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Abstract: This study introduces a novel measure for evaluating attribute relevance, specifically
designed to accurately identify attributes that are intrinsically related to a phenomenon, while being
sensitive to the asymmetry of those relationships and noise conditions. Traditional variable selection
techniques, such as filter and wrapper methods, often fall short in capturing these complexities.
Our methodology, grounded in decision trees but extendable to other machine learning models,
was rigorously evaluated across various data scenarios. The results demonstrate that our measure
effectively distinguishes relevant from irrelevant attributes and highlights how relevance is influenced
by noise, providing a more nuanced understanding compared to established methods such as Pearson,
Spearman, Kendall, MIC, MAS, MEV, GMIC, and Phik. This research underscores the importance of
phenomenon-centric explainability, reproducibility, and robust attribute relevance evaluation in the
development of predictive models. By enhancing both the interpretability and contextual accuracy
of models, our approach not only supports more informed decision making but also contributes
to a deeper understanding of the underlying mechanisms in diverse application domains, such as
biomedical research, financial modeling, astronomy, and others.

Keywords: feature importance; feature selection; feature ranking; dependency measures; machine
learning explainability; all-relevant problem

1. Introduction

In recent years, there has been significant advancement in methods for feature rele-
vance and dependency assessment across a range of fields, from biomedical research to
artificial intelligence and data engineering. Traditional approaches, such as those based
on linear correlations, are well suited for capturing monotonic relationships but often
fail in the presence of complex, nonlinear dependencies. Recent studies emphasize the
limitations of these classical metrics and advocate for robust methods that adapt to diverse
data characteristics. For instance, Khan et al. (2023) [1] highlight the challenges posed by
high-dimensional data and underscore the need for feature selection methods that ensure
computational efficiency without sacrificing relevance accuracy. Similarly, in biomedical
contexts, methods that go beyond linear dependencies are essential for identifying complex,
nonlinear relationships that could otherwise be overlooked by conventional techniques [2].

The rise of Big Data has intensified the need for scalable metrics capable of managing
noisy and complex datasets [3]. Advanced methods, including metaheuristic algorithms,
have demonstrated strong potential in unsupervised feature selection and clustering,
offering robustness and adaptability for diverse data analysis needs. These methods are
increasingly relevant for applications requiring reliable feature relevance assessment in
complex, high-dimensional settings [4,5].

In the context of high-dimensional data analysis, identifying relevant attributes is
critical for the effective implementation of machine learning methods and statistical anal-
ysis. This challenge can be approached from two primary perspectives: the “minimal
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optimal problem” and the “all-relevant problem”. The former focuses on determining
the smallest set of attributes that optimizes model performance, while the latter aims to
identify all attributes that exhibit a relationship with the target variable, regardless of noise,
redundancy, or indirect interactions [6]. The “all-relevant problem” is particularly valuable
when seeking to understand the underlying mechanisms of the phenomenon under study,
rather than merely building a predictive model. For example, in the medical field, when
working with large datasets containing multiple attributes potentially related to cancer, the
goal is to identify which of these attributes are truly relevant for prediction, even if they
have been previously overlooked due to noise, complex interactions, or redundancy.

To address the “all-relevant problem”, there is a growing preference for wrapper meth-
ods over classical statistical approaches. Wrapper methods combine a machine learning
algorithm, a relevance criterion, and a search procedure that explores potential subsets of
relevant features. These procedures are often heuristic and guided by the performance
of an underlying model, frequently based on decision trees due to their interpretability
and ability to handle complex variable interactions. However, wrapper algorithms have
limitations, such as the absence of a measure that distinguishes the magnitude of relevance
and the inability to clearly identify interactions among attributes or assess the likelihood of
results being due to chance.

According to Kohavi and John (1997) [7], the relevance of a feature in a classification
context should be defined in terms of its impact on the performance of an optimal Bayes
classifier. A feature x is considered strongly relevant if its removal alone causes a deteriora-
tion in the performance of the optimal Bayes classifier. In other words, a strongly relevant
feature is indispensable for maintaining the classifier’s prediction accuracy. Conversely, a
feature is considered weakly relevant if it is not strongly relevant, but there exists a subset
of attributes S such that the performance of the Bayes classifier on S is worse than its
performance on S ∪ {x}. This implies that while a weakly relevant feature may not always
be critical, it can still contribute to improving the classifier’s accuracy in specific contexts.
A feature is deemed irrelevant if it is neither strongly nor weakly relevant; that is, its
inclusion or exclusion does not affect the performance of the classifier. Understanding these
distinctions is essential for determining the contribution and interaction of each feature
within the dataset, which is a fundamental aspect of effective feature selection.

A notable issue with Kohavi and John’s definition is that if we have two identical
attributes x1 and x2, both strongly correlated with the target y, removing one will not
degrade the classifier’s performance. Thus, according to their definition, x1 and x2 would
not be considered strongly relevant, despite their strong relationship with the target. This
limitation raises questions about whether Kohavi and John’s definition intuitively captures
relevance, particularly when an attribute that fully conveys information about the target
could be categorized as weakly relevant [8].

Permutation feature importance, introduced by Breiman [9], is a fundamental tech-
nique for evaluating feature importance in supervised learning models. It involves ran-
domly shuffling (i.e., randomly permuting) each feature’s values and measuring the result-
ing performance drop, directly estimating each feature’s relevance. A feature is relevant
if its permutation significantly decreases the model’s predictive accuracy, indicating its
critical role. However, Strobl et al. [10] found that permutation-based measures can be bi-
ased, favoring high-cardinality features due to their higher chance of reducing impurity by
chance. They proposed conditional permutation and tree-growing algorithm modifications
to mitigate these biases, enhancing interpretability and validity in random forest models.

Stoppiglia et al. [11] introduced an innovative approach to the “all-relevant problem”
in wrapper methods by incorporating a “test attribute” into the feature selection process.
This randomly generated attribute, expected to be unrelated to the target variable, is added
to the candidate attributes. The importance of other attributes is then evaluated based on
their performance relative to the test attribute, determining relevance based on whether
an attribute is ranked higher or lower than the test attribute. Unlike Kohavi and John’s
relevance definition, which may underestimate important attributes, Stoppiglia’s approach
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considers an attribute relevant if its contribution exceeds that of a random attribute acting
as a risk threshold, offering a more intuitive and practical perspective on relevance.

However, Stoppiglia’s approach presents challenges, such as determining an accept-
able risk threshold. In large datasets, more permissive risk thresholds may lead to the
inclusion of irrelevant attributes. Additionally, heuristic-based selection may reduce the
score of collinear attributes, and random attributes might, by chance, improve model
performance, falsely indicating relevance. These issues can lead to the undervaluation or
exclusion of potentially relevant attributes, complicating comprehensive identification of
all relevant features. Such challenges highlight the limitations of Stoppiglia’s method in
effectively addressing the “all-relevant problem”.

Stoppiglia’s concept of outperforming test attributes has been adopted by algorithms
designed to solve the “all-relevant problem”, such as the Boruta algorithm [12]. These
algorithms use admissible risk thresholds, addressing issues identified by Stoppiglia and
reducing the arbitrariness introduced by random attributes.

