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Abstract: This study considers a flexible job-shop scheduling problem where energy cost savings
are the primary objective and where the classical objective of the minimization of the make-span is
replaced by the satisfaction of due times for each job. An original two-level mixed-integer formulation
of this optimization problem is proposed, where the processed flows of material and their timing are
explicitly considered. Its exact solution is discussed, and, considering its computational complexity,
a comprehensive heuristic, balancing energy performance and due time constraint satisfaction, is
developed to provide acceptable solutions in polynomial time to the minimum-energy flexible job-
shop scheduling problem, even when considering its dynamic environment. The proposed approach
is illustrated through a small-scale example.
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1. Introduction

The improvement in energy efficiency has not played an explicitly relevant role in
the operation of many manufacturing systems in the past since minimizing the make-
span has often been the priority. Today, with the increasing prices of energy and the
new environmental protection regulations, the energy-saving issue in workshops has
become an important research field for universities backed by industrial organizations
in advanced countries. The relation between industrial management styles, in particular
Lean Management (LM) and its variants, and energy savings has been of recent concern [1],
while new formulations of the job-shop scheduling problem, including the issue of energy,
have been proposed. Further, authors such as those in [2–4] discussed the possibility of
noticeably reducing energy consumption in manufacturing spaces with limited capital
investment by rearranging the production process for a given demand through adequate
machine selection and operation sequences. Also, in [5], it was shown that, by adjusting
the power for each operation in a job-shop environment, relevant energy savings can be
obtained. In the case of flexible job shops where machines can competitively perform
different operations with differentiated energy costs [6], it is expected that energy-saving
opportunities can be made more effective through appropriate machine allocation and the
sequencing of operations in the job shop.

1.1. Literature Review

Before introducing the minimum-energy flexible job-shop scheduling problem with
the due times considered in this study, an overview of previous instances of job-shop
scheduling problems is presented here. The flexible job-shop scheduling problem, at
first considered as a mere extension of the job-shop scheduling problem, where it is also
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necessary to assign machines to the operations of different jobs, has turned out to be, by
its added complexity and its adequacy with current industrial practice (Industry 4.0), “a
job shop scheduling problem of its own” [7]. In recent years, different reviews covering
assumptions, models, and solution techniques for the flexible job-shop scheduling problem
have been published [7–11]. Most of the formulations adopted have resulted in Mixed-
Integer Linear Programming (MILP) optimization problems with sizes and complexity that
often limit the use of exact methods. This has led to the proliferation of heuristics and
meta-heuristics, notably nature-inspired ones, which proved rather effective [6,12].

In many studies, the exercise carried out when solving the scheduling problem boils
down to delivering a mathematical solution without considering the conditions of its
implementation. However, some authors have considered the real-life issues of their
implementation by integrating them into the formulation of the scheduling problem to
have more effective scheduling: the maintenance of machine condition [13], the avail-
ability of machines during production [14], and processing time uncertainties [15] are
some of the covered topics. The real environment of production systems is dynamic and
is subject to unexpected events such as sudden machine breakdowns, power outages,
shortages of materials, the unavailability of operators, and unusual activity durations.
Dynamic job-shop scheduling techniques were developed to cope with this reality [16,17].
These techniques are based on three different scheduling policies: predictive, reactive, and
predictive–reactive [18]. Predictive approaches build a schedule that is maintained during
execution, but when disturbances may appear, the maintenance of its feasibility has a time
cost (slack times incorporated into the duration of the operations to absorb delays) and an
equipment cost (spare machines to face breakdowns). The scheduling is recomputed with
purely reactive approaches after each notable disturbance. Predictive–reactive approaches
are a mix of the two previous approaches, where a pre-existent schedule is adapted online
during its execution. These techniques increasingly involve tools from artificial intelligence
(AI) [19].

When considering energy consumption in a job shop, it is composed of the processing
energy consumed by machines; of the transfer energy of raw, semi-finished, or finished
products within and around the job shop; of the idle energy consumed by machines during
the time intervals between consecutive operations; of the set-up energy of machines to
enable the processing of operations; and of the common energy consumed for maintaining
acceptable operating conditions in the workshop (lighting, air conditioning, and heating).
In flexible job shops, the energy-saving opportunities are not limited to those of job shops,
i.e., turning off idle machines, slowing down machine speed, and producing during off-
peak periods [20]; they also include the allocation of operations to more energy-efficient
machines and the choice of energy-efficient means of transport between machines. This
newer and more specialized area of the flexible job shop has been the subject of far fewer
survey articles [4,21], even though articles on this subject are published regularly. In these
studies, the classical concern has been about minimizing the make-span shifts toward the
minimization of energy. Some articles consider a multi-criteria optimization problem with
energy and make-span as equal objectives [22–26]; others adopt a single criterion, which can
be the weighted sum of energy and make-span [27], the total energy with the make-span
as a constraint [28], or the total energy and the make-span as a consequence [3]. Some
publications have already addressed the problem of minimum-energy dynamic scheduling
in flexible job shops using the predictive reactive approach [23,29].

1.2. The Adopted Approach to Tackle a New Instance of a Job-Shop Scheduling Problem

Considering this literature review and the adopted assumptions of the current study
in Section 2, the scheduling problem treated in this study characterizes a sub-class of
minimum-energy flexible job-shop scheduling problems for which, to our knowledge, until
today, no specific study has been published. The specific characteristics of this problem
include the following:
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• Release and due time constraints are considered for each job instead of the make-span,
which is an objective to be minimized. This differentiates the current problem from,
for example, [3,22–28].

• Contrary to all the references consulted, the structures of the jobs are not limited
to a mere sequence of activities and allow us to consider complex assembly and
de-assembly operations.

• The delays and energy consumption resulting from product transfers between ma-
chines are considered. The only reference that considers transfer delays is [26]. How-
ever, transfer energy is not considered there.

• The adopted mono-criterion objective function. All the references cited in our literature
review for flexible job shop scheduling consider the energy issue, except [3,28], which
formulate a multi-criteria optimization problem.

The field of scheduling in industrial production workshops is all the more varied as
numerous constraints specific to each realistic situation lead to problems for which different
and often new resolution methods and associated algorithms must be developed. The
philosophy adopted in this study to deal with a new scheduling problem, as is the case
here, is the following:

• First, precisely mathematically formulate the optimization problem and analyze the
feasibility of its resolution as a MILP problem using exact standard methods.

• Second, analyze the conditions for implementing a scheduling solution in a dynamic
environment. This generally leads to considering the use of approximate resolution
methods. At this stage, the generation of a heuristic appears interesting for several
reasons: it allows us to obtain, at reduced computational cost, a feasible solution,
and it supposes the identification and understanding of relatively simple decision-
making mechanisms that can produce acceptable solutions. Heuristics that have been
developed for scheduling problems with some common characteristics can be a source
of inspiration for its design, and the resolution of their blocking points can be a start
for the new heuristic. Once the heuristic has been developed, its performance must be
compared with those obtained using exact methods and basic scheduling rules such
as priority rules.

• Finally, in the case where it looks interesting to go beyond the performance of the
solutions provided by the heuristic, in general by considering the use of metaheuristics
(which are much more computation intensive in time and memory than heuristics),
the generated heuristic method can be useful. It can provide a starting solution for an
available metaheuristic. When a new metaheuristic has to be developed, the heuristic
can also give directions for the design of new search mechanisms in the construction
of more efficient solutions, or it can even be embedded in the metaheuristics.

1.3. The Objective of the Study

The objective of this study is to contribute to energy efficiency in the manufacturing in-
dustry, more particularly in high-energy-consuming integrated, flexible production plants,
by developing a new approach to generate energy-efficient schedules with acceptable
production delays for flexible job-shop scheduling problems. This study considers the main
energy consumption sources in a flexible job shop, machine processing, and transfer of
materials. Energy consumed by idle machines is not contemplated. Effectively, if idle times
are small, the energy consumed by an idle machine may be negligible, while if idle times
are large, the corresponding machines will certainly be shut off.

In this study, jobs are composed of a finite set of operations linked together by
precedence–succession constraints without cycling, and due times are assigned to them.
Flexibility here refers to the ability to assign the processing of certain operations to different
machines. One important element of the solution is the concurrent assignment of the ma-
chines to the operations of the different jobs. As early as 1993, Brandimarte [30] considered
a two-level approach with the decomposition of the flexible job-shop scheduling problem
into routing and job-shop sub-problems to minimize the make-span of a given production
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plan. His work has received over 400 citations, mainly for his flexible job shop scheduling
benchmark and its early use of Taboo Search [31] to solve the two sub-problems than for
the proposed decomposition.

