0, 103], [104, 108], etc. Instead of
picking an arbitrary interval for estimating the carrying capacity, we can pick an interval
based on a rough estimated value of the carrying capacity.

Pearl and Reed [1] give a formula to determine the rough estimation of the carrying
capacity of the Verhulst logistic function in (2). They use three data points that have the
same distance range h > 0. Those points are named (s1, x1), (s2, x2), and (s3, x3), where
s2 − s1 = s3 − s2 = h, and x1 = yd(s1), x2 = yd(s2), x3 = yd(s3). By substituting those
points into (2) and doing some eliminations, we obtain

K =
2x1x2x3 − (x1 + x3)x2

2
x1x3 − x2

2
. (21)

We choose s2 as the time around the mid-time of banking assets data, s2 = 71
12 , 72

12
and some h = 71

12 , 69
12 , 67

12 . From those s2 and h, we calculate s1 = s2 − h and s3 = s2 + h.
Thus, we obtain s1 = 0, 2

12 , 4
12 and s2 = 142

12 , 140
12 , 138

12 for the case s2 = 71
12 , and s1 = 1

12 , 3
12 , 5

12
and s2 = 143

12 , 141
12 , 139

12 for the case s2 = 72
12 . Having those sj and the associated xj = yd(sj),

j = 1, 2, 3, from (21), we obtain rough values for the carrying capacities of Indonesian
commercial and rural banking assets that are presented in Table 1. From Table 1, we can
clearly see why the Pearl and Reed formula is called a rough calculation of the carrying
capacity of the logistic model, since different s1, s2, and s3 will produce different carrying
capacity values.

Table 1. Rough values of the carrying capacity (in billion Rp) of commercial and rural banks in Indonesia.

s1 s2 s3 Rough K for Com. Bank Rough K for Rural Bank

0 71/12 142/12 12,431,437 206,126
2/12 71/12 140/12 12,022,655 199,172
4/12 71/12 138/12 11,342,372 200,580
1/12 72/12 143/12 14,254,951 215,716
3/12 72/12 141/12 13,313,955 204,998
5/12 72/12 139/12 12,619,803 204,283

Perhaps the best-estimated value (using an optimization method) of the carrying
capacities of the logistic models is smaller or greater than the rough values. Experience
shows that their value is not very much different [8,10]. In this paper, for all logistics
models, the carrying capacity will be estimated using PSO at an interval, say [a, b]. In the
case of commercial banks, a = 8,068,346 (the last data of the training data of commercial
banks) and b = 142,549,510 (the maximum rough carrying capacity value of commercial
banks from Table 1 times 10). And for the case of rural banks, a = 135,693 (the last data of
the training data of rural banks) and b = 2,157,160 (the maximum rough carrying capacity
value of rural banks from Table 1 times 10). Meanwhile, to estimate the parameters of
logistic models in Section 2 such as a1, a2, a3, r, α, β, γ, we use the intervals presented in
Table 2. The parameter r of the von Bertalanffy model is estimated at interval [0, 50], because
the parameter r requires a larger value to match the behavior of the Verhulst model.



Algorithms 2024, 17, 507 11 of 20

Table 2. Some intervals as the search space for estimating the parameter of logistic models.

Parameter The Search Space
a1, a2, a3 for Pearl–Reed generalization model [0, 1]
r for Verhulst, Richards, Gompertz, hyper-Gompertz, Blumberg,
Turner et al., and Tsoularis models

[0, 1]

r for von Bertalanffy model [0, 50]
α for Richards, Turner et al., and Tsoularis models [0, 5]
β for Blumberg and Tsoularis models [0, 3]
γ for hyper-Gompertz model [0.75, 3]
γ for Blumberg, Turner et al., and Tsoularis models [1, 5]

We have set the search space for the parameter estimation. Now, we set some pa-
rameters in PSO algorithm: m = 1000, c1 = 2, c2 = 2, w = 1, ρ = 0.99. Let x(k) be the
vector of the logistic model’s parameters at k-th iteration. The objective function of the
parameter estimation being used here is the Mean Absolute Percentage Error (MAPE),
which is calculated as follows

f (x(k)) =
100%
144

143

∑
i=0

∣∣∣y(ti, x(k))− yd(ti)

yd(ti)

∣∣∣,
where yd(ti) is the training data of banking assets at time ti = i/12 and y(ti, x(k)) is the
value of assets based on the logistic model’s solution, i = 0, 1, . . . , 143.