Boruta, named after a Slavic forest god, was developed to address the “all-relevant
problem” in multivariate classification. It combines concepts from Stoppiglia and Breiman.
Stoppiglia’s idea involved comparing predictor variables against a randomly generated
benchmark attribute, while Breiman introduced permuting attribute values to assess feature
importance. In Boruta, “shadow” attributes, created by permuting original attribute values,
are used as benchmarks. These shadow attributes, unrelated to the target but retaining
key statistical properties, ensure that both original and shadow attributes come from the
same distribution. Boruta rigorously evaluates feature relevance by comparing original
attributes against the highest-performing shadow attribute through statistical tests and
multiple iterations of random forest. An attribute is deemed relevant if it consistently
outperforms the best-performing shadow attribute, setting a high threshold and mitigating
biases in feature selection processes [13]. While Boruta excels in multivariate contexts,
in this work we focus on applying its principles in a univariate framework. In practical
applications, relationships between variables are rarely symmetrical, and attributes with
low cardinality often provide limited predictive power for those with high cardinality. For
instance, an attribute with only three unique values is unlikely to effectively predict another
with 100 unique values, whereas the attribute with higher cardinality could serve as a
near-perfect predictor of the one with fewer values. This challenge, particularly evident in
real-world scenarios, was highlighted by Wetschoreck (2020) [14].

1.1. Reproducibility

The challenges of reproducibility in machine learning, particularly in the context of
high-dimensional data analysis, have been extensively examined. Goodman, Fanelli, and
Ioannidis [15] categorize reproducibility into three essential types: methods reproducibility,
which ensures that technical procedures can be precisely replicated; results reproducibility,
which guarantees that reimplementations of a method produce statistically consistent
outcomes; and inferential reproducibility, the most crucial of the three, which ensures that
conclusions drawn from data are robust and generalizable across different experimental
conditions. Bouthillier et al. [16] built upon this framework, emphasizing its importance
in the context of machine learning, where these forms of reproducibility are essential
for validating research findings and ensuring that they are not mere artifacts of specific
experimental designs.

Moreover, factors such as data sampling, model initialization, and hyperparameter
optimization introduce variability that can obscure true model performance. Addressing
and modeling these sources of variability is essential for enhancing the reliability of ma-
chine learning benchmarks [17]. These principles are particularly related in the context
of feature selection, where rigorous and reproducible methods are vital to ensure that the
identified features genuinely contribute to the model’s predictive power. Collectively, these
approaches highlight the necessity of careful experimental design and robust evaluation
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criteria, which are indispensable for accurately determining the relevance of features in
high-dimensional datasets.

A/B testing, a widely used technique in experimental design and digital marketing,
shares several key principles with reproducibility-focused methodologies. A/B testing
involves comparing two versions of a product or feature (commonly referred to as A and B
versions) to determine which performs better according to a predefined metric [18]. This
process relies on statistical hypothesis testing to assess whether observed differences in
performance are statistically significant, thereby informing decisions about which version
should be adopted [19].

1.2. Phenomenon-Centric Explainability

In the rapidly evolving field of machine learning, the concept of explainability has
become increasingly critical, particularly as models grow in complexity and are applied
in high-stakes domains. Techniques such as SHAP (SHapley Additive exPlanations) [20],
LIME (Local Interpretable Model-agnostic Explanations) [21], and the frameworks proposed
by Sokol [22] exemplify this approach by providing insights into how individual predictions
are made. These methods aim to enhance user trust and enable validation of complex
models by attributing importance scores to individual features, thereby making the model’s
decisions more transparent and comprehensible.

However, recent work by Lapuschkin et al. [23], in “Unmasking Clever Hans predictors
and assessing what machines really learn”, highlights the significant limitations of relying
solely on traditional explainability techniques. Their study demonstrates that models can
generate seemingly accurate predictions based on spurious correlations within the training
data, reminiscent of the “Clever Hans” effect observed in psychology [24].

Similarly, machine learning models may appear to perform well by leveraging inciden-
tal patterns in the data patterns that do not genuinely reflect the underlying phenomena.
These issues become particularly evident in studies where models achieve high predictive
accuracy by leveraging spurious correlations in the training data [25,26]. Similarly, in
computer vision, research has shown that models can misclassify images due to subtle
perturbations that are imperceptible to the human eye [27]. Additionally, recent work
by Wang et al. [28] has demonstrated how dataset biases can influence the conclusions
drawn from SHAP values. These examples underscore the necessity of ensuring that model
predictions are grounded in genuine, relevant patterns that accurately capture the true
underlying processes, rather than being influenced by misleading artifacts.

In light of these findings, we propose a paradigm shift towards phenomenon-centric
explainability, which emphasizes understanding the underlying phenomena that models
are designed to capture. This approach is particularly critical in scientific research and
in addressing complex challenges such as the “all-relevant problem”. In these contexts,
the primary objective is to gain deep insights into domain-specific processes, recognizing
the importance of uncovering relationships—whether causal, dependent, or instrumen-
tal—rather than merely optimizing predictive accuracy. This perspective suggests that
phenomenon-centric explainability represents a logical and necessary evolution, aligning
with the traditional goals of scientific inquiry, such as exploring complex relationships
and underlying mechanisms, without relying on interpretations that may be influenced by
spurious correlations in the training data.

2. Proposal: Attribute Relevance Score

In this work, within the framework of the all-relevant problem, we introduce a novel
univariate approach for evaluating attribute relevance, designed to tackle the inherent
challenges of feature selection in high-dimensional datasets. Our approach builds upon the
concept of shadow attributes, introduced by L. Breiman and later used by M.B. Kursa in
the Boruta algorithm, to create a more robust measure of individual attribute importance.
Unlike traditional methods, which may produce biased results due to specific data splits
or data assumptions, our technique systematically evaluates each attribute’s contribution
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by comparing it against its permuted versions. This process ensures that the relevance
identified for each feature truly reflects underlying patterns in the data rather than arti-
facts from specific data splits or model configurations, enhancing both the reliability and
interpretability of the results.

Consider an attribute matrix X ∈ Rn×m, where n represents the number of samples
and m denotes the number of attributes, along with its corresponding labels y ∈ Rn. To
evaluate a specific attribute x = [x1, x2, . . . , xn]T , where each xi represents an observation,
we begin by partitioning x into training and testing subsets, denoted as xtrain and xtest,
respectively, such that x = xtrain ∪ xtest and xtrain ∩ xtest = ∅.

A model M (e.g., a decision tree) is then trained using the training subset xtrain and
its corresponding labels ytrain. Subsequently, a shadow model, Ms, is trained using a
permutation of xtrain, denoted as xs, with the same labels ytrain.

We then consider a performance measure F that results from evaluating the output of
a model on the test subset xtest, compared to the correct labels ytest. The choice of F should
be made according to the specific problem at hand.

The core premise of our approach is that the performance measure F of the model M,
trained on the original attribute xtrain, should consistently be superior to that of the shadow
model Ms, trained on the permuted attribute xs, when both are evaluated on the same test
subset xtest with labels ytest.

Opt(F(M)) > Opt(F(Ms)), (1)

where Opt(·) represents an optimization criterion for F. Depending on the nature of F, this
criterion could aim to maximize or minimize its value.

To minimize biases from specific test subsets, which could distort evaluations, we
employ random sampling across multiple test subsets. This ensures a comprehensive and
robust assessment of attribute relevance, capturing the magnitude of the observed effects
and articulating them with a level of detail that supports precise and actionable conclusions.

We propose Equation (2) to calculate the attribute relevance score (ARS) for perfor-
mance metrics F, where “the closer to 1, the better”, such as those commonly used in
classification tasks (e.g., accuracy, F1 score, recall, and precision).

