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Abstract: With the continuous rise in the energy consumption of buildings, the study and integration
of net-zero energy buildings (NZEBs) are essential for mitigating the harmful effects associated with
this trend. However, developing an energy management system for such buildings is challenging due
to uncertainties surrounding NZEBs. This paper introduces an optimization framework comprising
two major stages: (i) renewable energy prediction and (ii) multi-objective optimization. A prediction
model is developed to accurately forecast photovoltaic (PV) system output, while a multi-objective
optimization model is designed to identify the most efficient ways to produce cooling, heating, and
electricity at minimal operational costs. These two stages not only help mitigate uncertainties in
NZEBs but also reduce dependence on imported power from the utility grid. Finally, to facilitate
the deployment of the proposed framework, a graphical user interface (GUI) has been developed,
providing a user-friendly environment for building operators to determine optimal scheduling and
oversee the entire system.

Keywords: energy management system; forecasting model; GUI; multi-energy system; net-zero
energy buildings; optimization

1. Introduction

The increasing demand for energy in buildings, driven by population growth and
urbanization, has significantly raised energy consumption levels. Buildings are currently
responsible for consuming 74% of electricity in the U.S. [1], with projections indicating that
building energy use will rise by 40% within the next two decades [2]. Such an escalation in
energy consumption exacerbates environmental impacts, particularly through heightened
greenhouse gas (GHG) emissions. In response, the concept of net-zero energy buildings
(NZEBs) has been advocated as a vital solution designed to equalize the energy consumed
with the energy produced on-site through renewable sources [3–5]. Beyond theoretical
frameworks, NZEBs offer a tangible approach to markedly reduce the carbon footprint of
building infrastructures.

Buildings can be classified into three major categories based on their primary use:
residential, commercial, and industrial. Numerous studies have been conducted on each
building type with the aim of achieving net-zero energy consumption. For example, it
is noted in ref. [6] that advancements in residential NZEBs focus on optimizing energy
infrastructure connections, renewable energy sources, and energy-efficiency measures to
reduce energy consumption and emissions. In ref. [7], a real-world residential building
is retrofitted and concluded that this can reduce greenhouse gas emissions by over 60%,
with potential reductions of up to 96% through more advanced measures. Similarly, a
net-zero energy management approach for commercial buildings is proposed in ref. [8]
using renewable energy, pumped hydro storage, and hydrogen taxis, offering a framework
for urban decarbonization by 2050. The key themes for commercial NZEB are discussed
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in ref. [9], identifying key themes such as energy efficiency and life cycle assessment
through bibliometric and qualitative analysis. In ref. [10], the authors discuss region-
specific transition plans and policy packages to achieve net-zero industrial emissions by
mid-century, such as material efficiency, carbon pricing, and decarbonized technologies.
The authors in ref. [11] outlined emission reduction challenges in the cement industry
and proposed solutions across its value chain to achieve net-zero emissions and minimize
environmental impacts.

In addition, the challenges associated with NZEBs can be broadly categorized into
two distinct phases: the planning phase and the operation phase. The planning phase
focuses on site selection, design, energy modeling, and sizing of energy equipment. Mean-
while, the operation phase emphasizes real-time energy monitoring, regular maintenance,
and optimal energy management. The benefits of multi-energy system co-planning in
nearly zero-energy districts are discussed in ref. [12] while identifying key research gaps
related to temporal and spatial representations. An investment planning approach for
NZEB in Canada is proposed in ref. [13] examining the influence of geographical factors on
energy retrofits. The significance of planning NZESs for large energy consumers, like data
centers, is discussed in ref. [14] to facilitate the integration of volatile renewable energy
sources. The operational and energy management aspects of NZEBs are discussed in
refs. [15–17] where energy management of a real building in China is accessed in ref. [15],
the role of HVAC in achieving net zero is discussed in ref. [16], and the role of efficiency
measures is discussed in ref. [17].

However, the adoption of NZEBs encounters considerable challenges. Primarily
among these are the unpredictability of renewable energy sources and the complexities
associated with efficient energy management [18]. Solar power’s intermittency introduces
uncertainties in the building energy system, affecting the consistency of power output from
photovoltaic (PV) systems. To mitigate these issues, various predictive models have been
developed. For instance, the authors in ref. [19] have developed a hybrid machine-learning
model integrating an extreme learning machine with a genetic algorithm and a similar day
analysis for precise hourly PV power output predictions. This model has been validated
through robust performance metrics such as the coefficient of determination, mean absolute
error, and normalized root mean square error, demonstrating high accuracy and stability in
day-ahead PV power predictions. Another study in ref. [20] has utilized machine learning
tools to develop a PV output prediction model that includes data quality checks, a machine
learning algorithm, weather clustering, and accuracy assessments, resulting in enhanced
prediction capabilities when linear regression coefficients are applied.

