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Abstract: This study aimed to explore the potential of predicting diabetes by analyzing trends
in plantar thermal and plantar pressure data, either individually or in combination, using various
machine learning techniques. A total of twenty-six participants, comprising thirteen individuals
diagnosed with diabetes and thirteen healthy individuals, walked along a 20 m path. In-shoe plantar
pressure data were collected and the plantar temperature was measured both immediately before and
after the walk. Each participant completed the trial three times, and the average data between the trials
were calculated. The research was divided into three experiments: the first evaluated the correlations
between the plantar pressure and temperature data; the second focused on predicting diabetes using
each data type independently; and the third combined both data types and assessed the effect of such
to enhance the predictive accuracy. For the experiments, 20 regression models and 16 classification
algorithms were employed, and the performance was evaluated using a five-fold cross-validation
strategy. The outcomes of the initial set of experiments indicated that the machine learning models
were significant correlations between the thermal data and pressure estimates. This was consistent
with the findings from the prior correlation analysis, which showed weak relationships between
these two data modalities. However, a shift in focus towards predicting diabetes by aggregating
the temperature and pressure data led to encouraging results, demonstrating the effectiveness of
this approach in accurately predicting the presence of diabetes. The analysis revealed that, while
several classifiers demonstrated reasonable metrics when using standalone variables, the integration
of thermal and pressure data significantly improved the predictive accuracy. Specifically, when only
plantar pressure data were used, the Logistic Regression model achieved the highest accuracy at
68.75%. Those predictions based solely on temperature data showed the Naive Bayes model as the
lead with an accuracy of 87.5%. Notably, the highest accuracy of 93.75% was observed when both the
temperature and pressure data were combined, with the Extra Trees Classifier performing the best.
These results suggest that combining temperature and pressure data enhances the model’s predictive
accuracy. This can indicate the importance of multimodal data integration and their potentials in
diabetes prediction.

Keywords: diabetes prediction; thermal analysis; plantar pressure; machine learning

1. Introduction

Diabetes mellitus, a common chronic metabolic disorder characterized by elevated
blood glucose levels, presents significant health challenges globally [1]. Its considerable
impact on healthcare systems highlights the urgent need for early diagnosis and effective
management to prevent complications and improve patient outcomes [2]. Among the
complications associated with diabetes, diabetic foot problems are particularly severe, with
the potential to lead to amputation in the most extreme cases [3]. Traditionally, diabetes
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diagnosis has relied on clinical assessments, blood tests, and self-reported symptoms.
However, recent advances in technology have paved the way for innovative approaches
to predicting and managing diabetes more efficiently [4]. Further complications, such as
neuropathy, which causes nerve damage and loss of sensation, can lead to a diabetic foot,
where minor injuries can go unnoticed and progress to severe infections or ulcers due to
poor blood circulation and reduced healing capacity.

Accurate and timely prediction is essential for early intervention and effective disease
management [5]. In recent years, wearable sensor technologies have gained popularity as
tools for monitoring physiological data, showing promise in identifying new indicators to
predict diabetes [6,7]. Notably, the use of thermal and pressure data has shown potential
in improving the accuracy of diabetes diagnosis and treatment. For instance, measuring
the plantar temperature can reveal differences in the soles of diabetic feet, with the ability
to detect ulcers and necrosis with accuracies of 90% and 88%, respectively [8]. Infrared
thermography has also proven to be effective in detecting temperature variability in the
feet of diabetic patients, aiding in the early diagnosis and prevention of lesions in affected
areas [9]. Furthermore, regression analysis has shown the potential to accurately predict
the maximum plantar pressure in patients with type 2 diabetes mellitus, which is crucial
for the prevention and early detection of diabetic foot complications [10]. However, studies
that combine temperature and pressure data are limited. For example, Yavuz et al. [11]
found no significant correlation between plantar temperatures and triaxial plantar stresses
in individuals with diabetes. This lack of correlation suggests that these variables can
be effectively combined as independent attributes in machine learning models for the
prediction of diabetes, potentially leading to more robust predictive models, as is also
discussed in this paper.

Wearable sensor technologies, such as those integrated into shoes or insoles, have
emerged as promising tools for the continuous monitoring of physiological parameters
relevant to the management of diabetes [12–15]. These non-invasive technologies enable
continuous data collection, facilitating the early detection of potential problems, including
those related to diabetic foot complications [16]. Of particular interest for the prediction of
diabetes are the thermal patterns and pressure distribution measured by these devices [17].

Thermal imaging techniques are used to visualize the distribution of skin temper-
ature, which can indicate underlying metabolic processes and pathological conditions.
This non-invasive diagnostic method uses the principles of heat transfer and physio-
logical responses of the body to detect temperature variations that can signal health
problems [18]. Meanwhile, several studies have indicated that insole systems that measure
plantar pressure can be beneficial in managing diabetic foot health by reducing ulcer recur-
rence, lowering plantar stress, helping to detect early complication, and improving gait
and weight distribution [19–21].

The relationship between plantar pressure, temperature, and diabetic foot complica-
tions is an emerging area of research. Diabetic neuropathy often leads to foot ulceration
due to a combination of elevated temperatures, loss of sensation, and abnormal pressure
distribution. Understanding these factors is essential for the prevention and management
of diabetic foot complications. Diabetic neuropathy is associated with higher plantar foot
temperatures, which can be measured non-invasively using infrared thermal imaging, indi-
cating its potential as a tool for evaluating high-risk diabetic feet [22]. Furthermore, plantar
pressure measurements are increasingly integrated into clinical practice, with evidence
supporting their role in ulcer prevention and the importance of long-term monitoring to
provide feedback on concern pressure levels [23]. Sawacha et al. [24] emphasized that
the simultaneous assessment of kinematics, kinetics, and plantar pressure can more accu-
rately characterize the biomechanics of the diabetic foot, potentially helping to prevent
foot ulcerations. The classification of plantar pressure distributions has proven useful in
identifying diabetic patients at risk of foot ulceration and guiding the provision of preven-
tive interventions, such as therapeutic footwear [25]. Changes in these parameters have
been linked to diabetes-related foot complications, such as neuropathy and an increased
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risk of ulceration, ultimately contributing to the development of a diabetic foot [23]. How-
ever, there is a scarcity of studies that have investigated the potential of these measures to
diagnose diabetes.

This study introduces a novel approach to predicting diabetes by integrating temper-
ature and plantar pressure data, a combination not extensively explored in the previous
research. While the existing studies typically focus on either temperature or pressure
independently, our work leverages both modalities to enhance the predictive accuracy.
This multimodal approach provides deeper insights into foot health and potential compli-
cations. This work contributes to the field by not only demonstrating the limitations of
single-modality analysis but also by showing how integrating multiple data sources can
yield more robust machine learning models for clinical prediction tasks.

Recently, the application of machine learning techniques in the prediction of diabetes
has gained significant traction [26]. Machine learning uses computational algorithms to
analyze large datasets, identify complex patterns, and make accurate predictions [27,28].

The machine learning approaches to diabetes prediction are inherently data-driven,
relying on diverse datasets that include a wide range of patient information such as clinical
data, genetic markers, lifestyle factors, and physiological measurements. The integration of
wearable sensor technologies has further enriched these datasets by providing real-time,
continuous monitoring of the parameters relevant to diabetes [29,30]. In the context of
diabetes, the features of interest include blood glucose levels, insulin sensitivity, physical
activity, dietary habits, and, as explored in this paper, thermal and pressure data from
the feet. The machine learning models for diabetes prediction encompass a wide range
of algorithms, such as Decision Trees, Support Vector Machines, Random Forests, and
neural networks, among others. Each algorithm offers unique advantages and may be
suited to different aspects of diabetes prediction. For example, deep learning models
can effectively capture complex patterns in large datasets [31], while Decision Trees can
provide more interpretable insights into risk factors [32,33]. Few studies have examined the
application of several available algorithms in tandem on the predictions [34,35]. Evaluating
the performance of machine learning models is a crucial step in the process. Metrics such
as accuracy, sensitivity, specificity, and the area under the receiver operating characteristic
curve (AUC-ROC) are commonly used to assess the predictive capacity of these models.
Despite these, there is a scarcity of previous studies that have investigated the potential of
these measures in tandem to diagnose diabetes.

The primary objective of this study is to investigate the feasibility of using thermal data,
pressure data, or a combination of both variables to predict the presence of diabetes. By
analyzing the time series data of thermal and pressure measurements from a diverse group
of individuals—including both diabetic and non-diabetic subjects—we aim to explore the
potential predictive capabilities of these variables. The study employs machine learning
algorithms to assess whether plantar pressure, plantar temperature, or a combination of
both can effectively predict diabetes. For our analysis, we used a consolidated thermal
time series that includes data from five anatomical points at the feet, combined with
pressure data.

In our study, the initial experiments aimed to investigate whether significant corre-
lations could be established between thermal data and plantar pressure estimates using
a variety of machine learning models for regression. Despite the use of sophisticated
regression techniques, these models demonstrated sub-optimal performance in predicting
pressure values from thermal data alone, as indicated by the low accuracy metrics and high
error rates. The lack of a correlation suggests that the physiological processes reflected
by the thermal measurements may not directly translate to the biomechanical indicators
captured by the pressure data.