In this study, this dual view of the flexible job-shop problem is first adopted to achieve
minimum energy schedules by considering the machine assignment of all the operations of
a job as a decision variable. The non-consideration of the energy consumed by idle machines
means that the energy consumption associated with a production program only depends
on the allocation of the operations of each job to the different machines of the job shop
and not the timing adopted for their execution. This leads to a formulation of a two-level
optimization problem where energy costs and job shop dynamics are separated, opening
the way to use exact or approximate solution approaches for this class of mathematical
programming problem. This will provide nominal solutions to production plans over a
finite period. However, the objectives of this study go well beyond this result. The goal is
to propose a scheduling scheme that can adapt easily to cope efficiently with the following:

- Planned (scheduled maintenance, for example) or unplanned disturbances (machine
or conveyor breakdown between machines, for example);

- The fast generation of energy-efficient schedules to cope with the arrival of new jobs,
allowing permanent operation with the efficient energy performance of the job shop.

This goal has led to the development, in a second step of the study, an ad hoc heuristic able
to produce promptly after any significant perturbation or event, an updated solution consistent
with the current operational state of the job shop for this original scheduling problem.

The rest of this paper is organized as follows: first, the characteristics of the considered
job shop and the adopted notations are displayed in section two; section three presents a
separable formulation of a nominal minimum-energy flexible job-shop problem is introduced
to ease the search for its exact solution; a heuristic based on the earliest processing time with
minimum energy is introduced to generate an open-loop solution to the scheduling problem
in the fourth section. Then, the extensions of this heuristic to enable it to cope with disruptions
and new jobs are discussed, and the application to a small illustrative case is displayed. Finally,
in the Conclusion section, additional research directions are pointed out.

2. The Considered Class of Flexible Job Shops and Their Representation

The considered class of production systems is composed of flexible machines that
operate in parallel. There, different products are processed through a subset of production
stages in which a machine is assigned to perform a specific operation on a given product.
The final products are obtained at the end of the sequences of operations.

2.1. Basic Assumptions

The basic assumptions characterizing the considered flexible job-shop scheduling
problem are introduced.

2.1.1. The Plant

The plant is composed of a set of machines, some of which may perform the same
tasks. Machines have a fixed position in the workshop, and physical connections exist
between some of these machines to allow the transfer of semi-processed products from one
machine to the next. The transfer operations are supposedly independent of each other,
and it is assumed that there is no traffic congestion in the plant. Then, for each job, the
transfer times and energies are constant parameters whose values depend on the position
and characteristics of the assigned machines.

2.1.2. The Production Plan

The production plan is composed of independent jobs that can be identical or different;
this production plan is known in advance. Each job consists of a set of operations performed
on different machines. A directed acyclical graph can represent the precedence/succession
constraints between these operations. The introduction of this graph allows one to handle
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parallel operations within the same job. This does not prevent the repeated use of the same
machine for different operations of the same job but assumes that the operations are only
executed once per job. This last limitation can be easily overcome by renaming an operation
each time, which must be repeated a given number of times within a job. The subset of
machines that can carry out each job operation in the workshop is known. For each job of
the production plan, a release time and a due time are attached. It is supposed that there
are global schedules satisfying the resulting time constraints. Contrary to the Just-In-time
scheduling problem, tardiness is not allowed here.

2.1.3. The Operations

The common working period starts at time 0, and its maximum time span is noted as
T. All considered jobs have a known release time and a preferred due time. Machines are
available for operations since time 0; in the first stage, it is assumed that no breakdowns
and maintenance operations occur until time T. Non-dummy operations need only one
machine to be performed, machines can only execute one operation at a given time, and
pre-emption of machines by other operations is not allowed. A machine can be used more
than once by a given job but in different operations. The set-up times of the machines
are integrated into the processing times, which, with the transportation times between
machines, are considered in this study. Some jobs may have a declared due time that
induces a time constraint, which, depending on the context, may be considered hard or
soft; the other jobs use T as the due time.

2.1.4. The Objectives

The main objective of this study is to propose a method to minimize the total energy
needed to perform a given production plan while satisfying due time constraints for each
job. The energy of interest is composed of the processing energy of the different operations
on their assigned machines and of the internal logistics energy spent to transport materials
from one machine to the next. Here, it is assumed implicitly that there is a unique source of
energy, electricity, but this hypothesis could easily be revised.

2.2. Adopted Notations and Representation for Work Plans

The main indexes used to identify the different elements of the sets of interest are
as follows:

- i: index of jobs, i ∈ {1, . . ., n} with n = |J|, where J is the set of jobs to be processed.
- k, h: index of operations, k, h ∈ {1, . . ., Si} with Si = |Oi|, where Oi =

{
Oi1, . . . , OSi

}
is

the set of operations of job i.
- l: index of machines, l ∈ {1, . . ., m} with m = |M|, where M is the set of machines.

To each job i, a directed a-cyclical graph (DAG) is attached, which represents the
precedence and succession constraints between its operations. The operations of each job
are performed to start and finish with dummy operations of zero duration on the same
dummy machines. The operations of a job i are ordered by their increasing rank in Gi.
Let Γ−1

ik and Γik be, respectively, the set of predecessor and successor operations of Oik.
The depth of the DAG associated with job i has a depth dri, where rank 1 corresponds to
the dummy starting operation and rank dri corresponds to the dummy closing operation.
GLir is the subset of operations of job i at rank r and Oi = ⊕r=dri

r=1 GLir. Let rti and dti be,
respectively, the release time and the due time of job i, i = 1 to n, where these due times
are supposed to be inferior or equal to T. Mik is the subset of machines that can perform
operation Oik, δikl is the processing time of Oik with its lth machine, and τill′ is the transfer
time between machine l and machine l

′
for job i. The nominal transfer time is, in general,

the transportation time of the product from one machine to the next, but it can also include
other side operations (drying delays, set-up times, and inspection delays). Let peikl be
the energy necessary for machine l, l ⊂ Mik, to perform Oik, and let teill′ be the energy
necessary to transfer product i from machine l to machine l′ and other necessary inputs to
perform Oik on machine l′.
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Figure 1 introduces the DAGs associated with a production plan composed of three
jobs. Table 1 shows the machines that can perform the operations of these three jobs, and
Figure 2 represents the different possible transfers between successive machines according
to the different jobs.
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Table 1. Machines available for operations in production plan.

Oik O11 O12 O13 O14 O15 O16 O17 O21 O22 O23 O24 O25 O26 O31 O32 O33 O34

Mik ∅ {m1,m2} {m1,m2} {m3,m4} {m3,m4} {m5} ∅ ∅ {m6,m7} {m2} {m3,m4,m5} {m3,m4,m5} ∅ ∅ {m1,m2} {m6,m7} ∅
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The assignment of machines to the successive operations of a job build a unique path
between its entry and exit nodes in the directed graph of Figure 2.

The material flow of product under transformation is supposed to be mainly composed
of original products to which additional inputs can be aggregated at the level of the
operations and from which waste can be retrieved. These aggregations or removals induce
costs which, beyond the physical characteristics of the operations, can be related to the
position of the machines into the plant. In this study, the different flows of material under
processing are taken into consideration. A physical interdependence between the different
jobs results from the way the set of machines is shared during the period of operation.

3. Two-Level Formulation of the Minimal-Energy Flexible Job-Shop
Scheduling Problem

The flexibility of the job shop presents an additional dimension to the scheduling
problem: the assignment of machines to the operations of each job. Technical and functional
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considerations mean that this choice is limited and multiplies with the number of operations
comprising the jobs and with the presence of several machines capable of carrying out
the same operations. Here, the assignment of machines to the operations of each job is
identified by a decision variable, leading to a two-level formulation of the considered
scheduling problem. To accomplish this, additional notations must be introduced.

3.1. Adopted Notations and Representation

Here, A is the set of possible assignments of machines to the operations of all the jobs
to be processed, A =

{
Aj, j = 1, . . . , |A|

}
, and Aij is the projection of the jth assignment

on the operations of job i. Ai = ⊕|A|
j=1 Aij is the set of all possible machine assignments for

job i. The overall knowledge of the allocation of machines to the different jobs is necessary
to treat the case of a specific job since these jobs may use subsets of machines concurrently.
The index of the machine attached to the processing of Oik in the jth machine assignment is
written as likj.

The maximum number of different assignments of machines for a job i is given by

nA
i = |Ai| = ∏Si−1

k=2 |Mik| (1)

and the maximum number of different machine assignments for the whole production plan
is given by

nA = |A| = ∏n
i=1 nA

i (2)

These numbers can be significantly reduced considering the layout of the plant, the
existing transfer system, and the operational state of the machines. In the illustrative
case of Section 2.2, we have the following: nA

1 = 16, nA
2 = 18 and nA

3 = 4, leading
to nA = 1152, which is a rather large number. But if adopting the rule that, when two
successive operations of the same job can be processed by the same machine, there is no
change of machine from the first to the second operation, then the number of accepted
machine assignments decreases to 96. In fact, this rule allows one to melt down these pairs
of operations into a single one, reducing the size of the scheduling problem.

