
Citation: Idrisov, B.; Schlippe, T.

Program Code Generation with

Generative AIs. Algorithms 2024, 17,

62. https://doi.org/10.3390/

a17020062

Academic Editors: Ulrich Kerzel,

Mostafa Abbaszadeh, Andres Iglesias

and Akemi Galvez Tomida

Received: 20 December 2023

Revised: 24 January 2024

Accepted: 26 January 2024

Published: 31 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Program Code Generation with Generative AIs
Baskhad Idrisov and Tim Schlippe *

IU International University of Applied Sciences, 99084 Erfurt, Germany; baskhad.idrisov@gmail.com
* Correspondence: tim.schlippe@iu.org

Abstract: Our paper compares the correctness, efficiency, and maintainability of human-generated
and AI-generated program code. For that, we analyzed the computational resources of AI- and
human-generated program code using metrics such as time and space complexity as well as runtime
and memory usage. Additionally, we evaluated the maintainability using metrics such as lines of code,
cyclomatic complexity, Halstead complexity and maintainability index. For our experiments, we had
generative AIs produce program code in Java, Python, and C++ that solves problems defined on
the competition coding website leetcode.com. We selected six LeetCode problems of varying diffi-
culty, resulting in 18 program codes generated by each generative AI. GitHub Copilot, powered by
Codex (GPT-3.0), performed best, solving 9 of the 18 problems (50.0%), whereas CodeWhisperer did
not solve a single problem. BingAI Chat (GPT-4.0) generated correct program code for seven prob-
lems (38.9%), ChatGPT (GPT-3.5) and Code Llama (Llama 2) for four problems (22.2%) and StarCoder
and InstructCodeT5+ for only one problem (5.6%). Surprisingly, although ChatGPT generated only
four correct program codes, it was the only generative AI capable of providing a correct solution
to a coding problem of difficulty level hard. In summary, 26 AI-generated codes (20.6%) solve the
respective problem. For 11 AI-generated incorrect codes (8.7%), only minimal modifications to the
program code are necessary to solve the problem, which results in time savings between 8.9% and
even 71.3% in comparison to programming the program code from scratch.

Keywords: artificial intelligence; generative AIs; AI program code generation; program code
efficiency; program code maintainability

1. Introduction

Generative AIs have increasingly become an integral part of our everyday lives [1].
Particularly, generative AIs for text generation are engineered to replicate human-like
dialogues and offer help, information, and even emotional support [2–6]. They can be
available 24/7 and provide instant responses, making them a valuable tool for customer
service, personal assistants, and many other applications. Among them, ChatGPT (https://
openai.com/chatgpt, accessed on 29 January 2024) stands out as one of the most frequently
utilized for text generation [7]. Within just five days of its launch, more than one million
users registered [7].

The transformative power of AI also permeates the field of coding, an area where
technology has made significant strides: AI-powered chatbots are not only capable of
conducting human-like conversations but can also generate program code [8,9]. Simul-
taneously, Integrated Development Environments (IDEs), unit tests, and benchmarking
tools have simplified coding, making it more accessible to both seasoned developers and
beginners [10]. In this sense, AI-powered chatbots and coding tools are two facets of the
same coin, both contributing to the transformation of how we use technology. However, a
critical challenge remains—the time and manual effort required for coding, especially for
those new to the craft [11–13] .

While AI tools promise to streamline the coding process and lower the barriers to entry
for aspiring coders, it is important to note that they still have their limits. For example,

Algorithms 2024, 17, 62. https://doi.org/10.3390/a17020062 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a17020062
https://doi.org/10.3390/a17020062
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-9462-8610
https://openai.com/chatgpt
https://openai.com/chatgpt
https://doi.org/10.3390/a17020062
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a17020062?type=check_update&version=1

Algorithms 2024, 17, 62 2 of 19

they may not always produce correct, efficient, or maintainable program codes. Therefore,
it is crucial to carefully consider various aspects when deciding whether or not to use
these tools [14].

While substantial research has focused on evaluation metrics for correctness like
pass@k [15–17], there is a noticeable gap: The extensive comparison of AI-generated and
human-generated program codes based on various metrics has largely been understud-
ied. Consequently, our study embarks on a comprehensive and in-depth exploration of
the coding capabilities of seven state-of-the-art generative AIs. Our goal is to evaluate
the AI-generated program codes based on the interaction of various metrics such as cy-
clomatic complexity, maintainability index, etc., concerning their correctness, efficiency and
maintainability. Moreover, we go one step further by comparing the AI-generated codes
with corresponding human-generated codes written by professional programmers.

Our contributions are as follows:

• We investigate and compare the correctness, efficiency and maintainability of AI-generated
program codes using varying evaluation metrics.

• We are the first to extensively compare AI-generated program codes to human-
generated program codes.

• We analyze the program codes that address problems of three difficulty levels—easy,
medium and hard.

• We produced a dataset of 126 AI-generated and 18 human-generated program codes—
the AI/Human-Generated Program Code Dataset—which we share with the research
community (https://github.com/Back3474/AI-Human-Generated-Program-Code-
Dataset, accessed on 29 January 2024).

In the next section, we will provide an overview of related work. In Section 3, we will
present our experimental setup. Our experiments and results will be described in Section 4.
In Section 5, we will conclude our work and indicate possible future steps.

2. Related Work

In this section, we will look at existing work regarding automatic program code
generation and evaluation.

Codex (https://openai.com/blog/openai-codex, accessed on 29 January 2024) is an
AI model for program code generation based on GPT-3.0 and fine-tuned on program code
publicly available on GitHub [16]. Ref. [16] tested Codex’s capabilities in generating
Python code using natural language instructions found in in-code comments known as
docstrings. They also created HumanEval, a dataset of 164 hand-written coding problems in
natural language plus their unit tests to assess the functional correctness of program code.
One discovery from their research was that if Codex is asked to generate code for the
same problem several times, the probability that one generated code is correct increases.
Consequently, they used pass@k as an evaluation metric, where k is the number of generated
program codes, and pass is the number of tasks, of which all unit tests were passed. To
obtain an unbiased estimation of pass@k, ref. [16] applied additional adjustments to the
original calculation. Codex achieved a pass@1 of 28.8% in solving the provided problems.
They compared the Codex-generated code with program code generated by GPT-3.0 and
GPT-J [18], but GPT-3.0 demonstrated a pass@1 of 0% and GPT-J obtained 11.4%. With
pass@100, Codex achieved even 70.2%.

Ref. [19] evaluated the validity, correctness, and efficiency of program code generated
by GitHub (GH) Copilot using HumanEval. GH Copilot is an IDE extension that uses
Codex. Ref. [19] defined a code as valid, if it was compliant with the syntax rules of a
given programming language. The correctness was computed by dividing the programming
tasks’ passed unit tests by all existing unit tests for this specific task. The efficiency was
measured by determining the time and space complexities of the generated codes. Their
results demonstrate that Codex was able to generate valid code with a success rate of 91.5%.
Regarding code correctness, 28.7% were generated correctly, 51.2% were generated partially
correctly, and 20.1% were generated incorrectly.

https://github.com/Back3474/AI-Human-Generated-Program-Code-Dataset
https://github.com/Back3474/AI-Human-Generated-Program-Code-Dataset
https://openai.com/blog/openai-codex

Algorithms 2024, 17, 62 3 of 19

Ref. [17] used HumanEval to evaluate the validity, correctness, security, reliability,
and maintainability of Python code generated by GH Copilot, Amazon CodeWhisperer
(https://aws.amazon.com/de/codewhisperer, accessed on 29 January 2024), and Chat-
GPT. They defined a valid code and a correct code as in [19]. To determine the security,
reliability, and maintainability, they used SonarQube (https://www.sonarqube.org, accessed
on 29 January 2024). Their calculation of a code’s security is based on the potential cyber-
security vulnerabilities of this code. The reliability is based on the number of bugs. The
maintainability is measured by counting present code smells. ChatGPT generated 93.3%
valid program codes, GH Copilot 91.5%, and CodeWhisperer 90.2%. ChatGPT passed
most unit tests by generating 65.2% of correct program codes. GH Copilot reached 46.3%,
and CodeWhisperer 31.1%. But when they evaluated newer versions of GH Copilot and
CodeWhisperer, they measured 18% and 7% better values for correctness. Due to the small
number of generated code fragments, the numbers for security were not usable. Concern-
ing reliability, ChatGPT produced two bugs, GH Copilot three bugs and CodeWhisperer
one bug. CodeWhisperer produced the most maintainable code, ChatGPT the second most,
and GH Copilot the least maintainable.