Despite advances in forecasting accuracy, precisely predicting the PV output under
constantly changing weather conditions remains impossible, leading to operational com-
plexities in NZEBs. Numerous studies have tackled the optimal operation of NZEBs under
such uncertainties [21]. For instance, the authors in ref. [22] have developed a framework
combining multi-objective optimization with robustness analysis to design integrated build-
ing energy systems, employing two-stage stochastic programming for balancing economic
and environmental goals while validating robustness through Monte Carlo simulations.
The authors in ref. [7] have developed a multi-objective optimization process aiming to
minimize the operating GHG emissions and the life-cycle cost. The process has been
applied to a typical multi-residential building and tested in the four Greek climate zones.

Although existing research studies [19,20,22,23] have significantly focused on enhanc-
ing the accuracy of prediction models or optimizing NZEB operations, more studies are
still required to develop comprehensive operational frameworks for building energy man-
agement systems with the necessary features. Additionally, developing a user-friendly
graphical user interface (GUI) that provides real-time visualization of system status and
integrates both predictive and optimization functionalities could greatly assist building
operators in managing and controlling building energy systems more effectively.

To address these multifaceted challenges, this study proposes an optimization frame-
work specifically designed for NZEBs. The framework comprises two primary phases:



Algorithms 2024, 17, 528 3 of 19

accurately predicting renewable energy outputs, especially from PV systems, and strate-
gically optimizing energy production and consumption. The initial phase utilizes neural
network (NN)-based prediction models to forecast the output power of the PV system
accurately, taking into account a range of environmental and technical factors. The subse-
quent phase focuses on optimizing building systems for cooling, heating, and electricity
generation using mixed integer linear programming (MILP), aiming to minimize oper-
ational costs and maximize efficiency. This approach not only enhances the reliability
and performance of NZEBs but also reduces their dependence on external power sources,
thereby bolstering the sustainability of building operations. The integration of this model
promotes PV as an energy source for buildings, further providing a sustainable approach
to powering buildings. The increased use of renewable energy sources like PV will help
reduce harmful environmental impacts. This approach provides a feasible environmental
solution because it shows building operators that their buildings can efficiently operate
without the need for nonrenewable energy as the core energy provider. Additionally, the
implementation of a GUI facilitates intuitive and user-friendly interaction with the system,
enabling building operators to manage and optimize their energy resources efficiently. The
major contributions of this study are listed as follows:

• An operation strategy is proposed for NZEBs, including deep neural network-based renew-
able energy output predictions and a MILP-based optimization for multi-energy balance.

• Reliability and operational efficiency are significantly enhanced by accurately forecast-
ing PV output and optimizing building systems for cooling, heating, and electricity,
thus reducing dependency on external systems.

• A user-friendly GUI is developed for building operators, enabling effective energy
resource management and optimizing energy use in real time.

• The proposed operation offers a scalable and user-friendly solution that highlights the
feasibility of achieving NZEB objectives, further supporting the shift to sustainable
building operations.

2. System Models
2.1. System Configuration

Figure 1 shows the typical configuration and energy flow of a building energy system
(BES), which integrates various sources of energy to fulfill electric, heat, and cooling energy
demands. By combining the energy generated from these sources, the BES helps ensure
that the energy supply throughout the building is balanced and efficiently distributed.
This integration, which allows the system to harness energy from multiple sources, will
increase the reliability of the BES while reducing dependency on a single energy provider.
Not only will the system become more reliable, but there is also higher risk mitigation
associated with energy supply disruptions (e.g., power outages). The system presents a
way to seamlessly obtain energy from other energy sources in the building.