Let us introduce the processing and transfer times for a given machine assignment:
dikj is the processing duration of Oik by machine likj, i = 1 to n, k = 1 to Si, and j = 1 to nA;
and Tihkj is the nominal transfer time of product (i,h) from machine lihj to machine likj, i = 1
to n, h = 1 to Si, k ∈ Γih, and j = 1 to nA.

When, for machine assignment j, a destination machine lihj of operation Oik is busy
with another operation, it is supposed that the semi-processed material of job i can wait
without using energy until machine lihj becomes available.

3.2. Absolute Time Bounds

In this subsection, lower bounds for the earliest start times and upper bounds for
the latest start times of the operations of each job for a given machine assignment j
are introduced:

• estikj is the earliest start time of operation Oik with machine assignment Aij when the
release time is respected.

• lstkjk is the latest start time of operation Oik with machine assignment Aij when the
due time is respected.

We have the following for job i with machine assignment Aij:

esti1j = rti and estikj = estik−1j + max
h∈Γ−1

ik

{
estihj + dihj + Tihkj

}
, k = 2 to Si (3)

lstiSi j= dti − diSi and lstikj = min
h∈Γik

{
lstihj − Tikhj

}
− dikj, k = Si − 1 to 1 (4)

where rti and dti are, respectively, the release time and the due time of job i.
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It can be observed that these earliest and latest start times do not consider the possible
concurrent use of the machines by different jobs and the resulting additional delays, so
they are, respectively, a lower bound for the earliest start time and an upper bound of the
latest start times. Consistency conditions for the time data are

estikj ≤ lstikj, i = 1 to n, k = 1 to Si, j = 1 to |Ai| (5)

lsti1j − di1j ≥ rti and estiSi j + diSi j ≤ dti i = 1 to n, j = 1 to |Ai| (6)

If a machine assignment j for job i does not satisfy fully relations (5) and (6), it must be
eliminated from Ai.

It is also possible to compute the absolute earliest start time for each operation of each job:

Estik = min
j∈Ai

{
estikj

}
i = 1 to n, k = 1 to Si (7)

It can be observed here that the release time and the due times are not, in general, of
the same nature: the release times are independent of the considered process and result
from upstream logistics; the due times result from downstream logistics. Then, here, release
times are hard constraints, while due times can be a production objective that may not
be completely achieved. Thus, the latest starting times and due times constraints can be
violated, and the resulting delays characterize a deficit in the production capacity of the job
shop to process a given production plan.

3.3. Total Energy Consumed

Here, for a given machine assignment j, the energy consumption is considered com-
posed of the energy PEikj necessary to process operations with machines likj and the energy
TEiklihj j to transport processed products from a machine likj to the successor machines lihj
with h in Γik. Then, the energy used in processing job i within machine assignment j can be
written as

Eij = ∑Si
k=1 PEikj + ∑Si

k=0 ∑h∈Γik
TEiklihj j i = 1 to n, j = 1 to |A| (8)

This expression does not consider the energy consumed by idling machines. Depend-
ing on the machine and the durations of its idling periods, it may be interesting to save
energy to turn them off when they are not in use rather than leaving them on. Restarting a
machine can not only result in a temporary overconsumption of energy but also in a delay
of its availability. In this study, it is assumed, since it is generally the case in industrial
workshops, that the energy consumption of the idling machines is negligible compared
to the processing and transfer energies. So, it does not seem necessary to explicitly intro-
duce this component of the energy spent in a mathematical formulation of the scheduling
problem, especially since this would lead to increased complexity resulting from the new
variables and constraints to be introduced. What can be achieved—once a solution to the
overall scheduling problem has been obtained that minimizes the main components of the
consumed energy, whether this solution is exact or approximate—is, in a second step, to
evaluate the idle periods of each machine and decide whether to turn them off or keep them
on until their next use. This is the kind of problem that could be solved by an expert system
using artificial intelligence techniques to exploit both the characteristics of the scheduling
solution and the energy performance of each machine.

3.4. The Two-Level Minimum-Energy Scheduling Problem

The minimum-energy flexible job-shop scheduling problem formulated as an opti-
mization problem by using the machine assignment variables xij, the precedence variables
ziji′ j′kk′ and the timing variables tijk is the following:

xij = 1 if machine assignment j is chosen to perform job i, and xij = 0 otherwise;
tikj: the starting time of operation Oik at machine likj;
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ziji′ j′kk′ = 1 if operation Oik with machine likj is decided to be realized before operation
Oi’k’ using the same machine (likj = li ′k′j′ ), and ziji′ j′kk′ = 0 otherwise.

The problem is formulated as a mono-criterion optimization problem, avoiding the
introduction of relative weights between criteria or the exploration of a Pareto frontier
involving energy and make-span. The global criterion to be minimized is expressed as

min
x,t,z

ET = ∑n
i=1 ∑|Ai |

j=1 xij·Eij (9)

The considered constraints are

∑j∈Ai
xij = 1 i = 1 to n (10)

and for ij , such as xij = 1:
esti1j ≤ ti1j i = 1 to n (11)

max
h∈Γ−1

ik

{
tihj + dihj + Tihj

}
≤ tikj i = 1 to n, k = 2 to Si (12)

tiSi j + diSi j ≤ dti i = 1 to n (13)

For ij and i′j′, such as xij = xi′ j′ = 1:

∀i ̸= i′, ∀j, j′, ∀k, k′ with likj = li′k′ j′ : ziji′ j′kk′ + zi′ j′k′k = 1 (14)

∀i ̸= i′, ∀j, j′, ∀k, k′ with likj ̸= li′k′ j′ : ziji′ j′kk′ = zi′ j′k′k = 0 (15)

and ∀i ̸= i′, ∀j, j′, ∀k, k′ with likj = li′k′ j′ :

tikj + dikj ≤ ti′k′ j′ + V
(

1 − ziji′ j′kk′
)

and tikj + dikj + V·ziji′ j′kk′ ≥ ti′k′ j′ (16)

The significance of the different constraints are as follows: constraint (10): the choice
of a unique path for each job; constraint (11): feasibility bounds for the starting time of the
first operation of job i with machine assignment j; constraint (12): starting time succession
constraints along a path; constraint (13): due time constraints for the different jobs, where
tiSi j + diSi j is the completion time of job i along path j; constraints (14), (15), and (16):
non-overlapping of operations of chosen paths on the same machine, where V is a very
large number. However, in situations in which the feasible time intervals for processing on
a same machine (likj = li ′k′j′ ) do not intersect, the value of the z variable is already fixed:

lstikj + dikj ≤ esti′k′ j′ : ziji′ j′kk′ = 1 (17)

estikj ≥ lsti′k′ j′ + di′k′ j′ : ziji′ j′kk′ = 0 (18)

Problem (9)–(16) is a two-level optimization problem, where the machine assignment
problem, with the objective of minimizing total energy consumption, is considered at the
upper level (relations (9) and (10), with only decision variable xij), while at the lower level,
the satisfaction of dynamic constraints (11)–(16) lead to a feasible scheduling. Different
approaches appear of interest to generate solutions for instances of this problem, which is
expected to be of the NP-Complete complexity class [32]. The transformation of formula-
tion (9)–(16) into an MILP-type formulation greatly increases the number of variables and
constraints, making its exact numerical resolution difficult. In [33], a greedy heuristic was
developed to provide, within the adopted formalism, a feasible sub-optimal solution for a
simplified version of this problem: there, the DAGs of the jobs reduced to single chains,
which were selected repeatedly according to their energy performance until the due dates
were satisfied. To design exact solution algorithms, Branch and Bound strategies appear
here to be of direct interest. Also, Benders decomposition-based algorithms, developed to
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solve general two-level optimization problems, could be particularized to this problem [34].
The above problem can also be seen as a simplified case of a bi-level MILP problem. In that
last field, many exact [35,36] and approximate [37,38] methods have been proposed in the
recent literature. Relevant work could improve the computational efficiency of some of
these methods when applied to problems (9)–(16).