Recognizing the limitations of this approach, we shifted our focus towards aggre-
gating both data types—temperature and pressure—for the prediction of diabetes. This
multimodal approach yielded significantly more encouraging results, with a notable im-
provement in predictive accuracy. The combination of these independent datasets allowed
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machine learning models to leverage the complementary nature of thermal and pres-
sure data, offering a more comprehensive understanding of the physiological changes
associated with diabetes. By integrating these variables, we were able to achieve high
levels of prediction accuracy, underscoring the importance of multimodal data fusion in
medical diagnostics.

We hypothesize that integrating these two physiological datasets will result in more
accurate predictions. For example, when used independently, classifiers such as the Logistic
Regression model have shown moderate accuracy with pressure data (around 68.75%),
while temperature data can yield higher accuracy, with the Naive Bayes model reaching
up to 87.5%. However, it is expected that the combination of pressure and temperature
data will lead to significantly improved performance, with classifiers like the Extra Trees
Classifier demonstrating stronger metrics, including precision, recall, and F1 scores. This
study will also explore the importance of algorithm selection in optimizing prediction
accuracy and the need to tailor models to different participant groups.

By examining the performance of multiple machine learning models with both indi-
vidual and combined data, this research seeks to highlight the potential of multimodal data
integration in enhancing the accuracy of diabetes prediction.

The rest of the paper is organized as follows: Section 2 outlines the methods used in
our study, detailing the composition of the dataset, the experimental setup and protocol,
and the data acquisition procedures. In Section 3, we present the results of the predictive
models using machine learning techniques. Section 4 delves into the discussion and
conclusions, summarizing the insights gained and their implications for diabetes prediction
and management.

2. Methods

This section describes the methodologies used in our investigation of the feasibil-
ity of predicting diabetes using thermal and pressure data. The following subsections
provide a detailed discussion of the composition and characteristics of the dataset, the
specific experimental procedures and protocols used to gather the data, and the techniques
and instruments utilized for collecting plantar pressure and thermal measurements from
the participants.

2.1. Dataset Description

The study involved a total of 26 participants, including 13 individuals at various
stages of diabetes and 13 healthy controls. The group consisted of 18 women and 8 men,
with ages ranging from 40 to 73 years. The weights of the participants ranged from 42 to
110 kilograms(kg), and their heights ranged between 1.42 and 1.90 meters(m).

2.2. Experimental Setup and Protocol

To ensure consistency and minimize confounding factors, an experimental area
suitable for walking was carefully selected. The designated area was chosen to avoid
“quick” twisting movements that could potentially increase friction inside the shoe, thereby
impacting the measurements. A 25 m ∞-shaped walkway was established for data collec-
tion, as illustrated in Figure 1.

Figure 1. A 25 m walkway; the designated area avoided “quick” twisting movements.
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Simultaneously, a thermal camera and a chronometer were arranged to record the
necessary temperature measurements before and after the walks. The thermal camera
was placed at a distance of 1 to 1.5 m from the feet of the participants to capture accurate
thermal images, as shown in Figure 2.

Figure 2. Thermal image capture setup.

2.3. Data Acquisition Procedure

The participant was first informed about the study. Initially, plantar pressure mea-
surements were taken in the shoe while walking. Participants were asked to walk on an
∞-shaped path in two familiarization trials, followed by three trials for pressure data col-
lection. Twelve steps were analyzed to calculate the average peak plantar pressure during
the stance phase of walking for each foot. The shoe pressure sensor (Parologg Pressure
Measurement System, Paromed, Neu-Beuern, Germany) provided data that were processed
to obtain the maximum plantar pressure, the average maximum plantar pressure, and the
average plantar pressure at each anatomical point.

After completion of plantar pressure measurements, participants followed a procedure
to measure foot temperature using a Flir One Pro thermal imaging camera. The temperature
was recorded immediately before and immediately after the insoles, following these steps:

1. The participant was asked to be barefoot and lie supine on a flat couch, with a cushion
placed under the head for comfort. Specific regions of interest on the feet were marked
for thermal measurements. These regions included the hallux, first metatarsus, third
metatarsus, fifth metatarsus, midfoot (proximal fifth metatarsal head), medial arch
(proximal first metatarsal head), and heel, as shown in Figure 3.

2. After a 15 min acclimatization period on the couch, baseline foot temperature was
recorded using the thermal imaging camera.

3. The participant then wore shoes and walked at a natural pace along the
designated pathway.

4. Immediately after completing the walk, the shoes were removed and the participant
was asked to lie on the couch.

5. Temperature measurements were taken at specific intervals 30 s, 90 s, 120 s, and 180 s
after walking. For each measurement, the participant returned to the couch, removed
their footwear, and thermal images were captured.

6. These temperature readings, along with the baseline values recorded after acclimati-
zation, were used to calculate temperature changes.

This systematic approach ensures that each participant is evaluated under consistent
starting conditions, thereby improving the reliability and validity of the study results.
The data collection process resulted in a comprehensive dataset that includes thermal
and pressure measurements from each participant. Specifically, each dataset comprises
baseline foot temperature, thermal images taken at various time points during walking,
and corresponding average pressure metrics at specific anatomical points.
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Figure 3. Regions of interest on the feet were marked for thermal and pressure measurements: hallux,
1st metatarsus, 3rd metatarsus, 5th metatarsus, midfoot (proximal to 5th metatarsus apophysis),
medial arch on proximal 1st metatarsus, and heel.

2.4. Feature Description and Data Structure

For the first set of experiments, which focused on predicting plantar pressure metrics
using temperature data, each data point consisted of temperature measurements recorded
at five specific time intervals immediately after walking (0 s) and at 30 s, 90 s, 120 s, and
180 s. The data were collected from eight anatomical points on each foot: the hallux,
first metatarsus, third metatarsus, fifth metatarsus, heel, lateral midfoot (LatMF), and
medial midfoot (MedMF). Each anatomical point contributed temperature features based
on three summary statistics (mean, maximum, and minimum) in addition to the five time-
specific measurements. This resulted in 15 temperature features per anatomical point
(5 time-based measurements + 3 summary statistics). Given that temperature data were
collected from 8 anatomical points, each foot provided a total of 120 temperature features
(15 features × 8 anatomical points).

These 120 temperature features were used as input to the machine learning regression
models, with the target being one of the three plantar pressure metrics: peak pressure (PPP),
average peak pressure (APPP), or average pressure (APP) for each anatomical point. The
models tested included Extra Trees Regressor, K Neighbors Regressor, Dummy Regressor,
Light Gradient Boosting Machine, Bayesian Ridge, Random Forest Regressor, Gradient
Boosting Regressor, AdaBoost Regressor, Extreme Gradient Boosting, Orthogonal Matching
Pursuit, Elastic Net, Lasso Least Angle Regression, Lasso Regression, Ridge Regression,
Decision Tree Regressor, Huber Regressor, Linear Regression, Passive Aggressive Regressor,
and Least Angle Regression. The goal of these regression models was to assess whether
the temperature data alone could be used to predict the corresponding plantar pressure
values. However, as detailed in the results, the models faced difficulties due to the low or
insignificant correlations between temperature and pressure variables.

In the subsequent experiments, a multimodal approach was employed for the clas-
sification task of predicting diabetic status. In this setup, both temperature and pressure
data were combined into the feature set. Pressure data were summarized into 3 metrics for
each of the seven anatomical points (first metatarsus, third metatarsus, fifth metatarsus,
hallux, heel, lateral midfoot, and medial midfoot), resulting in 21 pressure-related features
(3 metrics × 7 points). When combined with the 120 temperature features, the complete
feature vector used for classification consisted of 141 attributes per foot (120 temperature
features + 21 pressure features). These feature vectors were used in machine learning
classification models aimed at distinguishing between diabetic and non-diabetic subjects.
The models tested in this task included Extra Trees Classifier, Random Forest Classifier,
Extreme Gradient Boosting, Ada Boost Classifier, Gradient Boosting Classifier, Naive Bayes,
Logistic Regression, Decision Tree Classifier, Linear Discriminant Analysis, Ridge Classifier,
Quadratic Discriminant Analysis, K Neighbors Classifier, Support Vector Machine (SVM)
with a linear kernel, Light Gradient Boosting Machine, and Dummy Classifier.
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The models were implemented and evaluated using the PyCaret library [36], which
automates the training and evaluation of machine learning algorithms for both regression
and classification tasks. A 5-fold cross-validation strategy was employed to evaluate model
performance. The dataset comprised 26 participants, with each foot treated as an indepen-
dent instance, resulting in 52 instances in total. The cross-validation framework ensured
that each participant’s data were used both in training and validation across different folds,
mitigating overfitting and providing a robust estimate of model performance.

Analysis of Correlation Between Individuals’ Feet

To explore the validity of treating each foot as an independent instance in the dataset,
a correlation analysis was performed across both feet of each individual and between feet
of different individuals. The correlation index was calculated for each pair of feet, and
the results are displayed in Figure 4, which shows the correlation matrix of pressure and
temperature data.

Figure 4. Correlation index matrix representing the relationship between temperature and pres-
sure features across different individuals. The matrix shows correlation coefficients for pres-
sure and temperature data between the left and right feet of each individual, as well as across
different individuals.

The correlation matrix reveals that, on average, the correlation between feet from
different individuals is relatively high, with a mean value of approximately 0.86. This
suggests that, while there are similarities between individuals, there is still sufficient
variability across the dataset to justify treating each foot as an independent instance. Such
variability is important for machine learning models to generalize effectively, even when
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the left and right feet of the same individual are included in both the training and test sets
across different folds.