ARS = max

(
0,

F(M)−
(

F(Ms) + ϵ
)

1 −
(

F(Ms) + ϵ
) )

, (2)

where F(M) represents the median performance of model M across multiple test subsets,
F(Ms) is the median performance of the shadow model over the same subsets, and ϵ is a
small positive constant indicating the minimum acceptable effect size threshold. The ARS
algorithm for classification is detailed in Algorithm 1.

The primary objective of our measure is to answer two fundamental questions:

1. Is there a significant dependency between an attribute x and another attribute or
target variable y, independent of factors such as cardinality, specific distributions, or
artifacts from the data or model configuration? A score of ARS(x) > 0 would indicate
such a genuine dependency.

2. How effectively can y be approximated based on x using a specific error measure
and a chosen algorithm? The attribute relevance score (ARS) quantifies the practical
capability of x to predict or approximate y, capturing not only the existence of a
statistical dependency but also the magnitude of its predictive power in the context of
the selected model and performance metric. This ensures that any detected relevance
corresponds to a genuine and meaningful predictive capacity, rather than an artifact
of the statistical properties of x or models based on chance.

To illustrate the behavior of the ARS and build intuition, consider the simple equation
y = x1 + x2 + x3, where xi are three independent, nonredundant predictor attributes within
the same range. Suppose that, for the first attribute, we obtain F(Ms) + ϵ = 0.5 and
F(M) = 0.75; for the second attribute, F(Ms) + ϵ = 0.5 and F(M) = 0.65; and for the
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third attribute, F(Ms) + ϵ = 0.5 and F(M) = 0.6. Calculating the attribute relevance score
(ARS) for each attribute yields scores of 0.5, 0.3, and 0.2, respectively. Notably, in the ideal
case, the sum of these scores is 1.0, which suggests that these three independent variables,
collectively, have the capacity to fully represent the target variable. This example illustrates
how the ARS quantifies the cumulative relevance of independent attributes, capturing the
extent to which a set of predictors can collectively account for the target variable.

Algorithm 1 Attribute relevance score for classification.

1: Set up model: (e.g., DecisionTreeClassifier)
2: Set up performance metric F: (e.g., f1-score)
3: Set up acceptable error margin: ϵ
4: Set significance level: α (e.g., α = 0.05)
5: Initialize lists to store performance metrics of the original and shadow models
6: for iteration from 1 to N do
7: Split the data into training and testing sets: Xtrain, Xtest, ytrain, ytest
8: Train the original model M on Xtrain and ytrain
9: Generate shadow attributes by permuting the original attributes to obtain Xshadow

10: Train the shadow model Ms on Xshadow and ytrain
11: Evaluate and store the performance metric F of both models M and Ms on Xtest, ytest
12: end for
13: Compute the median performances F(M) and F(Ms)
14: Conduct statistical test: Perform a test of means (e.g., a t-test) on the performance

metrics collected from M and Ms to obtain a p-value
15: if p-value < α then
16: Compute the Attribute Relevance Score (ARS) using the following formula:

ARS = max

(
0,

F(M)−
(

F(Ms) + ϵ
)

1 −
(

F(Ms) + ϵ
) )

17: else
18: Set ARS = 0
19: end if
20: return ARS and the p-value from the statistical test

In Step 13 of Algorithm 1, we conduct a statistical test (e.g., a t-test) to compare
the performance metrics of the original model M and the shadow model Ms. This test
provides a p-value that quantifies the likelihood that the observed difference in performance
occurred by chance. If the p-value is less than the significance level α, we consider the
difference in performance to be statistically significant. In this case, we proceed to compute
the attribute relevance score (ARS) using the formula provided. If the p-value is greater than
or equal to α, we conclude that there is no statistically significant difference between the
models. Therefore, we set ARS = 0, indicating that the attribute is not considered relevant.

By incorporating this statistical test, we embed statistical significance into our attribute
relevance score. However, it is important to recognize that a low p-value is a necessary but
not sufficient condition for establishing attribute relevance. Additional factors such as effect
size, consistency across iterations, and practical significance should also be considered to
ensure that the identified relevance corresponds to meaningful patterns rather than random
fluctuations. This holistic approach emphasizes the importance of not relying solely on
statistical significance but also assessing the practical implications of the findings to confirm
that they align with genuine data relationships.

This scoring system not only facilitates the identification of relevant attributes but also
significantly enhances the reliability and validity of the constructed predictive models. By
incorporating multiple test subsets and focusing on statistical robustness, our approach
ensures that the results are both generalizable and reproducible across diverse experimental
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conditions, thereby contributing to the advancement of more robust and credible data
analysis in high-dimensional settings.

Moreover, with slight modifications, Algorithm 1 can also be adapted for performance
metrics F where “closer to zero is better” such as mean absolute error (MAE), mean absolute
percentage error (MAPE), and root mean square error (RMSE), which are more common in
regression problems, illustrated in Algorithm 2.

Algorithm 2 Attribute relevance score for regression.

1: Set up model: (e.g., DecisionTreeRegressor)
2: Set up performance metric F: (e.g., Mean Absolute Error)
3: Set up acceptable error margin: ϵ
4: Set significance level: α (e.g., α = 0.05)
5: Initialize lists to store performance metrics of the original and shadow models
6: for iteration from 1 to N do
7: Split the data into training and testing sets: Xtrain, Xtest, ytrain, ytest
8: Train the original model M on Xtrain and ytrain
9: Generate shadow attributes by permuting the original attributes to obtain Xshadow

10: Train the shadow model Ms on Xshadow and ytrain
11: Evaluate and store the performance metric F (e.g., MAE) of both models M and Ms

on Xtest, ytest
12: end for
13: Compute the median performances F(M) and F(Ms)
14: Conduct statistical test: Perform a test of means (e.g., a t-test) on the performance

metrics collected from M and Ms to obtain a p-value
15: if p-value < α then
16: Compute the Attribute Relevance Score (ARS) using the following formula:

ARS = max

(
0,

(
F(Ms)− ϵ

)
− F(M)(

F(Ms)− ϵ
)
− 0

)

17: else
18: Set ARS = 0
19: end if
20: return ARS and the p-value from the statistical test

By using models that directly accept categorical variables, such as CatBoost [29],
and selecting appropriate performance metrics for multilabel and multioutput problems,
the ARS method can be seamlessly extended to handle a wide variety of data types and
problem settings. This flexibility ensures that the method remains robust and effective
across different domains, making it a valuable tool for feature selection and attribute
relevance evaluation in diverse applications.

3. Materials and Methods
3.1. Pearson’s Correlation

Among the most widely used filtering methods for determining attribute relevance,
we first encounter Pearson’s correlation, denoted by rxy (see Equation (3)).

rxy =
∑n

i=1(xi − x̄)(yi − ȳ)√
∑n

i=1(xi − x̄)2 ∑n
i=1(yi − ȳ)2

(3)

where xi and yi are the individual observations of the variables, x̄ and ȳ denote the means,
and n denotes the total number of observations.

This technique identifies attributes that exhibit a high linear correlation with the target
variable, potentially suggesting attribute relevance. Pearson’s correlation values range
between −1 and 1. The closer the coefficient is to 1 or −1, the stronger the linear correlation.
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A coefficient of 1 indicates a perfect positive correlation, meaning that as one variable
increases, the other variable increases in constant proportion. Conversely, a coefficient of
−1 indicates a perfect negative correlation, meaning that as one variable increases, the
other decreases in constant proportion. A coefficient of 0 indicates the absence of a linear
relationship between the two variables, implying no linear correlation.

It is important to note the limitations of Pearson’s correlation in detecting nonlinear
relationships between variables, as well as its sensitivity to outliers, which can lead to
biased or inaccurate interpretations in the attribute selection process.