3.5. Evaluation of Solution Performance

The solution of the above problem produces the make-span:

MS = max
∀i,∀j∈Ai

{(
tiSi j + diSi j

∣∣xij = 1
)}

− min
∀i,∀j∈Ai

{(
ti1j

∣∣xij = 1
)}

(19)

In Equations (14)–(16), the decision variables xij are absent; then, by choosing for each
tijk with xij = 0, their earlier starting time, constraints (14)–(16) are satisfied by these tijk
variables. Then, in the case in which all the release time are to zero, (19) can be rewritten
more simply:

MS = max
∀i,∀j∈Ai

{
tiSi j + diSi j

}
(20)

In the general case, the make-span for machine l is given by

MSl = max
i,k,j

{
tikj

∣∣∣xij = 1 and likj = l
}
− min

i,k,j

{
tikj

∣∣∣xij = 1 and likj = l
}

(21)

and the total processing time of machine l is given by

PTl = ∑n
i=1 ∑j∈Ai

xij ∑k∈{1,...,Si}, likj=l dikj (22)

Assuming that the machines once started are shut down only when their last operation
is completed, their idle time where a residual amount of energy is used is given by

ITl = MSl − PTl (23)

It can be observed that the resolution of problem (9)–(16) will provide a scheduling
of minimum total energy without considering the consequences for its make-span. If the
jobs had no due times and the working period [0, T] was sufficiently large, the solution of
problem (9)–(16) will consist of selecting each job's machine assignment of minimum energy
Eij. A way to introduce the make-span minimization objective can be obtained by setting, at
smaller values, the due times of the different jobs or their global maximum value max

i
{dti}

according to the production context. Successive resolutions of the problem with decreasing
due times will make it possible to highlight the influence of the make-span on the energy
performance of the workshop for a given production plan J. This influence should be
analyzed to enable the identification of characteristic patterns within some families of
production plans, which will allow, once again by using artificial intelligence techniques
such as Machine Learning [39,40], to guess correctly the feasibility of the adopted due times
before embarking on the numerical resolution of the optimization problem.

4. Minimum-Energy Scheduling Heuristic with Due Times

The previous section considered a deterministic situation, and the solution of the
minimum-energy flexible job-shop will provide the best schedule to follow during nominal
conditions. The analysis of optimal solutions makes it possible to evaluate the performance of
the job shop and identify its blocking points, eventually leading to its redesign or resizing.
Then, different configurations of the job shop can be assessed through the optimal solution
of the scheduling problem by considering a set of typical production plans. However, when
considering the very common situation in which the workshop is subject to disturbances
(delays, malfunctioning or breakdowns of machines, and unavailability of operators), to
postponement of jobs, or to the arrival of new jobs to be processed in the same period, the



Algorithms 2024, 17, 520 11 of 25

optimal schedule is no more completely feasible. Until a new stabilized situation is established
in the job shop and a new optimal schedule is established, short-term local decisions should
be taken to keep the job shop in operation. In the case in which perturbations occur frequently,
it will be necessary to establish a much more responsive system. Also, when the job shop is
working full time, the segmentation of production into finite production plans should lead to
sub-optimal schedules. Considering the limitations of this approach, an open-loop heuristic
to cope, on a reactive basis with the minimum-energy flexible job-shop scheduling problem, is
introduced in this section. In the first stage, the heuristic is developed to cope with a given
production plan where jobs have release and due times; then, it is shown how to extend its
application to the dynamic environment of workshops.

4.1. Adopted Principles to Design the Heuristic

Here, the main idea is to develop, on a moving time front line, the allocation of
machines and time schedules at the earliest start time of operations in ascending rank in
any of the active jobs. This greedy scheme will promptly produce a solution promoting
energy savings that is feasible for the current situation of the job shop. This will allow a
reactive approach to reschedule the current production plan as many times as necessary.
The solution must face the dilemma of having to choose between short job processing
times and minimizing the necessary energy. This is achieved as follows: on the one side,
the earliest assignment of a machine to a new operation is performed, but on the other
side, the choice between the available machines is limited to the more energy efficient
ones. The decision to assign a machine and to schedule the starting time for an operation
will be based, on one side, on the processing delays and transfer delays from its directly
preceding operations and, on the other side, on the transfer energy from the preceding
operations and on the processing energy of the candidate machine. The driving dimension
in the heuristic is time, since this will yield feasible solutions constructed step by step in
the timeline according to the earliest feasible starting time for the operations. To assess,
according to energy, the transitions from one operation to a successor one, new parameters
must be defined. For operations Oih and Oik such that Oik ∈ Γih, the energy cost of deciding
that Oik will be processed by machine l′, while Oih is performed by machine lh, is the sum of
the transfer energy and of the process energy tpeihkll′ given by tpeihkll′=∑h∈Γ−1

ik
teilh l′ + peikl′

(see Figure 3).
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same total transfer energy costs can be grouped into the same subset, and these subsets
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It is important to note that the operations that can be candidates to be assigned a

machine are those for which all their predecessor operations have already been assigned
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and scheduled. Then, the operations of each job are addressed by increasing rank in the
corresponding DAG. The scheduling approach is a greedy one, so idle periods of machines
may happen, but on the other side, decisions about machines will only consider their next
free time up to the end of the working period, which is much easier to treat. It is important
to also observe that, contrary to the approach presented in the previous section, in this case,
the machine assignment to operations is performed step by step in the timeline.

4.2. Algorithm of the Scheduling Heuristic

The algorithm is composed of three stages: The first stage initializes the values of the
different variables and sets, and the second stage assigns a machine and a time schedule to
the earliest possible operation of any job. This stage is repeated until all the operations of
all the jobs have been assigned a machine and scheduled a processing time. In the third
stage, the feasibility of the obtained solution is assessed to conclude the assignment or to
widen the set of machines to perform critical operations.

Adopted notations for varying quantities and sets used by the algorithm in the solution-
building process include the following:

ΓU
ik : the set of predecessors of operation k in job i, which have not been used to process

Oik. ΓD
ih : the set of successor operations of operation Oih in job i, which have not been

processed. GLir is the subset of operations of job i at rank r. GUiu: the set of operations of
job i at rank u in DAGi, which have unprocessed successor operations. GDiu: the set of
operations of job i at rank u in DAGi, which are not completely processed. nft(l): the next
free time of machine l until the end of the working period. Ja: the set of active jobs, i.e., jobs
whose activities have not been completely processed.

Figure 4 shows a flowchart of the proposed heuristic, which is described in detail
afterward in Algorithm 1.
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Algorithm 1: Proposed Scheduling Algorithm

(0) Initialization of the solution process.
i = 1
While i ≤ n do

k = 1, tik = rti, δik = 0, wi = 1, ui = 1, u = 1, l = 1;
While u ≤ dri

GUiu = GLiu and GDiu = GUiu
End While u

While k ≤ Si
tik = Estik and ΓD

ik = Γik and ΓU
ik = ΓD

ik
End While k

End While i
While l ≤ m do

nft(l) = 0
End While l

Ja = {1, 2, . . . , n} is the set of active jobs.
End of initialization

(1) Inner loop: Iteration on the schedule of the next operation and selection of machine to
process it.

While Ja ̸= ∅ do
Shift of rank in the DAGs:

∀i ∈ Ja : if GDiui = ∅, increment ui: ui = ui + 1.
Select the next job, operation to be processed and machine on the time line:

Choose (i∗, h∗, k∗, l∗) such as:

(i∗, h∗, k∗, l∗) = argmin
i∈Ja , Oih∈GUiv , 1≤v<ui ,Oik∈ GDiui

{
max

(lih ,l)∈MMwi
ik

{
tih + δihlih

+ τilih l , n f l(l)
}}

(24)

Update the subsets of active operations:
ΓD

i∗h∗ = ΓD
i∗h∗ − {Oi∗k∗} and if ΓD

i∗h∗ = ∅ : GUiui∗−1 = GUiui∗−1 − {Oi∗h∗}
ΓU

i∗k∗ = ΓU
i∗k∗ − {Oi∗h∗} and if ΓU

i∗k∗ = ∅ : GDiui∗ = GDiui∗ − {Oi∗k∗}
Machine assignment and start time update:

The machine assigned to Oi∗k∗ is li∗k∗ = l∗ and its earliest start time is updated to:

ti∗k∗ = max
{

ti∗k∗ , max
{

ti∗h∗ + δi∗h∗ li∗h∗ + τi∗ li∗h∗ l , n f l(l∗)
} }

(25)

Update next free time of machine li∗k∗ :

n f t(li∗k∗ ) = ti∗k∗ + δi∗k∗ li∗k∗ (26)

Closing job i:
If ki∗ = Si∗ and ΓU

i∗k∗ = ∅, job i is completed, then: Ja = Ja − {i∗}
End While Ja

For a given production plan, the finite number of iterations is upper-bounded by the
sum of the number of operations in the different DAGs, and the finite number of operations
inside an iteration is majored by n·S2·µ, where S = max

i=1 to n
Si and µ = max

i,k

∣∣MMwi
ik

∣∣ which

is upper-bounded by m2. Then, the time complexity of this heuristic is polynomial (P). This
heuristic can therefore claim to provide, within a reduced computational time, a feasible
solution, aimed at energy savings, to production plans with large dimensions (the number
of jobs, the number of operations per job, and the number of machines).
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4.3. Illustration of the Assignment and Scheduling Process of the Proposed Heuristic

To illustrate the core of the new assignment process represented by relation (24),
Figure 5 represents a situation after seven machine assignments and scheduling of the
operations of the jobs considered in Section 2.2. For the eighth iteration of the inner loop
of the algorithm, the active rank of job 1 is 4, with candidate activity O15 for machine
assignment and scheduling; for job 2, the active rank is also 4, with candidate activities O24
and O25; and finally, for job 3, the active rank is 3, with candidate activity O33.
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Here, only numerical values necessary to understand the selection process of Equa-
tion (24) are introduced. Table 2 gives the next free times for the seven machines; Table 3
gives the end time of already scheduled and assigned operations, and Table 4 gives the
added delays and energies resulting from a machine assignment to each candidate opera-
tion in the active rank of each job.