Although the data demonstrate subtle similarities between feet, particularly in healthy
individuals, these subtle differences are likely to capture clinically meaningful varia-
tions, especially in diabetic patients. In this population, asymmetry between feet may
reflect complications such as neuropathy, making it important for the model to learn
from these discrepancies. This approach enables the model to better generalize across
a wider range of physiological conditions, improving its ability to detect early signs
of complications.

By treating each foot as independent, we effectively increase the dataset size, which is
particularly important in studies with small datasets. Given the high correlation values,
the model benefits from additional data points while still capturing enough variation to
avoid overfitting. Moreover, the use of 5-fold cross-validation ensures that the model
is evaluated on a wide range of data splits, further reducing the risk of overfitting and
ensuring robustness.

While potential bias due to symmetry in healthy individuals is acknowledged, the
correlation analysis suggests that this bias is minimal. From a machine learning perspective,
the variability present in the dataset justifies the approach, particularly given the asymmetry
often observed in diabetic patients. As a result, treating each foot as an independent
instance not only increases the dataset’s robustness but also enhances the generalization of
the machine learning models by exposing them to a broader range of conditions.

Rationale for Independent Foot Analysis: While treating each foot as an independent
data point increases the dataset size and helps to capture key asymmetries in diabetic
individuals, we acknowledge that this approach may introduce bias, particularly in healthy
individuals where greater symmetry between left and right feet is typically observed.
Inclusion of both feet in both the training and testing sets could lead to inflated model
performance as the symmetry between feet in healthy individuals might not reflect true
independent variability. Results should be interpreted with caution, especially in cases
where foot symmetry is expected.

The essential variations in patients likely include differences in temperature distribu-
tion, pressure patterns, and structural abnormalities between the left and right feet. These
variations are particularly important in diabetic patients, where asymmetries can indicate
complications like ulcers, neuropathy, or other foot pathologies. From a machine learning
standpoint, capturing these discrepancies improves the model’s ability to detect early signs
of these complications and enhances the generalization of predictions by training on a
wider range of physiological conditions. The model, thus, becomes better at identifying
both subtle and more pronounced differences in foot health.

Furthermore, cross-validation was applied during model evaluation to mitigate over-
fitting and ensure that the models were tested across various data splits, reducing the risk
of performance overestimation [37,38].This method is commonly used to assess machine
learning models’ effectiveness in scenarios where data symmetry, such as in gait analysis, is
a concern [37]. Moreover, cross-validation is particularly effective in controlling overfitting
when dealing with uncorrelated errors, as observed in machine learning models used for
prediction tasks. Although k-fold cross-validation is not entirely immune to bias in small
sample sizes, it offered a rigorous evaluation of the model’s performance across different
subsets of the data [38].

During each iteration or “fold” within the cross-validation protocol, the training subset
was split into subgroups. One subgroup served as the training data, facilitating the model’s
learning process, while the other subgroup acted as the validation data, against which the
model’s performance was assessed. This partitioning adhered to the established 5-fold
methodology, ensuring a comprehensive and evenly distributed assessment across the en-
tire dataset. Following this procedure, each instance within the dataset participated in both
the training and validation phases across five distinct folds. This approach mitigates any
bias that could arise from a single partitioning of the data, leading to a thorough evaluation
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of the model’s effectiveness in handling diverse scenarios and potential variations within
the dataset.

Upon completion of the cross-validation process, performance metrics such as accuracy,
recall, precision, F1 score, and kappa were systematically compiled for each fold and
averaged to provide an estimate of the model’s overall performance.

2.5. Machine Learning Algorithms
2.5.1. Regression Models

For the regression tasks aimed at predicting plantar pressure metrics from temperature
data, the following algorithms were utilized:

• Extra Trees Regressor: An ensemble learning method that aggregates results from
multiple randomized Decision Trees to improve prediction accuracy.

• K Neighbors Regressor: A non-parametric method that predicts the output based on
the average value of the k-nearest neighbors in the feature space.

• Dummy Regressor: A simple baseline model that makes predictions using basic
strategies such as the mean or median of the target values.

• Light Gradient Boosting Machine (LightGBM): A gradient boosting framework that
uses tree-based learning algorithms, optimized for efficiency and performance.

• Bayesian Ridge: A linear regression model that uses Bayesian inference to estimate
the regression coefficients.

• Random Forest Regressor: A tree-based ensemble model that builds multiple Decision
Trees and averages their outputs to enhance predictive accuracy.

• Gradient Boosting Regressor: An ensemble technique that builds models sequentially,
optimizing the prediction by minimizing the error of previous models.

• AdaBoost Regressor: A boosting method that combines weak regressors to produce a
strong predictive model by focusing on the most difficult-to-predict instances.

• Extreme Gradient Boosting (XGBoost): A highly efficient and flexible boosting algo-
rithm that improves performance by reducing overfitting and increasing accuracy.

• Orthogonal Matching Pursuit: A greedy algorithm for linear regression that selects
the most correlated features in each iteration.

• Elastic Net: A regularized regression model that linearly combines L1 and L2 penalties
of the lasso and ridge methods to improve prediction and feature selection.

• Lasso Least Angle Regression (LassoLARS): A variant of linear regression that
automatically selects the most relevant features by shrinking the less important
ones to zero.

• Lasso Regression: A regression method that performs both variable selection and
regularization to enhance prediction accuracy.

• Ridge Regression: A technique used when multicollinearity exists, adding a degree
of bias to the regression estimates.

• Decision Tree Regressor: A non-linear regression model that splits the dataset into
subsets based on the feature values to make predictions.

• Huber Regressor: A robust regression technique that is less sensitive to outliers in the
data than least squares regression.

• Linear Regression: A basic regression model that assumes a linear relationship be-
tween the input features and the target values.

• Passive Aggressive Regressor: An online learning algorithm that updates the model
in response to each individual sample.

• Least Angle Regression (LARS): A regression algorithm particularly suited for high-
dimensional data, similar to forward stepwise regression.

2.5.2. Classification Models

For the classification task of predicting diabetes status based on combined pressure
and temperature features, the following models were employed:
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• Extra Trees Classifier: An ensemble learning method that aggregates the results of
multiple randomized Decision Trees to make predictions.

• Random Forest Classifier: A tree-based ensemble method that creates multiple Deci-
sion Trees for classification and averages their outputs.

• Extreme Gradient Boosting (XGBoost): A highly efficient boosting algorithm used
for classification tasks, known for its high performance in structured data.

• AdaBoost Classifier: A boosting algorithm that improves classification by combining
weak classifiers to form a stronger overall classifier.

• Gradient Boosting Classifier: An iterative boosting method that combines weak classifiers
to produce a strong predictive model by sequentially reducing the classification error.

• Naive Bayes: A probabilistic classifier based on Bayes’ theorem, assuming indepen-
dence between the features.

• Logistic Regression: A simple linear classifier used to predict the probability of a
binary outcome (diabetes or non-diabetes).

• Decision Tree Classifier: A non-linear model that classifies instances by recursively
partitioning the feature space based on feature values.

• Linear Discriminant Analysis (LDA): A classification algorithm that models the
differences between multiple classes by assuming normally distributed features.

• Ridge Classifier: A variant of Logistic Regression that uses regularization to handle
collinearity and improve classification.

• Quadratic Discriminant Analysis (QDA): A classifier that assumes each class is
normally distributed but with different covariance matrices.

• K Neighbors Classifier: A non-parametric method that classifies instances based on
the majority class of the k-nearest neighbors in the feature space.

• Support Vector Machine (SVM) with a linear kernel: A classification algorithm that
creates a linear boundary between classes to maximize the margin between them.

• Light Gradient Boosting Machine (LightGBM): A highly efficient gradient boosting
method optimized for classification tasks on large datasets.

• Dummy Classifier: A simple baseline model that makes predictions using basic
strategies such as stratified or most frequent class predictions.

2.5.3. Handling of Correlated Features in Machine Learning Models

The machine learning algorithms used in this study, including Extra Trees, Random
Forest, Gradient Boosting, and Support Vector Machines (SVMs), are well-suited to handle
potential correlations between features, such as the left and right foot data [39]. These
algorithms are based on ensemble techniques, Decision Trees, or linear models, which
inherently manage redundancy and correlation in input features [40]. For instance, Ran-
dom Forest is effective in handling feature selection, even with a high number of variables,
which helps in improving model accuracy and performance by eliminating unimportant
variables [41]. Correlations between input features do not necessarily degrade the perfor-
mance of these algorithms because they assess the contribution of each feature in relation
to the target outcome, even when multiple features carry similar information (as could be
the case with left and right foot data).

Moreover, the use of regularization techniques in models like SVMs [42] or Logistic
Regression helps to control for overfitting, which can occur in the presence of correlated
data [43].

Given the relatively high correlations observed in the dataset, these algorithms are ca-
pable of identifying meaningful patterns without being adversely affected by the similarity
between left and right foot data. This approach ensures that the models generalize well
even in the presence of correlated measurements.

2.5.4. Hyperparameter Tuning

In the process of model selection and training, default hyperparameters were used for
each of the machine learning models as hyperparameter tuning was not performed in the
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initial comparison phase. PyCaret automatically trains a range of models using their stan-
dard settings, enabling quick evaluation of model performance. Once the best-performing
model is identified, further optimization can be performed through hyperparameter tuning
to improve the results. Table 1 is a summary of the machine learning models used in our
study, separated into classification and regression models, together with their respective
default parameter values.

