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Abstract: With deep learning approaches, the fundamental assumption of data availability can be
severely compromised when a model trained on a source domain is transposed to a target application
domain where data are unlabeled, making supervised fine-tuning mostly impossible. To overcome
this limitation, the present work introduces an unsupervised temporal-domain adaptation framework
for human action recognition from skeleton-based data that combines Contrastive Prototype Learning
(CPL) and Temporal Adaptation Modeling (TAM), with the aim of transferring the knowledge learned
from a source domain to an unlabeled target domain. The CPL strategy, inspired by recent success
in contrastive learning applied to skeleton data, learns a compact temporal representation from the
source domain, from which the TAM strategy leverages the capacity for self-training to adapt the
representation to a target application domain using pseudo-labels. The research demonstrates that
simultaneously solving CPL and TAM effectively enables the training of a generalizable human action
recognition model that is adaptive to both domains and overcomes the requirement of a large volume
of labeled skeleton data in the target domain. Experiments are conducted on multiple large-scale
human action recognition datasets such as NTU RGB+D, PKU MMD, and Northwestern–UCLA to
comprehensively evaluate the effectiveness of the proposed method.

Keywords: unsupervised domain adaptation; human action recognition; contrastive learning; human
skeleton data

1. Introduction

Skeleton-based human action recognition has been widely exploited for privacy-
sensitive computer vision applications, such as human activity analysis [1], interactive
gaming [2], and video surveillance [3]. Human actions can be represented by skeleton
model videos [4] that encode the trajectories of skeleton joints captured by specialized
acquisition systems, offering the merits of being agnostic to the environment and providing
compact data representation. Graph Convolution Networks (GCNs) have dominated
the recent research [5–7] on vision-based human action recognition by demonstrating
their pivotal competence in aggregating action dynamics from spatial–temporal skeleton
topologies and realizing end-to-end sequence-wise action classification.

Even though training a powerful GCN model for action recognition from large-scale
public datasets [8,9] is promising, the transposition of the resulting model to applications
in real-world environments remains challenging. For instance, the data distribution in
a target deployment environment can deviate partially from that of the source training
domain due to (i) the particular image acquisition configuration adopted or (ii) variability
between subjects performing the same action. This consideration refers to the data domain
covariate issue [10]. A common strategy consists of conducting fine-tuning rounds with full
supervision using data collected in the target image acquisition configuration to reduce data
discrepancy between the source domain and the target domain. However, the collection and
annotation of a large volume of skeleton data for fine-tuning is extremely time consuming.
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This work proposes an unsupervised domain adaptation (UDA) approach for skeleton-
based human action recognition. It aims to utilize copious data from a controlled source
domain, e.g., public datasets or laboratory environments, to pre-train an initial model.
The approach then refines a target-adaptive action recognition model to deploy in a real-
world (uncontrolled) domain with a fine-tuning phase using unlabeled data from the
latter domain. UDA is achieved in two phases: Contrastive Prototype Learning (CPL) and
Temporal Adaptation Modeling (TAM). Specifically, CPL utilizes supervised contrastive
learning [11] to model discriminative action prototypes on trimmed data from the source
domain. TAM formulates a self-training layer on the top of action prototypes. Since data in
the target domain are unlabeled, TAM first leverages the pre-learned action prototypes to
generate pseudo-labels on the target domain. Second, using both pseudo-labeled target
data and labeled source data, it trains an action classification model that is adaptive to both
domains. The contributions of this work consist of the following three elements:

• An original domain adaptation framework allows the action recognition network to
initially learn human action knowledge from a labeled data domain, e.g., a public
dataset or a controlled laboratory environment, to adapt to a target application domain;

• The proposed method requires only labeled data from the source domain and unla-
beled data from the target domain for model adaptation, significantly reducing the
effort invested in data annotation in the target domain;

• The proposed method is generalizable to state-of-the-art network architectures for
unsupervised domain adaptation in action recognition without additional constraints.

2. Related Work

Skeleton data encode the dynamics of human movement over time by depicting the
trajectories of the human body’s skeleton joints. In this context, a human action can be
represented by a sequence of skeleton frames that is trimmed to cover only the series of body
movements that compose a specific action from the beginning to the end. By benchmarking
the human action recognition task on a variety of large-scale skeleton-based datasets such
as NTU RGB+D [8] and the PKU Multi-Modality Dataset [9], Graph Convolution Networks
(GCNs) have attracted significant attention in recent works [5–7]. The concept of a GCN is
to construct a graph upon skeleton frames in which each node corresponds to a human
body joint and the edges correspond to the spatial connectivity among the joints, allowing
the network to interpret the topological features of skeleton data. For instance, Li et al. [12]
introduce actional–structural directed graph neural networks (AS-GCNs) to model the
temporal dependencies among skeleton joints. Yan et al. [5] define spatial–temporal graph
convolutional networks (ST-GCNs) to capture both spatial and temporal information in
skeleton data, achieving competitive results in action recognition. Chen et al. [6] propose a
framework (CTR-GCN) with the goal of interpreting relationships between joints.