Table 2. Current next free times for the machines in the job shop.

Machine l 1 2 3 4 5 6 7

nft (l) 0+12 0+14 0+17 0 0 0+7 0
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Table 3. End time of assigned parent operations.

Operations O15 O24 O25 O33

O13 17 ------ ------ ------

O14 5 ------ ------ ------

O23 ------ 12 12 ------

O32 ------ ------ ------ 7

Table 4. Added delays/energies with machine assignment.

O15 O24 O25 O33

m3 8/100 12/80 10/120 ------

m4 10/80 8/140 10/100 ------

m5 ------ 10/100 6/140 ------

m6 ------ ------ ------ 14/60

m7 ------ ------ ------ 12/90

Now, assuming that the sets MMik for the candidate operations are subdivided in two
subsets according to the spent energy and are given by MM1

15 = {m4}, MM2
15 = {m3},

MM1
24 = {m3, m5}, MM2

24 = {m4}, MM1
33 = {m6}, and MM2

33 = {m7}, the earliest start
time for O15 is max{0, 17 + 10}; for O24, it is min{max{14, 12 + 8}, max{14, 12 + 10}}; and for O33,
it is max{0, 7 + 14}. Then, at this stage, relation (24) produces i* = 3, k* = 3, h* = 2, and l* = 3, i.e.,
at this stage, operation O33 is scheduled at t33 = 20, and machine m3 is assigned to process it.

The local decision rule of this heuristic, which first addresses the temporal constraints
by considering the most quickly available machines to perform an operation, before making
a choice based on energy consumption, seems adapted to the situation of flexible workshops
where different machines can perform the same operations.

4.4. The Resulting Solution, Assessment, and Adaptation (Outer Loop of Algorithm)

The solution (written without the asterisk symbol) provides, for each job, the starting
time and the assigned machine for each operation: tik and lik for k = 2 to Si − 1, i = 1 to n.

The completion time of job i is cti = tiSi + δiSi lSi
and the energy necessary to perform

the jobs is given by

E = ∑n
i=1 Ei = ∑n

i=1 ∑Si−1
k=2 epiklik + ∑Si−1

h=1 ∑k∈Γih
teilih l′ ik (27)

If the following conditions are satisfied,

cti ≤ dti i = 1 to n (28)

the proposed solution composed of the selected machines and schedules is feasible.
When one or more conditions (28) are not satisfied, it means that some jobs are over-

delayed in queues at machines corresponding to minimum-energy steps, and a new feasible
solution must be found. For that, let us widen the search process to less energy-efficient
machines to process critical jobs in the current solution. These critical jobs include

Ic =
{

i ∈ I with ctij > dti
}

(29)

Considering the succession of restrictions in the process of a job and the competition
for energy efficient machines, the difference tik-Estik is expected to increase with k for a
given job i. However, a large variation of this difference from an operation to the next
can be interpreted as the presence of a queue to use machine lik. Then, for the operation
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Oik, the search for an energy-efficient machine will be relaxed by increasing the index wi
and searching in sets MMwi

ik of relation (24). To avoid a large degradation in the energy
performance, this will be performed for the most critical operation kic of each critical job,
where kic is given by

kic = argmax
k,2≤k≤Si−1

{(tik+1 − Estik+1)− (tik − Estik)} i ∈ Ic (30)

and the search for the next free machine to perform operation Oikic
will be performed now

over the sets
MMw′

i
ikic

with w′
i = wi + 1 i ∈ Ic (31)

Another solution could be, when the machines have different regimes of operation,
to choose faster regimes of operation in the critical sets MMwi

ikic
. The search process must

be restarted until conditions (28) are met. If, after many iterations of this process, condi-
tions (28) are not met and no progress is achieved with respect to the completion times, the
current solution, which is a feasible one with respect to all the other constraints, should be
adopted, and the current completion times should be considered as new due times.

4.5. Dynamic Scheduling with Heuristic

What can be accomplished to face a dynamic workshop environment with the objective
of preserving the energy efficiency of the computed schedule depends on the nature and
the magnitude of the disruption:

4.5.1. Small Delays

To cope with small delays that are observed or expected in the processing of operations,
once a scheduling solution is obtained, it should be of interest to compute from it the current
time margins (total, free, and certain margins) and to check if the delay can be absorbed by
the margin of interest. If this is not sufficient, some machines operating, or operating a late
operation, may be speed up, but in general, at an increase of energy cost.

4.5.2. Programmed Unavailability of Machines

To cope with programmed unavailability of machines (maintenance of condition, for
example), the production plan can include a dummy job whose unique activity is the
maintenance of the machine with release and due times corresponding to the planned
maintenance period.

4.5.3. Sudden Breakdown of Machines

To cope with a sudden breakdown of a machine that is or is not in operation, first
estimates of its reparability and, if repairable, its repair time, must be performed. Then, if
the resulting delay until repair cannot be absorbed by time margins and, if other machines
able to perform the directly impacted operations are not available, a complete rescheduling
must be computed with the new expected situation during the work period.

4.5.4. Modification of the Production Plan

To cope with a new arriving order with jobs during the current working period, one
option could be to use the idle slots of the machines in the current schedule, but with
the risk of choosing the less energy efficient ones that have been bypassed by the current
optimal schedule. Another option, often the only feasible one, is to compute a new solution
for problem (9)–(16) where the current state of the jobs is updated to their current state
of completion: the remaining operations of jobs partially processed, the release times
of operations currently under processing, and the next free time for a machine under
operation or under maintenance or repair. The rationale of the proposed heuristic is that the
scheduling up to the release date of the new jobs remains unchanged, avoiding disruptions
in the job shop operations. In the case of a continuum of new job arrivals, the rationale of
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the proposed heuristic, the earliest start time, should limit the accumulation of late jobs.
The responsiveness of this last solution will depend not only on the calculation time of the
new schedule but mostly on the time necessary to update the input data of the problem.

5. Evaluation of the Proposed Scheduling Heuristic

The purpose of this section is to comprehensively assess the behavior of the proposed
heuristic by comparing it with priority rules for flexible job shop problems. The operation
of the proposed heuristic was described in detail in Section 4.3 through an example. Several
benchmarks are available in the literature [41] to compare heuristics for flexible job-shop
problems, particularly minimizing the make-span of production plans. However, in these
benchmarks, due times for jobs, as well as costs and delays associated with transfers
between machines, are not considered in general. Since the operation of the proposed
heuristic is totally deterministic, it seemed to us that instead of carrying out a cumbersome
statistical evaluation, as should be performed with complex metaheuristic involving ran-
dom processes, it seemed more judicious to us to explain why this heuristic produces better
results than priority rules of the same class, i.e., greedy deterministic constructive ones,
where the schedule solution is constructed step by step from scratch through deterministic
processes according to a local evaluation of a criterion [42].

5.1. Priority Rules for Flexible Job Shop Scheduling

Simple priority rules were developed first for jobs processed by a single machine and
then for jobs composed of a string of operations to be processed on given machines in a job
shop; a survey classifying tens of them is given in [43]. When the objective is to minimize
the make-span of a production plan, one of the more intuitive priority rules is the Shortest
Processing Time (SPT) algorithm, which prioritizes operations based on their processing
times, with the shortest operations being handled first. Since the focus in this study is
on minimizing total energy, a new basic rule, a counterpart of SPT, can be introduced:
the Smaller Processing Energy (SPE), whose algorithm prioritizes tasks based on their
processing energy, with the more energy-efficient tasks being selected first. However, when
considering flexible job shop scheduling, this is not sufficient, since some operations can
be processed concurrently on different machines. Then, in this case, a priority rule must
address two sub problems [44]: machine assignment and job sequencing. In the schedule
of a flexible job shop, when an operation of a job is planned to finish to be processed on a
machine at some scheduled time, the schedule must provide two pieces of information:

- Which machine will process the next operation of that job?
- What will be the next operation of a job processed by that machine?