Ref. [15] introduced a new framework for program code evaluation named EvalPlus.
Furthermore, they created HumanEval+, an extension of HumanEval using EvalPlus’ auto-
matic test input generator. HumanEval+ is 80 times larger than HumanEval which enables more
comprehensive testing and analysis of AI-generated code. With HumanEval+, ref. [15] eval-
uated the functional correctness of program code generated by 26 different AI models which
are based on GPT-4 [20], Phind-CodeLlama [21], WizardCoder-CodeLlama [22], Chat-
GPT [23], Code Llama [24], StarCoder [25], CodeGen [26], CODET5+ [27], MISTRAL [28],
CodeGen2 [29], VICUNA [30], SantaCoder [31], INCODER [32], GPT-J [33], GPT-NEO [34],
PolyCoder [35], and StableLM [36] with pass@k. Looking at pass@1, the top five perform-
ers were GPT-4 (76.2%), Phind-CodeLlama (67.1%), WizardCoder-CodeLlama (64.6%),
ChatGPT (63.4%), and Code Llama (42.7%).

DeepMind developed an AI model for code generation named AlphaCode [37]. On the
coding competition website codeforces.com, the AI model achieved an average ranking in
the top 54.3% of more than 5000 participants for Python and C++ tasks. The ranking takes
runtime and memory usage into account.

Ref. [38] evaluated GH Copilot’s ability to produce solutions for 33 LeetCode prob-
lems using Python, Java, JavaScript, and C. They calculated the correctness by dividing
the passed test cases by the total number of test cases per problem. The numbers for
understandability, cyclomatic and cognitive complexity were retrieved using SonarQube, but
due to configuration problems, they were not able to analyze the understandability of the
codes generated in C. Concerning correctness, GH Copilot performed best in Java (57%)
and worst in JavaScript (27%). In terms of understandability, GH Copilot’s Python, Java and
JavaScript program codes had a cognitive complexity of 6 and a cyclomatic complexity of 5 on
average, with no statistically significant differences between the programming languages.

In comparison to the aforementioned related work, our focus is to evaluate the
Java, Python and C++ code produced by Codex (GPT-3.0), CodeWhisperer, BingAI Chat
(GPT-4.0), ChatGPT (GPT-3.5), Code Llama (Llama 2), StarCoder, and InstructCodeT5+.
For comparison, we also assess human-generated program code. We obtain the correctness,
efficiency and maintainability for our program codes by measuring time and space complex-
ity, runtime and memory usage, lines of code, cyclomatic complexity, Halstead complexity and
maintainability index. As a user usually does not generate code for the same problem sev-
eral times, we evaluate pass@k with k = 1, which is our metric for correctness. Finally, we
analyze which of the incorrect and the not executable program codes have the potential to
be easily modified manually and then used quickly and without much effort to solve the
corresponding coding problems.

https://aws.amazon.com/de/codewhisperer
https://www.sonarqube.org

Algorithms 2024, 17, 62 4 of 19

3. Experimental Setup

In this section, we will provide a comprehensive overview of our experimental setup.
This includes an introduction to the state-of-the-art generative AIs that we employed in our
experiments, the coding problems we chose from LeetCode and the code quality metrics
we utilized for evaluation.

3.1. Generative AI Models

This section introduces the generative AIs which we analyzed in our study.

3.1.1. ChatGPT Powered by GPT-3.5

The generative AI ChatGPT uses the large language model (LLM) GPT-3.5 which was
pre-trained on text and program code. It was first fine-tuned with labeled text data collected
from human annotators and a proprietary dataset of question-answer pairs covering various
chat topics and scenarios [23]. Then, it was fine-tuned with a reward model (Reinforcement
Learning from Human Feedback) and the Proximal Policy Optimization algorithm [23].
ChatGPT leverages GPT-3.5’s 175 billion parameters [39] and is capable of generating
program code in a wide variety of programming languages, including Python, JavaScript,
HTML, CSS, SQL, Java, C#, C++, Ruby, PHP, R, Swift, and more [40].

3.1.2. BingAI Chat Powered by GPT-4.0

The generative AI BingAI Chat leverages the LLM GPT-4.0 which was trained on a text
corpus of about 13 trillion tokens. Some of these tokens come from well-known datasets
such as CommonCrawl and RefinedWeb, while others come from sources that are not pub-
licly communicated [41,42]. GPT-4.0 was first fine-tuned with data sourced from ScaleAI
plus text data from OpenAI. Then, it was fine-tuned with a reward model (Reinforcement
Learning from Human Feedback) and the Proximal Policy Optimization algorithm [42,43].
It is estimated that the model has about 1.8 trillion parameters [41,42]. As it is not publicly
known what programming languages are covered, we asked BingAI Chat “What program-
ming languages are you capable of?”. The answer was “I am capable of generating code in
various programming languages, such as Python, Java, C#, JavaScript, Ruby, and more”.

3.1.3. GitHub Copilot Powered by GPT-3.0’s Fine-Tuned Model Codex

The generative AI GH Copilot uses GPT-3.0’s fine-tuned LLM Codex. It is an IDE
extension available in Visual Studio, Neovim, VS Code and JetBrains [44]. Codex was fine-
tuned on natural language and a vast amount of lines of code from public sources, including
GitHub repositories [45]. Codex was pre-trained on the datasets Common Crawl (filtered),
WebText2, Books1, Books2 and Wikipedia. It has 175 billion parameters [46]. According to [45],
Codex performs best in Python, but it also shows proficient results in other programming
languages including JavaScript, Go, Perl, PHP, Ruby, Swift and TypeScript.

3.1.4. StarCoder Powered by StarCoderBase

The generative AI StarCoder leverages the LLM StarCoderBase. Like GH Copilot,
StarCoder is available by using an extension in VS Code, Neovim, Jupyter [47] or all
IntelliJ-based IDEs [48]. According to [25], StarCoderBase was first trained on permissively
licensed data from GitHub, including 80+ programming languages, Git commits, GitHub
issues, and Jupyter notebooks. Then, it was fine-tuned “on 35B Python tokens, resulting in
the creation of StarCoder.” which has 15.5 billion parameters [25]. StarCoder is capable of
86 programming languages, including Python, C++, Java, Kotlin, PHP, Ruby, TypeScript,
and others.

3.1.5. Code Llama Powered by Llama 2

The generative AI Code Llama is based on Meta’s LLM Llama 2 and was fine-tuned
on 500B tokens. For our experiments, we took the version with 13 billion parameters
(https://huggingface.co/codellama/CodeLlama-13b-hf, accessed on 29 January 2024)

https://huggingface.co/codellama/CodeLlama-13b-hf

Algorithms 2024, 17, 62 5 of 19

accessing via the same VS Code extension as for StarCoder [47]. The training data were
mostly deduplicated, publicly available code, with 8% from natural language datasets
related to program code. It covers many programming languages such as Python, C++,
Java, PHP, TypeScript, JavaScript, C#, and Bash [24].

3.1.6. CodeWhisperer

According to [49], Amazon’s “CodeWhisperer is a generative AI service powered by a
foundation model trained on various data sources, including Amazon and open-source
code”. No information regarding CodeWhisperer’s training, fine-tuning or number of
parameters is publicly available. Supported IDEs to access CodeWhisperer are Amazon
SageMaker Studio, JupyterLab, VS Code, all JetBrains IDEs, AWS Cloud9, AWS Lambda
and AWS Glue Studio. Supported programming languages are Java, Python, JavaScript,
TypeScript, C#, Ruby, Go, PHP, C++, C, Shell, Scala, Rust, Kotlin, and SQL [50].

3.1.7. InstructCodeT5+ 16b Powered by CodeT5+

The generative AI InstructCodeT5+ 16b leverages the LLM CodeT5+ and was pre-
trained using the datasets CodeSearchNet [51] and github-code [52]. Then, it was fine-tuned
on the dataset CodeAlpaca [53]. InstructCodeT5+ has 16 billion parameters and is capable
of producing code in C, C++, C#, Go, Java, JavaScript, PHP, Python, and Ruby [27]. Since
InstructCodeT5+ 16b was not available via chat or IDE extension, we prompted it via
Google Colab and HuggingFace.

3.2. Our AI/Human-Generated Program Code Dataset

In this subsection, we will first introduce the coding platform LeetCode. Then we will
present the coding problems that we selected from LeetCode for our experiments.

3.2.1. LeetCode as a Source for Coding Problems

LeetCode is an online platform where users can improve their coding skills [54]. The
coding platform offers support for various programming languages, such as Java, Python,
and C++ [38] which was optimal for our experiments. It has gained popularity among job
seekers and coding enthusiasts as a resource for technical interviews and coding compe-
titions. The platform offers a vast amount of technical resources and almost 3000 coding
problems of six categories (algorithms, database, Pandas, JavaScript, Shell, concurrency) in three
difficulty levels (easy, medium, hard).

As shown in Figure 1, each coding problem consists of (1) a textual description
of the coding task, (2) examples with input values, expected outputs and sometimes
explanations and (3) constraints, which for example define the range of variables’ values.
Once the user submits code to LeetCode which solves the problem, LeetCode reports
corresponding runtime and memory usage. In case the submitted code is not executable, an
error message appears.