However, the generalization of action recognition models in real environments is
still challenging [13] due to the data distribution shift caused by variations in sensory
configuration, e.g., camera views, heights, orientations, locations, and variations in data
collection [8]. Skeleton contrastive learning [7,14] is an effective way to overcome the
need for annotation on large volumes of data while demonstrating pivotal competency in
learning invariant representations from unlabeled skeleton data for downstream tasks such
as action recognition. These methods involve skeleton augmentation while constructing self-
supervised contrastive learning pretext tasks, such as similarity measurement [15], which
contrast positive pairs against negative pairs from a pre-defined dynamic dictionary [16,17].

3. Method
3.1. Preliminary
3.1.1. Skeleton-Based Action Recognition

A skeleton sequence, X ∈ RT×V×3, consists of T frames in the shape of V human
body joints, each one being defined in a calibrated camera reference frame with three-
dimensional coordinates. A skeleton-based action recognition model F (Equation (1)) can be
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decoupled into a feature subnetwork, M : RT×V×3 → RT×V×C f ea , which parses skeleton
joint topologies from the input sequence X via spatial and temporal graph convolutions [5],
and a task subnetwork, C : RT×V×C f ea → [0, 1]L×1 , which aggregates actions’ semantic
representations into a SoftMax output space where the multi-class cross-entropy loss is
involved in optimization:

LCE = −Y·log

C ◦M︸ ︷︷ ︸
F

(X)

 (1)

where Y is the sequence-wise action label of X, while Y ∈ RL is defined in a range of
L categories.

3.1.2. Domain Adaptation in Skeleton Data

However, end-to-end supervised learning on F requires the collection and annotation
of a large volume of skeleton sequences {X, Y}, which is extremely time-consuming in
practice. To circumvent the need for such data, this work proposes Unsupervised Domain
Adaptation (UDA) based on two fundamental considerations:

(1) The action recognition model, F = C ◦M, is modular such that its subnetworks
(M and C) can be treated individually and separately, which allows an adaptation
framework to optimize them step by step.

(2) In practical engineering applications, a target deployment environment (target do-
main Dt) often presents misaligned data distributions, given the fact that the image
acquisition configuration can differ from that of the original data collection domain
(source domain Ds). At the same time, individuals coming from different environ-
ments performing the same action may have significant variations in their movement
patterns, leading to another form of discrepancy in data distribution. Either data
domain shift (i.e., the data distribution variations across Ds and Dt) tends to corrupt
the model’s performance when the model is well trained on Ds but is evaluated
on Dt.

To this end, UDA considers a source domain, i.e., DS = {(Xs, ys)}, which is composed
of the sequence Xs and its annotation ys, and a target domain, Dt = {Xt}, where the
skeleton sequence Xt is unlabeled. UDA aims to utilize a significant quantity of labeled
data from Ds to pretrain an intermediate model (e.g., feature encoder) and then refine a
target-adaptive model F by using only unlabeled data from the target environment. By
transferring skeleton action knowledge across different domains, UDA effectively avoids
learning from scratch and saves the labor of annotating videos in the target domain.

Figure 1 illustrates the proposed framework. Contrastive Prototype Learning (CPL)
optimizes the subnetwork M over the labeled data from DS. The pre-learned M is
recycled into a successive Temporal Adaptation Modeling (TAM) phase that models
temporal adaptation knowledge (pseudo-labels) on the unlabeled data from the target
domain. Finally, the proposed CPL and TAM models are submitted to an optimization
phase to progressively refine an action classifier.

3.2. Contrastive Prototype Learning (CPL)

In conventional skeleton-based human action recognition, a classification network re-
ceives a skeleton sequence X where its feature subnetwork (encoder),
M : RT×V×3 → RT×V×C f ea , is responsible for parsing a spatiotemporal skeleton represen-
tation of X into a high-dimensional feature space where hidden states are closely clustered
into action prototypes such that the task subnetwork (classifier), C, is able to determine
action-wise classification boundaries. Based on these observations, we propose to use
Contrastive Prototype Learning (CLP) to learn action prototypes by optimizing M using
skeleton data from the source domain DS.
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Figure 1. Unsupervised domain adaptation (UDA) framework combining the proposed CPL and 
TAM strategies. In CPL, the training data (labeled) from the source domain supports supervised 
representation learning. The learned backbone is reused in TAM for refining over data samples (in-
itially unlabeled) from the target domain. Network embedding is denoted with dotted lines if it is 
updated during training and with solid lines otherwise. 
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explicit and discriminative action prototypes.  