We set the stopping criteria for the algorithm, required the iteration passes the 20-th
iteration, as follows

k = kmax or | f (x(k))− f (x(k − 20))| < ϵ,

where kmax = 150 and ϵ = 0.001%.
We run the PSO twenty times, and choose the obtained parameters that have the

minimum MAPE. The obtained model is used to validate the validation data by calculating

MAPE validation =
100%

13

156

∑
i=144

∣∣∣y(ti, xgbest)− yd(ti)

yd(ti)

∣∣∣.
Apart from MAPE, as an additional consideration to find out how close the logistic

model is to the data, we also calculate the Root Mean Square Error (RMSE) for the training
data and the validation data below

RMSE training =

√
∑143

i=0(y(ti, xgbest)− yd(ti))2

144
,

RMSE validation =

√
∑156

i=144(y(ti, xgbest)− yd(ti))2

13
.

5. Numerical Results

The results of the parameter estimation are presented in Table 3 for commercial banks
and in Table 4 for rural banks. The letters P-R, V, vB, R, G, hG, B, Tu, Ts refer to the
Pearl and Reed generalization model (8), Verhulst model (2), von Bertalanffy model (10),
Richards model (12), Gompertz model (14), hyper-Gompertz model (16), Blumberg model
(17), Turner et al. model (19), and Tsoularis model (20), respectively.

In general, for the selection of the best model, the first thing to review is the smallest
error between the data and the model. Usually, the model with the smallest error will
be chosen, and the model with the biggest error is not selected. To provide a better
visualization of the errors in Tables 3 and 4, we present the chart of MAPE and RMSE in
Figure 3. First, we analyze the MAPE of the training data, because it is used as the objective
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function of the estimation parameters. From the figure, the Pearl–Reed generalization
model has the smallest MAPE, and it is followed by the Richards model. Meanwhile, the
von Bertalanffy model has the biggest MAPE, followed by the Gompertz model and the
hyper-Gompertz model. Based on the information on the MAPE values of the training and
validation data, the first models to be out from consideration are the von Bertalanffy model,
the Gompertz model, and the hyper-Gompertz model.

Table 3. Result of PSO in estimating parameters of logistic models using commercial banking assets
data in Indonesia.

a1 a2 a3 K Stop tinf yinf MAPE t. MAPE v. RMSE t. RMSE v.

P-R 0.1375 0.0156 4.28 × 10−10 8,228,341 62 7.33 5,114,283 1.68% 5.78% 101,902 489,191

r α β γ

V 0.1844 15,071,474 25 11.22 7,535,737 3.06% 2.29% 139,536 203,508
vB 29.3160 142,549,510 25 44.89 42,236,895 4.21% 1.93% 174,153 181,636
R 0.6557 4.2911 8,255,810 42 8.16 5,599,424 2.45% 4.82% 113,273 412,614
G 0.0431 86,377,000 27 31.76 31,776,323 3.50% 5.77% 163,688 491,075
hG 0.0432 1 85,794,137 115 31.70 31,561,899 3.11% 4.67% 160,263 402,819
B 0.0718 1.0683 4.7342 48,868,588 66 13.17 8,997,285 3.07% 3.33% 142,053 287,811
Tu 0.2014 2.6711 1.0062 946,0970 150 8.54 5,778,078 2.62% 2.07% 118,677 182,535
Ts 0.5401 2.9998 0.9158 3.0812 13,585,176 150 14.08 6,091,104 2.77% 0.52% 122,988 55,416

Table 4. Result of PSO in estimating parameters of logistic models using rural banking assets data
in Indonesia.

a1 a2 a3 K Stop tinf yinf MAPE t. MAPE v. RMSE t. RMSE v.