3.2.2. Selected Coding Problems for Our Evaluation

For our experiments, we picked six LeetCode coding problems of the category algo-
rithms that the generative AIs had to solve in Java, Python, and C++: Two coding problems
were of the difficulty level easy, two medium and two hard. We chose the category algorithms
to evaluate efficiency and maintainability since it is the category whose program code—if
not programmed well—takes up a lot of memory and runtime and is very difficult to
understand compared to the other LeetCode categories. To minimize the likelihood that the
solutions to the coding problems appear in the training data of the generative AIs, we used
the latest coding problems provided by LeetCode. The combination of coding problems
and the number of evaluated generative AIs resulted in a total of 126 AI-generated codes
(six problems · seven generative AIs · three languages = 126 codes). Table 1 provides an
overview of the final selection of coding problems with their difficulty levels. For compar-
ing the efficiency and maintainability of AI- and human-generated program codes, we chose

Algorithms 2024, 17, 62 6 of 19

the human-generated Java, Python and C++ program codes from LeetCode that solve our
coding problems and were rated best by the LeetCode community, i.e., were written by
programmers with the highest expertise level.

Figure 1. LeetCode Example: Two Sum.

Table 1. Selected Coding Problems for our Evaluation.

Coding Problem Difficulty Level

1 Max Pair Sum in an Array Easy
2 Faulty Keyboard Easy
3 Minimum Absolute Difference Between Elements With Constraint Medium
4 Double a Number Represented as a Linked List Medium
5 Apply Operations to Maximize Score Hard
6 Maximum Elegance of a K-Length Subsequence Hard

Algorithms 2024, 17, 62 7 of 19

3.3. Evaluation Metrics

In this subsection, we will describe the evaluation metrics lines of code, cyclomatic
complexity, runtime and memory usage, time and space complexity, Halstead complexity, and
Maintainability Index which we used to evaluate the efficiency and maintainability of the
generated codes and to estimate the time to estimate the time to correct the incorrect program
codes manually. Our goal was to present a comprehensive picture of code quality.

3.3.1. Lines of Code

One metric that we used to measure the quality of the program code independent of a
certain computational environment was the number of lines of code (LOC). LOC provides
an initial indication of the complexity based on the length of the program code. A higher
LOC often suggests a more intricate program code structure, which can imply a greater
textual and logical complexity. Consequently, in our analysis, more LOC indicates worse
code quality. To measure and visualize LOC, we used a vs. Code extension called Codalyze
(https://github.com/selcukusta/codalyze-rest-api, accessed on 29 January 2024).

3.3.2. Cyclomatic Complexity

Our second metric to measure the quality of the program code independent of a
certain computational environment was the cyclomatic complexity. The cyclomatic complexity,
also known as McCabe’s Complexity introduced in [55], measures the number of linearly
independent paths through a program code. This helps understand the logical complexity
of the code: A higher cyclomatic complexity means more test cases are needed to achieve
good program code coverage, indicating worse code quality. Similar to LOC, we assessed
and visualized this metric using Codalyze.

3.3.3. Time Complexity and Space Complexity

Time complexity and space complexity are metrics that also assess program code inde-
pendently of a computational environment. These metrics quantify the upper bounds
of time and space needed by an algorithm as a function of the input [56]. The lower the
order of the function, the better the complexity. For example, concerning time complexity, an
algorithm with two nested loops results in a quadratic function (expressed as O(n2)), while
an algorithm with a single loop indicates a linear and less complex function (expressed as
O(n)). According to [56], pp. 45–47 and [57], we determined the time and space complexities
manually.

3.3.4. Halstead Complexity

Halstead complexity describes various program code quality metrics that can be calcu-
lated statically, i.e., independently of a computational environment [58]. Table 2 lists the
Halstead complexity metrics that we leveraged for our evaluation. The calculation of the
individual Halstead complexity values necessitates the number of distinct operators (n1), the
total number of operators (N1), the number of distinct operands (n2), and the total number
of operands (N2) in the program code. As shown in Table 2, the Halstead complexity values
provide detailed information about the program code in different dimensions, for which
only the numbers of operators and operands are required. To determine these numbers
in Java, we used Java-Code-Analyzer (https://github.com/Taha248/Java-Code-Analyzer,
accessed on 29 January 2024). To determine the numbers of operators and operands in
Python, we used HalsteadMetrics4Py (https://github.com/ArturoG1z/HalsteadMetrics4Py,
accessed on 29 January 2024). To determine these numbers in C++, we used Halstead
(https://github.com/SparshBansal/Halstead, accessed on 29 January 2024). Based on the
LOC, cyclomatic complexity and Halstead volume, we were able to determine the maintainability
index. Then, with the help of the maintainability index and the implementation time (T), we
developed the formula to calculate the estimated time to correct (TTC) the incorrect program
code and retrieve the correct program code, which we will describe in Section 4.9.

https://github.com/selcukusta/codalyze-rest-api
https://github.com/Taha248/Java-Code-Analyzer
https://github.com/ArturoG1z/HalsteadMetrics4Py
https://github.com/SparshBansal/Halstead

Algorithms 2024, 17, 62 8 of 19

Table 2. Calculation of Halstead Metrics.

Halstead Metrics Calculation

Length of the program (N) N = N1 + N2
Vocabulary of the program (n) n = n1 + n2
Volume of the program (V) V = (N1 + N2) log2(n1 + n2)
Difficulty of the program (D) D = (n1/2) · (N2/n2)
Programming effort (E) E = D · V
Implementation time (T) T = E/S where S = 18

3.3.5. Maintainability Index

The maintainability index (MI) is designed to quantify the maintainability of code inde-
pendent of a computational environment. For calculating the maintainability index, we used
the following formula which expresses the maintainability index as a number between 0 and
100 and is proposed by [59]:

MI = MAX(0, (171 − 5.2 · ln(HV)− 0.23 · (CC)− 16.2 · ln(LOC)) · 100/171)

where HV is Halstead volume, CC is cyclomatic complexity and LOC is lines of code [59]. A
higher maintainability index indicates program code with a higher maintainability.

3.3.6. Runtime and Memory Usage

To report the program code’s efficiency in a computational environment, we measured
runtime and memory usage. We retrieved the program code’s runtime in milliseconds and
memory usage in megabytes with the help of LeetCode, which executes the program code
with varying input values and reports the maximum runtime and memory usage for these
input values. LeetCode assures that with a high computational load on the platform by
many users there can only be slight fluctuations in runtime and memory usage.

3.4. Prompt Engineering

For our tested generative AIs ChatGPT, Bing AI Chat, GH Copilot, StarCoder, Code
Llama, CodeWhisperer, and InstructCodeT5+, we performed prompt engineering to find
the prompts that led to optimal coding solutions in Java, Python and C++ for the six coding
problems mentioned in Section 3.2.2. Figure 2 demonstrates our prompt which worked
optimally for instructing ChatGPT to generate Java code (on the right) that solves the
LeetCode coding problem (on the left).

Our prompt engineering strategy was to stick as close to LeetCode’s coding problem
description as possible and contained the following steps which are visualized in Figure 3:

1. We prompted “Solve the following problem with <programming language> code.
<declarations>” together with the original LeetCode coding problem description,
examples, example explanations and constraints.

2. If the result with prompt 1 was incorrect program code (i.e., did not solve the problem)
or was not executable, we removed the example explanations.

3. If the result with prompt 2 was incorrect program code (i.e., did not solve the problem)
or was not executable, we removed the examples.

4. If the result with prompt 3 was incorrect program code (i.e., did not solve the problem)
or was not executable, we took the prompt from prompts 1–3 that resulted in program
code that was closest to our human-generated reference.

In the next section, we will describe the quality of the program codes which were
generated using the optimal prompt from this strategy.

Algorithms 2024, 17, 62 9 of 19

Figure 2. LeetCode Coding Problem Description (left) and Prompt to Instruct ChatGPT (right).

Figure 3. Prompt Engineering Strategy.

Algorithms 2024, 17, 62 10 of 19

4. Experiments and Results

To ensure the validity of our experiments, we had all program codes generated by
the generative AIs in the short time period from August to September 2023, making sure
that for each generative AI only the same version is used. In this section, we will first
analyze which generated program codes are correct, i.e., solve the coding problems. Then
we will compare the quality of the correct program codes using our evaluation criteria lines
of code, cyclomatic complexity, time complexity, space complexity, runtime, memory usage, and
maintainability index. Finally, we will evaluate which of the incorrect program codes—due
to their maintainability and proximity to the correct program code—have the potential to
be easily modified manually and then used quickly and without much effort to solve the
corresponding problems.