Let ℬௌ = ቄ൫𝑋௦(), 𝑦௦()൯ቅୀଵே
  be a data batch from the source domain 𝒟ௌ , where 𝑁 ≪|𝒟ௌ|. Let 𝑄 = {1, … , 𝑁} be the set of instance indices of ℬௌ. The data batch considers a se-

mantically identical set 𝑃(𝑖) with respect to the anchor 𝑋௦(), in which each element 𝑝 ∈𝑃(𝑖) indices a sequence 𝑋௦() which has the same sequence label as the anchor, i.e., 𝑃(𝑖) ={𝑝 ∈ 𝐴(𝑖): 𝑦() = 𝑦()} , where 𝐴(𝑖) ∈ 𝑄\{𝑖}  indicates all elements in 𝑄  except for 𝑖 . We 
call 𝑋௦() a positive counterpart of the anchor. In this way, the representation pair (𝑧௦(), 𝑧௦()) 
consists of a dynamic skeleton dictionary from which CLP can learn underlying feature 
invariances by 𝑧 = (𝒫 ∘ ℳ)൫𝑋௦()൯ and  𝑧() = (𝒫 ∘ ℳ) ቀ𝑋௦()ቁ. In order to map semanti-
cally similar sequences to action prototypes, CLP uses a SupCon loss [11] to minimize the 
distance between feature embeddings of anchor and positives: 𝐿ୗ୳୮େ୭୬ = − 1|ℬ|  1|𝑃(𝑖)|∈ℬ  𝑙𝑜𝑔 exp (𝑧 ∙ 𝑧()/𝜏)∑ exp (𝑧 ∙ 𝑛/𝜏)∈𝒩∈()   (2)

Figure 1. Unsupervised domain adaptation (UDA) framework combining the proposed CPL and
TAM strategies. In CPL, the training data (labeled) from the source domain supports supervised
representation learning. The learned backbone is reused in TAM for refining over data samples
(initially unlabeled) from the target domain. Network embedding is denoted with dotted lines if it is
updated during training and with solid lines otherwise.

Specifically, CPL utilizes a projection layer, P : RT×V×C f ea → RCprj , on top of the
feature subnetwork M to implement contrastive learning. Recent research has utilized a
variety of data augmentation schemes [7,14] to operate skeleton-data-based contrastive
learning. In contrast, CPL opts out of data augmentation and leverages action labels in
contrastive learning. Since data labels carry strong supervisory signals, CPL helps learn
explicit and discriminative action prototypes.

Let BS =
{(

X(i)
s , y(i)s

)}N

i=1
be a data batch from the source domain DS, where

N ≪ |DS|. Let Q = {1, . . . , N} be the set of instance indices of BS. The data batch
considers a semantically identical set P(i) with respect to the anchor X(i)

s , in which each
element p ∈ P(i) indices a sequence X(p)

s which has the same sequence label as the anchor,
i.e., P(i) =

{
p ∈ A(i) : y(p) = y(i)

}
, where A(i) ∈ Q\{i} indicates all elements in Q except

for i. We call X(p)
s a positive counterpart of the anchor. In this way, the representation pair

(z(i)s , z(p)
s ) consists of a dynamic skeleton dictionary from which CLP can learn underly-

ing feature invariances by zi = (P ◦M)
(

X(i)
s

)
and z(p) = (P ◦M)

(
X(p)

s

)
. In order to

map semantically similar sequences to action prototypes, CLP uses a SupCon loss [11] to
minimize the distance between feature embeddings of anchor and positives:

LSupCon = − 1
|B|∑i∈B

1
|P(i)|∑p∈P(i) log

exp
(

zi·z(p)/τ
)

∑n∈N exp
(
zi·n/τ

) (2)

where τ acts as the temperature parameter and n represents a negative counterpart sampled
from a memory bank N (we follow the same implementation as in [14] on the construction
of the memory bank).



Algorithms 2024, 17, 581 5 of 14

3.3. Temporal Adaptation Modeling (TAM)

Upon the optimization of effective action prototypes, a target domain sequence X(i)
t

can be encoded as prototypical distributions according to M
(

X(i)
t

)
. However, since the

target domain is unlabeled, it is intractable to directly learn an action classifier C using
end-to-end supervised learning. At the same time, given the domain shift between the
source domain and the target domain, directly learning a classifier exclusively on the source
domain will lead to a biased classifier that compromises the testing performance on the
target domain.

TAM proposes an episodic optimization paradigm that alternates a supervised learn-
ing iteration on the source domain and a self-training iteration on the target domain.

3.3.1. Supervised Learning on DS

It learns a classifier, C : RT×V×C f ea → [0, 1]L×1 , over the data sample
(

X(i)
s , Y(i)

s

)
∈ BS.

The learning process is optimized by a typical multi-class cross-entropy loss using

LCE−s = −Y(i)
s ·log

((
C ◦M

)(
X(i)

s

))
(3)

where M denotes the action prototypes learned by Equation (2) which is fixed at this step.