Table 1. Default hyperparameters for classification and regression models.

Model Type Default Hyperparameters

Logistic Regression Classification C = 1.0, penalty = l2, solver = lbfgs, max_iter = 100

Random Forest Classifier Classification n_estimators = 100, criterion = gini, max_depth = None,
min_samples_split = 2, min_samples_leaf = 1

K-Nearest Neighbors Classification n_neighbors = 5, weights = uniform, algorithm = auto

Support Vector Machine (SVC) Classification C = 1.0, kernel = rbf, gamma = scale

Gradient Boosting Classifier Classification n_estimators = 100, learning_rate = 0.1, max_depth = 3,
min_samples_split = 2, min_samples_leaf = 1

Extra Trees Classifier Classification n_estimators = 100, criterion = gini, max_depth = None,
min_samples_split = 2, min_samples_leaf = 1

Naive Bayes Classification No tunable parameters

XGBoost Classifier Classification n_estimators = 100, learning_rate = 0.1, max_depth = 6,
min_child_weight = 1, subsample = 1.0, colsample_bytree = 1.0

LightGBM Classifier Classification n_estimators = 100, learning_rate = 0.1, max_depth = −1, num_leaves = 31

Decision Tree Classifier Classification criterion = gini, max_depth = None, min_samples_split = 2,
min_samples_leaf = 1

AdaBoost Classifier Classification n_estimators = 50, learning_rate = 1.0

Ridge Classifier Classification alpha = 1.0

Random Forest Regressor Regression n_estimators = 100, criterion = mse, max_depth = None,
min_samples_split = 2, min_samples_leaf = 1

Gradient Boosting Regressor Regression n_estimators = 100, learning_rate = 0.1, max_depth = 3,
min_samples_split = 2, min_samples_leaf = 1

Extra Trees Regressor Regression n_estimators = 100, criterion = mse, max_depth = None,
min_samples_split = 2, min_samples_leaf = 1

XGBoost Regressor Regression n_estimators = 100, learning_rate = 0.1, max_depth = 6,
min_child_weight = 1, subsample = 1.0, colsample_bytree = 1.0

LightGBM Regressor Regression n_estimators = 100, learning_rate = 0.1, max_depth = −1, num_leaves = 31

Decision Tree Regressor Regression criterion = mse, max_depth = None, min_samples_split = 2,
min_samples_leaf = 1

3. Results
3.1. Correlation Between Plantar Pressure and Temperature Data

This section analyzes the relationship between plantar pressure and temperature data
by calculating the correlation coefficients for various anatomical points. The aim of this
analysis is to explore how changes in plantar pressure at specific regions of the foot correlate
with variations in temperature. Understanding these correlations can provide insights into
the biomechanical and thermodynamic responses of the foot under varying load conditions
and diabetes conditions.

3.1.1. Calculation of Correlation Coefficients

The relationship between pressure and temperature was assessed by computing
both Pearson and Spearman correlation coefficients for each combination of temperature
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and plantar pressure features. The Pearson correlation coefficient measures the linear
relationship between two continuous variables, while the Spearman correlation coefficient
captures potential non-linear relationships by assessing the monotonic association between
ranked data.

The formulas used for these calculations are as follows:

• Pearson correlation:

r = ∑(Xi − X̄)(Yi − Ȳ)√
∑(Xi − X̄)2 ∑(Yi − Ȳ)2

where Xi and Yi represent the data points for temperature and pressure, respectively,
and X̄ and Ȳ are their respective means.

• Spearman correlation:

ρ = 1 −
6 ∑ d2

i
n(n2 − 1)

where di is the difference between the ranks of the corresponding values and n is the
number of observations.

Both correlation coefficients were computed for each anatomical point, such as the first
metatarsal (1stM), fifth metatarsal (5thM), hallux, heel, and the lateral and medial midfoot
(LatM and MedMF), in combination with various temperature measurements.

3.1.2. Anatomical Points and Correlation with Temperature

Due to the large number of data points across different anatomical regions, it becomes
challenging to present all the correlation results in a single table. Comprehensive results are
available in the Supplementary Materials at the end of the paper (Supplementary Materials).
Therefore, the key findings from each anatomical point are summarized below.

First Metatarsal (1stM)

The correlation between temperature and pressure at the first metatarsal was generally
weak. Several negative Pearson correlations were observed, particularly in relation to the
MedMF temperature features. For example, the MedMF temperature features often showed
weak inverse relationships with the 1stM pressure data, indicating that temperature in-
creases in the midfoot are weakly associated with pressure decreases at the first metatarsal.

Third Metatarsal (3rdM)

The third metatarsal exhibited moderate negative correlations with temperature, es-
pecially in relation to the medial midfoot region. This suggests that, as the temperature
increases in the midfoot, the pressure in the third metatarsal tends to decrease. For instance,
MedMF_Ref_Min and 3rdM_APP showed a Pearson correlation as low as r = −0.317,
indicating inverse relationship.

Fifth Metatarsal (5thM)

The fifth metatarsal displayed more variable correlations with temperature. In some
cases, such as with MedMF_Min and MedMF_Max, positive correlations were observed,
suggesting that the temperature and pressure in this region increase together. This suggests
that the lateral side of the foot experiences a localized mechanical and thermal response,
where higher pressure is associated with increased temperature.

Hallux

The hallux consistently showed positive correlations with temperature, particularly in
relation to the MedMF temperature features. The Pearson correlations between the MedMF
temperature features and hallux pressure ranged from r = 0.27 to r = 0.38, indicating a
moderate positive relationship. This suggests that, as the plantar pressure at the hallux
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increases, the temperature in the midfoot rises, reflecting the transfer of the mechanical
load and thermal response in this region.

Heel

The correlations between the temperature and pressure in the heel were relatively
weak compared to those in the hallux and metatarsals. Moderate positive correlations were
observed in some cases, particularly in relation to MedMF_Min and MedMF_Max, suggest-
ing that temperature increases in the heel are weakly associated with pressure increases.

Lateral and Medial Midfoot (LatM and MedMF)

The strongest correlations were observed in the midfoot regions, particularly the
medial midfoot (MedMF). Both the Pearson and Spearman correlation coefficients showed
moderate to strong positive correlations between LatM and MedMF pressure and tempera-
ture. For example, MedMF_Ref_Mean and MedMF_Ref_Max showed Pearson correlations
above r = 0.4 with pressure at the LatM, indicating that increased pressure in the lateral
midfoot is strongly associated with increased temperature in the medial midfoot.

This analysis reveals several important patterns:

• Moderate Positive Correlations: Strong correlations were observed between pressure
and temperature in the midfoot regions, particularly in the MedMF and LatM regions,
indicating an interdependence between the mechanical load and thermal responses in
these areas.

• Weaker or Negative Correlations: In regions such as the 1stM and 3rdM, weaker or
inverse correlations were found, suggesting that temperature variations have a limited
effect on pressure in these areas.

3.1.3. Possible Impact of Correlation on Machine Learning Performance

The results of correlation analysis between the temperature and plantar pressure data
highlights the potential limitations of using temperature as a standalone feature for pressure
prediction. The generally weak and inconsistent correlations across most anatomical
points suggest that the underlying relationship between these variables is not strong
enough to support accurate pressure predictions using only temperature data. This lack of
correlation may serve as an early indicator of poor performance in machine learning models
designed to predict plantar pressure from temperature alone. Given the weak association,
it is hypothesized that these models will struggle to capture the necessary patterns for
reliable predictions.

However, this condition also presents an opportunity for exploring multimodal ap-
proaches, where temperature data are combined with other biomechanical features such
as the pressure readings to improve the prediction accuracy. In the following sections, a
series of machine learning experiments are conducted to test the predictive capability of
temperature alone, and then in combination with other relevant features.

3.2. Machine Learning Analysis for Pressure Estimation

In this section, the machine learning analysis conducted to estimate pressure values
based on thermal time series data is presented. The experiments were designed to explore
the correlation between the thermal data and three pressure metrics: peak pressure, average
peak pressure, and average pressure at various anatomical points on the feet.

3.2.1. Pressure Estimation at Individual Anatomical Points

As part of the first set of experiments, a dataset was constructed where the target
regression values were each of the three pressure metrics. The features were derived from
the thermal time series data. The temperature measurements, representing a time series,
were recorded at specific intervals—30 s, 90 s, 120 s, and 180 s—at various anatomical
points on the feet. The pressure values were consolidated into three metrics: peak pressure,
average peak pressure, and average pressure for each anatomical point.
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The analysis of the machine learning models revealed a lack of a significant correlation
between the thermal time series data and the predicted pressure values. This outcome was
consistent across all the anatomical points and pressure metrics, as indicated by the negative
R2 values. The performance metrics for the regression models, including MAE, MSE, RMSE,
RMSLE, and MAPE, exhibited high error rates and negative R2 values, suggesting that
the models struggled to accurately estimate the pressure values based on thermal data
alone. These findings indicate that thermal data, when used in isolation, may not provide a
reliable basis for pressure estimation.

Due to the extensive volume of results, only the outcomes for three anatomical points
are presented as examples. Table 2 provides the metrics for a regressor estimating the
average peak pressure at the hallux, Table 3 presents the metrics for the average peak
plantar pressure estimation at the third metatarsus, and Table 4 displays the metrics for
peak plantar pressure estimation at the heel. As shown in these tables, large errors were
obtained, suggesting the difficulty of predicting pressure values solely from thermal time
series data. These results raise questions about the suitability of using thermal data alone
for pressure estimation. Further investigation is necessary to identify additional features
or data sources that may enhance the accuracy of pressure prediction models. The results
indicate significant challenges in predicting pressure values using thermal time series
data alone, as evidenced by the high error rates and negative R2 values across most of
the models.