P-R 0.1838 0.0080 4.00 ×10−9 162,036 57 8.42 94,498 1.34% 2.57% 961 4655

r α β γ

V 0.2052 259,816 24 11.28 129,908 2.16% 2.82% 1587 4180
vB 8.3632 2,157,160 26 38.58 612,388 4.16% 0.72% 2597 1274
R 0.5296 3.0127 153,790 74 8.63 96,968 1.57% 2.97% 1086 5291
G 0.0443 1,919,658 24 33.49 706,203 2.73% 7.20% 2339 10,268
hG 0.0447 1 1,872,938 146 33.09 689,016 2.38% 6.51% 2131 9299
B 0.0878 1.0875 4.2360 712,615 64 12.33 145,580 2.12% 3.69% 1656 5337
Tu 0.2165 2.4256 1.0072 166,654 150 8.86 99,583 1.66% 1.74% 1111 3475
Ts 0.2477 4.3027 0.9657 4.6135 195,562 150 13.75 95,839 1.58% 2.92% 1117 5159

(a) (b)

Figure 3. MAPE and RMSE of the obtained models for (a) commercial banks and (b) rural banks.
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From the perspective of the MAPE of the validation data, for the commercial banking
case, the Pearl–Reed generalization model has the biggest MAPE followed by the Gompertz
model, the Richards model, and the hyper-Gompertz model. For the rural banking case,
the Gompertz model has the biggest validation MAPE, followed by the hyper-Gompertz
model. The Pearl–Reed generalization model and the Richards model have small MAPE
of the training data but their MAPE of the validation data is big. Let us look at their plots
versus the data in Figure 4. From the figure, those models are very good at approaching
the training data, but they fail to predict the validation data. The prediction strays too far
from the data; see the parts marked by a red circle. Also, as we can see from the figure,
the prediction failure is caused by the values of their carrying capacity being less than the
highest of the validation data (yd(t155) = 8,562,974) for the commercial banking case, and
are just a little bit higher than the highest of the validation data (yd(t156) = 149,872) for the
rural banking case.

(a) (b)

(c) (d)

Figure 4. Plot of the Pearl–Reed generalization model versus the data of (a) commercial banks and
(c) rural banks and the Richards model versus the data of (b) commercial banks and (d) rural banks.
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The failure of the Pearl–Reed generalization model and the Richard model in produc-
ing an estimated carrying capacity which is far enough above the last validation data gives
us insight into the carrying capacity value of the other models. Figure 5 presents the chart
of the carrying capacity values of all models. From the figure, in addition to the two models
mentioned, Turner et al. also produce the carrying capacity value which is close to the
highest of the validation data. For the reasons of the digression of the models from the data
and the closeness between the carrying capacity values with the highest validation data,
we take out the Pearl and Reed model, the Richards model, and the Turner et al. model
from the consideration as the best model.

Figure 5. The carrying capacity of the obtained models.

Now, there are three models that need to be discussed: the Verhulst logistic model,
the Blumberg model, and the Tsoularis model. From Figure 1, for the commercial banking
case, the Tsoularis model has the smallest MAPE and RMSE of the training and validation
data than the other two models. Therefore, we conclude that the Tsoularis model is the
best logistic model to fit the Indonesia commercial banking data. Meanwhile, for the rural
banking case, despite having the smallest MAPE and RMSE for the training data, the
Tsoularis model strays far from the validation data as shown by the biggest value of MAPE
and RMSE of the validation data. Now, for the rural banking case, we compare the Verhulst
model and the Blumberg model. In Table 4, the Verhulst model has a smaller MAPE of
the training data and also a smaller RMSE of the training and validation data than the
Blumberg model, although the Blumberg model has a smaller MAPE of the training data.
So, in the case of fitting the Indonesia rural banking data, we conclude that the Verhulst
model is the best model.