In the test system, the PV systems, distributed generators (DGs), and energy storage
systems (ESSs) are used to supply electricity to the building energy system, fulfilling all
electrical loads as well as powering other heating and cooling sources, namely the electric
heat pump, boiler, and electric chiller. The system is also connected to the utility grid,
which can help supply the entire system during periods of power shortage when the output
from local resources is insufficient. The utility grid and ESS both support bi-directional
power flow, allowing the system to efficiently adapt to fluctuating supply conditions and
energy demands. Surplus energy can be given back to these components, or the system can
draw energy from them when necessary. The heat generated by the boiler and electric heat
pump is used to meet the heat load and the heat energy consumed by the absorption chiller
(AC). The cooling load is fulfilled by the electric chiller (EC) and the AC. The operation of
the entire building’s energy is managed by a building energy management system.
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Figure 1. Energy building systems.

2.2. Proposal Optimization Framework

The proposed optimization framework includes two major models: a prediction model
of PV output power and a multi-objective optimization model for the operation of entire
building systems. These models are interdependent, as the output of the prediction model
serves as input for configuring the building’s operational optimization. The prediction
model produces a forecast of expected output from a PV system based on environmen-
tal factors. The detailed input/output for both prediction and optimization models are
summarized in Table 1.

Table 1. Framework parameters.

Model Type Inputs Outputs

Prediction

City’s PV site generation
Electric demands
Cooling demands
Heating demands

Predictions for 1, 3, and 7 days
of PV system output

Optimization
Operational cost of DGs

Operation boundary of DGs
Load demand

Setpoint of DGs
Energy flow

ESS

First, three prediction models were assessed and analyzed on their performance on
PV generation data from Berlin, Germany, using the PVWatts API [23]. The prediction
models chosen were ARIMA, support vector regression (SVR), and a feedforward neural
network (FNN). To maintain consistency and accurate comparisons, the same input data
were used across all models. The input data used in the model were beam irradiance,
diffuse irradiance, ambient temperature, wind speed, and date and time. The output
parameter was the output power of the PV system.

After testing the three chosen models and gathering their actual and predicted output,
the following testing error metrics, including mean absolute error (MAE), root mean
squared error (RMSE), and normalized root mean squared error (nRMSE), are calculated
for each prediction model. To better evaluate the developed models, these metrics are
also compared among one-day, three-day, and seven-day predictions. This study will
concentrate on the results for the one and three-day models, as the seven-day model was
included solely to demonstrate the scalability of the prediction and optimization model
over a longer time frame.
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Regarding the optimization model, we developed a MILP-based multi-objective opti-
mization model to find the most efficient way to operate the energy system to minimize
costs while at the same time ensuring that all energy demands from electricity, heating,
and cooling are met. Decision variables such as the generation output of the boiler, heat
pump, DGs, and chillers are the quantities that need to be optimized. To ensure that
optimal results are achieved by the model, power constraints were implemented. To find
the most efficient way to operate, the optimization model will explore many combinations
of decision variable values to end up with the smallest possible cost.

The project framework was developed to consider the variability present in envi-
ronmental parameters across different locations and climate zones, making it adaptable
for real-world applications. This adaptability allows the model to take in data specific
to an environment, retrain, and produce updated predictions suited to the building or
environment’s unique conditions. Despite the uncertainty in climate and renewable energy
generation, the option for continuous model retraining helps to increase the reliability of
its predictions for both power generation and operational costs. This energy management
framework would be particularly beneficial for commercial buildings, ideally the ones
equipped with rooftop solar/PV panels. Due to the model’s reasonable basis for scheduling
energy coverage, the commercial buildings would gain important insights into efficiently
meeting power demands.

2.3. Mathematical Models

In this section, a detailed MILP-based mathematical model is presented with a multi-
objective function aimed at minimizing building energy operation costs and reducing
dependency on the utility grid. Additionally, the operational constraints of DGs, ESSs,
and energy balances, including electrical, heating, and cooling systems, are also presented
in detail.

The following multi-objective Equation (1) is utilized in the optimization model for
optimal operation of energy building. The first term of the objective function presents the
operation cost of the entire building network, and the second term shows the dependence
of the building on the external utility grid.

Min
T

∑
t=1

α.
{

C1 ∗ P1(t) + C2 ∗ P2(t) + pGrid(t) ∗
(

Pbuy
Grid(t)− Psell

Grid(t)
)}

+ β.
{

Pbuy
Grid(t)

}
(1)

where : α + β = 1

This multi-objective function not only aims to minimize the operation cost of the entire
building energy system but also to reduce the building’s dependency on external energy
systems. The cost of power produced by DGs and the cost/profit of trading power with
the utility grid are calculated at every time step. When the objective function is minimized,
the optimal values for the decision variables are determined. This ensures efficient and
cost-effective usage of our building energy system, along with encouraging the use of
sustainable energy.