Table 2. Regression model metrics: hallux average peak pressure.

Model MAE MSE RMSE R2 RMSLE MAPE

Extra Trees Regressor 23.7315 839.6758 27.1971 −0.4872 0.3569 0.3657
K Neighbors Regressor 26.994 1024.495 30.2197 −0.9288 0.3863 0.4422
Dummy Regressor 27.1484 1107.591 31.1707 −0.9942 0.3928 0.4359
Light Gradient Boost. Mch. 27.1484 1107.591 31.1707 −0.9942 0.3928 0.4359
Bayesian Ridge 27.1514 1107.961 31.1748 −0.9948 0.3929 0.436
Random Forest Regressor 27.8012 1089.168 31.2258 −1.0301 0.3966 0.4397
Gradient Boosting Regressor 27.2654 1064.454 30.9733 −1.0617 0.4079 0.4161
AdaBoost Regressor 27.9178 1150.729 32.0767 −1.0725 0.4172 0.4512
Extreme Gradient Boosting 27.5578 1153.395 31.5512 −1.094 0.4305 0.4192
Orthogonal Matching Pursuit 27.5907 1232.316 32.613 −1.216 0.4108 0.4602
Elastic Net 30.3813 1469.462 34.6957 −1.3458 0.4321 0.4989
Lasso Least Angle Regr. 31.8224 1645.612 36.0818 −1.5213 0.4541 0.5232
Lasso Regression 31.8109 1646.714 36.0897 −1.5227 0.454 0.5232
Ridge Regression 32.7574 1845.964 37.4148 −1.7363 0.4679 0.5401
Decision Tree Regressor 30.4242 1434.073 36.7814 −2.6933 0.4578 0.4362
Huber Regressor 38.303 2300.472 43.3332 −2.93 0.5605 0.5833
Linear Regression 46.8023 3601.207 57.1221 −7.4216 0.985 0.7242
Passive Aggressive Regr. 48.2434 3274.756 51.2894 −9.6462 0.5529 0.6799
Least Angle Regression 43,123.6 3.15 × 1010 56,615.54 −2.6 × 108 2.0646 421.0547

For the hallux, as shown in Table 2, the Extra Trees Regressor had the best performance
among the models, but even this model yielded a negative R2 value (−0.4872) and substan-
tial errors (MAE = 23.7315; RMSE = 27.1971), indicating poor predictive accuracy. Other
models, such as the K Neighbors Regressor and Random Forest Regressor, demonstrated
even higher errors and more negative R2 values, further underscoring the difficulty of
estimating pressure from thermal data in this region.

In the third metatarsus (Table 3), the models performed similarly poorly. The Light
Gradient Boosting Machine and Dummy Regressor produced the same results, with a
negative R2 value of −0.7524 and considerable errors (MAE = 59.1336; RMSE = 69.5438).
The Least Angle Regression model performed particularly poorly, with extreme errors
(MAE = 1358.865; RMSE = 1583.866) and a highly negative R2 value of −1376.8, suggesting
that this model is entirely unsuitable for this task.
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Table 3. Regression model metrics: 3rd metatarsal average peak plantar pressure.

Model MAE MSE RMSE R2 RMSLE MAPE

Light Gradient Boost. Mach. 59.1336 5961.295 69.5438 −0.7524 0.3315 0.307
Dummy Regressor 59.1336 5961.295 69.5438 −0.7524 0.3315 0.307
Bayesian Ridge 59.1476 5962.777 69.5575 −0.754 0.3316 0.3071
Elastic Net 65.731 7520.082 77.2534 −1.6133 0.3521 0.327
Orthogonal Matching Purs. 64.355 6624.744 74.2898 −1.8195 0.349 0.3254
Extra Trees Regressor 59.0005 5953.229 68.2479 −2.8548 0.3307 0.3114
AdaBoost Regressor 61.2344 6188.385 72.3118 −3.0504 0.3522 0.3163
Random Forest Regressor 65.8635 7280.352 78.2418 −3.33 0.3709 0.3446
Ridge Regression 70.6273 9422.834 84.8931 −3.4673 0.3803 0.3492
Lasso Least Angle Regr. 70.6124 9466.471 84.8651 −3.5245 0.3794 0.3512
Lasso Regression 70.8137 9498.548 85.0506 −3.542 0.3805 0.3518
Gradient Boosting Regr. 68.614 8445.285 84.826 −4.0885 0.4049 0.367
K Neighbors Regressor 74.8539 8246.182 87.825 −7.5013 0.4041 0.3986
Huber Regressor 86.2494 12,962.42 104.4957 −8.203 0.4775 0.4194
Passive Aggressive Regr. 97.7131 14,739.44 107.2971 −10.8507 0.4947 0.4661
Extreme Gradient Boosting 73.9059 9137.847 87.0243 −12.7287 0.3982 0.3953
Decision Tree Regr. 91.1842 14,836.03 109.1365 −14.7182 0.509 0.4827
Linear Regression 123.951 31,724.05 157.4115 −16.7257 1.1418 0.5985
Least Angle Regr. 1358.865 495,2249 1583.866 −1376.8 1.5223 6.971

Table 4. Regression model metrics: heel peak plantar pressure.

Model MAE MSE RMSE R2 RMSLE MAPE

Extra Trees Regr. 42.6667 2665.684 48.1738 −0.8203 0.2074 0.1917
Random Forest Regr. 45.6522 2938.924 50.5072 −1.0423 0.218 0.2057
AdaBoost Regr. 45.5731 2933.01 51.091 −1.1171 0.2212 0.2052
Extreme Gradient Boost. 50.0482 3324.043 54.9778 −1.3777 0.2399 0.2268
Bayesian Ridge 45.1373 2821.918 50.9436 −1.5651 0.2218 0.2073
Dummy Regressor 45.1358 2821.794 50.9427 −1.5652 0.2218 0.2073
Light Gradient Boost.Mach. 45.1358 2821.794 50.9427 −1.5652 0.2218 0.2073
Orthogonal Matching Purs. 46.3616 2878.473 51.2707 −1.6113 0.2229 0.2115
Gradient Boosting Regr. 46.6507 3403.991 54.3723 −1.6691 0.2319 0.2048
K Neighbors Regr. 49.9279 3561.278 56.7779 −1.8124 0.2451 0.231
Elastic Net 46.6024 3122.97 53.1349 −1.8358 0.2296 0.2069
Lasso Least Angle Regr. 51.2852 4159.062 59.577 −2.2904 0.2611 0.2229
Lasso Regression 51.3096 4161.013 59.5913 −2.2912 0.2612 0.223
Ridge Regression 55.8088 5147.188 65.1659 −2.866 0.3025 0.2412
Huber Regressor 62.6196 8839.295 77.4237 −5.3749 0.2903 0.2608
Decision Tree Regr. 67.4958 6356.389 77.734 −5.5824 0.3223 0.2948
Passive Aggressive Regr. 75.5966 8443.785 86.2818 −7.3284 0.3946 0.3159
Linear Regression 100.326 20,864.63 119.8718 −22.0593 0.435 0.4494
Least Angle Regr. 1385.571 7,262,251 1595.164 −5175.72 1.3363 6.3554

For the heel (Table 4), the Extra Trees Regressor again performed the best among the
models but with a negative R2 value (−0.8203) and significant errors (MAE = 42.6667;
RMSE = 48.1738). The Linear Regression and Least Angle Regression models were par-
ticularly ineffective, with extremely high error metrics and highly negative R2 values,
indicating a complete failure to predict the pressure values accurately in this region.

Overall, the results across all the anatomical points suggest that the regression models
struggle to accurately predict plantar pressure based solely on thermal data. The con-
sistently high errors and negative R2 values across the models raise questions about the
feasibility of using thermal time series data as a standalone predictor for plantar pressure.
Further research is needed to explore alternative features or combinations of data that may
improve the predictive accuracy of these models.
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3.2.2. Analysis of Correlation Between Consolidated Temperature and Pressure Prediction

An additional analysis was conducted to explore the potential correlation between
consolidated temperature data from the entire foot, measured at the five anatomical points,
and the pressure metrics at a single point. To test this hypothesis, the dataset was aug-
mented to include the consolidated thermal time series data from these five anatomical
points. These combined temperature data were then used to predict the average pressure
at each of the anatomical points, focusing on the three pressure metrics. The objective of
this analysis was to determine whether temperature information from multiple locations
on the foot could enhance the prediction of pressure at a specific site.

Given the extensive results collected from five anatomical points and three pressure
metrics, Tables 5–7 provide a representative sample of the findings. These tables focus on
the first metatarsus targeting average peak pressure, the fifth metatarsus targeting average
peak plantar pressure, and the lateral midfoot targeting peak plantar pressure. As observed,
the results indicate that the correlation between the consolidated temperature and the
pressure metrics did not produce promising outcomes. The analysis shows negative R2

values and high errors across various evaluation metrics, suggesting that the consolidated
temperature data are not sufficient for accurately predicting the pressure values at these
specific anatomical points.

Table 5. Regression model metrics: 1st metatarsal average peak pressure and temperature consoli-
dated.