3.2. Spearman’s Correlation

Another classical option is Spearman’s correlation (Equation (4)), denoted by ρ. Spear-
man’s correlation, or Spearman’s rank correlation coefficient, is a statistical measure that
evaluates the relationship between two variables. Unlike Pearson’s correlation, which
assesses a linear relationship, Spearman’s coefficient examines monotonic relationships,
meaning that as one variable increases or decreases, the other also tends to increase or
decrease, without requiring a strictly linear relationship.

For its calculation, Spearman’s correlation relies on the ranks of the data rather than
the actual values. That is, each value in a variable is replaced by its position or rank in
magnitude within its respective dataset.

ρ = 1 −
6 ∑ d2

i
n(n2 − 1)

(4)

where di denotes the rank differences between the observations. If the variables xi and yi
have ranks rxi and ryi, respectively, then di = rxi − ryi, and n denotes the total number of
observations.

Similar to Pearson’s correlation, Spearman’s correlation values also range between
−1 and 1, but their interpretation is slightly different. A coefficient of 1 indicates a perfect
positive correlation, meaning that as one variable increases, the other variable also tends
to increase in a monotonic relationship. Similarly, a coefficient of −1 indicates a perfect
negative correlation, meaning that as one variable increases, the other variable tends to
decrease in a monotonic relationship. A coefficient of 0 indicates the absence of a monotonic
correlation between the two variables.

3.3. Kendall’s Correlation

Kendall’s correlation, or Kendall’s rank correlation coefficient, denoted by τ
(Equation (5)), is a statistical measure that evaluates the association between two ordi-
nal variables. It is based on the concept of concordance and discordance between pairs
of observations. A pair of observations is concordant if the relative order between the
two variables is the same (i.e., if one observation is higher in both variables or lower in
both). A pair is discordant if the relative order is different. Similar to Spearman’s cor-
relation, τ is useful for measuring monotonic relationships, and its range of values and
interpretation are equivalent, ranging between −1 and 1. A value of 1 indicates a perfectly
positive monotonic relationship, and a value of −1 indicates a perfectly negative monotonic
relationship. The main advantage of τ over Spearman’s correlation is its reduced sensitivity
to outliers.

τ =
2

n(n − 1) ∑
i<j

sgn(xi − xj)sgn(yi − yj) (5)

where sgn(xi − xj) and sgn(yi − yj) are the sign functions that return 1 if xi > xj or yi > yj,
−1 if xi < xj or yi < yj, and 0 if xi = xj or yi = yj. The sum counts the concordant
and discordant pairs of observations. A pair of observations (i, j) is concordant if both
(xi > xj and yi > yj) or (xi < xj and yi < yj); otherwise, the pair is discordant.
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3.4. Phik Correlation

ϕk is a correlation coefficient developed by Baak et al. (2020) [30] to measure the
association between two variables, including categorical and mixed variables (categorical
and continuous), without the need for prior transformations. The aim of this coefficient is
to provide a robust and more informative measure than traditional coefficients previously
mentioned. Another difference is that its values range between 0 and 1, where 0 indicates
no correlation and 1 indicates a perfect correlation. Since its calculation involves several
rules, it does not have a closed-form formula:

1. Variable transformation: Categorical variables are handled using encoding, while nu-
merical variables must be discretized if necessary. It is suggested to use 10 uniformly
spaced bins per variable.

2. Contingency table: A contingency table is created with the transformed variables,
where each pair contains N observations, r rows, and k columns.

3. Pearson’s chi-square test (χ2): The chi-square statistic is calculated for the contingency
table, as described in Equation (6), to evaluate the independence between variables.

4. Calculation of ϕk: The value of χ2 is interpreted as if it were derived from a bivariate
normal distribution without statistical fluctuations, using Equations (7) and (8).

• If χ2 < χ2
ped, then set ρ to zero.

• Else, with fixed N, r, k, invert the χ2
b.n. function and numerically solve for ρ in the

range [0, 1].
• The solution for ρ defines the correlation coefficient ϕk

χ2 =
r

∑
i=1

k

∑
j=1

(Oij − Eij)
2

Eij
(6)

where Oij represents the observed frequency in cell ij of the contingency table, Eij represents
the expected frequency in cell ij under the null hypothesis of independence of the variables,
r is the number of rows in the contingency table, and k is the number of columns in the
contingency table.

χ2
b.n.(ρ, N, r, k) =

r

∑
i=1

k

∑
j=1

(Fij(ρ = ρ)− Fij(ρ = 0))2

Fij(ρ = 0)
(7)

χ2
b.n.(ρ, N, r, k) = χ2

ped +

(
χ2

max(N, r, k)− χ2
ped

χ2
b.n.(1, N, r, k)

)
· χ2

b.n.(ρ, N, r, k) (8)

3.5. Mutual Information

From a perspective grounded in information theory, mutual information (MI) offers a
distinct approach to understanding correlations by measuring how much information the
knowledge of one variable provides about another. In other words, mutual information
quantifies the reduction of uncertainty about one variable given information about the
other variable (Equation (9)). The minimum value of MI is 0, indicating that two variables
are completely independent, or that the knowledge of one variable provides no information
about the other. It does not have a fixed upper limit; the maximum value can be as large as
allowed by the entropy of each of the variables.

I(x; y) =
n

∑
i=1

m

∑
j=1

P(xi, yj) log

(
P(xi, yj)

P(xi)P(yj)

)
(9)

where P(xi, yj) is the joint probability that x takes the value xi and y takes the value yj, while
P(xi) and P(yj) are the marginal probabilities of x and y, respectively. Mutual information
is generally calculated over discrete probability distributions. Therefore, if the numerical
variables are continuous, they may need to be discretized into intervals or categories. Since
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discretization can affect the accuracy of the calculation and lead to the loss of important
information, in this work, we will use the scikit-learn implementation based on the work of
Ross BC (2014) [31], which avoids discretization by using an entropy estimation based on
K-nearest neighbor distances.

3.6. Maximal Information-Based Nonparametric Exploration Suite

The Maximal Information-Based Nonparametric Exploration (MINE) suite is a collec-
tion of statistical tools designed to detect a wide range of relationships between variables
in large datasets. Unlike traditional correlation measures that often focus on linear associa-
tions, MINE is tailored to capture both linear and nonlinear dependencies without making
strong assumptions about the underlying data distribution. Developed by Reshef et al.
(2011) [32], the MINE suite includes several measures, such as the maximal information
coefficient (MIC), maximal asymmetry score (MAS), maximal edge value (MEV), and gen-
eralized mean information coefficient (GMIC), each designed to identify different types of
associations in a data-driven manner.

One of the primary measures in the MINE suite, the maximal information coefficient
(MIC), represents a significant advancement in detecting complex associations within data.
MIC is specifically designed to identify both linear and nonlinear dependencies between
two variables, making it particularly valuable in scenarios where relationships are complex
or nonlinear and difficult to capture with conventional methods.

The methodology behind MIC involves optimizing the partitioning of the data space
to maximize the normalized mutual information between variables (Equation (10)). It
systematically explores all possible ways of dividing the data into grids and evaluates the
strength of the relationship within each partition, selecting the configuration that maximizes
normalized mutual information:

MIC(x; y) = max
G∈Grids(x,y)

{
I(x; y | G)

log(min{|x|, |y|})

}
(10)

where I(x; y | G) is the mutual information conditioned on a specific grid partition G, and
|x| and |x| denote the cardinalities of variables x and y. The normalization ensures that
MIC values range between 0 and 1, where 1 indicates a perfect association.