The successive answers to the first question can describe the processing of the jobs
according to the schedule. In contrast, the successive answers to the second question can
describe the load plan of each machine according to this same schedule. The answer to
the second question results from the choice of an operation among the ones waiting at that
machine. If the queue of operations at that time is empty, the machine becomes idle until new
operations are assigned to it. Simple priority rules will tackle these two decision problems in
sequence and not simultaneously, contrarily with what is achieved in the heuristic proposed
in this study with relation to (24). Then, in the case of a flexible job shop, a priority rule
will have first to assign, for each operation, a machine, and then schedule each operation on
its assigned machine. It is important to observe that assigning each operation a priori to a
machine according to its processing time or processing energy for this operation would result
in priority rules that are much simpler to implement, but this could generate additional delays
since it would be necessary to wait for the machine previously assigned to an operation to
become free, while other machines may be available earlier. Then, two on-line priority rules,
which can be seen as extensions of SPT and SPE to the flexible case of job shop scheduling, are
considered for comparison with the proposed heuristic:
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- One focusing on processing time, named TTE (indicating Time–Time–Energy accord-
ing to the nature of the criterion considered at each stage of the priority rule), where
the machine is able to process earlier that operation is assigned to it and where the
operation to be next processed among the waiting operations of a machine is chosen
according to SPT. When different machines have the same fastest processing time for
an operation, the one with the smallest processing energy will be assigned to it, and
in case of equal energy performance, a random choice will be made among them. If
different queuing operations at the same machine have the same processing time, the
FIFO rule is applied.

- One focusing on processing energy, named ETT (for Energy–Time–Time), where a
machine is able to process with the minimum energy that operation is assigned to it,
while the operation to be next processed among the waiting operations of a machine
is also chosen according to SPT. In the case of machines with equal processing energy
performance, the one with the shortest processing time will be assigned to it, and
in the case of an equal processing time, a random choice will be made among these
waiting operations. If different queuing operations at the same machine have the same
processing time, the FIFO rule is also applied.

5.2. Comparison of Performances Between the Heuristic and the Priority Rules

Figure 6 displays a local situation where several operations, represented by black dots,
are candidates to be assigned to different machines according to the proposed heuristic
(called HET), the ETT, and the TTE heuristics. There, the abscissa and the ordinate inform,
respectively, for each candidate solution, its additional energy cost (δe) and resulting delay
(δd). According to the description of the three different decision processes, the heuristic
selects a local solution that has intermediate performance in terms of additional energy and
delay (δeETT ≤ δeH ≤ δeTTE and δdTTE ≤ δdH ≤ δdETT).
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To illustrate the propagation of this property, let us consider a small flexible job shop,
displayed in Figure 7, with three machines (m1, m2, and m3) with two jobs (J1 and J2),
composed of two operations (O11 and O12) and (O21 and O22). The operations O11 and
O21 can be performed either with machine m1 or with machine m2, while operations O12
and O22 are performed with machine m3. The processing and transfer costs (delays and
energies) are given by d/e in the figure.
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The application of the heuristic and the two priority rules leads to the schedules
displayed in Figure 8, with the performances displayed in Table 5.
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Table 5. Comparison of performances between heuristic and priority rules.

Heuristic TTE ETT HET

Make-span 38 43 42

Energy 48 35 40

Given the above, it appears that the proposed heuristic produces performances that are
midway between minimizing the make-span and minimizing the processing and transfer of
energy. This result appears to be favored by two conditions: on the one hand, the existence
of an inverse relationship between time and energy required on two machines capable of
carrying out the same operation (the faster machine expending more energy), and, on the
other hand, if the structure of the production plan induces between the machines of the job
shop, a rank in accordance with the solution building process of the heuristic.

5.3. Illustration of Resulting Scheduling in a Flexible Job Shop

The number of jobs n and the number of machines m are equal to 7, and the job shop
is organized into three rows of machines to process raw material (job 1 and job 2), semi-raw
material (job 3, job 4, and job 5), and semi-finished products (job 6 and job 7). The machines
of the job shop and the possible connections between them are represented in Figure 9.
There, jobs 1 and 2 have three operations; jobs 3, 4, and 5 have two operations; and jobs
6 and 7 have one operation. To these operations, a dummy initial and a dummy final
operation are added for each job. For job 1, operation O12 can be performed by machines
1 and 2, operation O13 can be performed by machines 3 or 4, and operation O14 can be
performed by machine 6. For job 2, operation O22 can be performed by machines 1 and 2,
operation O23 can be performed by machines 3 or 4, and operation O24 can be performed by
machine 7. For job 3, operation O32 can be performed by machine 4, and operation O33 can
be performed by machines 6 or 7. For job 4, operation O42 can be performed by machine 3,
and operation O43 can be performed by machines 6 or 7. For job 5, operation O52 can be
performed by machine 5, and operation O53 can be performed by machine 6 or 7. For job 6,
operation O62 can be performed by machine 6. For job 7, operation O72 can be performed
by machine 7. This shows that there is flexibility in the assignment of machines to some
operations of each job.
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The following tables provide data on the operations' processing times and energy per
machine (Table 6), the transportation delays and energy between machines (Table 7), and
finally, the release and due times (Table 8).

Table 6. Processing delays/energy per jobs and machines.

Machines m1 m2 m3 m4 m5 m6 m7

Job 1 8/50 12/40 15/70 15/60 --- 10/50 ---

Job 2 10/55 7/40 --- 15/70 15/55 --- 8/60

Job 3 --- --- --- 8/30 --- 15/30 15/25

Job 4 --- --- 15/50 --- --- 10/40 8/45

Job 5 --- --- --- --- 10/60 6/60 10/50

Job 6 --- --- --- --- --- 12/50 ---

Job 7 --- --- --- --- --- --- 15/55

Table 7. Transportation delays and energy.

Delay/Energy m1 m2 m3 m4 m5 m6 m7

m1 --- --- 5/5 5/5 8/10 --- ---

m2 --- --- 8/10 5/5 5/5 --- ---

m3 --- --- --- --- --- 5/15 8/10

m4 --- --- --- --- --- 5/5 5/5

m5 --- --- --- --- --- 8/10 5/5

m6, m7 --- --- --- --- --- --- ---

Table 8. Release and due times per jobs.

Jobs Job 1 Job 2 Job 3 Job 4 Job 5 Job 6 Job 7

Release time 0 15 10 0 10 15 20

Due time 65 65 55 55 55 45 45
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Here, only the delays and energy consumption resulting from the transfer of products
between machines are considered; they are also supposed to be independent of the type of
product that is transported.

The due times were chosen so that the jobs requiring only final machining (jobs 6 and 7)
are cleared first to free up space in the job shop for the remaining activities of the other jobs.
This is repeated with jobs 3, 4, and 5 concerning jobs 1 and 2.

5.4. Comparison of Results of the Heuristic Concerning the Priority Rules

The results obtained with the proposed heuristic in Section 4 are compared with the
results of the priority rules TTE and ETT. When due times are not considered, the range of
values for the necessary energy is [725, 785]. The heuristic presented in Section 4 provides
a solution after 18 iterations; the obtained scheduling is displayed in Figure 10.
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This solution has a total energy cost of 725 with a make-span of 65, while the due times
are respected for each job.

Figures 11 and 12 present the corresponding Gantt diagrams, and Table 9 presents a
comparison of their performances.
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Table 9. Performances of heuristic HET and priority rules TTE and ETT.

Energy Cost Make-Span

HET 725 65

TTE 745 62

ETT 725 70

In the considered case study, the proposed heuristic reaches the optimal performance
concerning total energy, while due time constraints are satisfied for all the jobs. The TTE
priority rule reduces the make-span of the considered production plan (from 65 to 62), but
this is achieved at the expense of an increase in the energy cost, which is 33.3% of the total
energy variation range [785,725]. Finally, the ETT priority rule achieves the same energy
performance as the heuristic, but the two jobs do not comply with their due dates.