Model MAE MSE RMSE R2 RMSLE MAPE

Light Gradient Boost. Mach. 24.3803 1179.303 29.9025 −0.6947 0.3968 0.41
Dummy Regr. 24.3803 1179.302 29.9026 −0.6947 0.3968 0.41
Bayesian Ridge 24.9298 1202.427 30.5468 −0.8289 0.4033 0.416
Random Forest Regr. 25.7203 1176.716 31.5095 −1.4364 0.4089 0.41
AdaBoost Regr. 25.1165 1214.541 31.2653 −1.4662 0.4057 0.3773
Extra Trees Regr. 26.0886 1220.183 32.2855 −2.5147 0.4293 0.4204
K Neighbors Regr. 29.2116 1556.675 36.5677 −3.0332 0.4713 0.4735
Gradient Boosting Regr. 26.5199 1303.739 33.9157 −3.5019 0.4332 0.3903
Passive Aggressive Regr. 28.393 1426.168 33.6168 −4.4534 0.4424 0.4123
Extreme Gradient Boost. 31.1872 1505.87 36.6103 −4.625 0.4932 0.4867
Elastic Net 30.5991 1644.279 37.4245 −5.7394 0.4984 0.4812
Lasso Least Angle Regr. 33.2624 1656.707 39.0917 −12.0911 0.6536 0.5131
Decision Tree Regressor 32.6131 1951.408 41.2692 −12.3658 0.5654 0.5034
Lasso Regression 33.5323 1677.464 39.3684 −12.689 0.6416 0.5169
Huber Regressor 36.7847 2045.709 42.9871 −14.2362 0.5908 0.5723
Orthogonal Matching Purs. 45.0718 3058.593 51.3642 −30.2947 0.8606 0.687
Ridge Regression 36.4573 2127.21 43.6394 −32.8895 0.623 0.5588
Linear Regression 38.0126 2422.576 45.5997 −45.557 0.6342 0.5902
Least Angle Regr. 5.46 × 1035 inf inf −inf 31.1333 6.62 × 1033

The regression models employed in this analysis were consistent with those used
in the previous sections, and similar metrics were utilized to evaluate the performance
of these models. The objective was to determine whether consolidated temperature data
from multiple anatomical points could improve the prediction of the pressure metrics at
specific locations on the foot. However, the analysis reveals a weak correlation between
the consolidated temperature data and the pressure metrics, as indicated by consistently
negative R2 values and high error metrics across all the models.

In Table 5, which presents the results for the first metatarsus targeting average peak
pressure, all the regression models demonstrate poor performance. The Light Gradient
Boosting Machine and Dummy Regressor, which produced identical results, recorded a
mean absolute error (MAE) of 24.3803 and a root mean square error (RMSE) of 29.9025,
with a negative R2 value of −0.6947. This suggests that these models, like the others, failed
to capture any meaningful relationship between the consolidated temperature data and the
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pressure values at the first metatarsus. The errors were substantial across the board, with
the Least Angle Regression model showing the worst performance, recording an MAE of
5.46 × 1035 and infinite values for both MSE and RMSE, reflecting the model’s complete
inability to make accurate predictions.

Table 6. Regression model metrics: 5th metatarsal average peak plantar pressure and temperature
consolidated.

Model MAE MSE RMSE R2 RMSLE MAPE

Light Gradient Boost. Mach. 37.8672 2304.44 46.2579 −0.7488 0.6112 1.3117
Dummy Regressor 37.8672 2304.44 46.2579 −0.7488 0.6112 1.3117
Bayesian Ridge 39.0378 2378.554 47.1246 −0.818 0.6213 1.3153
Passive Aggressive Regr. 41.3224 2650.283 49.1166 −0.8453 0.6669 1.369
AdaBoost Regressor 40.0842 2665.721 50.02 −1.1158 0.6383 1.3454
Random Forest Regr. 40.9052 2627.747 49.4219 −1.1796 0.6472 1.301
K Neighbors Regr. 43.6027 3003.919 52.6696 −1.3401 0.6822 1.4252
Gradient Boosting Regr. 46.0786 3136.678 53.7797 −1.5054 0.6705 1.2397
Extra Trees Regr. 42.7361 2879.329 52.3997 −1.6931 0.6889 1.3874
Elastic Net 46.6453 3320.467 55.4159 −1.7926 0.7383 1.5432
Extreme Gradient Boost. 50.896 3660.532 57.8543 −1.9084 0.7317 1.4089
Huber Regressor 51.3562 3689.396 59.3965 −2.5813 0.8133 1.5922
Decision Tree Regr. 60.6246 5272.278 69.8224 −3.4066 0.8352 1.7657
Lasso Regr. 51.0932 4061.626 60.3932 −3.4134 0.9889 1.5364
Lasso Least Angle Regres. 51.3896 4068.553 60.5001 −3.6598 0.9164 1.5353
Orthogonal Matching Purs. 49.5623 4642.656 62.5531 −3.8977 0.8912 1.5586
Ridge Regression 50.7713 4263.169 62.1715 −4.1066 1.01 1.6337
Linear Regression 53.8113 4777.258 65.7032 −4.9478 1.0016 1.6863
Least Angle Regr. 6.31 × 1035 inf inf −inf 23.5834 6.13 × 1033

Table 7. Regression model metrics: lateral midfoot peak plantar pressure and temperature consoli-
dated.

Model MAE MSE RMSE R2 RMSLE MAPE

Extra Trees Regr. 21.6342 781.5449 24.3457 −4.1466 0.3499 0.3726
Elastic Net 23.205 975.5359 26.9775 −4.509 0.3894 0.3974
Extreme Gradient Boost. 22.6037 879.9069 26.2291 −4.8219 0.3769 0.3893
Passive Aggressive Regr. 17.9418 512.5657 20.8999 −5.027 0.3086 0.2925
Bayesian Ridge 19.1977 610.182 22.0609 −5.2521 0.326 0.3344
AdaBoost Regressor 21.5522 826.1589 24.9973 −5.3733 0.358 0.3591
Huber Regressor 25.1347 1149.741 29.2435 −6.1187 0.4382 0.4092
Random Forest Regr. 21.5135 782.1238 24.7137 −6.4551 0.3547 0.3785
Gradient Boosting Regr. 23.9051 1007.286 27.9547 −6.6773 0.3961 0.393
Decision Tree Regr. 26.5163 1247.107 31.3636 −8.7018 0.455 0.4326
Light Gradient Boost. Mch. 19.7522 641.3545 23.1027 −9.1444 0.3378 0.3345
Dummy Regressor 19.7522 641.3545 23.1027 −9.1444 0.3378 0.3345
Lasso Least Angle Regr. 28.9892 1527.706 33.0902 −11.1096 0.4667 0.4874
Lasso Regression 29.0708 1528.006 33.1449 −11.2433 0.4685 0.4889
K Neighbors Regr. 23.5397 834.7291 27.003 −11.4923 0.3894 0.4338
Ridge Regression 26.8591 1437.279 32.0659 −12.3371 0.5478 0.4719
Linear Regression 28.1566 1517.806 33.3176 −16.3879 0.6098 0.4869
Orthogonal Matching Purs. 29.692 1476.125 33.879 −16.5291 0.6524 0.5192
Least Angle Regr. 1.36 × 1036 inf inf −inf 62.5706 1.69 × 1034

Similarly, in Table 6, which focuses on the fifth metatarsus targeting average peak
plantar pressure, the results were equally discouraging. The Light Gradient Boosting
Machine and Dummy Regressor again demonstrated a poor performance, with an MAE
of 37.8672 and an RMSE of 46.2579, coupled with a negative R2 value of −0.7488. Even
the more advanced models, such as Extreme Gradient Boosting and Elastic Net, yielded
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high error metrics (e.g., RMSE values of 57.8543 and 55.4159, respectively) and negative R2

values (−1.9084 and −1.7926), further underscoring the inadequacy of using consolidated
temperature data to predict the pressure metrics at the fifth metatarsus. The Least Angle
Regression model once again produced extreme results, with errors of the same magnitude
as those observed in the previous table, highlighting its unsuitability for this task.

Overall, these results suggest that the consolidated temperature data from multiple
anatomical points are not sufficient to predict the pressure metrics accurately at specific
locations on the foot. The negative R2 values across all the models indicate that the
regression models failed to capture any meaningful relationship between the temperature
data and the pressure metrics. The consistently high errors in metrics such as MAE, MSE,
RMSE, RMSLE, and MAPE further reinforce this conclusion, suggesting that alternative
data sources or additional features may be required to enhance the accuracy of the pressure
prediction models.

The results of this analysis suggest that consolidating thermal data from multiple
anatomical points did not improve the accuracy of the pressure predictions at individual
anatomical points, as demonstrated by the regression metrics for the lateral midfoot tar-
geting peak plantar pressure (Table 7). The weak correlation between the consolidated
temperature data and the pressure metrics is evident from the consistently negative R2

values and the high errors observed across the various models.
For example, the Extra Trees Regressor, which is generally a strong performer in

regression tasks, yielded an MAE of 21.6342 and an RMSE of 24.3457, accompanied by a
significantly negative R2 value of −4.1466. Similarly, the Elastic Net and Extreme Gradient
Boosting models also exhibited poor performances, with negative R2 values of −4.509 and
−4.8219, respectively, and relatively high error metrics (e.g., RMSE values of 26.9775 and
26.2291, respectively). These results indicate that the models were unable to effectively
capture the relationship between the consolidated temperature data and the pressure at the
lateral midfoot, leading to inaccurate predictions.