MIC has been recognized for its ability to uncover complex patterns in data, and
software tools like “minepy” version 1.2.6, created by Davide Albanese under a GNU
General Public License (GPL). Refs. [33,34] have made it accessible for large-scale analyses.
However, the exhaustive evaluation of multiple data partitions can be computationally
intensive. To address this, Reshef et al. introduced optimizations to improve computational
efficiency, especially in high-dimensional datasets.

The MINE suite also includes the maximal asymmetry score (MAS), which extends the
capability of detecting asymmetrical relationships that symmetric measures often overlook.
MAS quantifies the degree of asymmetry in the relationship between two variables, offering
a more nuanced perspective:

MAS(x; y) = max
G∈Grids(x,y)

{
|(x; y | G)− I(Y; X | G)|

log(min{|x|, |y|})

}
(11)

where (x; y | G) and I(Y; X | G) are mutual information measures calculated in opposite
directions. MAS values between 0 and 1 reflect the extent of asymmetry in the association.

Additionally, the maximal edge value (MEV) focuses on identifying the strongest
dependencies within subsets of data, which may not be uniformly strong across all points
but exhibit significant relationships in specific regions:

MEV(x; y) = max
G∈Grids(x,y)

{EdgeValue((x; y | G))} (12)

where EdgeValue((x; y | G)) is the mutual information at the boundaries of a grid partition
G, highlighting local dependencies that might be averaged out in global measures like MIC.
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3.7. Generalized Mean Information Coefficient

The generalized mean information coefficient (GMIC), proposed by Luedtke and
Tran [35], extends the maximal information coefficient (MIC) by introducing a more flexible
framework for detecting associations, particularly in finite sample settings. The GMIC
enhances the sensitivity of MIC by incorporating a generalized mean approach, which
allows for a more nuanced detection of statistical dependencies between variables.

The core innovation of GMIC lies in its use of a maximal characteristic matrix, de-
fined as follows:

C∗(x, y)i,j = max
kl≤ij

{C(x, y)kl}, (13)

where i, j ≥ 2. This matrix captures the highest normalized mutual information that can
be obtained with grid sizes up to ij, providing a robust measure of the strongest possible
association achievable for each grid resolution.

GMIC itself is calculated using a generalized mean, which is defined as follows:

GMICp(x, y) =

 1
Z ∑

ij≤B(n)
(C∗(x, y)i,j)

p

1/p

, (14)

where p is a tuning parameter that adjusts the measure’s sensitivity to different aspects
of the data, and Z = #{(i, j) : ij ≤ B(n)} denotes the number of grid sizes considered.
By varying p, GMIC can emphasize different features of the data’s structure; for example,
when p → ∞, it approaches the original MIC, while for p → −∞, GMIC converges to the
minimal value from the maximal characteristic matrix

The introduction of the tuning parameter p provides flexibility, allowing GMIC to
detect a broader range of complex associations across various data types. In simulations,
GMIC has demonstrated improved power over MIC for detecting associations, particu-
larly in finite samples. It retains desirable properties, such as convergence to zero for
independent variables as the sample size increases, and convergence to one for noiseless,
monotonic relationships.

Overall, GMIC enhances the capabilities of the MINE suite by offering a more adaptive
and sensitive approach to uncovering diverse relationships in complex datasets, making it
a valuable tool for exploratory data analysis in high-dimensional contexts.

4. Simulation Results
4.1. Experiment #1: Computer-Generated Data

This study utilizes a synthetically generated dataset to evaluate the performance of
the proposed methods under various types of bivariate relationships, including both linear
and nonlinear dependencies. The data were created using multiple transformations and
multivariate normal distributions to simulate distinct scenarios that reflect complexities
commonly observed in real-world datasets. The goal is to assess the robustness and effec-
tiveness of the proposed attribute relevance score (ARS) (using decision trees as the base
model), and other established dependency measures across diverse data configurations.

• Multivariate normal distributions: Seven datasets, each containing 1000 samples,
were generated using multivariate normal distributions with correlation coefficients
ranging from −1.0 to 1.0. These datasets represent different degrees of linear relation-
ships between variables, labeled from (A) to (G) in Figure 1.

• Rotated normal distributions: To examine the effect of rotational transformations
on normally distributed data, seven datasets of 1000 samples each were created
by applying specific rotation angles (ranging from 0 to π/2) to a bivariate normal
distribution with equal variance and high covariance. These are labeled from (H)
to (N) in Figure 1. A special case, labeled (K) with unique horizontal distribution,
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was included to demonstrate a scenario with zero correlation. These transformations
model linear relationships oriented in diverse directions.

• Other nonlinear and complex distributions: This category includes seven distinct
datasets representing various nonlinear, asymmetric, and complex dependencies.
They are labeled from (O) to (U) in Figure 1. Key examples are the following:

– (O): Displays a quadratic dependency with added noise.
– (P) and (Q): Represent sequential rotations applied to uniformly distributed data.
– (R) and (S): Exhibit parabolic and partially symmetric patterns.
– (T): Simulates a trigonometric relationship combining sinusoidal and cosinusoidal

transformations.
– (U): Comprises a clustered structure formed by four multivariate normal distribu-

tions centered at distinct locations, resembling spatially separated clusters.

Figure 1. Scatter plots illustrating various bivariate relationships generated. Each subplot represents a
different synthetic dataset: (A–G) are datasets generated from multivariate normal distributions with
varying correlations; (H–N) are datasets generated from rotated normal distributions, illustrating
different linear relationships; (O–U) represent other complex, nonlinear patterns.

To ensure comparability across subsets, all data were scaled using MinMax scaling
within the range of −5 to 5, preserving the inherent structural relationships while normal-
izing their ranges, as illustrated in Figure 1.

Results #1

Table 1 presents the performance of various dependency measures applied to the
synthetically generated datasets described in the previous section. Each dataset was
designed to capture different types of bivariate relationships, including both linear and
nonlinear dependencies, to assess the robustness and effectiveness of the proposed attribute
relevance score (ARS) and other correlation measures.

The results demonstrate that for datasets based on multivariate normal distributions
(A–G), the ARS and other linear measures such as Pearson and Spearman coefficients
perform as expected when the relationship between variables is linear. In particular,
datasets (A) and (G), which exhibit perfect linear correlation, yield maximum values (1.000)
for most measures, including Pearson, Spearman, Kendall, and Phik, with corresponding
high ARS scores of 0.996. Similarly, datasets with moderate to low correlation levels (e.g.,
(B) and (F)) show a consistent decline in these measures, with ARS scores reflecting these
variations (0.429 and 0.394, respectively).
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Table 1. Comparison of various dependency measures across different datasets. The columns repre-
sent different metrics: rxy is the Pearson correlation coefficient, ρ is the Spearman rank correlation
coefficient, and τ is Kendall’s tau coefficient. These metrics assess the linear and monotonic rela-
tionships between variables, while other columns represent measures of mutual information (MI),
maximal information coefficient (MIC), maximal asymmetry score (MAS), maximum edge-value
(MEV), generalized mean information coefficient (GMIC), and the proposed attribute relevance
score (ARS).