3.3.2. Self-Training on Dt

After training the model on the labeled source data, it is used to predict pseudo-labels
for the unlabeled target domain data. Specifically, let X(i)

t be data sample from the target

domain data batch Bt =
{

X(i)
t

}N

i=1
and p(i,l)t be the probabilistic distribution of X(i)

t at

category l where p(i,l)t =
(
(C ◦M)

(
X(i)

t

))(l)
, we treat Ŷ(i)

t as the pseudo-label of X(i)
t ,

which can be obtained by

Ŷ(i)
t =


l, i f l = arg max

l
p(i,l)t , and p(i,l)t > T

0, otherwise

(4)

where T denotes the confidence threshold. Only predictions with confidence scores above
T are considered valid pseudo-labels. This minimizes the inclusion of noisy labels. There-
fore, we use Ŷ(i)

t in the self-training optimization:

LCE−t = −Ŷ(i)
t ·log

((
C ◦M

)(
X(i)

t

))
(5)

The pseudo-labels help the model learn to recognize target domain patterns, gradually
improving its performance. Pseudo-labels are refined in each iteration. As the model
becomes more accurate, it generates better pseudo-labels, leading to a refinement of the
model’s optimization.

3.4. Optimization

The proposed UDA network (illustrated in Figure 1) consists of three components: an
encoder M, a projector P , and a classifier C . The network training is carried out by the
interaction among (2), (3), and (5), which are alternatively optimized (Figure 2) according
to the stages below:



Algorithms 2024, 17, 581 6 of 14Algorithms 2024, 17, 581 6 of 14 
 

 
Figure 2. Tensor flow of the training pipeline. Green symbols relate to the source domain, while 
red ones relate to the target domain. 

• CPL (ℳ, 𝒫) updating. The CPL model is initially trained with supervised contrastive 
learning utilizing labeled source domain data ൫𝑋௦(), 𝑌௦()൯. Parameters in ℳ and 𝒫 
are updated by minimizing the loss function (2) as follows: minℳ,𝒫  𝐿ୗ୳୮େ୭୬൫𝑋௦(), 𝑌௦(); ℳ, 𝒫൯ (ೞ(),ೞ())∈ೄ

 (6)

• TAM (𝒞) updating. The classifier 𝒞 is updated in an iterative refinement scheme.  

(1) Data and domain labels (𝑋௦(), 𝑌௦()) are used to update 𝒞 to improve semantic 
classification. It is achieved by minimizing the loss functions (3) as in (7), where 𝜆 is the trade-off weight used to balance the TAM training. At this step, ℳഥ  is 
fixed. min𝒞 [(1 − 𝜆)  𝐿େିୱ (𝑋௦(), 𝑌௦(); ℳഥ , 𝒞)(ೞ(),ೞ())∈ೞ

] (7)

(2) The pre-optimized 𝒞 is utilized to obtain the pseudo-label 𝑌௧() of 𝑋௧() based 
on Equations (4) and (5) as in Equation (8). Note that �̅� and ℳഥ  are fixed at this 
step. max௬ො() 𝐿େି୲ (𝑋௧(), 𝑌௧(); ℳഥ , �̅�) (8)

(3) Afterwards, data and pseudo-labels (𝑋௧(), 𝑌௧()) are used to update 𝒞. min𝒞 [𝜆 ∑ 𝐿େି୲൫𝑋௧(), 𝑌௧(); ℳഥ , 𝒞൯()∈ ]  (9)

Steps (1), (2), and (3) are implemented in each iteration of the TAM stage.  

4. Experiments 
Experimentation is conducted to evaluate the effectiveness of the proposed method 

in cross-domain human action recognition scenarios. Moreover, experimental ablation 
studies examine best practices related to the proposed framework, facilitating its repro-
duction. 

4.1. Datasets 
NTU RGB+D [8] is a popular large-scale skeleton-form human action recognition 

dataset. It presents 56,880 samples covering 60 human daily actions recorded in indoor 
scenes with three Microsoft Kinect V2 cameras mounted in different locations to support 
“cross-view” (C-View) variations. It also involves “cross-subject” (C-Sub) variations by 
involving 40 actors in action performance. This dataset encoded skeleton representations 
over 25 joints. 

Figure 2. Tensor flow of the training pipeline. Green symbols relate to the source domain, while red
ones relate to the target domain.

• CPL (M,P) updating. The CPL model is initially trained with supervised contrastive

learning utilizing labeled source domain data
(

X(i)
s , Y(i)

s

)
. Parameters in M and P

are updated by minimizing the loss function (2) as follows:

min
M,P ∑

(X(i)
s ,Y(i)

s )∈BS

LSupCon

(
X(i)

s , Y(i)
s ;M,P

)
(6)

• TAM (C) updating. The classifier C is updated in an iterative refinement scheme.