Additionally, the Passive Aggressive Regressor, which had one of the lowest RMSE
values at 20.8999, still exhibited a negative R2 value of −5.027, further confirming the lack
of a meaningful relationship between the temperature data and the pressure metrics. The
consistently high MAE, MSE, RMSE, and RMSLE values across all the models, coupled
with the negative R2 values, suggest that the temperature data from different anatomical
points may not be directly related to the pressure at a specific location, at least with the
models and features used in this study. The results for other models, such as the Decision
Tree Regressor and Linear Regression, are even more striking, with highly negative R2

values (−8.7018 and −16.3879, respectively) and large errors (e.g., RMSE values of 31.3636
and 33.3176, respectively). These metrics highlight the complexity of accurately predicting
the pressure distribution in the feet based on thermal data alone.

In all the models tested, negative R2 values were consistently observed, as shown
in Tables 1–7. A negative R2 value indicates that the model’s predictive power is worse
than simply predicting the mean of the data. This suggests that the temperature data alone
do not contribute effectively to predicting the plantar pressure at the anatomical points
analyzed. These results corroborate the findings of the correlation analysis, where weak or
no significant correlations were detected between the temperature and pressure data. There-
fore, the poor predictive accuracy of the models, as indicated by the negative R2 values, is
consistent with the inherent lack of a strong relationship between the two modalities.

3.2.3. Implications of Correlations for Machine Learning Model Performance

The observed correlations between plantar pressure and temperature, described in
Section 3.1, provide insights that may explain the challenges faced in the first set of ex-
periments, where temperature data were used to predict the plantar pressure. The weak
and inconsistent correlations, especially in regions like the 1stM and 3rdM, suggest that
temperature alone may not be a strong predictor of pressure in certain anatomical points.
The lack of substantial linear or monotonic relationships indicates that the temperature
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data do not capture the complexities and variations in the pressure distribution across the
foot. These findings imply that machine learning models trained solely on temperature
features are likely to perform poorly when predicting plantar pressure as the underlying
relationship between these variables is weak. The moderate to strong correlations in the
midfoot regions (LatM and MedMF) may offer some predictive potential, but, overall, the
weak correlations in other areas suggest that additional features or more complex data
representations will be required to enhance the performance of the predictive models. This
emphasizes the importance of incorporating more diverse and relevant biomechanical
features when developing machine learning algorithms for plantar pressure prediction.

3.3. Diabetes Prediction from Temperature and Pressure Data

The lack of a significant correlation between the consolidated thermal data and pres-
sure metrics, as observed in the previous analysis, suggests that these two variables may
not be directly related or reflect a causal relationship. However, this apparent disconnect
between the thermal data and pressure values does not diminish their individual predic-
tive potential. On the contrary, it opens the door to treating temperature and pressure as
independent features in the context of diabetes prediction.

By considering thermal and pressure data as separate, uncorrelated inputs, it becomes
possible to harness the unique predictive capabilities of each variable. Temperature data
may capture specific physiological responses, such as inflammation or altered blood flow,
that are indicative of diabetic conditions, while pressure data could reflect biomechanical
abnormalities associated with diabetes, such as altered gait or foot structure. Together, these
independent features have the potential to provide a more comprehensive and accurate
prediction model for diabetes.

In this following section, we explore the application of these variables in diabetes
prediction. By leveraging their individual strengths as separate features within machine
learning models, we aim to enhance the accuracy and reliability of diabetes diagnosis,
as demonstrated in the first study. The primary objective of this study is to assess the
combined predictive potential of temperature and pressure data to diagnose diabetes. To
achieve this, a set of machine learning models, facilitated by the PyCaret library, were
employed to predict the diabetes status for each instance in the dataset.

Table 8 provides an overview of the results obtained from the diabetes prediction task
across the tested machine learning models. The table is organized to reflect a performance
hierarchy, listing the models in descending order according to their predictive effectiveness.
This arrangement begins with the highest-performing model and progresses to those with
comparatively lower predictive capabilities.

Upon reviewing the performance metrics across the various machine learning models,
several key insights emerge. The Extra Trees Classifier stands out as the top performer,
demonstrating the highest accuracy, AUC, recall, precision, F1 score, and kappa values,
which collectively indicate its strong and consistent performance across multiple metrics.
In contrast, models such as the Random Forest Classifier, Extreme Gradient Boosting, and
Naive Bayes show variability in their performance across the different metrics, suggesting
differences in how these models address various aspects of the prediction task.

Certain models, such as Quadratic Discriminant Analysis and K Neighbors Classifier,
exhibit lower accuracy, recall, precision, and F1 scores, which may reflect limitations in
their predictive capabilities for this particular dataset. Additionally, models like the SVM
with a Linear Kernel, Light Gradient Boosting Machine, and Dummy Classifier display zero
performance across all the metrics, indicating that they may not be suitable for this specific
prediction task. In general, the data highlight a diverse range of model performances,
shedding light on potential candidates that excel in predicting diabetes based on the
combined temperature and pressure data.
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Table 8. Comparative performance of diabetes prediction models employing combined thermal time
series and plantar pressure data.

Model Accuracy AUC Recall Prec. F1 Kappa

Extra Trees Classifier 0.9375 1 0.875 1 0.9333 0.875
Random Forest Classifier 0.75 0.875 0.625 0.8333 0.7143 0.5
Extreme Gradient Boosting 0.75 0.8438 0.5 1 0.6667 0.5
Ada Boost Classifier 0.625 0.7812 0.375 0.75 0.5 0.25
Gradient Boosting Classifier 0.625 0.625 0.375 0.75 0.5 0.25
Naive Bayes 0.6875 0.7734 0.625 0.7143 0.6667 0.375
Logistic Regression 0.5625 0.6406 0.375 0.6 0.4615 0.125
Decision Tree Classifier 0.625 0.625 0.375 0.75 0.5 0.25
Linear Discriminant Analysis 0.6875 0.875 0.5 0.8 0.6154 0.375
Ridge Classifier 0.6875 0.6875 0.5 0.8 0.6154 0.375
Quadratic Discriminant Analysis 0.125 0.125 0.25 0.2 0.2222 −0.75
K Neighbors Classifier 0.4375 0.5391 0.625 0.4545 0.5263 −0.125
SVM—Linear Kernel 0.5 0.5 0 0 0 0
Light Gradient Boosting Machine 0.5 0.5 0 0 0 0
Dummy Classifier 0.5 0.5 0 0 0 0

Tables 9 and 10 summarize the results of two distinct experiments, each focusing on
predicting diabetes using temperature or pressure as independent variables. Although
several classifiers achieve respectable metrics when applied to individual variables, their
performance does not match the superior precision observed with the combined data
prediction presented in Table 8. In the experiment utilizing temperature data, the classifiers
exhibit varying degrees of accuracy, with the Naive Bayes model achieving the highest
accuracy at 0.875. Similarly, in the pressure-only experiment, the Logistic Regression model
attains an accuracy of 0.6875, marking the best performance among the classifiers for
this experiment.

Table 9. Performance of diabetes prediction models employing thermal time series data.

Model Accuracy AUC Recall Prec. F1 Kappa

Extra Trees Classifier 0.8125 0.9375 0.875 0.7778 0.8235 0.625
Random Forest Classifier 0.75 0.9375 0.75 0.75 0.75 0.5
Extreme Gradient Boosting 0.75 0.9062 0.75 0.75 0.75 0.5
Ada Boost Classifier 0.8125 0.9297 0.875 0.7778 0.8235 0.625
Gradient Boosting Classifier 0.8125 0.7812 0.875 0.7778 0.8235 0.625
Naive Bayes 0.875 0.875 0.75 1 0.8571 0.75
Logistic Regression 0.8125 0.9375 0.875 0.7778 0.8235 0.625
Decision Tree Classifier 0.8125 0.8125 0.875 0.7778 0.8235 0.625
Linear Discriminant Analysis 0.8125 0.8984 1 0.7273 0.8421 0.625
Ridge Classifier 0.9375 0.9375 1 0.8889 0.9412 0.875
Quadratic Discriminant Analysis 0.4375 0.4375 0.625 0.4545 0.5263 −0.125
K Neighbors Classifier 0.8125 0.875 0.75 0.8571 0.8 0.625
SVM—Linear Kernel 0.5 0.5 1 0.5 0.6667 0
Light Gradient Boosting Machine 0.5 0.5 0 0 0 0
Dummy Classifier 0.5 0.5 0 0 0 0

Furthermore, it is important to observe that the F1 score, recall, and precision metrics
are closely aligned in the table for diabetes prediction using both the combined pressure
and temperature features, as well as in the individual predictions. This consistency across
the metrics indicates that the model provides a balanced response between both classes.
In particular, the similarity of these metrics suggests that the model is not biased toward
one class over the other, effectively managing the trade-off between false positives and
false negatives. This balance is particularly important in clinical prediction tasks, where
misclassifications can have significant consequences. The fact that these performance met-



Algorithms 2024, 17, 519 21 of 26

rics remain comparable across different feature sets (pressure, temperature, and combined)
further supports the robustness of the model and highlights that both modalities contribute
meaningful information for predicting diabetic conditions.

Table 10. Performance of diabetes prediction models employing plantar pressure data.