Set rxy ρ τ ϕk MI MIC MAS MEV GMIC ARS Proposed

(A) 1.000 1.000 1.000 1.000 5.984 1.000 0.000 1.000 1.000 0.996
(B) 0.805 0.783 0.587 0.859 0.575 0.519 0.030 0.519 0.461 0.429
(C) 0.378 0.378 0.258 0.373 0.081 0.200 0.017 0.200 0.148 0.049
(D) 0.009 0.016 0.010 0.157 0.007 0.126 0.007 0.126 0.054 0.000
(E) 0.394 0.383 0.261 0.407 0.054 0.215 0.015 0.215 0.158 0.089
(F) 0.809 0.800 0.606 0.817 0.508 0.512 0.015 0.512 0.465 0.394
(G) 1.000 1.000 1.000 1.000 5.984 1.000 0.000 1.000 1.000 0.996
(H) 1.000 1.000 1.000 1.000 4.373 1.000 0.000 1.000 1.000 0.980
(I) 1.000 1.000 1.000 1.000 4.373 1.000 0.000 1.000 1.000 0.980
(J) 1.000 1.000 1.000 1.000 4.373 1.000 0.000 1.000 1.000 0.980
(K) 0.606 0.624 0.483 0.784 0.697 0.498 0.038 0.498 0.412 0.000
(L) 1.000 1.000 1.000 1.000 4.373 1.000 0.000 1.000 1.000 0.980
(M) 1.000 1.000 1.000 1.000 4.373 1.000 0.000 1.000 1.000 0.980
(N) 1.000 1.000 1.000 1.000 4.373 1.000 0.000 1.000 1.000 0.980
(O) 0.052 0.046 0.033 0.732 0.733 0.773 0.626 0.773 0.670 0.477
(P) 0.014 0.014 0.006 0.525 0.240 0.195 0.026 0.195 0.136 0.046
(Q) 0.036 0.044 0.023 0.526 0.315 0.163 0.025 0.138 0.121 0.024
(R) 0.028 0.028 0.018 0.688 0.534 0.416 0.245 0.416 0.382 0.297
(S) 0.020 0.021 0.018 0.783 0.902 0.450 0.037 0.262 0.208 0.135
(T) 0.025 0.020 0.003 0.836 1.421 0.566 0.079 0.376 0.443 0.215
(U) 0.013 0.025 0.017 0.000 0.012 0.134 0.009 0.134 0.065 0.000

For the rotated normal distributions (H–N), the ARS effectively captures the direc-
tional dependencies across different orientations. Datasets (H) to (J) and (L) to (N) maintain
high scores across all measures (1.000), including ARS values around 0.980, indicating the
robustness of the ARS in identifying dependencies even when the data are rotated. Notably,
dataset (K), which presents no linear or clear directional correlation, shows an ARS value
of 0.000, while other measures still return nonzero values. This highlights the ARS’s unique
sensitivity to the absence of any meaningful relationship, effectively distinguishing it from
traditional dependency measures.

The results for the other nonlinear and complex distributions (O–U) highlight the
limitations of traditional linear measures in capturing intricate dependencies. For instance,
in dataset (O), which exhibits a quadratic dependency, the ARS score (0.477) is notably
higher than those of other measures, such as Pearson (0.052) and Spearman (0.046), demon-
strating ARS’s ability to detect nonlinear patterns. Similarly, datasets (R) and (T), featuring
parabolic and trigonometric relationships, yield ARS values (0.297 and 0.215, respectively)
that surpass those of the linear measures, suggesting that ARS offers a more refined as-
sessment of these complex dependencies. Notably, datasets (D) and (K), which do not
exhibit any significant linear or nonlinear relationships, have ARS scores of 0.000, whereas
other measures still return nonzero values. This distinction underscores the ARS’s unique
sensitivity to the absence of meaningful relationships, effectively setting it apart from
traditional dependency measures. However, for dataset (U), which represents a clustered
structure formed by four multivariate normal distributions centered at distinct locations,
it may be arguable whether any of the measures presented, including ARS, effectively
capture the inherent clustering pattern. In this case, all measures, including ARS, tend to
produce the lowest values observed, indicating the potential limitations of these metrics in
identifying complex clustering structures.
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Overall, the results indicate that ARS is a robust metric for capturing both linear and
nonlinear dependencies across diverse types of relationships. In comparison to traditional
measures such as Pearson, Spearman, and Kendall—which are effective at identifying
monotonic dependencies but limited with more complex nonlinear relationships—the ARS
consistently outperformed these classical methods, particularly on datasets (O) to (U). By
using ARS alongside conventional metrics, a more comprehensive framework is established
for evaluating bivariate dependencies, fulfilling the objectives of this study and providing
valuable insights across a broad range of real-world scenarios.

4.2. Experiment #2: Benchmark Dataset

This section aims to compare our proposed method against established predictive
approaches using a synthetic dataset that has been used in prior research [12,36]. The
selected benchmark dataset is particularly suitable for this evaluation as it incorporates both
informative and noninformative variables, with varying degrees of noise, thus providing a
comprehensive framework for assessing model performance under realistic conditions.

The dataset is generated using a set of equations designed to create correlated predictor
variables that combine both signal and noise components, allowing for a critical evaluation
of each method’s ability to discern relevant features in the presence of spurious or irrelevant
variables. The data generation process is defined as follows:

y = 0.25 exp(4x1) +
4

1 + exp(−20(x2 − 0.5))
+ 3x3 + η, (15)

where y is the output variable, η is normally distributed with mean 0 and standard deviation
0.2, and the predictor variables x1, x2, and x3 are uniformly distributed between 0 and
1 (U(0, 1)).

Each relationship in Equation (15) contributes uniquely to y, reflecting the distinct
characteristics of their functional forms. The exponential dependency on x1 acts as the
primary driver of variability in y. Due to its exponential nature, even small increases in
x1 can produce substantial shifts in y, especially when x1 reaches higher values within
its range. This makes x1 a dominant factor influencing the output variable. In contrast,
the logistic dependency on x2 provides a significant but bounded effect on y. The logistic
function has its strongest impact around the midpoint (x2 = 0.5), where it introduces
notable changes in y. However, this effect stabilizes outside of that range, introducing a
controlled nonlinear influence that is considerable near the midpoint but limited in other
regions. The linear dependency on x3 has a more modest contribution to y. Although this
linear relationship ensures proportional adjustments in y with changes in x3, its effect can
be easily overshadowed by the more pronounced variations introduced by x1 and x2, as
well as by the error term η. This suggests that, in the presence of more dominant influences
and noise, the contribution of x3 may be less perceptible and could, therefore, receive a
lower score in certain attribute importance measures.

4.2.1. Results #2.1

Examining the results without the noise term η offers additional insight into the ARS
measure’s effectiveness in isolating informative dependencies. To highlight this, we present
the ARS behavior derived from Equation (15) after excluding η. This “noise-free” version
of ARS is evaluated using three distinct base models: decision trees, linear regression, and
k-nearest neighbors (k = 5). By removing the noise component, we aim to reveal how
well each model captures the inherent relationships between x1, x2, and x3 and the target
variable y, thereby underscoring the relative strengths of each approach in detecting true
signal (see Figure 2).
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Figure 2. Performance of ARS with different base models on Equation (15) without the noise term η

on the benchmark dataset. The informative variables (x1, x2, and x3) and noninformative variables
(x4, x5, and x6) are evaluated across three base models: decision trees, linear regression, and k-
nearest neighbors.

Performance on benchmark dataset without noise for different base models:
Figure 2 illustrates the ARS measure’s sensitivity to both informative variables (x1, x2,
and x3) and noninformative variables (x4, x5, and x6) under different base models (decision
trees, linear regression, and k-nearest neighbors) with the noise term η excluded. The deci-
sion tree and k-nearest neighbors models demonstrate a stronger capacity to capture the
inherent dependencies, particularly for the nonlinear relationships in x1 and x2. In contrast,
the linear regression model struggles to detect these dependencies, reflecting its limitations
with nonlinear data. For the noninformative variables x4, x5, and x6, ARS consistently
returns zero across all quartiles, with only occasional nonzero outliers, highlighting ARS’s
robustness in distinguishing relevant features from noise. This behavior underscores ARS’s
reliability in filtering out noninformative attributes, even in the absence of noise.