4.1. Correct Solutions

Table 3 demonstrates which generated program codes for our six tasks in the three
programming languages Java (J), Python (P) and C++ (C) were correct (indicated with ✓),
i.e., did solve the coding problem. The entry “—” indicates program code that was incorrect,
i.e., did not solve the coding problem.

Table 3. Correct Solutions (Java|Python|C++): Generative AI vs. human.

Easy Medium Hard Total
#1 #2 #3 #4 #5 #6

J|P|C J|P|C J|P|C J|P|C J|P|C J|P|C J|P|C|∑

ChatGPT (GPT-3.5) —|—|✓ —| ✓|✓ —|—|— —|—|— —|—|— —| ✓|— 0|2|2| 4
Bing AI (GPT-4.0) —| ✓|✓ ✓| ✓|✓ —| ✓|✓ —| ϵ |— —| ϵ |— —|—|— 1|3|3| 7
GH Copilot (GPT-3.0) ✓|—|✓ ✓| ✓|✓ ✓|—|✓ ✓|—|✓ —|—|— —|—|— 4|1|4| 9
StarCoder —|—|— ✓|—|— —|—|— —|—|— —|—|— —|—|— 1|0|0| 1
CodeWhisperer —|—|— —|—|— —|—|— —|—|— ϵ |—|— —|—|— 0|0|0| 0
Code Llama (Llama 2) —|—|— ✓| ✓|✓ ✓|—|— —|—|— —| ϵ |— —|—|— 2|1|1| 4
InstructCodeT5+ —|—|— —| ✓|— —|—|— —|—|— —|—|— —|—|— 0|1|0| 1

human ✓| ✓|✓ ✓| ✓|✓ ✓| ✓|✓ ✓| ✓|✓ ✓| ✓|✓ ✓| ✓|✓ 6|6|6|18

We observe that 122 of the 126 AI-generated program codes are executable. Four pro-
gram codes result in a compilation error which is indicated with ϵ. Out of our 18 program-
ming tasks, GH Copilot was able to generate nine correct program codes (50%) in total (∑),
followed by Bing AI with seven correct program codes (39%). ChatGPT and Code Llama
produced only four correct program codes (22%). CodeWhisperer did not produce correct
program code in all three programming languages. This results in 26 correct program codes,
which we will further analyze in Sections 4.2–4.8.

Looking at the difficulty levels shows that the generative AIs rather generated cor-
rect program code for easy and medium coding problems. Regarding the programming
languages, most correct Java (J) and C++ (C) code were generated with GH Copilot. Most
correct Python (P) code was produced with Bing AI. The program code which was written
by human programmers (human) was always correct, independent of the programming
language and the difficulty of the coding problem.

4.2. Lines of Code

Table 4 shows the number of code lines in the correct 26 program codes which solve
the corresponding coding problem plus the number of code lines in our human-written
reference program codes (human).

Out of the 26 correct program codes, in eight cases (31%) a generative AI was able to
solve the coding problem with code that contains fewer lines of code than human. However,
13 AI-generated program codes (50%) were outperformed by human in this evaluation
metric. For task#2, all five corresponding program codes (19%) contained the same number
of lines of code as human. BingAI and GH Copilot performed better than the other generative
AIs, being able to generate three program codes with fewer lines of code than human.

Algorithms 2024, 17, 62 11 of 19

Table 4. Lines of Code (Java|Python|C++): Generative AI vs. human.

Easy Medium Hard
#1 #2 #3 #4 #5 #6

J | P | C J | P | C J | P | C J | P | C J | P | C J | P | C

ChatGPT (GPT-3.5) —| — |18 —| 8|11 —| — |— —|—|— —|—|— —| 10|—
Bing AI (GPT-4.0) —| 13|19 11| 8|11 —| 7| 9 —|—|— —|—|— —| — |—
GH Copilot (GPT-3.0) 19| — |20 11| 8|14 10| — |10 45|—|21 —|—|— —| — |—
StarCoder —| — |— 12|—|— —| — |— —|—|— —|—|— —| — |—
CodeWhisperer —| — |— —|—|— —| — |— —|—|— —|—|— —| — |—
Code Llama (Llama 2) —| — |— 12| 8|12 10| — |— —|—|— —|—|— —| — |—
InstructCodeT5+ —| — |— —| 8|— —| — |— —|—|— —|—|— —| — |—

human 18| 9| 12 15| 8| 9 11| 13| 11 10|10|10 69|43|60 20| 16|23

best AI vs. human (∆ in %) −5|−31|−33 +36| 0|−18 +10|+86|+22 −78|—|−52 —|—|— —|+60|—

In the hard task#6, where only ChatGPT produced a correct program code, ChatGPT
was even able to solve the problem with 10 Python (P) lines of code, which is 60% fewer
lines of code than human. BingAI generated 86% fewer lines of code to solve task#3 in Python
(P). BingAI and GH Copilot produced 36% fewer lines of code to solve task#2 in Java (J); 22%
fewer C++ (C) lines of code are required in BingAI’s program code for task#3. Furthermore,
10% fewer Java (J) lines of code are required in GH Copilot’s and Code Llama’s program code
for task#3.

4.3. Cyclomatic Complexity

Table 5 shows the cyclomatic complexity in the 26 correct program codes which solve
the coding problem plus the cyclomatic complexity in our human-written reference program
codes (human). The cyclomatic complexity measures the number of linearly independent
paths through a program code. As described in Section 3.3.2, a higher cyclomatic complexity
indicates worse code quality.

Table 5. Cyclomatic Complexity (Java|Python|C++): Generative AI vs. human.

Easy Medium Hard
#1 #2 #3 #4 #5 #6

J | P | C J | P | C J | P | C J | P | C J | P | C J | P | C

ChatGPT (GPT-3.5) —| — | 4 —| 3| 3 —| — |— —|—|— —|—|— —| 4|—
Bing AI (GPT-4.0) —| 6 | 6 3| 3| 3 —| 3| 3 —|—|— —|—|— —| — |—
GH Copilot (GPT-3.0) 7 | — | 4 3| 3| 3 3| — | 3 9|—| 4 —|—|— —| — |—
StarCoder —| — |— 3|—|— —| — |— —|—|— —|—|— —| — |—
CodeWhisperer —| — |— —|—|— —| — |— —|—|— —|—|— —| — |—
Code Llama (Llama 2) —| — |— 3| 3| 3 3| — |— —|—|— —|—|— —| — |—
InstructCodeT5+ —| — |— —| 3|— —| — |— —|—|— —|—|— —| — |—

human 6| 4| 4 3| 3| 3 4| 5| 4 5| 5| 5 18|18|18 6| 6| 6

best AI vs. human (∆ in %) −14|−33| 0 0| 0| 0 +33|+67|+33 −44|—|+25 —|—|— —|+50|—

Out of the 26 correct program codes, in seven cases (27%) a generative AI was able
to solve the coding problem with program code that has less cyclomatic complexity than
human. Only four AI-generated program codes (15%) were outperformed by human in this
evaluation metric. Fifteen program codes (58%) contain the same cyclomatic complexity as
human. GH Copilot performed better than the other generative AIs being able to generate
three program codes with less cyclomatic complexity than human.

In the medium task#3, where only Bing AI produced correct program code in Python (P),
Bing AI was even able to solve the problem with a cyclomatic complexity of 3, which is 67%
less than human. ChatGPT generated code with 50% less cyclomatic complexity to solve task#6
in Python (P). GH Copilot and Code Llama produced code with 33% less cyclomatic complexity
to solve task#3 in Java (J). Bing AI and GH Copilot also generated code with 33% lower
cyclomatic complexity to solve task#3 in C++ (C). Moreover, 25% less cyclomatic complexity is
in the C++ code (C) for task#4.

Algorithms 2024, 17, 62 12 of 19

4.4. Time Complexity

Table 6 illustrates the time complexity in the 26 correct program codes plus the time
complexity in our human-written reference program codes (human). The time complexity
quantifies the upper bound of time needed by an algorithm as a function of the input [56]
as described in Section 3.3.3. The lower the order of the function, the better the complexity.
The cross-column entries mean that the value is the same in all cross-columns.

Table 6. Time Complexity (Java|Python|C++): Generative AI vs. human.