Model Accuracy AUC Recall Prec. F1 Kappa

Extra Trees Classifier 0.375 0.2969 0.5 0.4 0.4444 −0.25
Random Forest Classifier 0.3125 0.3281 0.375 0.3333 0.3529 −0.375
Extreme Gradient Boosting 0.4375 0.3594 0.375 0.4286 0.4 −0.125
Ada Boost Classifier 0.4375 0.5 0.25 0.4 0.3077 −0.125
Gradient Boosting Classifier 0.5 0.3594 0.5 0.5 0.5 0
Naive Bayes 0.5 0.5938 0.625 0.5 0.5556 0
Logistic Regression 0.6875 0.6719 0.75 0.6667 0.7059 0.375
Decision Tree Classifier 0.375 0.375 0.375 0.375 0.375 −0.25
Linear Discriminant Analysis 0.5 0.5 0.5 0.5 0.5 0
Ridge Classifier 0.4375 0.4375 0.5 0.4444 0.4706 −0.125
Quadratic Discriminant Analysis 0.625 0.625 0.25 1 0.4 0.25
K Neighbors Classifier 0.25 0.3359 0.375 0.3 0.3333 −0.5
SVM—Linear Kernel 0.5 0.5 0 0 0 0
Light Gradient Boosting Machine 0.5 0.5 0 0 0 0
Dummy Classifier 0.5 0.5 0 0 0 0

The findings from this experiment highlight the challenges associated with predicting
diabetes based solely on temperature or pressure data. While each of these modalities
provides valuable insights into the state of the foot, neither offers sufficient discriminatory
power on its own to reliably identify diabetic conditions. The low predictive accuracy
observed in both the temperature-only and pressure-only models underscores the limita-
tions of single-modality approaches. These results strongly suggest that the integration of
multiple data sources, such as combining temperature and pressure data, is necessary to
improve the predictive performance. Additionally, incorporating other physiological or
biomechanical features could further enhance the accuracy of machine learning models in
clinical diagnostics.

It is noteworthy that, according to Table 8, the Extra Trees Classifier, which performs
exceptionally well with the combined data, only achieves a modest accuracy of 0.375 in
the pressure-only experiment. The key insight arises when these results are compared
to the earlier section where the models utilized both temperature and pressure data in
tandem for diabetes prediction. Although some classifiers display competitive metrics
in the individual-variable experiments, their collective predictive power falls short of the
combined data prediction. The Extra Trees Classifier stands out as the most effective model
in the combined experiment, achieving an accuracy of 0.9375 and a perfect AUC of 1.0.

Figure 5 provides a comparative analysis of the Extra Trees Classifier and Random For-
est Classifier, focusing on their performance in predicting diabetes using both thermal and
pressure data. Figure 5a shows the feature importance for the Extra Trees Classifier, where
certain features, primarily related to thermal data such as “Hallux_Ref_Max” and “Hal-
lux_Ref_Min”, are highlighted as the most significant contributors to the
model’s predictions.

Figure 5c illustrates the feature importance for the Random Forest Classifier. Unlike
the Extra Trees Classifier, the Random Forest Classifier shows a more balanced distri-
bution of importance across both the temperature and pressure features. This indicates
that the Random Forest model considers a mix of both types of data—temperature (e.g.,
“Hallux_Min_30s”) and pressure (e.g., “1stM_APP”)—to be equally important in making
accurate predictions. This balanced approach suggests that integrating both temperature
and pressure data enhances the model’s ability to predict diabetes effectively.



Algorithms 2024, 17, 519 22 of 26

Figure 5. Performance comparison between the Extra Trees Classifier and Random Forest Classifier.
(a,c) display the feature importance plots, with (a) highlighting the Extra Trees Classifier’s focus
on thermal data and (c) illustrating the Random Forest Classifier’s balanced consideration of both
temperature and pressure features. (b,d) depict the decision boundaries for the Extra Trees Classifier
and Random Forest Classifier, respectively, showing how the models classify diabetic (1) and non-
diabetic (0) cases based on these features. Random Forest’s mixed use of temperature and pressure
data underscores its more comprehensive approach to predicting diabetes.

Figure 5b,d present the decision boundaries for the Extra Trees model and Random
Forest Classifier, respectively. These boundaries visually demonstrate how each model
differentiates between diabetic (1) and non-diabetic (0) cases based on the input features.
The Random Forest Classifier’s reliance on a combination of temperature and pressure data
is reflected in the complexity and distribution of its decision boundary, showing a nuanced
understanding of the data compared to the Extra Trees model.

4. Conclusions

This study presents a comprehensive investigation into the potential use of thermal
and pressure data for the prediction of diabetes, spanning two sets of experiments that
explored the relationships between these variables and their combined predictive power.
The findings present promising avenues for the development of innovative strategies to
enable early intervention and ultimately improve patient outcomes.

The first set of experiments revealed the challenges in directly correlating thermal data
with plantar pressure metrics. The weak correlations observed in the regression models
suggest that thermal data, when used in isolation, may not be sufficient for accurately
predicting the pressure values at specific anatomical points. However, presented new
opportunities, allowing us to treat temperature and pressure as independent features in the
subsequent diabetes prediction models. By doing so, we leveraged the unique strengths of
each variable, leading to more robust and accurate predictive models.
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In the second set of experiments, the integration of thermal and pressure data into
machine learning models significantly enhanced the predictive capabilities for diabetes.
The combined analysis demonstrated that using both temperature and pressure variables
together provides a more comprehensive understanding of the physiological responses
associated with diabetes. This approach paved the way for more accurate risk assessments
and personalized diabetes management strategies. The integration of temperature and
pressure data is expected to improve diabetes prediction because these two modalities
provide complementary physiological insights. Temperature data can reveal early signs
of inflammation, vascular issues, or tissue damage, which are common precursors to
complications in diabetic patients, such as ulcers. On the other hand, plantar pressure
measurements offer information about structural changes, foot deformities, and abnormal
pressure distribution, which are also characteristic aspects of diabetic foot conditions.
The previous approaches have primarily focused on one modality, limiting their ability
to capture the complex interactions between these physiological factors. By combining
both temperature and pressure data, the model can identify a broader range of diabetes-
related abnormalities, improving the overall predictive accuracy and offering a more
comprehensive assessment of foot health in diabetic patients.

The study results indicate that, while the classifiers performed respectably with the
standalone variables, significantly better results were achieved when the temperature and
pressure data were combined. Specifically, the Logistic Regression model achieved the best
performance among the classifiers, with an accuracy of 68.75% when using only plantar
pressure data. In contrast, using only temperature data, the classifiers exhibited varying
degrees of accuracy, the Naive Bayes model achieving the highest at 87.5%. Furthermore,
when the models used both temperature and pressure data in tandem for the prediction of
diabetes, the Extra Trees Classifier emerged as the most effective, achieving a precision of
93.75% and a perfect AUC score of 1. This model demonstrated strong performances on
multiple metrics, including recall (0.875), precision (1), F1 score (0.9333), and kappa (0.875)
values. Other models, such as the Random Forest Classifier and Extreme Gradient Boosting,
showed varied performances across these metrics, highlighting differences regarding how
they handled the prediction task. These results highlight the importance of integrating
temperature with plantar pressure measurements in monitoring the activities of daily living
regarding diabetes. The findings also emphasize the need to evaluate multiple classification
algorithms to determine which is the most accurate for predicting diabetes in different
participant clusters.

While this study treats each foot’s data as an input to the model, we acknowledge
that this approach could introduce potential bias, especially in healthy individuals, where
symmetry between the left and right feet is generally observed. However, asymmetries
in the foot data between individuals with diabetes exist, which can provide valuable
diagnostic information. To further investigate this, we calculated the correlation between
feet across different individuals, revealing that, while there is a high correlation between the
feet of the same person, subtle variations exist across individuals. These findings support
the use of cross-validation with independent foot data as the dataset still exhibits enough
variability to provide meaningful insights. However, this may reduce the variability
in healthy individuals and could potentially overestimate the model’s performance in
specific cases.

Furthermore, the study underscored the complexity of pressure distribution in feet
and highlighted the importance of comprehensive data integration and advanced fea-
ture engineering. The inability of regression models to accurately predict pressure from
consolidated temperature data emphasized the need for a more nuanced approach that
considers the independent contributions of each variable to diabetes prediction. The
introduction of additional modalities has the potential to overcome the limitations ob-
served in this correlation analysis, paving the way for more robust and accurate pressure
prediction models.
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Limitations and Future Work: One limitation of this study is the potential bias in-
troduced by treating each foot from the same individual as an input to the model. In
healthy individuals, where foot symmetry is generally present, this may lead to an over-
estimation of the model performance. Future studies should examine whether treating
both feet as correlated data is a more appropriate method when symmetry is expected.
Furthermore, exploring whether foot symmetry or asymmetry persists across different
demographic factors such as gender, ethnicity, and foot dominance would add depth to
the analysis. Additionally, future research should explore and contrast the condition of
treating both feet from the same individual as independent instances. This approach should
ensure that the data from the same individual are not included in both the training and
testing datasets, which would enhance the robustness and generalizability of the model by
avoiding potential bias introduced by symmetry or shared characteristics between the feet.

Looking forward, future research should also focus on refining the feature engineering
techniques and optimizing the model selection to fully harness the predictive potential
of these combined variables. Additionally, further studies are essential to explore how
insoles and other biomechanical factors impact prediction models, which could lead to
new therapeutic interventions and enhance the accuracy of diabetes management tools. By
continuing to build on the insights gained from this study, there is considerable potential
to advance the field of diabetes prediction and improve the quality of life for individuals
affected by this condition.
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