4.2.2. Results #2.2

To increase the dataset’s complexity, additional noninformative predictor variables
x4, x5, and x6 are generated uniformly within the range 0 to 1 (U(0, 1)). These variables
do not contribute directly to y, simulating the presence of noise and further challenging
the model’s ability to differentiate between relevant and irrelevant features. To further
enrich the dataset, we simulates the presence of progressively weaker signal-to-noise ratios,
allowing the method to be tested on its ability to identify relevant variables in the presence
of noise. To achieve this, we generate noise versions of the predictor variables using the
following equation:

v(j)
i = xi +

(
0.01 +

0.5(j − 1)
10 − 1

)
N(0; 0.3), (16)

for j = 1, . . . , 10 the level of noise, where the correlation between xi and v(j)
i systematically

decreases as j increases. i = 1, . . . , 6 corresponds to the index values of the original xi. This
formula generates multiple noisy versions of the base variables xi. This experimental setup
enables a robust comparison of our method against alternative techniques by specifically
evaluating their capacity to distinguish between relevant and nonrelevant features, even in
the presence of noise. By conducting 100 repetitions with 100 observations each, we aim to
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thoroughly assess the robustness, accuracy, and adaptability of the methods when faced
with scenarios that include a mixture of informative and noninformative variables.

The evaluation of our proposed attribute relevance score (ARS) method, using decision
trees as the base model, conducted alongside established dependency measures, was per-
formed using the benchmark dataset described above. This dataset provides a challenging
environment, containing both informative and noninformative variables with varying
levels of noise, designed to test the robustness and discriminative ability of each method.

Performance on informative variables: For the variable v(j)
1 , both versions v(1)

1 and

v(10)
1 exhibit high mean ARS scores (0.435 and 0.264, respectively) compared to the other

predictors, indicating strong relevance (see Figure 3). This aligns with the role of x1 as the
primary driver of variability in y due to its exponential dependency. Furthermore, the low
standard deviation of the ARS across both versions highlights the stability and robustness
of this measure in consistently capturing the predictive power of v(j)

1 .

In the case of v(j)
2 , represented by v(1)

2 and v(10)
2 , the mean ARS scores indicate relevance

(0.087, std: 0.063 and 0.069, std: 0.064, respectively); however, these scores are notably lower
than those obtained for v(j)

1 and other methods. This discrepancy is expected, considering
the second objective of our study, which assesses the effectiveness of approximating y from
x using a specific error measure and algorithm. ARS quantifies this practical capability,
capturing not only the statistical dependence but also the magnitude of predictive power
within the context of the selected model and performance metric. In this context, despite
the added structured noise in v(j)

2 , the mean ARS remains relatively stable, suggesting

that the relevance of v(j)
2 is not significantly diminished by noise alone. This stability may

imply that the ARS effectively captures a fundamental relationship between v(j)
2 and y

that remains informative despite the noise corruption. The resilience of v(j)
2 ’s ARS score

under noise indicates that the relationship retains predictive utility, though at a much lower
magnitude compared to v(j)

1 .

For v(j)
3 , both versions v(1)

3 and v(10)
3 register low mean ARS scores (0.019, std: 0.033

and 0.018, std: 0.039, respectively), which is consistent with the weaker dependency of x3
on y, particularly in the presence of external variability and more dominant dependencies.

Figure 3. Performance of various dependency measures on informative variables v(j)
1 , v(j)

2 , and v(j)
3

across different noise levels (j). This figure illustrates the mean and standard deviation of each
measure, highlighting the stability of ARS compared to other metrics.

In comparison, traditional methods such as Pearson and Spearman correlations dis-
played higher mean values for informative variables. For instance, the Pearson correlation
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for v(1)
1 was 0.781 (std: 0.028), indicating strong linear relationships. This pattern per-

sisted across other informative variables, with measures like GMIC and MIC showing
similarly elevated means (e.g., GMIC for v(1)

1 was 0.595, std: 0.065), apparently reflecting
substantial associations. However, it is important to note that this situation also arises for
noninformative variables, as we will show in the next results.

Performance on noninformative variables: In the case of noninformative variables
v(j)

4 , v(j)
5 , and v(j)

6 , ARS effectively identified the lack of relevance by consistently returning
scores of zero across all instances, with only occasional nonzero values attributable to
random chance (see Figure 4). The ARS scores for these variables were zero in the vast
majority of cases, resulting in extremely low mean values and minimal standard deviations.
For example, for v(1)

4 , ARS returned a mean score of 0.009 with a standard deviation of 0.024,
indicating that most scores were zero except for rare outliers. This demonstrates ARS’s
robustness in correctly identifying noise and nonrelevant attributes, as the minimal nonzero
scores observed can be attributed to expected statistical fluctuations in practical datasets.

However, other dependency measures exhibited higher variability and occasionally
elevated scores, even for noninformative attributes, suggesting spurious associations.
Metrics such as GMIC and MIC presented mean values of 0.139 (std: 0.027) and 0.240 (std:
0.035), respectively, for v(1)

4 , suggesting a tendency to overestimate the relevance of noisy
attributes. Similarly, traditional correlation measures, such as Spearman and Pearson also
showed notable variability (e.g., mean Spearman for v(1)

4 was 0.088, std: 0.068), indicating
their limitations in distinguishing between informative patterns and noise.

Overall, the attribute relevance score (ARS) outperformed traditional and information-
based metrics by providing a more stable and reliable assessment of attribute relevance
across both informative and noninformative variables. While measures like Pearson, Spear-
man, and MIC can capture strong relationships when present, their high values—especially
in noninformative scenarios—reduce their effectiveness in complex, noisy datasets. The
fact that ARS returned zero scores for all noninformative variables, except for occasional
outliers, underscores its robustness and practical utility in feature selection processes. By
effectively filtering out noise and avoiding false positives, ARS stands out as a particularly
powerful tool for distinguishing between meaningful and spurious relationships, thereby
enhancing the reliability of feature selection in predictive modeling.

5. Discussion

This study introduces the attribute relevance score (ARS), a novel metric designed
to robustly identify relevant attributes in complex datasets exhibiting both linear and
nonlinear relationships with varying levels of noise. For instance, ARS consistently returned
scores close to zero for noninformative variables, with mean scores below 0.01 and minimal
standard deviations, whereas traditional metrics often yielded higher scores with greater
variability. This distinguishes ARS from traditional dependency measures, which often
exhibit significant fluctuations, especially when assessing noninformative variables.

A key finding from our experiments is ARS’s robustness to noise. Traditional metrics
such as Pearson, Spearman, and Kendall correlations struggle to maintain consistency in
the presence of noise, frequently showing inflated scores for noninformative variables.
This issue is particularly problematic in high-dimensional settings, where distinguishing
between signal and noise is crucial. In contrast, ARS consistently produces low scores for
noninformative attributes v(j)

4 , v(j)
5 , and v(j)

6 with minimal variability, as shown in Figure 4.
This stability suggests that ARS more reliably filters out irrelevant features, enhancing the
quality and interpretability of predictive models. Further supporting ARS’s robustness,
the analysis of ARS in the noise-free scenario (Figure 2) yields results closely aligned with
those observed in noisier conditions. ARS maintains consistent sensitivity to informative
variables (x1, x2, and x3) across both scenarios, with decision trees and k-nearest neighbors
models effectively capturing the dependencies. The consistency of these results, even in the
absence of noise, underscores ARS’s ability to reliably identify relevant features regardless
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of noise levels. Likewise, noninformative variables (x4, x5, and x6) continue to exhibit
near-zero ARS scores, reinforcing ARS’s capacity to filter out irrelevant features accurately.
These findings demonstrate that ARS provides a stable assessment of attribute relevance,
with minimal influence from random noise—essential for feature selection applications
that demand reliability despite fluctuations in data quality.