(1) Data and domain labels
(

X(i)
s , Y(i)

s

)
are used to update C to improve semantic

classification. It is achieved by minimizing the loss functions (3) as in (7), where
λ is the trade-off weight used to balance the TAM training. At this step, M
is fixed.

min
C

(1 − λ) ∑
(X(i)

s ,Y(i)
s )∈Bs

LCE−s

(
X(i)

s , Y(i)
s ;M, C

) (7)

(2) The pre-optimized C is utilized to obtain the pseudo-label Ŷ(i)
t of X(i)

t based
on Equations (4) and (5) as in Equation (8). Note that C and M are fixed at
this step.

max
ŷ(i)t

LCE−t

(
X(i)

t , Ŷ(i)
t ;M, C

)
(8)

(3) Afterwards, data and pseudo-labels
(

X(i)
t , Ŷ(i)

t

)
are used to update C.

min
C

λ ∑
X(i)

t ∈Bt

LCE−t

(
X(i)

t , Ŷ(i)
t ;M, C

) (9)

Steps (1), (2), and (3) are implemented in each iteration of the TAM stage.

4. Experiments

Experimentation is conducted to evaluate the effectiveness of the proposed method in
cross-domain human action recognition scenarios. Moreover, experimental ablation studies
examine best practices related to the proposed framework, facilitating its reproduction.

4.1. Datasets

NTU RGB+D [8] is a popular large-scale skeleton-form human action recognition
dataset. It presents 56,880 samples covering 60 human daily actions recorded in indoor
scenes with three Microsoft Kinect V2 cameras mounted in different locations to support
“cross-view” (C-View) variations. It also involves “cross-subject” (C-Sub) variations by
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involving 40 actors in action performance. This dataset encoded skeleton representations
over 25 joints.

PKU-MMD [9] is another popular public skeleton dataset presenting fewer data
samples. For instance, PKU-MMD Part I has 21,545 class-specific sequences covering
51 human daily activities (41 single-person actions and 10 two-person actions), while
PKU-MMD Part II contains 7000 class-specific sequences covering the 41 single-person
actions. This dataset was also recorded with three Microsoft Kinect V2 devices, which
provided skeleton representations encoded over 25 joints. Compared to NTU RGB+D, it
involves significant camera view variations in the samples, which is used to mimic practical
environments where data collection configurations can be inconsistent. The dataset also
involves C-View and C-Sub variations.

Northwestern–UCLA [18] is a smaller 3D skeleton dataset composed of 1494 short
sequences covering 10 human actions. This dataset was recorded with one Microsoft Kinect
V1, which provided skeleton representations encoded over 20 joints. The discrepancy on
the number of joints with respect to PKU-MMD acquisition configuration provides an
effective evaluation scenario for domain adaptation. The dataset also involves C-View and
C-Sub variations.

4.2. Implementations

As components of the proposed network structure, we adopt ST-GCN [5] as the
feature encoder (M) due to its wide adoption in recent research. Second, the projector
P is composed of a spatial pooling layer and a temporal pooling layer, followed by two
linear layers equipped with a ReLU activation after the first linear layer. The classifier C
is composed of a spatial pooling layer and a temporal pooling layer, followed by a linear
layer and a SoftMax activation.

The proposed framework in Figure 1 is deployed using PyTorch on a NVIDIA RTX
3090 GPU. For the CPL phase, we adopt the same hyperparameter values as in previous
work [14], i.e., Cprj is set as 128, τ as 0.07, momentum value as 0.999. The size of N is
set as 32,768 for the source trimmed dataset NTU RGB+D and 16,384 for PKU MMDv1.
The model is updated by using SGD with weight decay 0.0001 and learning rate 0.01.
In the TAM phase, we use SGD to update the network with Nesterov momentum 0.9,
weight decay 0.0005, and learning rate 0.05. We also use cosine annealing for the learning
rate scheduler.

We use joint Normalization in data preprocessing. First, we establish a body frame
system: (i) define the vector from the “spine” to the “left shoulder” as the x-axis; (ii) define
the vector from the “spine” to the “spine base” as the y-axis; (iii) define the z-axis as the
cross product of the x-axis and the y-axis. Second, we normalize the skeleton sequences by
subtracting the trajectory of the “spine” joint.

4.3. Evaluation Protocols

First, multiple UDA tasks are considered to validate the performance of the proposed
framework. In each UDA task, a pair of datasets, one labeled and the other unlabeled,
are involved to represent the skeleton data distribution shift, i.e., the “C-View” evaluation
protocol is used to represent the variation in image acquisition configuration and the
“C-Sub” evaluation protocol is used to represent subject variations across domains.

• NTU RGB+D to PKU-MMD. We consider a single source domain, NTU RGB+D, and
two target domains, PKU-MMD part I and PKU-MMD part II. In the first experimenta-
tion “NTU RGB+D to PKU-MMD part I” (Table 1), skeleton sequences under 50 actions
common to both datasets are used for training and testing, while in “NTU RGB+D to
PKU-MMD part II” (Table 2), 41 single-person actions are used for experiments.
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Table 1. Experimental results on unsupervised domain adaptation (test case 1).