Easy Medium Hard
#1 #2 #3 #4 #5 #6

J | P |C J | P | C J | P | C J | P| C J | P | C J | P | C

ChatGPT (GPT-3.5) — | — |n —| n²|n² — | — | — —|—|— —|—|— —|nkk|—
Bing AI (GPT-4.0) — | nlogn |n²k n²| n²|n² — | n² | n² —|—|— —|—|— —| — |—
GH Copilot (GPT-3.0) n²m | — |nk n²| n²|n² n² | — | n² n|—| n —|—|— —| — |—
StarCoder — | — |— n²|—|— — | — | — —|—|— —|—|— —| — |—
CodeWhisperer — | — |— —|—|— — | — | — —|—|— —|—|— —| — |—
Code Llama (Llama 2) — | — |— n²| n²|n² n² | — | — —|—|— —|—|— —| — |—
InstructCodeT5+ — | — |— —| n²|— — | — | — —|—|— —|—|— —| — |—

human nm | n | n n²| n²| n logn|logn|nlogn n| n| n nlogn nlogn
+nlogn| | +mlog
+d | | (logm)

best AI vs. human (h) AI | h | — —|—| h h | h | h —| h|— h | h | h h | h | h

Out of the 26 correct program codes, in one case (4%) (AI) a generative AI was able
to solve the coding problem with code that has less time complexity than human. Thir-
teen AI-generated program codes (50%) were outperformed by human in this evaluation
metric. Twelve program codes (46%) contain the same time complexity as human. GH Copilot
performed better than the other generative AIs being able to generate one program code
with lower time complexity than human and four program codes with equal time complexity.
ChatGPT, Bing AI, and Code Llama produced program code with the same time complexity as
human in two program codes each.

4.5. Space Complexity

Table 7 illustrates the space complexity in the 26 correct program codes plus the space
complexity in our human-written reference program codes (human). Similar to the time
complexity, the space complexity quantifies the upper bound of space needed by an algorithm
as a function of the input [57] as described in Section 3.3.3. Analogous to the time complexity,
the lower the order of the function, the better the complexity. The cross-column entries also
mean that the value is the same in all cross-columns.

Out of the 26 correct program codes, in seven cases (27%) (AI) a generative AI was
able to solve the coding problem with code that has less space complexity than human.
One AI-generated program code (4%) was outperformed by human in this evaluation metric.
Eighteen program codes (69%) contain the same space complexity as human. This shows that
the generative AIs perform significantly better in terms of space complexity compared to time
complexity. Again, GH Copilot outperformed the other generative AIs being able to generate
three program codes with lower space complexity than human and five program codes with
equal space complexity. Bing AI generated program code with the same space complexity as
human in five program codes, ChatGPT and Code LLama in three program codes each, as
well as StarCoder and InstructCodeT5+ in one program code each.

4.6. Runtime

Table 8 demonstrates the runtime of the 26 correct program codes plus the runtime of
our human-written reference program codes (human) on LeetCode in milliseconds. The
lower the runtime of a program code, the better. The runtime of the six correct program
codes labeled with “*” could not be measured since their execution resulted in a Time Limit
Exceeded error when executed on LeetCode.

Algorithms 2024, 17, 62 13 of 19

Table 7. Space Complexity (Java|Python|C++): Generative AI vs. human.

Easy Medium Hard
#1 #2 #3 #4 #5 #6

J | P | C J | P | C J | P | C J | P | C J | P | C J | P | C

ChatGPT (GPT-3.5) —|—| 1 —| n| n —|—|— —|—|— —|—|— —| k |—
Bing AI (GPT-4.0) —| n| 1 n| n| n —| 1| 1 —|—|— —|—|— —|—|—
GH Copilot (GPT-3.0) 1|—| k n| n| n 1|—| 1 1|—| 1 —|—|— —|—|—
StarCoder —|—|— n|—|— —|—|— —|—|— —|—|— —|—|—
CodeWhisperer —|—|— —|—|— —|—|— —|—|— —|—|— —|—|—
Code Llama (Llama 2) —|—|— n| n| n 1|—|— —|—|— —|—|— —|—|—
InstructCodeT5+ —|—|— —| n|— —|—|— —|—|— —|—|— —|—|—

human n| n| 1 n| n| n n | n | n 1| 1| 1 n + m n | n | n

best AI vs. human (h) AI|—|— —|—|— AI|AI|AI —|—|— h | h | h h |AI| h

Table 8. Runtime (Java|Python|C++): Generative AI vs. human.

Easy Medium Hard
#1 #2 #3 #4 #5 #6

J | P | C J | P | C J | P | C J | P | C J | P | C J | P | C

ChatGPT (GPT-3.5) —| — | 16 —| 37| 4 — | — | — —| — |— — |—|— —| ∗ |—
Bing AI (GPT-4.0) —|126| 42 3| 49| 8 — | ∗ | ∗ —| — |— — |—|— —| — |—
GH Copilot (GPT-3.0) 4| — | 23 3| 47| 3 ∗ | — | ∗ 5| — |209 — |—|— —| — |—
StarCoder —| — | — 10| — | — — | — | — —| — |— — |—|— —| — |—
CodeWhisperer —| — | — —| — | — — | — | — —| — |— — |—|— —| — |—
Code Llama (Llama 2) —| — | — 3| 55| 13 ∗ | — | — —| — |— — |—|— —| — |—
InstructCodeT5+ —| — | — —| 33| — — | — | — — | — |— — |—|— —| — |—

human 9|107| 11 3| 51| 0 107| 1 k|213 2|365|234 390|7 k|718 46| 1 k|458

best AI vs. human (∆ in %) +125|−15|−31 0|+55|−100 — | — | — −60| — |+12 — |—|— —|−100|—

* correct, but Time Limit Exceeded on LeetCode.

Out of the 26 correct program codes, in six cases (23%) a generative AI was able to solve
the coding problem with code that executes with less runtime than human. Seventeen AI-
generated program codes (65%) were outperformed by human in this evaluation metric.
Three program codes (12%) took the same runtime as human. GH Copilot performed better
than the other generative AIs being able to generate two program codes with less runtime
than human and one program code with the same runtime.

In easy task#1, where only GH Copilot produced the correct program code in Java (J),
GH Copilot was even able to solve the problem in a runtime of 4 milliseconds, which is 125%
less than human. InstructCodeT5+ generated code that took 55% less runtime to solve task#2
in Python (P). GH Copilot produced code that took 12% less runtime to solve task#4 in C++
(C). Bing AI, GH Copilot and Code Llama generated code that took the same runtime as human
to solve task#2 in Java (J).

4.7. Memory Usage

Table 9 lists the memory usage of the 26 correct program codes plus the memory usage
of our human-written reference program codes (human) on LeetCode in megabytes. The
lower the memory usage of a program code, the better. The memory usage of the six correct
program codes labeled with “*” could not be measured since their execution resulted in a
Time Limit Exceeded error when executed on LeetCode.

Out of the 26 correct program codes, in five cases (19%) a generative AI was able
to solve the coding problem with code that executes with less memory usage than human.
Eleven AI-generated program codes (42%) were outperformed by human in this evaluation
metric. Ten program codes (38%) took the same memory usage as human. GH Copilot
performed better than the other generative AIs being able to generate one program code
with less memory usage than human and five program codes with the same memory usage,
closely followed by Bing AI which was able to generate one program code with less memory
usage than human and three program codes with the same memory usage. However, in the
AI-generated program codes, which have lower memory usage, the memory usage of less than
1% relative is not significantly lower than in human.

Algorithms 2024, 17, 62 14 of 19

Table 9. Memory Usage (Java|Python|C++): Generative AI vs. human.

Easy Medium Hard
#1 #2 #3 #4 #5 #6

J | P | C J | P | C J | P | C J | P | C J | P | C J | P | C

ChatGPT (GPT-3.5) —| — | 68 —| 16 | 7 —|—|— —|—|— —|—|— —| ∗ |—
Bing AI (GPT-4.0) —| 16 | 68 44| 16 | 7 —| ∗ | ∗ —|—|— —|—|— —|—|—
GH Copilot (GPT-3.0) 44| — | 69 44| 16 | 6 ∗ |—| ∗ 45|—|116 —|—|— —|—|—
StarCoder —| — | — 45| — |— —|—|— —|—|— —|—|— —|—|—
CodeWhisperer —| — | — — | — |— —|—|— —|—|— —|—|— —|—|—
Code Llama (Llama 2) —| — | — 44| 16 | 7 ∗ |—|— —|—|— —|—|— —|—|—
InstructCodeT5+ —| — | — — | 16 |— —|—|— —|—|— —|—|— —|—|—

human 44| 16 | 68 44| 17 | 6 57|32|118 45|20|116 57|39|230 89|53|180

best AI vs. human (∆ in %) 0 | 0 | 0 0| +1| 0 —|—|— 0|—| 0 —|—|— —|—|—
* correct, but Time Limit Exceeded on LeetCode.

4.8. Maintainability Index

Table 10 demonstrates the maintainability index of the 26 correct program codes plus the
maintainability index of our human-written reference program codes (human). The higher
the maintainability index of a program code, the better.

Table 10. Maintainability Index (Java|Python|C++): Generative AI vs. human.