6. Conclusions

This study addressed the problem of minimizing the energy spent in a flexible produc-
tion workshop with the operation of its machines and its internal logistics. The hypotheses
retained led to the formulation of a particular scheduling problem that fits well with opera-
tional practice in this field. There, the operation of the flexible job shop is considered not
as a mere juxtaposition of tasks but as a set of coordinated production flows that can be
assigned to different machines. The field of application of this study goes well beyond the
scheduling in industrial job shops and, among others, can also cover the operation of inter-
modal transport terminals. This is particularly important in the case of airport operations
when considering the ground handling activities for aircraft at arrival and departure. There,
due time constraints have an essential role in guaranteeing the punctuality of departure
flights, while the energy consumption and the emissions of the numerous ground handling
vehicles must be minimized as much as possible [45].

The optimization problem considered in this study was formulated as a mono-criterion
optimization problem, avoiding the introduction of relative weights or the exploration of
a Pareto frontier involving energy and make-span. At the same time, the consideration
of release and due times allows the integration of a flexible job shop into more global
processes of Industry 4.0. Its two-level structure is the result of having adopted as decision
variables, besides the scheduling variables of the operations, the assignment of machines
to the different operations of the jobs. This two-level structure offers opportunities to use
known optimization approaches to obtain exact solutions for real-size instances of this
problem. However, considering its computational complexity and the requirements to
generate efficient schedules in the dynamic environment of flexible job shops, an ad hoc
heuristic was designed.

With this heuristic, the machine assignments to operations are not generated a priori
for each job but are constructed step by step according to the information available about
the downstream operational state of the job shop. The solution generated by this heuristic
derives from a permanent trade-off between energy and delays, where the subsets of
candidate machines to perform an operation can be enlarged to include less energy-efficient
machines that operate faster, satisfying the due time constraints for each job. This heuristic
was applied with success to a small-size case study, where it outperformed two basic
scheduling rules. Given the results obtained so far, it seems interesting to evaluate the
performance of this heuristic when applied to higher-dimensional problems targeting other
application domains.

The present research can be completed following different directions:

- Enlarging the scope of the problem by considering other sources of energy consump-
tion (idle machines, for example).
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- Enhancing the efficiency of the heuristic—for example, by integrating priority rules,
such as the critical ratio (between the time remaining until the due date and the work
time remaining), to better cope with the due date constraints [46].

To further examine the quality of the solutions provided to the minimum-energy
flexible job-shop scheduling problem, this study can be a basis for the development of
metaheuristics, such as those described in [47,48]. This will allow the use of artificial
intelligence techniques to cope more globally with the search for an efficient solution.

Author Contributions: Conceptualization, O.A.O., F.L.P.K. and F.M.-C.; methodology, O.A.O., F.L.P.K.
and F.M.-C.; validation, O.A.O., F.L.P.K. and F.M.-C.; investigation, O.A.O., F.L.P.K. and F.M.-C.;
writing—original draft preparation, O.A.O. and F.M.-C.; writing—review and editing, F.M.-C.; visual-
ization, O.A.O. and F.L.P.K.; supervision and project administration, F.L.P.K.; funding acquisition,
O.A.O. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The original contributions presented in the study are included in the
article; further inquiries can be directed to the corresponding author.

Acknowledgments: The corresponding author acknowledges the special logistics support of Durban
University of Technology during this research.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Shaardan Nur, A.; Roslin Eida, N.; Ahamat, M. Lean Management Concept in Energy Efficiency Improvement in Non-domestic.

Int. J. Appl. Eng. Res. 2017, 12, 15242–15251.
2. Zhang, L.; Li, X.; Gao, L.; Zhang, G. Dynamic rescheduling in FMS that is simultaneously considering energy consumption and

schedule efficiency. Int. J. Adv. Manuf. Technol. 2016, 87, 1387–1399. [CrossRef]
3. Meng, L.; Zhang, C.; Shao, X.; Ren, Y. MILP models for energy-aware flexible job shop scheduling problem. J. Clean. Prod. 2018,

210, 710–723. [CrossRef]
4. Gahm, C.; Denz, F.; Dirr, M.; Tuma, A. Energy-efficient, scheduling in manufacturing companies: A review and research

framework. Eur. J. Oper. Res. 2015, 248, 744–757. [CrossRef]
5. Tang, D.; Dai, M. Energy-efficient approach to minimizing the energy consumption in an extended job-shop scheduling problem.

Chin. J. Mech. Eng. 2015, 28, 1048–1055. [CrossRef]
6. Xie, J.; Gao, L.; Peng, K.; Li, X.; Li, H. Review on flexible job shop scheduling. IET Collab. Intell. Manuf. 2019, 1, 67–77. [CrossRef]
7. Dauzière-Pérès, S.; Ding, J.; Shen, L.; Tamssaouet, K. The flexible job shop scheduling problem: A review. Eur. J. Oper. Res. 2024,

314, 409–432. [CrossRef]
8. Fattahi, P.; Mehraba, M.S.; Jolai, F. Mathematical modeling and heuristic approaches to flexible job shop scheduling problems. J.

Intell. Manuf. 2007, 18, 331–342. [CrossRef]
9. Demir, Y.; Kursat Islayen, S. Evaluation of mathematical models for flexible job-shop scheduling. Appl. Math. Model. 2013, 37,

977–988. [CrossRef]
10. Chaudhry, I.A.; Khan, A.A. A research survey: Review of flexible job shop scheduling techniques. Int. Trans. Oper. Res. 2016, 23,

551–591. [CrossRef]
11. Coelho, P.; Pinto, A.; Moniz, S.; Silva, C. Thirty years of flexible job-shop scheduling: A bibliometric study. Procedia Comput. Sci.

2021, 180, 787–796. [CrossRef]
12. Pezzella, F.; Morganti, G.; Ciaschetti, G. A genetic algorithm for the flexible job-shop scheduling problem. Comput. Oper. Res.

2008, 35, 3202–3212. [CrossRef]
13. Zheng, Y.; Lian, L.; Mesghouni, K. Comparative study of heuristics algorithms in solving flexible job shop scheduling problem

with condition based maintenance. J. Ind. Eng. Manag. 2014, 7, 518–531.
14. Perroux, T.; Arbaoui, T.; Merghem-Boulahia, L. A mathematical model for the flexible job-shop scheduling problem with

availability constraints. IFAC Pap. 2023, 56, 5388–5393. [CrossRef]
15. Shen, X.N.; Han, Y.; Fu, J.Z. Robustness measures and robust scheduling for multi-objective stochastic flexible job shop scheduling

problems. Soft Comput. 2017, 21, 6531–6554. [CrossRef]

https://doi.org/10.1007/s00170-013-4867-3
https://doi.org/10.1016/j.jclepro.2018.11.021
https://doi.org/10.1016/j.ejor.2015.07.017
https://doi.org/10.3901/CJME.2015.0617.082
https://doi.org/10.1049/iet-cim.2018.0009
https://doi.org/10.1016/j.ejor.2023.05.017
https://doi.org/10.1007/s10845-007-0026-8
https://doi.org/10.1016/j.apm.2012.03.020
https://doi.org/10.1111/itor.12199
https://doi.org/10.1016/j.procs.2021.01.329
https://doi.org/10.1016/j.cor.2007.02.014
https://doi.org/10.1016/j.ifacol.2023.10.186
https://doi.org/10.1007/s00500-016-2245-4


Algorithms 2024, 17, 520 24 of 25

16. Elgendy, A.E.; Hussein, M.; Elhakeem, A. Optimising dynamic flexible job shop problem based on genetic algorithm. Int. J. Curr.
Eng. Technol. 2017, 7, 368–373.

17. Mohan, J.; Lanka, K.; Rao, A.N. A review of dynamic job shop scheduling techniques. Procedia Manuf. 2019, 30, 34–39. [CrossRef]
18. Echsler Minguillon, F.; Stricker, N. Robust predictive-reactive scheduling and its effect on machine disturbance mitigation. CIRP

Ann.-Manuf. Technol. 2020, 69, 401–404. [CrossRef]
19. Zhou, T.; Zhu, H.; Tang, D.; Liu, C.; Cai, Q.; Shi, W.; Gui, Y. Reinforcement learning for online optimization of job-shop scheduling

in smart manufacturing factory. Adv. Mech. Eng. 2022, 14, 1–19. [CrossRef]
20. Wu, X.; Sun, Y. A green scheduling algorithm for flexible job shop with energy-saving measures. J. Clean. Prod. 2018, 172,

3249–3264. [CrossRef]
21. Gao, K.; Huang, Y.; Sadollah, A.; Wang, L. A review of energy-efficient scheduling in intelligent production systems. Complex

Intell. Syst. 2020, 6, 237–249. [CrossRef]
22. He, Y.; Li, Y.; Wu, T.; Sutherland, J.W. An energy-responsive optimization method for machine tool selection and operation

sequence in flexible machining shops. J. Clean. Prod. 2014, 87, 245–254. [CrossRef]
23. May, G.; Stah, B.; Taisch, M.; Prabhu, V. Multi-objective genetic algorithm for energy-efficient job shop scheduling. Int. J. Prod.