There are various constraints that must be fulfilled during the operation of buildings.
The given Equations (2)–(6) show the operational constraints and energy balance of a
system involving DGs, ESS, and energy flows between various components. The operation
boundary of DGs is given in (2), ensuring that their output stays within the minimum
and maximum limits. Equations (3) and (4) describe the charging and discharging power
constraints of the ESS. Equation (3) ensures that the charging power does not exceed
the maximum allowable charging rate considering the current SOC and the charging
loss. Similarly, Equation (4) shows the discharging power based on the current SOC and
discharging loss. SOC update is given in Equation (5), where the SOC at the next step
depends on the current SOC and the actual amount of charging and/or discharging power.
Finally, the power balance within the system is ensured by Equation (6), where the total
power generated from PVs, DGs, ESS discharging, and grid purchases must meet the total
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load, including the building load, electric consumption by the heat pump, boiler, and
electric chiller, along with the amount of power exported to the utility grid.

Pmin
i ≤ Pi(t) ≤ Pmax

i (2)

0 ≤ Pchar
ESS (t) ≤ Pmax

ESS .
(1 − SOC(t))

ηc
(3)

0 ≤ Pdis
ESS(t) ≤ Pmax

ESS .SOC(t).ηd (4)

SOC(t + 1) = SOC(t) + Pchar
ESS (t)− Pdis

ESS(t) (5)

PPV(t) + P1(t) + P2(t) + Pdis
ESS(t)− Pchar

ESS (t) + Pbuy
Grid(t)− Psell

Grid

= PL(t) + PHP(t) + PBl(t) + PEC(t)
(6)

Similarly, the heat generated by the HP and boiler should balance the heat load and
the heat supplied to the AC, as shown in Equations (7)–(9). The electric-to-heat ratio of the
HP and boiler are ηHP

e2h = 2 and ηBl
e2h = 3, respectively.

HHP(t) + HBl(t) = HL(t) + HAC(t) (7)

HHP(t) = ηHP
e2h × PHP(t) (8)

HBl(t) = ηBl
e2h × PBl(t) (9)

Finally, the cooling load should always be fulfilled by the cooling generated by the AC
and the EC, as expressed in Equations (10)–(12). The heat-to-cooling and electric-to-cooling
ratios are selected as ηAC

h2c = 2.5 and ηEC
e2c = 2.5, respectively.

CAC(t) + CEC(t) = CL(t) (10)

CAC(t) = ηAC
h2c × HAC(t) (11)

CEC(t) = ηEC
e2c × PEC(t) (12)

3. Numerical Results

In this section, a detailed analysis is provided for dataset correlation calculation, the
prediction model, and the optimal operation of the energy building. The BES, previously
showcased in Figure 1, is utilized for the test system in this study. The prediction and
optimization model will be applied to a medium-sized office building located in Berlin,
Germany. PV generation data obtained for this building is a significant factor in the energy
system and will be incorporated into the BES for testing the models. First, we select features
that exhibit a high correlation with PV output to improve the accuracy of the PV output
prediction model. Next, the predicted output is integrated into the optimization model
to schedule the operation of the entire building energy system, aiming to minimize both
operational costs and the building’s dependency on external energy systems.

Both Tables 2 and 3 present the variables defined for the key components used in
the optimization model. Another critical component in the model is the battery, with a
maximum capacity of 1000, initial charge of 0.2, and a minimum and maximum charging
state of 0.2 and 0.9, respectively. The parameters associated with the battery, distributed
generators, and heating and cooling equipment will be integrated into the optimization
model to determine the operational cost of powering the building.

Table 2. Distributed generator parameters for optimization model.

Components Min (kW/h) Max (kW/h) Cost (USD/kW/h)

DG1 0 400 0.2

DG2 0 500 0.3
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Table 3. Heating and cooling equipment parameters for optimization model.