6. Benchmarking with Spiral Optimization Algorithm

In this section, we compare the PSO performance with another metaheuristic algo-
rithm as a benchmark. In this case, we employ the spiral optimization (SpO) which is a
metaheuristic algorithm first introduced in [24,25]. It is inspired by the spiral phenomenon
in nature. SPO describes a set of points that rotate around the global optimal point as the
direction of rotation. The SpO has recently been used in many applications, such as [49–52].
The SpO algorithm has an updating scheme as follows:

xi(k + 1) = Sn(δ, θ)xi(k)− (Sn(δ, θ)− In)xgbest(k),

where Sn(δ, θ) = δΠn−1
i=1

(
Πi

j=1R(n)
n−i,n+1−j(θ)

)
, and R(n)

i,j (θ) is n × n identity matrix with the
ii and jj entries are cos θ, the ji entry is sin θ, and the ij entry is − sin θ.
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The parameters of the method, θ and δ, represent the rotation angle, where 0 < θ ≤ π,
and the scaling radius of rotation, where 0 < δ < 1, respectively. In the majority of the
literature, the ranges π/4 ≤ θ ≤ π/2 and 0.9 ≤ δ ≤ 0.99 are employed.

We run the SpO algorithm to estimate the parameters of the Tsoularis model for the
commercial bank case and the Verhulst model for the rural bank case. The comparison with
the PSO’s result is presented in Table 5. In both cases, the PSO result is superior because of
the smaller MAPE training and validation compared to the SpO result.

Table 5. Result of SpO compared to PSO.

Algorithm
Tsoularis Model for Commercial Banks Data Verhulst Model for Rural Banks Data

r α β γ K MAPE t. MAPE v. r K MAPE t. MAPE v.

SpO 0.8027 2.1869 0.8894 3.4229 20,757,461 3.04% 2.98% 0.2043 264,499 2.17% 3.24%
PSO 0.5401 2.9998 0.9158 3.0812 13,585,176 2.77% 0.52% 0.2052 259,816 2.16% 2.82%

7. Tuning PSO Parameters

A critical aspect of employing an algorithm for optimization problems is its robustness,
typically described as the algorithm’s capacity to function well amidst variations in its
parameters. One approach to address the robustness issue is the Taguchi method [32,33]. It
is a signal-to-noise (SN) ratio which can be defined as follows [53]:

SN = −10 log10(MAPE)2. (22)

A higher value of the SN ratio means the parameter settings of the algorithm are more
robust. Several studies have employed the Taguchi method in their optimization problems,
especially when using PSO [26–28,53,54].

In this section, we apply a robustness check of the PSO’s parameter settings using the
Taguchi method. To this end, we consider five levels of robustness check for setting the
parameters listed in Table 6. We execute the PSO algorithm with all parameter settings in
the table to estimate the Tsoularis model’s parameters for the commercial bank case and the
Verhulst model’s parameters for the rural bank case. At the end, we calculate each SN ratio
based on the MAPE obtained from the parameter estimation. The result is illustrated in
Figure 6. We must observe which parameter’s value gives the highest SN ratio. It is found
that the optimal setting of the PSO’s parameters is identified as m = 50, c1 = 0.5, c2 = 1.5,
w = 3, and kmax = 50.

Table 6. The levels of the PSO’s parameters setting.

PSO’s Parameter Level 1 Level 2 Level 3 Level 4 Level 5

Number of particles (m) 10 50 100 200 300
Weighted coefficient (c1) 0.5 1 1.5 2 2.5
Weighted coefficient (c2) 0.5 1 1.5 2 2.5
Inertia weight (w) 1 2 3 4 5
Maximum iteration (kmax) 25 50 75 100 150

Figure 6. The SN ratio for PSO’s parameters.
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8. New Logistic Model

In the section on logistic model reviews (Section 2), it is known what all logistic models
have in common, e.g., that the growth rate r is a constant, except that only the Pearl and
Reed generalization model has a time-varying-growth rate as r(t) = a1 + a2t + a3t2.Now,
we propose a new logistic model by generalizing the Tsoularis model with time-varying-
growth rate r(t) = a1 + a2t + a3t2 as follows:

dy
dt

= (a1 + a2t + a3t2)yβ
(

1 −
[ y

K

]α)γ
. (23)

This model cannot be solved analytically. Consequently, numerical methods are
required to estimate the parameters of the model. In this instance, we employ the Runge–
Kutta method. We compare it with the outcomes from the Tsoularis model for commercial
banks’ data and the Verhulst model for rural banks’ data. We have estimated all seven
parameters of the new model (23), but we have that the result is superior compared to
the benchmark models. The problem may arise from the new model having an increased
number of parameters, and the nonautonomous nonlinear differential equation complicates
precise numerical solutions. Therefore, we made a strategy, as follows. We use the obtained
value of the Tsoularis model’s parameters α, β, γ, and K from Tables 3 and 4, and we only
estimate the parameters a1, a2 and a3. The parameter estimations utilize the optimal PSO
parameters derived from the Taguchi method in the preceding section. The outcome is
displayed in Table 7. When compared to the results of the Tsoularis and Verhulst models, the
newly proposed logistic model produces less MAPE training but higher MAPE validation.
The new model demonstrates improved accuracy in capturing model fitting; however, it is
unable to predict subsequent data for validation purposes.