Easy Medium Hard
#1 #2 #3 #4 #5 #6

J | P | C J | P | C J | P | C J | P | C J | P | C J | P | C

ChatGPT (GPT-3.5) —|—|53 —|64|60 —| — |— —|—|— —|—|— —| 59 |—
Bing AI (GPT-4.0) —|56|52 59|64|60 —| 64|60 —|—|— —|—|— —| — |—
GH Copilot (GPT-3.0) 52|—|51 59|63|57 59| — |60 41|—|51 —|—|— —| — |—
StarCoder —|—|— 58|—|— —| — |— —|—|— —|—|— —| — |—
CodeWhisperer —|—|— —|—|— —| — |— —|—|— —|—|— —| — |—
Code Llama (Llama 2) —|—|— 58|64|59 59| — |— —|—|— —|—|— —| — |—
InstructCodeT5+ —|—|— —|64|— —| — |— —|—|— —|—|— —| — |—

human 51|62|57 56|63|62 56| 56 |57 59|60|59 33|39|34 50| 53 |48

best AI vs. human (∆ in %) +2|−10|−7 +5|+2|−3 +5|+14|+5 −30|—|−14 —|—|— —|+11|—

Out of the 26 correct program codes, in 13 cases (50%) a generative AI was able
to produce code with a higher maintainability index than human. Thirteen AI-generated
program codes (50%) were exceeded by human in this evaluation metric. GH Copilot and
Bing AI performed better than the other generative AIs being able to generate four program
codes (15%) with a higher maintainability index than human. ChatGPT and Code Llama
produced two program codes (8%) with a higher maintainability index than human.

4.9. Potential of Incorrect AI-Generated Program Code

After analyzing the 26 correct program codes, our goal was to evaluate which of the
96 incorrect and the four not executable program codes have the potential to be easily modified
manually and then used quickly and without much effort to solve the corresponding coding
problems. Consequently, we first had programmers determine which of the 96 incorrect
program codes have the potential to be corrected manually due to their maintainability and
proximity to the correct program code. This resulted in 24 potentially correct program codes,
for which we further estimated the time to correct (TTC) the incorrect program code and
retrieve the correct program code.

In order to have a fair comparison between the program codes that are not dependent
on the experience of any programmers, we report the TTC using Halstead’s estimates of
the implementation time, which is only dependent on the operators and operands in the
program code—not on the expertise of a programmer. Consequently, to estimate the TTC
in seconds, we developed the following formula:

Algorithms 2024, 17, 62 15 of 19

TTC = |Tcorrect − Tincorrect|+ Tmaintain

where Tcorrect is Halstead’s implementation time ([58], pp. 57–59) of the correct program code
in seconds and Tincorrect is Halstead’s implementation time ([58], pp. 57–59) of the incorrect
program code in seconds. The use of the absolute difference is necessary because Tcorrect can
have a lower value than Tincorrect if parts of the program code need to be removed in order
to obtain the correct program code. As Healstead’s implementation time only considers the
time for the effort of implementing and understanding the program based on the operators
and operands but not time to maintain the code—which is necessary when correcting
program code—we additionally computed the time to maintain the program with the help
of the maintainability index MI. The MI is based on lines of code, cyclomatic complexity and
Halstead’s volume as described in Section 3.3.5 and shown in Table 2. Tmaintain in seconds is
estimated with the following formula:

Tmaintain =
Tincorrect
MI/100

− Tincorrect

where MI is the maintainability index between 0 and 100, based on [60]. To obtain MI in a
range of 0 to 1, we divided it by 100. This way, Tincorrect is extended with a factor that is
higher for less maintainable program code.

Table 11 shows the MI, Tincorrect, Tcorrect, TTC as well as the relative difference between
Tcorrect and TTC (∆ Tcorrect–TTC (%)) of our 24 potentially correct program codes and their
corresponding correct program codes. We observe that for 11 program codes TTC < Tcorrect,
i.e., the time to correct (TTC) the incorrect program code takes less time than the implementation
time of the correct program code Tcorrect. With these 11 codes, between 8.85% and even 71.31%
of time can be saved if the AI-generated program code is corrected and not programmed
from scratch.

Table 11. Potential of Incorrect AI-Generated Program Code.

Estimated Time To
Program in Seconds

Lang. MI Tincorrect | Tcorrect TTC ∆ Tcorrect–TTC (%)

StarCoder 1 C 49.77 1001 | 1225 1234 −0.73
CodeWhisperer 1 J 57.55 713 | 1167 1693 −31.07
StarCoder 1 J 57.78 827 | 1464 1241 +17.97
ChatGPT (GPT-3.5) 3 J 49.73 1570 | 2984 3001 −0.57
StarCoder 3 P 57.41 1045 | 450 1370 −67.15
CodeWhisperer 2 C 58.46 355 | 361 258 +39.92
ChatGPT (GPT-3.5) 3 P 60.48 303 | 865 760 +13.82
ChatGPT (GPT-3.5) 2 J 52.97 656 | 500 738 –32.25
Code Llama (Llama 2) 1 P 64.87 492 | 406 352 +15.34
Bing AI Chat (GPT-4.0) 3 J 49.05 1910 | 1846 2048 −9.86
InstructCodeT5+ 3 C 56.69 757 | 829 650 +27.54
Code Llama (Llama 2) 4 J 53.78 538 | 574 498 +15.26
InstructCodeT5+ 2 C 64.83 187 | 356 279 +27.60
StarCoder 2 P 63.38 254 | 209 192 +8.85
ChatGPT (GPT-3.5) 1 P 56.59 697 | 577 655 −11.91
CodeWhisperer 2 J 57.89 459 | 355 438 −18.95
Code Llama (Llama 2) 3 P 63.98 364 | 275 294 −6.46
StarCoder 2 C 57.45 458 | 395 402 −1.74
InstructCodeT5+ 2 J 56.99 519 | 365 546 −33.15
StarCoder 1 P 57.89 682 | 628 550 +14.18
Bing AI Chat (GPT-4.0) 4 J 49.22 648 | 552 765 −27.84
Bing AI Chat (GPT-4.0) 4 P 57.16 450 | 436 454 −3.96
CodeWhisperer 2 P 63.55 204 | 209 122 +71.31
CodeWhisperer 3 J 56.93 605 | 752 605 +24.30

Algorithms 2024, 17, 62 16 of 19

5. Conclusions and Future Work

The fast development of AI raises questions about the impact on developers and
development tools since with the help of generative AI, program code can be generated
automatically. Consequently, the goal of our paper was to answer the question: How
efficient is the program code in terms of computational resources? How understandable
and maintainable is the program code for humans? To answer those questions, we analyzed
the computational resources of AI- and human-generated program code using metrics
such as time and space complexity as well as runtime and memory usage. Additionally, we
evaluated the maintainability using metrics such as lines of code, cyclomatic complexity, Halstead
complexity and maintainability index.

In our experiments, we utilized generative AIs, including ChatGPT (GPT-3.5), Bing AI
Chat (GPT-4.0), GH Copilot (GPT-3.0), StarCoder (StarCoderBase), Code Llama (Llama 2),
CodeWhisperer, and InstructCodeT5+ (CodeT5+) to generate program code in Java, Python,
and C++. The generated program code aimed to solve problems specified on the coding
platform leetcode.com. We chose six LeetCode problems with varying difficulty, resulting
in the generation of 18 program codes. GH Copilot outperformed others by solving 9 out
of 18 coding problems (50.0%), while CodeWhisperer failed to solve any coding problem.
BingAI Chat provided correct program code for seven coding problems (38.9%), while
ChatGPT and Code Llama were successful in four coding problems (22.2%). StarCoder
and InstructCodeT5+ each solved only one coding problem (5.6%). GH Copilot excelled
in addressing our Java and C++ coding problems, while BingAI demonstrated superior
performance in resolving Python coding problems. Surprisingly, while ChatGPT produced
only four correct program codes, it stood out as the sole model capable of delivering a correct
solution to a coding problem with a difficulty level of hard. This unexpected performance
should be further investigated, for example by assessing pass@k or further coding problems
with difficulty level hard.

Figure 4 illustrates in a tree structure an overview of all 122 AI-generated executable
(96.8%), 4 not executable (3.2%), 26 correct (20.6%), 96 incorrect (76.2%) and 76 not usable
(57.9% + 2.4%) program codes as well as the 24 program codes that can be made correct with
minimal modifications (18.3% + 0.8%).

Figure 4. Distribution of AI-generated Codes.

To summarize: We have shown that different state-of-the-art generative AIs perform
differently in program code generation depending on the programming language and
coding problem. Our experiments demonstrated that we still seem to be a long way from

Algorithms 2024, 17, 62 17 of 19

a generative AI that delivers correct, efficient and maintainable program code in every case.
However, we have learned that AI-generated program code can have the potential to
speed up programming, even if the program code is incorrect because often only minor
modifications are needed to make it correct. For a quick and detailed evaluation of the
generated program codes, we used different evaluation metrics and introduced TTC, an
estimation of the time to correct incorrect program code.