Components Min (Wh) Max (Wh) Ratio

Heat Pump 0 6000 2

Heat Boiler 0 6000 3

Cooling AC 0 6000 2

Cooling EC 0 6000 3

3.1. Input Data

The one-year PV dataset is derived from the output of the building’s PV system,
sourced from PVWatts [23]. Observing the correlations between the variables in the dataset
provides valuable insights into which parameters most significantly impact PV system
output. This understanding can further assist in predictive modeling, PV system design,
and the selection of installation sites. As shown in Figure 2, beam irradiance—the direct
sunlight received by the panels—has the strongest correlation with PV system output
(r = 0.89). This indicates that as the amount of direct sunlight increases, the energy output
of the system rises.
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The second strongest correlation is between diffuse irradiance and PV system output
(r = 0.77). Diffuse irradiance refers to sunlight that has been scattered by the atmosphere
rather than direct sunlight. Despite this distinction, it still contributes positively to system
output. Both irradiance measures demonstrate a positive correlation with output, as shown
in Figure 3, indicating that PV energy production increases with total sunlight exposure,
whether direct or indirect.
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In contrast, ambient temperature has a weaker correlation with PV system output,
with an r value of 0.44 (Figure 2), suggesting that while temperature may have some
influence, it is not a key factor in determining system performance. The weakest correlation
is found between wind speed and PV system output, with an r value of 0.058 (Figure 2),
reflecting the minimal impact of wind speed on the system. Figure 4 further illustrates the
lack of correlation between wind speed and output, highlighting its insignificant effect.n
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The output power of PVs is obtained by performing the PV prediction model, as
illustrated in Figure 5a. The electric, heat, and cooling loads are taken from a combined
cooling, heat, and power system in an office building [24], as depicted in Figure 5b–d.
Similarly, the data for three-day-ahead optimization are presented in Figure 6a–d.
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3.2. Prediction Models

The chosen prediction model utilizes an NN architecture. This architecture refers
to the arrangement of neurons into layers, along with the connection patterns between
layers. It depicts how a network transforms the received input into output. The NN
model integrated in this project uses Keras, which is a high-level neural network API. The
following characteristics of the model and its layers differ slightly among one-day and
three-day predictions to account for the different levels of complexity. The input layer
of the NN model represents the parameters used to help generate the output layer. The
specific input parameters utilized in the model are ambient temperature, beam irradiance,
diffuse irradiance, wind speed, and date and time. Both one- and three-day prediction
models have densely connected input layers with seven neurons.

The distinguishing factor between the models for one-day versus three-day simulation
is the size of the hidden layer. A hidden layer is an intermediary layer between the input
and the output. This is where the data received by the model are essentially studied for
intricate patterns to produce accurate predictions. The hidden layer size for the one- and
the three-day simulations is 7 and 14 neurons, respectively. There are more data to consider
for three-day prediction, so having 14 neurons in the hidden layer allows the model to
train more efficiently and handle the complexities and size of the data. The output layer for
the one- and the three-day model is 24 and 72 neurons, respectively, which corresponds
to the number of hours for which we want to obtain predictions. The adaptive moment
estimation (Adam) optimizer is utilized during the compilation of each model. This ensures
enhanced performance and the minimization of the model’s loss function.

The results from the comparison in Table 1 show that the NN model produced the
most accurate results. It received the lowest values for each testing error metric compared
with ARIMA and SVR. This high performance can be attributed to the model’s architecture
comprising hidden layers that utilize activation functions, ensuring that complex and
non-linear patterns are captured. The results further highlight the advantages of a machine
learning approach, as three different prediction models were evaluated, and accurate
results were obtained (Table 4). While an analytical approach may provide predictions
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through methodical calculations, it was not selected due to the added complexity. Selecting
machine learning as a means to obtain predictions proved to be a more feasible alternative,
as accurate results are obtainable and varying datasets can be used. This tradeoff allowed
for the balance between simplicity and predictive accuracy, making the machine learning
approach the more practical option for the project scope.

Table 4. Testing error comparison across three models.

Models
Testing Error (RMSE)

One-Day Prediction Three-Day
Prediction

Seven-Day
Prediction

ARIMA 244.09 182.37 194.16

SVR 291.23 200.03 191.97

FNN 63.07 61.37 195.93

Models
Testing Error (MAE)

1 day 3 days 7 days

ARIMA 143.25 103.64 119.5

SVR 206.59 103.4 107.13

FNN 43.62 41.37 113.45

Models
Testing Error (nRMSE)