Figure 4. Performance of various dependency measures on noninformative variables v(j)
4 , v(j)

5 , and

v(j)
6 across different noise levels (j). This figure shows the mean and standard deviation for each

measure, demonstrating the high variability of traditional metrics compared to the consistently low
scores of ARS. Absolute values are considered for readability.

Our comparative analysis against established metrics such as GMIC, MAS, and MIC
further underscores the strengths of ARS. While these metrics aim to capture complex
nonlinear relationships, they exhibit higher variability and occasionally assign moderate
relevance scores to noninformative attributes, reflecting their susceptibility to noise. The
high standard deviations observed indicate a lack of robustness, potentially leading to
inconsistent feature selection. In contrast, ARS accurately identifies relevant attributes such
as v(j)

1 , v(j)
2 , and v(j)

3 while maintaining low scores for noise variables, effectively balancing
sensitivity to true relationships with resilience to random fluctuations.

The ability of ARS to consistently differentiate between relevant and irrelevant at-
tributes has significant implications for high-dimensional data analysis, particularly in
fields where data complexity and noise pose challenges, such as genomics, finance, and
environmental modeling. By integrating statistical rigor with practical applicability, ARS
contributes to more reliable feature selection, enhancing reproducibility and reducing
the risk of overfitting. This is crucial in scientific research, where the goal is not only to
build predictive models but also to uncover meaningful relationships that drive
further understanding.

The significance of reproducibility in machine learning cannot be overstated, particu-
larly in high-dimensional data analysis. Reproducibility concerns often arise when results
depend heavily on specific data splits or model configurations, leading to conclusions that
may not generalize. In feature selection, these issues are critical, as identifying relevant
attributes is pivotal for subsequent analysis.

Our methodology incorporates concepts from reproducibility and A/B testing. Similar
to A/B testing, we compare models trained on original attributes with those trained on
shadow attributes, which are permuted versions of the original attributes. By evaluating
whether the model using the original attributes consistently outperforms the one using
shadow attributes across various data samples, we assess the relevance of each attribute.
This comparison grounds attribute selection in robust statistical principles, ensuring that
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the selected attributes are genuinely informative and that the results are reproducible under
diverse conditions.

By employing a probabilistic approach to assessing feature relevance, ARS reduces
the risk of findings being artifacts of particular experimental setups. The use of shadow
attributes and random sampling provides a rigorous framework for quantifying feature
importance while controlling for variability introduced by data sampling and model config-
urations. Moreover, the ARS framework strengthens inferential reproducibility by ensuring
that identified relevant attributes consistently contribute to model performance across vari-
ous scenarios. This aligns with principles of methods reproducibility, results reproducibility,
and inferential reproducibility.

We acknowledge that ARS computational complexity increases linearly with the
number of input features. Specifically, for datasets with a large number of attributes, the
need to train separate models for each attribute can become computationally intensive,
posing practical challenges in high-dimensional machine learning applications. However,
because each attribute is evaluated independently, ARS can leverage parallel computing
resources by distributing computations across multiple processors or computational nodes.
This parallelization significantly reduces total processing time, enabling ARS to remain
scalable and maintain practical performance even with a large number of attributes.

While ARS offers clear strengths, it is not without limitations. The current implemen-
tation relies on decision trees, which may not capture all forms of attribute interactions,
especially in highly nonlinear or interaction-heavy scenarios. Moreover, ARS is inherently
a univariate approach, evaluating each attribute’s relevance independently. This means it
lacks the capability to detect redundancies and interactions between attributes. Synergistic
effects, where combinations of attributes contribute significantly to the target variable, may
be overlooked. This limitation can be critical in domains where attribute interactions play
a crucial role. Future research should explore extending ARS to incorporate multivariate
analysis techniques or models that can account for attribute interactions.

In summary, our work advances feature selection methodologies in high-dimensional
data analysis and enhances the reproducibility and generalizability of results. By embed-
ding statistical significance into a measure of attribute relevance and ensuring robustness
across different conditions, we contribute to developing more reliable and reproducible
machine learning models. Future work will focus on expanding the applicability of ARS
to a broader range of models and exploring its integration into automated machine learn-
ing frameworks.

6. Conclusions and Future Work

The ARS method represents a versatile approach that can be adapted to various
types of data and problem settings. Its application extends beyond standard regression
and classification tasks to exploratory data analysis and feature engineering, where the
identification of significant predictors is crucial. ARS’s ability to provide consistent and
reliable relevance scores, particularly in noisy and complex environments, aligns with the
increasing need for robust, interpretable, and reproducible methods in data science. Its
stability under noisy conditions and superior performance in distinguishing informative
attributes position it as a valuable tool for researchers and practitioners. By addressing
key challenges in feature selection for complex datasets, ARS improves predictive model
accuracy and interpretability, paving the way for more robust data-driven decision making.

However, the relevance of an attribute should not depend solely on its individual
contribution to model performance but also on its interactions with other attributes. This
perspective highlights the need for a more holistic evaluation of attribute relevance within
complex predictive models. In many scenarios, attributes do not function in isolation; their
true value emerges through interactions with other features. Ignoring these interactions
can lead to underestimating the importance of certain attributes that may appear irrelevant
when considered univariately but have a significant impact in combination with others.
Moreover, attribute redundancy should not unduly diminish an attribute’s univariate
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relevance or intrinsic predictive capability. Two redundant attributes might share valuable
information, and removing one could result in a loss of crucial insights. Therefore, it is
essential to consider redundancy in a way that does not unduly penalize the relevance of
attributes that, despite being redundant, are predictively valuable.

To address these considerations, future research should explore integrating ARS
with other feature selection frameworks capable of effectively evaluating both attribute
interactions and redundancies. Additionally, adapting ARS to more advanced learning
models, such as deep neural networks, could enhance its applicability across different
contexts. Expanding the evaluation of ARS on real-world datasets from various domains
would further validate its effectiveness and uncover additional insights into its utility.

In conclusion, a robust evaluation of attribute relevance that carefully considers both
interactions among attributes and the potential for redundancy is essential for developing
predictive models that are not only accurate but also interpretable and reliable. Furthermore,
this strategy emphasizes the critical distinction between a model that consistently improves
performance due to meaningful insights and one that does so merely by chance. By focusing
on selecting nonredundant variables, even at the expense of optimal performance in some
metrics, we align the model’s outcomes more closely with the realities of the underlying
phenomena. This approach moves us towards a more robust definition of understanding
within the field of machine learning. Through the development of a multivariate relevance
measure, we can assess when a model is not just learning correlations but is genuinely
comprehending the underlying phenomena. This deeper level of understanding enables
models to generalize more effectively, providing reliable interpretations and fostering the
model’s capacity to make informed decisions across diverse scenarios. Consequently, this
advancement enhances the fidelity and reliability of model interpretations, contributing to
a more nuanced and scientifically sound understanding of the model’s ability to generalize
and adapt.
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