Table 7. Result of PSO in estimating parameters of the new proposed logistic model (23).

Case Data New Model Tsoularis Model Verhulst Model

Commercial banks

a1 = 0.3622
a2 = 0.0932

a3 = −0.0084
α = 2.9998
β = 0.9158
γ = 3.0812

K = 13, 585, 176
MAPE t. = 1.68%
MAPE v. = 5.29%

r = 0.5401
α = 2.9998
β = 0.9158
γ = 3.0812

K = 13, 585, 176
MAPE t. = 2.77%
MAPE v. = 0.52%

None

Rural banks

a1 = 0.2114
a2 = 0.0203

a3 = −0.0019
α = 4.3027
β = 0.9657
γ = 4.6135

K = 195, 562
MAPE t. = 1.58%
MAPE v. = 6.37%

None

r = 0.2052
K = 259, 811

MAPE t. = 2.16%
MAPE v. = 2.82%

9. Discussion and Conclusions

The use of various logistic growth models to estimate the assets of commercial and
rural banks in Indonesia provides important insights into the dynamics of banking growth.
Each model brings its own assumptions about growth rates, carrying capacities, and
the non-linear behavior of financial assets over time. In this study, nine logistic models,
including the Verhulst, Gompertz, and Tsoularis models, were applied to model the asset
data of commercial and rural banks. The findings revealed that the Tsoularis model, which
is known for capturing complex growth dynamics, provided the best fit for commercial
banks, whereas the Verhulst model was more appropriate for rural banks. The model fitting
is illustrated in Figure 7. This variation underscores the need to tailor growth models to
specific segments within the banking industry, reflecting their unique growth patterns
and constraints.
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(a) (b)

Figure 7. The result of data fitting and prediction of Indonesian (a) commercial and (b) rural banking
data.

The results suggest that commercial banks, with larger asset bases and broader market
exposure, experience growth that is more influenced by intricate factors, as captured by
the Tsoularis model. This model’s ability to account for variations in growth rates and
environmental limits might explain its superior fit. Conversely, the Verhulst model, which
assumes a simpler logistic growth dynamic, proved effective for rural banks, where growth
might be more linear and constrained by local economic conditions. These outcomes
indicate that asset growth in rural banks is less volatile and tends to stabilize at lower
carrying capacities compared to commercial banks, which experience more complex and
potentially exponential growth before stabilizing.

The PSO demonstrated higher performance with lower MAPE in both training and
validation compared to the SpO algorithm used as a benchmark. The robustness of the PSO
algorithm was verified in this study through parameter tuning using the Taguchi method.
This study also attempted to introduce a new logistic model that incorporated a more
complex structure with an increased number of parameters. This new model was found to
be superior (for data fitting) but inferior (for data prediction) to the established Tsoularis and
Verhulst models. The complexity introduced by the nonautonomous nonlinear differential
equations in the new model posed significant challenges for numerical precision when
all the parameters are estimated simultaneously. This underscores the potential trade-off
between model complexity and practical applicability, suggesting that simpler models may
sometimes yield more reliable outcomes in real-world scenarios where numerical accuracy
and convergence are critical.

Despite these findings, several research gaps remain. Notably, while this study focused
on modeling growth dynamics using traditional logistic models, future work could incorpo-
rate external macroeconomic factors such as inflation rates, policy shifts, and technological
advancements that influence banking growth. Additionally, testing alternative optimiza-
tion techniques beyond particle swarm optimization could reveal different insights into
model performance. Lastly, exploring how these models perform in periods of economic
downturn or rapid expansion would offer a more comprehensive understanding of their
robustness and applicability across varying economic conditions.
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