1 day 3 days 7 days

ARIMA 0.163 0.110 0.066

SVR 0.194 0.120 0.066

FNN 0.042 0.037 0.067

3.2.1. One-Day Prediction

To further validate the model’s training results, a training and validation loss is
presented with the model loss over epochs. Training loss is an indication of how well a
model is fitting training data, or how effectively it is learning patterns. Validation loss
displays how well the model fits new, unseen data. As shown in Figure 7, both training
and validation loss have an initial decrease. A decreasing trend for training loss indicates
that the model is learning and showing improvement in the training data. A decreasing
validation loss shows that the model is improving its predictions on unseen data. We can
also infer that the model has an optimal fit because both losses decrease and they stabilize at
a certain point. Figure 8 illustrates that the frequency of error for the one-day prediction has
a high concentration of values surrounding zero, indicating high levels of model accuracy.
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Figure 9 depicts the actual versus predicted results of PV system output over a span
of 24 h. The actual results are obtained from PVWatts, while the predicted output comes
from the NN model. As depicted in the graph, the predictions shown are highly accurate,
proving the effectiveness of the model.
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3.2.2. Three-Day Prediction

Similarly to the one-day time frame, the performance of the model was also analyzed
over a three-day period. The significance of performing predictions over a wider horizon is
to strengthen the validity of how well the model performs over different time ranges. This
proves that the model can provide accurate predictions for different time ranges, which
will assist in future operational planning and energy management.

In Figure 10, both training and validation loss also have an initial steep decrease. A
decreasing trend for training loss indicates learning and improvement toward the training
data. The model is also improving its predictions on unseen data for a three-day range, as
evident by the decreasing validation loss.
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Figure 11 showcases that the model can still perform at high levels of accuracy over
three days because of the high concentration of zeros for the frequency of error. The
results shown in Figure 12 for the three-day predictions are similar to those for the one-day
predictions, where the model produces highly accurate results.
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3.3. Day-Ahead Scheduling

The results from the optimization model show how the building’s energy demands
for cooling, heating, and electricity are met. As shown in Figure 13, the cooling energy
balance is always maintained, with the energy output precisely meeting the building’s
cooling requirements. The energy supply is primarily provided by the AC rather than the
EC due to the former being more cost-effective.
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In Figure 14, the optimization model ensures that the heating supply from the boiler
meets the building’s heat load. The heat pump is not utilized, as the model adopts the most
cost-effective approach to meet the building’s energy needs. It is important to distinguish
the heating shown in Figure 14 from that in Figure 5d. The difference arises because
Figure 14 is not representative of the heat load itself but rather the heat after a portion of the
AC’s energy has been added. In the optimization model, the total heat load is calculated by
adding the heating demand (Figure 5d) with a portion of the AC energy output, explaining
why the heating demand prior to optimization appears lower.
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As given in Equation (6), the electric power provided by the energy sources should
equal the power demanded by the building. Figure 15 depicts this balance, showing that
the sum of the building’s energy supply at every time step equals the demand, represented
in the graph as the total electric load. To show the effectiveness of the proposed method,
Table 5 presents a comparison with and without the proposed optimization.
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Table 5. Non-optimized versus optimized costs.

Operational Cost Non-Optimized ($) Optimized ($) Cost Reduction (%)

Power Generation 1729.71 1489.71 13.88

Cooling Generation 1778.25 1489.71 16.23

Heating Generation 1656.14 1489.71 10.05

3.4. Three-Day-Ahead Scheduling

Similarly to the one-day results, the three-day optimization model demonstrates how
the building’s energy demands are met. As shown in Figure 16, the cooling energy balance
is maintained, with no surplus/shortage in energy output. Cost-effectiveness is achieved
by sourcing the cooling energy supply from the AC.
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In Figure 17, the optimization model guarantees that the building’s heat load require-
ments are being met by the boiler’s heating supply. The heat pump is not used, as the
model recognizes that it would be a more costly option. The same explanation for the
heating load difference applies to the three-day results for the optimization model and the
heating demand for three days (Figure 6d).
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Finally, the electric power supplied by the energy sources must match the building’s
power demand. Figure 18 depicts this balance, showcasing that the total supply of energy
at every time step is equal to the demand.
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3.5. GUI Development

The development of a GUI significantly enhances the user experience by enabling
the visualization of data and results. Users can interact with the interface to view both
the input and output of the optimization model through graphical representations. In this
study, different tabs are designed, as shown in Figure 19, which allows users to navigate
easily through the results of the optimization model for both one-day and three-day data.
Additionally, access to a dedicated tab enables users to retrain the neural network model
and run the PV predictions for both one-day and three-day models. This tab includes a
basic visual representation of the neural network model along with a summary detailing
the number of neurons in each layer. To showcase model efficiency, a plot depicting the
training and validation loss is displayed along with a histogram of the frequency of error.
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The optimization model tabs hold key equations to further facilitate user comprehen-
sion of how the system optimizes building energy use. The visual of the project’s BES is
also provided, illustrating how power is sourced and distributed throughout the building.
The comprehensive design of the GUI ensures that users can interact seamlessly with the
optimization and prediction framework and directly view the results. The future devel-
opment of this GUI will allow for the integration of additional building energy demands,
enabling the adaptation to more complex energy systems. The extended functionality will
provide the visualization of energy solutions tailored to the unique requirements of each
building. This will aim to further enhance the scalability, allowing the GUI to accommodate
different building types and energy demands.