NTU RGB+D to PKU-MMD Part I

Source Target

C-Sub C-View C-Sub C-View

Acc F1 Acc F1 Acc F1 Acc F1

Source only 69.07 41.83 72.86 44.59 57.32 27.40 59.02 29.09
UDA 70.05 45.09 72.45 46.34 69.34 37.35 72.17 36.12

Target only 34.41 18.67 35.30 17.36 85.06 49.21 87.34 52.18

Table 2. Experimental results on unsupervised domain adaptation (test case 2).

NTU RGB+D to PKU-MMD Part II

Source Target

C-Sub C-View C-Sub C-View

Acc F1 Acc F1 Acc F1 Acc F1

Source only 75.34 38.46 80.98 39.21 23.58 10.06 22.46 9.5
UDA 74.15 36.53 80.02 38.50 30.55 12.42 31.29 14.53

Target only 35.23 12.35 32.73 11.45 45.91 24.68 47.58 25.39

• NTU RGB+D to NW-UCLA. This evaluation considers NTU RGB+D as the source do-
main and Northwestern–UCLA with 20-joint skeletons as the target domain (Table 3).
The skeletons from the NTU RGB+D are preprocessed to remap from 25 to 20 joints.
The datasets share seven common actions, i.e., “drop”, “pick up”, “throw”, “sitting
down”, “standing up”, “wear jacket”, and “take off jacket”, that form a label space.

Table 3. Experimental results on unsupervised domain adaptation (test case 3).

NTU RGB+D to NW-UCLA

Source Target

C-Sub C-View C-Sub C-View

Acc F1 Acc F1 Acc F1 Acc F1

Source only 88.39 49.92 93.03 65.28 65.36 34.65 69.42 37.61
UDA 87.74 43.80 90.57 64.63 72.69 42.19 76.44 40.53

Target only 44.31 23.11 47.49 30.12 89.24 43.23 92.06 65.28

• (PKU-MMD) Part I to Part II. We consider the trimmed PKU-MMD Part I as the
source domain and the untrimmed PKU-MMD Part II as the target domain (Table 4).
The skeleton sequences under 41 common single-person actions are used for training
and testing.

Table 4. Experimental results on unsupervised domain adaptation (test case 4).

(PKU-MMD) Part I to Part II

Source Target

C-Sub C-View C-Sub C-View

Acc F1 Acc F1 Acc F1 Acc F1

Source only 85.06 39.92 87.34 42.96 27.43 14.28 29.07 14.28
UDA 85.21 41.01 34.41 14.28 33.62 15.92 32.19 15.84

Target only 19.40 7.22 24.39 11.04 45.91 23.94 47.46 21.91

4.4. Results

Experimental results in terms of Top 1 accuracy (Acc) and F1 scores [8] are reported in
Tables 1–4. First, we consider two baseline models, a source-only model and a target-only
model, each of which is trained exclusively with supervision from a specific (source or
target) domain by using the domain’s training set with annotations. Second, we trained
our UDA model via the proposed CPL and TAM strategies.
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The experimental results first demonstrate that either baseline model can yield con-
vincing results in its original training domain (e.g., the source-only model in Table 1 trained
on NTU RGB+D achieves 69.07% on the “C-Sub” testing set and 72.86% on the “C-View”
testing set of NTU RGB+D, while the target-only model trained on PKU-MMD Part I
achieves 85.06% and 87.34% on the testing sets of PKU-MMD Part I). However, given
the domain shift between the source and the target domains, either baseline model fails
when performing cross-domain action recognition (e.g., in Table 1 the source-only model
(trained on NTU RGB+D) only achieves 57.32% on PKU-MMD Part I and similar results
are observed for the target-only model when tested on NTU RGB+D data).

When the proposed UDA framework is used to learn a joint-domain classifier using
the (labeled) training set of the source domain and the (unlabeled) training set of the
target domain, the results in the second row of Tables 1–4 demonstrate that the resulting
UDA model achieves significant improvement on cross-domain action recognition. It
achieves a gain of 12.02% in Acc (from 57.32% to 69.34%) and 9.95% in F1 (from 27.40% to
37.35%) over the source-only model performance in Table 1. The UDA model still achieves
comparable performance on the source domain compared to the source-only model in
most of testing cases (e.g., 69.07% vs. 70.05% under C-sub in Table 1), demonstrating its
effectiveness in learning action knowledge from two domains. However, given that target
labels are absent, the UDA model expectedly underperforms the fully supervised (i.e.,
target-only) model. Similar performance is observed for every one of the four cross-domain
test scenarios considered. Furthermore, even though the proposed UDA model obtains
effective adaptation outcome under both the “C-View” and “C-Sub” evaluation protocols, it
performs better in the “C-View” case, which we attribute to the different degree of skeleton
data distribution shift.