Res. 2015, 53, 7071–7089. [CrossRef]
24. Liu, Y.; Dong, H.; Lohs, N.; Petrovic, S. A multi-objective genetic algorithm for optimisation of energy consumption and shop

floor production performance. Int. J. Prod. Econ. 2016, 179, 259–272. [CrossRef]
25. Mokhta, H.; Hasani, A. An energy-efficient multi-objective optimization for flexible job-shop scheduling problem. Comput. Chem.

Eng. 2017, 104, 339–352. [CrossRef]
26. Zhang, Z.; Wu, L.; Peng, T.; Jia, S. An Improved Scheduling Approach for \Minimizing Total Energy Consumption and Makespan

in Flexible Job Shop Environment. Sustainability 2019, 11, 179. [CrossRef]
27. Salido, M.A.; Escamilla, J.; Barber, F.; Giret, A.; Tang, D.; Dai, M. Energy efficiency, robustness, and makespan optimality in

job-shop scheduling problems. AI EDAM 2016, 30, 300–321. [CrossRef]
28. Rakovitis, N.; Li, D.; Zhang, N.; Li, J.; Zhang LAnd Xiao, X. Novel approach to energy-efficient flexible job-shop scheduling

problems. Energy 2022, 238, 121773. [CrossRef]
29. Nouiri, M.; Bekar, A.; Trentesaux, D. Towards energy efficient scheduling and rescheduling for dynamic flexible job shop problem.

IFAC Pap. 2018, 51, 1275–1280. [CrossRef]
30. Brandimarte, P. Routing and scheduling in a flexible job shop by tabu search. Ann. Oper. Res. 1993, 41, 157–183. [CrossRef]
31. Gendreau, M. An Introduction to Tabu Search. In Handbook of Metaheuristics. International Series in Operations Research &

Management Science; Glover, F., Kochenberger, G.A., Eds.; Springer: Boston, MA, USA, 2003; Volume 57.
32. Lenstra, J.K.; Rinnooy Kan AH, G.; Brucker, P. Complexity of machine scheduling problems. In Annals of Discrete Mathematics;

Elsevier: Amsterdam, The Netherlands, 1977; Volume 1, pp. 343–362.
33. Olanrewaju, O.A.; Kabuya, K.; Ramirez, L.; Mora-Camino, F. A Model-Based Heuristic for Minimum Energy Scheduling of

Flexible Job-Shop Programs. In Proceedings of the IEEE CoDIT 2024 Conference, Valetta, Malta, 1–4 July 2024.
34. Rahmaniani, R.; Crainic, T.G.; Gendreau, M.; Rei, W. The Benders decomposition algorithm: A literature review. Eur. J. Oper. Res.

2017, 259, 801–817. [CrossRef]
35. Kalashnikov, V.A.; Dempe, S.; Pérez-Valdés, G.; Kalashnykova, N.; Camacho-Vallejo, J.C. Bilevel programming and applications.

Math. Probl. Eng. 2015, 2015, 310301. [CrossRef]
36. Dempe, S.; Zemkoho, A. Springer Optimization and Its Applications. In Bilevel optimization Advances and New Challenges; Pardalos,

P.M., Thai, M.T., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; Volume 161.
37. Angelo, J.S.; Barbosa HJ, C. A study on the use of heuristics to solve a bilevel programming problem. Int. Trans. Oper. Res. 2015,

22, 861–882. [CrossRef]
38. Camacho-Vallejo, J.F.; Corpus, C.; Villegas, J.G. Metaheuristics for bilevel optimization: A comprehensive review. Comput. Oper.

Res. 2024, 161, 106410. [CrossRef]
39. Bishop, C.M. Pattern Recognition and Machine Learning; Springer: Berlin/Heidelberg, Germany, 2006; ISBN 978-0-387-31073-2.
40. Aytug, H.; Bhattacharyya, S.; Koehler, G.J.; Snowdon, J.L. A review of machine learning in scheduling. IEEE Trans. Eng. Manag.

1994, 41, 165–171. [CrossRef]
41. Behnke, D.; Geiger, M.J. Test Instances for Job Shop Scheduling Problems with Work Centers; Research Report RR-12-01-01; Helmut

Schmit University: Hamburg, Germany, 2012.
42. Araujo KA, G.; Birgin, E.G.; Ronconi, D.P. Models, constructive heuristics, and benchmark instances for the flexible job shop

scheduling problem with sequencing flexibility and position-based learning effect. arXiv 2024, arXiv:2403.16766.
43. Haupt, R. A survey of priority rule-based scheduling. OR Spektrum 1989, 11, 3–16. [CrossRef]
44. Demir, Y.; Yilmaz, H. An efficient priority rule for flexible job shop scheduling problem. J. Eng. Res. Appl. Sci. 2021, 10, 1906–1918.
45. Alonso Tabares, D.; Olanrewaju, O.A.; Krykhtine, F.P.; Felix Mora-Camino, F. Characterizing Airport Ground Handling as a Multi

Flexible Flow Shop. In Proceedings of the XXI SITRAER Conference-SBPTA, Fortaleza, Brazil, 16–18 October 2024.
46. Lödding, H.; Piontek, A. The Surprising Effectiveness of Earliest Operation Due-date Sequencing. Prod. Plan. Control. 2017, 28,

459–471. [CrossRef]

https://doi.org/10.1016/j.promfg.2019.02.006
https://doi.org/10.1016/j.cirp.2020.03.019
https://doi.org/10.1177/16878132221086120
https://doi.org/10.1016/j.jclepro.2017.10.342
https://doi.org/10.1007/s40747-019-00122-6
https://doi.org/10.1016/j.jclepro.2014.10.006
https://doi.org/10.1080/00207543.2015.1005248
https://doi.org/10.1016/j.ijpe.2016.06.019
https://doi.org/10.1016/j.compchemeng.2017.05.004
https://doi.org/10.3390/su11010179
https://doi.org/10.1017/S0890060415000335
https://doi.org/10.1016/j.energy.2021.121773
https://doi.org/10.1016/j.ifacol.2018.08.357
https://doi.org/10.1007/BF02023073
https://doi.org/10.1016/j.ejor.2016.12.005
https://doi.org/10.1155/2015/310301
https://doi.org/10.1111/itor.12153
https://doi.org/10.1016/j.cor.2023.106410
https://doi.org/10.1109/17.293383
https://doi.org/10.1007/BF01721162
https://doi.org/10.1080/09537287.2017.1302616


Algorithms 2024, 17, 520 25 of 25

47. Abdolrazzagh-Nezhad, A.; Abdullah, S. A Review on Metaheuristic Approaches for Job-Shop Scheduling Problems. Data Sci. J.
Comput. Appl. Inform. 2024, 8, 45–63. [CrossRef]

48. Fuladi, S.K.; Kim, C.-S. Dynamic Events in the Flexible Job-Shop Scheduling Problem: Rescheduling with a Hybrid Metaheuristic
Algorithm. Algorithms 2024, 17, 142. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.32734/jocai.v8.i1-17138
https://doi.org/10.3390/a17040142

	Introduction 
	Literature Review 
	The Adopted Approach to Tackle a New Instance of a Job-Shop Scheduling Problem 
	The Objective of the Study 

	The Considered Class of Flexible Job Shops and Their Representation 
	Basic Assumptions 
	The Plant 
	The Production Plan 
	The Operations 
	The Objectives 

	Adopted Notations and Representation for Work Plans 

	Two-Level Formulation of the Minimal-Energy Flexible Job-ShopScheduling Problem 
	Adopted Notations and Representation 
	Absolute Time Bounds 
	Total Energy Consumed 
	The Two-Level Minimum-Energy Scheduling Problem 
	Evaluation of Solution Performance 

	Minimum-Energy Scheduling Heuristic with Due Times 
	Adopted Principles to Design the Heuristic 
	Algorithm of the Scheduling Heuristic 
	Illustration of the Assignment and Scheduling Process of the Proposed Heuristic 
	The Resulting Solution, Assessment, and Adaptation (Outer Loop of Algorithm) 
	Dynamic Scheduling with Heuristic 
	Small Delays 
	Programmed Unavailability of Machines 
	Sudden Breakdown of Machines 
	Modification of the Production Plan 


	Evaluation of the Proposed Scheduling Heuristic 
	Priority Rules for Flexible Job Shop Scheduling 
	Comparison of Performances Between the Heuristic and the Priority Rules 
	Illustration of Resulting Scheduling in a Flexible Job Shop 
	Comparison of Results of the Heuristic Concerning the Priority Rules 

	Conclusions 
	References