In future work, we plan to analyze the quality of AI-generated program code in other
programming languages. For that, we will expand our AI/Human-Generated Program Code
Dataset to cover further programming languages and coding problems. To have a fair
comparison among the generative AIs, we applied a prompt engineering strategy that is
applicable to a wide range of generative AIs. However, in future work, we plan to investi-
gate the optimal prompting approach for each generative AI individually. Furthermore,
we are interested in investigating whether the interaction of different chatbots leveraging
different generative AIs helps to improve the final program code quality. For example, as in
a human programming team, the generative AIs could take on different roles, e.g., a chatbot
that develops the software architecture, a chatbot that is responsible for testing, a chatbot
that generates the code or different all-rounders that interact with each other. Since many
related works report pass@k, we could also have the program codes produced several times
for comparability and report pass@k. Since the development of generative AIs is rapid,
it makes sense to apply our experiments to new generative AIs soon. In this work, we
estimated the time for writing and correcting program code based on Halstead metrics. But a
comparison with the real time required by a representative set of programmers may also be
part of future work. We have provided insights into how state-of-the-art generative AI deals
with specific coding problems. Moving forward, it would be beneficial to comprehensively
investigate how generative AIs handle the generation of more complex programs or even
complete software solutions. This could include an analysis of their ability not only to
generate intricate algorithms, but also to manage large codebases, use frameworks and
libraries in reasonable contexts, and take best practices of software engineering into account.
Additionally, it would be interesting to explore how generative AIs could be integrated into
existing software development workflows, and whether they could contribute to increased
efficiency and productivity.

Author Contributions: Conceptualization, methodology, software, validation, resources, writing, vi-
sualization: B.I. and T.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: To contribute to the analysis of generative AIs for program code
generation, we share our code and our corpus with the research community: https://github.com/
Back3474/AI-Human-Generated-Program-Code-Dataset, accessed on 29 January 2024.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Pelau, C.; Dabija, D.C.; Ene, I. What Makes an AI Device Human-like? The Role of Interaction Quality, Empathy and Perceived

Psychological Anthropomorphic Characteristics in the Acceptance of Artificial Intelligence in the Service Industry. Comput. Hum.
Behav. 2021, 122, 106855. [CrossRef]

2. Dibitonto, M.; Leszczynska, K.; Tazzi, F.; Medaglia, C.M. Chatbot in a Campus Environment: Design of LiSA, a Virtual Assistant
to Help Students in Their University Life. In Proceedings of the Human-Computer Interaction; Interaction Technologies; Kurosu, M.,
Ed.; Springer: Cham, Switzerland, 2018; pp. 103–116.

3. Arteaga, D.; Arenas, J.J.; Paz, F.; Tupia, M.; Bruzza, M. Design of Information System Architecture for the Recommendation of
Tourist Sites in the City of Manta, Ecuador through a Chatbot. In Proceedings of the 2019 14th Iberian Conference on Information
Systems and Technologies (CISTI), Coimbra, Portugal, 19–22 June 2019; pp. 1–6.

4. Falala-Séchet, C.; Antoine, L.; Thiriez, I.; Bungener, C. Owlie: A Chatbot that Provides Emotional Support for Coping with
Psychological Difficulties. In Proceedings of the 19th ACM International Conference on Intelligent Virtual Agents, Paris, France,
2–5 July 2019.

5. Adiwardana, D.; Luong, M.T.; So, D.R.; Hall, J.; Fiedel, N.; Thoppilan, R.; Yang, Z.; Kulshreshtha, A.; Nemade, G.; Lu, Y.; et al.
Towards a Human-like Open-Domain Chatbot. arXiv 2020, arXiv:2001.09977.

https://github.com/Back3474/AI-Human-Generated-Program-Code-Dataset
https://github.com/Back3474/AI-Human-Generated-Program-Code-Dataset
http://doi.org/10.1016/j.chb.2021.106855

Algorithms 2024, 17, 62 18 of 19

6. Schaaff, K.; Reinig, C.; Schlippe, T. Exploring ChatGPT’s Empathic Abilities. arXiv 2023, arXiv:2308.03527.
7. Taecharungroj, V. “What Can ChatGPT Do?” Analyzing Early Reactions to the Innovative AI Chatbot on Twitter. Big Data Cogn.

Comput. 2023, 7, 35. [CrossRef]
8. Loh, E. ChatGPT and Generative AI Chatbots: Challenges and Opportunities for Science, Medicine and Medical Leaders. BMJ

Lead. 2023. [CrossRef]
9. Mollick, E. ChatGPT Is a Tipping Point for AI. Harvard Business Review, 14 December 2022.
10. Alizadehsani, Z.; Gomez, E.G.; Ghaemi, H.; González, S.R.; Jordan, J.; Fernández, A.; Pérez-Lancho, B. Modern Integrated

Development Environment (IDEs). In Proceedings of the Sustainable Smart Cities and Territories, Doha, Qatar, 27–29 April 2021;
Corchado, J.M., Trabelsi, S., Eds.; Springer: Cham, Switzerland, 2022; pp. 274–288.

11. Kaur, A.; Jadhav, A.; Kaur, M.; Akter, F. Evolution of Software Development Effort and Cost Estimation Techniques: Five Decades
Study Using Automated Text Mining Approach. Math. Probl. Eng. 2022, 2022, 5782587. [CrossRef]

12. Bluemke, I.; Malanowska, A. Software Testing Effort Estimation and Related Problems: A Systematic Literature Review. ACM
Comput. Surv. 2021, 54, 1–38. [CrossRef]

13. Butt, S.A.; Misra, S.; Piñeres-Espitia, G.; Ariza-Colpas, P.; Sharma, M.M. A Cost Estimating Method for Agile Software
Development. In Proceedings of the Computational Science and Its Applications— ICCSA 2021, Cagliari, Italy, 13–16 September
2021; Gervasi, O., Murgante, B., Misra, S., Garau, C., Blečić, I., Taniar, D., Apduhan, B.O., Rocha, A.M.A.C., Tarantino, E., Torre,
C.M., Eds.; Springer: Cham, Switzerland, 2021; pp. 231–245.

14. Zhang, B.; Liang, P.; Zhou, X.; Ahmad, A.; Waseem, M. Practices and Challenges of Using GitHub Copilot: An Empirical Study.
In Proceedings of the International Conferences on Software Engineering and Knowledge Engineering, San Francisco, CA, USA,
1–10 July 2023; KSIR Virtual Conference Center, USA, 2023. [CrossRef]

15. Liu, J.; Xia, C.S.; Wang, Y.; Zhang, L. Is Your Code Generated by ChatGPT Really Correct? Rigorous Evaluation of Large Language
Models for Code Generation. arXiv 2023, arXiv:2305.01210v3.

16. Chen, M.; Tworek, J.; Jun, H.; Yuan, Q.; de Oliveira Pinto, H.P.; Kaplan, J.; Edwards, H.; Burda, Y.; Joseph, N.; Brockman, G.; et al.
Evaluating Large Language Models Trained on Code. arXiv 2021, arXiv:2107.03374.

17. Yetiştiren, B.; Özsoy, I.; Ayerdem, M.; Tüzün, E. Evaluating the Code Quality of AI-Assisted Code Generation Tools: An Empirical
Study on GitHub Copilot, Amazon CodeWhisperer, and ChatGPT. arXiv 2023, arXiv:2304.10778.

18. Wang, B.; Komatsuzaki, A. GPT-J-6B: A 6 Billion Parameter Autoregressive Language Model. 2021. Available online: https:
//github.com/kingoflolz/mesh-transformer-jax/?tab=readme-ov-file#gpt-j-6b (accessed on 29 January 2024).

19. Yetistiren, B.; Ozsoy, I.; Tuzun, E. Assessing the Quality of GitHub Copilot’s Code Generation. In Proceedings of the 18th
International Conference on Predictive Models and Data Analytics in Software Engineering, Singapore, 17 November 2022.