4.5. Effects of Contrastive Prototype Learning
4.5.1. Training with Fewer Target Domain Samples

The critical contribution of Contrastive Prototype Learning (CPL) is the optimization
of discriminative action prototypes via supervised contrastive learning using the source
domain data. It is relevant to validate the transferability of the action prototypes that are
learned in the source domain while only involving a subset of the target domain data for
refinement. For this experiment, we first use CPL to learn an encoder M using the labeled
data from NTU-RGB+D. Second, we fix the pre-trained M and use different proportions
(varying from 5% to 100%) of labeled data from PKU MMD Part I to fine-tune a classifier C.
Note that this differs from the experiments reported in Section 4.4 that use only unlabeled
data for model fine-tuning. Experimental results in Table 5 demonstrate that the model
performance tends to increase monotonically with the ratio of target data samples involved
but only until a saturation point. Interestingly, even using a very small number (e.g., 5%)
of data samples from the target domain, the model still achieves compelling performance
compared to the best model (85.06% in Table 1) when using 100% of the PKU-MMD Part
I dataset.

Table 5. Performance (Top 1 accuracy) for different proportions of the target data samples in classifier
C refinement training in contrastive prototype learning.

Percentage of Data Use 5% 10% 30% 50% 70% 100%

CPL 69.47% 72.65% 80.11% 83.86% 84.34% 85.06%

4.5.2. Comparison to State-of-the-Art Methods

The proposed method offers the advantage of remaining free of data augmentation
for contrastive learning, unlike recently introduced approaches relying on a combination
of skeleton augmentations. Therefore, we also include a comparison with similar studies.
From the experimental results reported in Table 6, CPL demonstrates better Top1 accuracy
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than the methods described in [19–21], revealing a promising adaptation performance and
effectiveness in learning from skeleton data.

Table 6. Comparison to state-of-the-art works.

NTU RGB+D to PKU-MMD Part II Top1 Acc

Zheng et al. [19] 44.8%
Lin et al. [20] 45.8%

Thoker et al. [21] 45.9%
CPL (proposed) 47.2%

4.5.3. Comparison to Vanilla Supervised Learning

An intuitive way to reach the same goal as CPL is to use the vanilla supervised
pretraining paradigm. For instance, one can use a cross-entropy loss to train a regular
action recognition model, F = C ◦M, using the labeled data from the source domain
(Equation (1)), and then use the trained model M for transfer learning on the target domain
(Equation (9)). This subsection presents two experiments to evaluate whether utilizing
vanilla supervised learning can reach the same effectiveness as the proposed CPL strategy.
First, we use conventional supervised method [5] and the proposed CPL method to train
a comparative model F with full supervision from NTU RGB+D. Second, we fine-tuned
C (with M fixed) using full supervision on 10% data samples from PKU-MMD Part I.
Afterwards, we test the refined model on the test set of PKU-MMD Part I. The experimental
results in Table 7 demonstrate that the fully supervised learning method offers limited
transferability compared to the proposed CPL method. The fully supervised transfer
learning only achieves 45.97% on the target domain, representing a 26.68% gap in accuracy
compared to using CPL.

Table 7. Performance of “vanilla” fully supervised learning vs. semi-supervised learning. “NTU”
stands for “NTU RGB+D”, and “PKU” stands for “PKU MMD Part I”.

Full Supervision CPL

NTU and 10% PKU
(Fine-Tuning)

NTU and 10% PKU
(Fine-Tuning)

Accuracy 45.97% 72.65%

4.5.4. Visualization of Action Prototypes

For better understanding of the effectiveness of CPL in learning action prototypes,
closer examination of the embedding features from the two domains is studied using
t-SNE [22]. Figure 3 illustrates the action clusters of the two respective domains (NTU
RGB+D and PKU-MMD) encoded on the last convolutional layer of M as interpreted
by the two action recognition models (“vanilla” supervised pretrained on the upper row
and “CPL” on the bottom row). First, even though the “vanilla” supervised pretrained
model presents well-separated action clusters when tested on the source domain (upper
left feature map), which reflects the model’s ability to interpret feature representations
from the source domain, it presents less separable action clusters when tested on the target
domain (upper right map) due to the impacts of domain shift. Such a discrepancy on
action cluster interpretation leads to performance degradation across the two domains
(from 69.07% to 57.32% in Table 1). Second, when applying the proposed CPL method, the
model (bottom row) demonstrates more effective adaptation to the target domain whose
action clusters are improved in terms of separability. Such improvement is observable on
both test cases considering the source domain (bottom left map) and the target domain
(bottom right map).
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Figure 3. T-SNE visualization on action prototypes on the feature space of ST-GCN (upper row:
“vanilla without CPL”; bottom row: “with CPL”). Action prototypes are distinguished by colors
where twenty actions are randomly selected among fifty common actions for clarity. The left column
represents action clusters of the source domain (NTU RGB+D), and the right column shows clusters
of the target domain (PKU-MMD), respectively.

4.6. Ablation Study

We conduct ablation experiments to better understand the effectiveness of each com-
ponent in the proposed framework.