Ultimately, the GUI serves as a critical integration point for the prediction and opti-
mization model within the BES. By providing a user-friendly interface, it allows operators
to utilize predictive models and algorithms without low-level knowledge and technical
expertise. Providing this accessibility is crucial, as it encourages users to engage with
energy management tools, fostering a proactive approach to optimizing energy usage
through renewable resources.

4. Discussion and Future Direction

Due to the unpredictable nature of renewable energy generation, this study acknowl-
edges the limitations related to demand price uncertainty. The analysis and framework
provided in this study are focused on short-term evaluations, specifically one- and three-day
periods. This limited scope may not fully capture the dynamic nature of renewable energy
generation. Additionally, the study is conducted within the time range of a single season,
capturing fairly consistent weather conditions. The project’s future enhancements plan to
capture a more comprehensive analysis that spans multiple seasons and diverse conditions,
providing a deeper understanding of potential challenges associated with the utilization of
renewable energy systems in buildings.

Moving forward, we aim to combat the limitations by enhancing the framework to
include long-term operation analyses and integrate datasets that hold diverse weather
conditions. Future expansions could focus on the real-time operation of NZEBs using IoT
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devices and a data-driven control approach. Furthermore, incorporating multi-objective op-
timization that simultaneously addresses cost minimization and emission reduction could
significantly enhance the economic and environmental sustainability of NZEB operations.

5. Conclusions

In this study, we developed a comprehensive optimization framework for the optimal
operation of NZEBs, consisting of a prediction model and an optimization model. The
framework’s focus was placed on forming predictions based on a provided dataset, which
highlights its adaptability to form predictions given new buildings and energy input
variables. Initially, a neural network-based prediction model was trained with PV data
to provide a highly accurate estimated output power of PV systems, which was then
fed into the optimization model. This model determines the optimal set points for each
component in the network and can accommodate various operational horizons, from one to
three days. The framework not only minimizes operational costs but also reduces NZEBs’
dependence on external grids. Additionally, we developed a detailed GUI to visualize
optimization outputs and monitor the system’s operational status, helping operators to
track changes easily, particularly in emergency operation modes. The GUI serves as a
vital integration point, making sophisticated prediction and optimization tools accessible
for building operators, thereby encouraging the use of energy management systems with
renewable resources.
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Nomenclature

AC Absorption chiller
EC Electrical chiller
ESS Energy storage system
GUI Graphical user interface
HP Electric heat pump
NZEB Net-zero energy buildings
PV photovoltaic
t Time interval
T Operation horizon
PV1, PV2, . . . , PVn Photovoltaic sites
DG1, DG2, . . . , DGn Distributed generators
PPV(t) Output of PV system at t
P1(t), P2(t) Output of DGs 1 and 2 at t
Pmin

i , Pmax
i Minimum and maximum output of DG

PESS(t) Power exchanged with system and ESS
α, β The weight of sub-objectives
Pbuy

Grid(t), Psell
Grid(t) Buying and selling amount with utility grid at t

Pmax
ESS Capacity of ESS

Pdis
ESS(t), Pchar

ESS (t) Charging and discharging amount of ESS at t
SOC(t) State of charge of ESS at t
ηd, ηc Discharging and charging losses of ESS
PL(t) Electric load amount at t
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PHP(t) Power consumption by electric heat pump at t
PBl(t), PEC(t) Power consumption by boiler and electric chiller at t
HHP(t) Heat energy output of heat pump at t
HBl(t) Heat energy output of boiler at t
HL(t) Heat load at t
HAC(t) Heat consumption by absorption chiller at t
CAC(t) Cooling output of absorption chiller at t
CEC(t) Cooling output of electric chiller at t
CL(t) Cooling load at t
C1, C2 Operation cost of DGs 1 and 2 at t
pGrid(t) Trading price with the utility grid at t
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