4.6.1. Pseudo-Labels with TAM

In this work, Temporal Adaptation Modeling (TAM) is proposed to assist with
integrating unlabeled target domain data into model training, allowing the joint-domain
classifier to receive action knowledge from the target domain. To validate its effectiveness,
we ablate the term LCE−t proposed in Equation (9) (i.e., λ = 0 in Equation (9)) and use the
exclusive source data in model training using Equation (7). Experimental results presented
in Table 8 demonstrate a significant performance discrepancy on the two domains. Since
only the source domain data is involved in model training, the resulting model is biased
towards the source domain and achieves compromised performance in the target domain.
The results demonstrate that TAM overcomes the limitation by using pseudo-labels and
leads to effective adaptation to the target domain.

Table 8. The effectiveness of using pseudo-labels with TAM.

Models Source Target Top1 Acc Standard Deviation

without TAM NTU RGB+D - 59.35% 2.12%
with TAM NTU RGB+D PKU-MMD Part I 69.34% 1.70%
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4.6.2. Hyperparameter Analysis for T
In Equation (4), the parameter T acts as a threshold to distill reliable pseudo-labels

for TAM. Setting a high value of T will seclude too many target data samples from
model training and thus the source domain data will be dominant, giving rise to a biased
training process. On the other hand, a low value of T may cause the inclusion of too
many noisy labels from the target domain, thus corrupting the training process. To identify
an appropriate value for T , we alter T over the range [0.5, 1] in the TAM process while
preserving other implementations parameters as defined in Section 4.2. As illustrated
in Figure 4, the adaptation performance is affected as T varies. The best performance
is achieved when T is around 0.85. Ultimately, when T = 1, the model degrades to a
source-only model (i.e., the “without TAM” model in Table 8).
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4.6.3. Hyperparameter Analysis for λ

The implementation of TAM involves the determination of pseudo-labels on samples
from the target domain and uses the parameter λ to weigh the importance of LCE−t in
Equation (9). Experimental investigation analyzes the selection of λ by conducting an
experiment where the framework learns a classifier C with the same implementation
detailed in Section 4.2 but altering λ over the range [0.1, 1]. As illustrated in Figure 5, the
performance is clearly affected as λ varies with an eventual degradation in performance
when the hyperparameter places too much weight on LCE−t. Consequently, it is observed
that the best performance is achieved when λ remains relatively low, that is, around 0.3.
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5. Discussions
5.1. Future Work

As experimental results demonstrate in Tables 2 and 4, the model achieves limited
adaptation results on the dataset PKU-MMD Part II. The latter presents significant domain
shift compared to the source domain, NTU-RGB+D or PKU-MMD Part I. We conjecture
that if the source and target domains are significantly different, initial pseudo-labels may
be noisy, impacting the early training stages of TAM, thus leading to low accuracies in the
target domain. In future works, it will be relevant to incorporate more efficient modules to
tackle the challenge. We plan to use class-specific thresholds in pseudo-labeling. Specifically,
in Equation (4), instead of using a hard threshold, T , for all classes, we would rather use
a class-specific one, Tk, where we use the class-based statistic, e.g., sample frequency, to
weight the confidence threshold for the action k. Such a strategy may help the model pay
class-specific attention to optimization.
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5.2. Real-World Application

One potential real-world application of the proposed method is to monitor patient
movements in hospitals or elderly care institutions to detect abnormal activities. In such an
environment, data distribution shifts can originate from the variability in data collection
resulting from changing camera views, varying room configurations, and different subjects.
The proposed method may help develop a robust action detection or recognition system
without leveraging large amounts of data and labels, providing solutions for transfer
learning in a variety of real-world environments.

5.3. Limitations

One limitation of the proposed approach is that the accuracy of pseudo-labels directly
affects model performance. Low-quality pseudo-labels can propagate errors and degrade
the optimization process. Techniques such as confidence-based filtering, adaptive thresh-
olds, and ensemble predictions could be helpful to attenuate the impact of noisy labels.

6. Conclusions

In this paper, an original unsupervised domain adaptation (UDA) method is intro-
duced to effectively adapt skeleton-based human action recognition to variable target
environments without requiring labeled data from the latter. The proposed framework
first leverages the benefits of contrastive prototype learning (CPL) to extract expressive
action prototypes from a labeled source domain. Second, temporal adaptation modeling
(TAM) refines a functional action recognition model to the target domain by associating
and exploiting pseudo-labels. Experiments demonstrate the effectiveness of the proposed
UDA strategy in comparison with fully supervised learning that requires voluminous
labeled data from both the source and target domains. It also demonstrates the effec-
tiveness of the proposed approach while bypassing the need for data augmentation in
contrastive learning. Ablation studies suggest that the proposed CPL and TAM methods
jointly contribute to the effectiveness of the overall model. Future work will study the use
of a class-balanced pseudo-labeling scheme to ensure better representativity of training
data from the target domain.
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