20. OpenAI. GPT-4 Technical Report. arXiv 2023, arXiv:2303.08774.
21. Phind. 2023. Available online: https://huggingface.co/Phind/Phind-CodeLlama-34B-v2 (accessed on 12 November 2023).
22. Luo, Z.; Xu, C.; Zhao, P.; Sun, Q.; Geng, X.; Hu, W.; Tao, C.; Ma, J.; Lin, Q.; Jiang, D. WizardCoder: Empowering Code Large

Language Models with Evol-Instruct. arXiv 2023, arXiv:2306.08568.
23. OpenAI. Introducing ChatGPT. 2022. Available online: https://openai.com/blog/chatgpt (accessed on 30 September 2023).
24. Rozière, B.; Gehring, J.; Gloeckle, F.; Sootla, S.; Gat, I.; Tan, X.E.; Adi, Y.; Liu, J.; Remez, T.; Rapin, J.; et al. Code Llama: Open

Foundation Models for Code. arXiv 2023, arXiv:2308.12950.
25. Li, R.; Ben Allal, L.; Zi, Y.; Muennighoff, N.; Kocetkov, D.; Mou, C.; Marone, M.; Akiki, C.; Li, J.; Chim, J.; et al. StarCoder: May

the Source be with You! arXiv 2023, arXiv:2305.06161.
26. Nijkamp, E.; Pang, B.; Hayashi, H.; Tu, L.; Wang, H.; Zhou, Y.; Savarese, S.; Xiong, C. CodeGen: An Open Large Language Model

for Code with Multi-Turn Program Synthesis. arXiv 2023, arXiv:2203.13474.
27. Wang, Y.; Le, H.; Gotmare, A.D.; Bui, N.D.; Li, J.; Hoi, S.C. CodeT5+: Open Code Large Language Models for Code Understanding

and Generation. arXiv 2023, arXiv:2305.07922. [CrossRef]
28. Jiang, A.Q.; Sablayrolles, A.; Mensch, A.; Bamford, C.; Chaplot, D.S.; de las Casas, D.; Bressand, F.; Lengyel, G.; Lample, G.;

Saulnier, L.; et al. Mistral 7B. arXiv 2023, arXiv:2310.06825.
29. Nijkamp, E.; Hayashi, H.; Xiong, C.; Savarese, S.; Zhou, Y. CodeGen2: Lessons for Training LLMs on Programming and Natural

Languages. arXiv 2023, arXiv:2305.02309.
30. Chiang, W.L.; Li, Z.; Lin, Z.; Sheng, Y.; Wu, Z.; Zhang, H.; Zheng, L.; Zhuang, S.; Zhuang, Y.; Gonzalez, J.E.; et al. Vicuna: An

Open-Source Chatbot Impressing GPT-4 with 90%* ChatGPT Quality. 2023. Available online: https://lmsys.org/blog/2023-03-
30-vicuna (accessed on 29 January 2024).

31. Allal, L.B.; Li, R.; Kocetkov, D.; Mou, C.; Akiki, C.; Ferrandis, C.M.; Muennighoff, N.; Mishra, M.; Gu, A.; Dey, M.; et al.
SantaCoder: Don’t reach for the stars! arXiv 2023, arXiv:2301.03988

32. Fried, D.; Aghajanyan, A.; Lin, J.; Wang, S.; Wallace, E.; Shi, F.; Zhong, R.; tau Yih, W.; Zettlemoyer, L.; Lewis, M. InCoder: A
Generative Model for Code Infilling and Synthesis. arXiv 2023, arXiv:2204.05999.

33. Wang, B. Mesh-Transformer-JAX: Model-Parallel Implementation of Transformer Language Model with JAX. 2021. Available
online: https://github.com/kingoflolz/mesh-transformer-jax (accessed on 29 January 2024).

34. Black, S.; Gao, L.; Wang, P.; Leahy, C.; Biderman, S.R. GPT-Neo: Large Scale Autoregressive Language Modeling with Mesh-Tensorflow;
Zenodo; 2021. [CrossRef]

http://dx.doi.org/10.3390/bdcc7010035
http://dx.doi.org/10.1136/leader-2023-000797
http://dx.doi.org/10.1155/2022/5782587
http://dx.doi.org/10.1145/3442694
http://dx.doi.org/10.18293/seke2023-077
https://github.com/kingoflolz/mesh-transformer-jax/?tab=readme-ov-file#gpt-j-6b
https://github.com/kingoflolz/mesh-transformer-jax/?tab=readme-ov-file#gpt-j-6b
https://huggingface.co/Phind/Phind-CodeLlama-34B-v2
https://openai.com/blog/chatgpt
https://doi.org/10.48550/arXiv.2305.07922
https://lmsys.org/blog/2023-03-30-vicuna
https://lmsys.org/blog/2023-03-30-vicuna
https://github.com/kingoflolz/mesh-transformer-jax
http://dx.doi.org/10.5281/ZENODO.5297715

Algorithms 2024, 17, 62 19 of 19

35. Xu, F.F.; Alon, U.; Neubig, G.; Hellendoorn, V.J. A Systematic Evaluation of Large Language Models of Code. In Proceedings of
the 6th ACM SIGPLAN International Symposium on Machine Programming (MAPS 2022), New York, NY, USA, 13 June 2022;
pp. 1–10. [CrossRef]

36. Stability-AI. StableLM: Stability AI Language Models. 2023. Available online: https://github.com/Stability-AI/StableLM
(accessed on 12 November 2023).

37. Li, Y.; Choi, D.; Chung, J.; Kushman, N.; Schrittwieser, J.; Leblond, R.; Eccles, T.; Keeling, J.; Gimeno, F.; Lago, A.D.; et al.
Competition-Level Code Generation with AlphaCode. Science 2022, 378, 1092–1097. [CrossRef]

38. Nguyen, N.; Nadi, S. An Empirical Evaluation of GitHub Copilot’s Code Suggestions. In Proceedings of the 2022 IEEE/ACM
19th International Conference on Mining Software Repositories (MSR), Pittsburgh, PA, USA, 23–24 May 2022; pp. 1–5. [CrossRef]

39. OpenGenus IQ. GPT-3.5 Model Architecture. 2023. Available online: https://iq.opengenus.org/gpt-3-5-model/ (accessed on 30
September 2023).

40. Choudhry, S. Languages Supported by ChatGPT and How to Use It in Other Languages. 2023. Available online: https:
//www.mlyearning.org/languages-supported-by-chatgpt/ (accessed on 30 September 2023).

41. Patel, D.; Wong, G. GPT-4 Architecture, Infrastructure, Training Dataset, Costs, Vision, MoE. 2023. Available online: https:
//github.com/llv22/gpt4_essay/blob/master/GPT-4-4.JPG (accessed on 30 September 2023).

42. Yalalov, D.; Myakin, D. GPT-4’s Leaked Details Shed Light on its Massive Scale and Impressive Architecture. Metaverse Post, 11
July 2023. Available online: https://mpost.io/gpt-4s-leaked-details-shed-light-on-its-massive-scale-and-impressive-architecture
(accessed 29 January 2024).

43. OpenAI. GPT-4. OpenAI Research. 2023. Available online: https://openai.com/gpt-4 (accessed 29 January 2024).
44. GitHub. GitHub Copilot. 2021. Available online: https://github.com/features/copilot/ (accessed on 2 October 2023).
45. Zaremba, W.; Brockman, G. OpenAI Codex. 2021. Available online: https://openai.com/blog/openai-codex/ (accessed on 2

October 2023).
46. Brown, T.B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al.

Language Models are Few-Shot Learners. arXiv 2020, arXiv:2005.14165.
47. Hugging Face. llm-Vscode. 2023. Available online: https://marketplace.visualstudio.com/items?itemName=HuggingFace.

huggingface-vscode (accessed on 2 October 2023).
48. Phillips, J. StarCoder. 2023. Available online: https://plugins.jetbrains.com/plugin/22090-starcoder/versions (accessed on 2

October 2023).
49. Amazon Web Services, Inc. Amazon CodeWhisperer FAQs. 2023. Available online: https://aws.amazon.com/de/

codewhisperer/faqs/ (accessed on 3 October 2023).
50. Amazon Web Services, Inc. CodeWhisperer User Guide. 2023. Available online: https://docs.aws.amazon.com/pdfs/

codewhisperer/latest/userguide/user-guide.pdf (accessed on 3 October 2023).
51. Hugging Face. Dataset Card for CodeSearchNet Corpus. 2023. Available online: https://huggingface.co/datasets/code_search_

net (accessed on 3 October 2023).
52. Hugging Face. GitHub Code Dataset. 2023. Available online: https://huggingface.co/datasets/codeparrot/github-code

(accessed on 3 October 2023).
53. Chaudhary, S. Code Alpaca: An Instruction-following LLaMA Model Trained on Code Generation Instructions. 2023. Available

online: https://github.com/sahil280114/codealpaca (accessed on 3 October 2023).
54. LeetCode. LeetCode QuickStart Guide. 2023. Available online: https://support.leetcode.com/hc/en-us/articles/360012067053

-LeetCode-QuickStart-Guide (accessed on 10 October 2023).
55. McCabe, T. A Complexity Measure. IEEE Trans. Softw. Eng. 1976, SE-2, 308–320. [CrossRef]
56. Cormen, T.; Leiserson, C.; Rivest, R.; Stein, C. Introduction to Algorithms, 4th ed.; MIT Press: Cambridge, MA, USA, 2022.
57. Baeldung. Understanding Space Complexity. Baeldung Comput. Sci. 2021. Available online: https://www.baeldung.com/cs/

time-vs-space-complexity (accessed on 29 January 2024).
58. Halstead, M.H. Elements of Software Science; Elsevier: Amsterdam, The Netherlands, 1977; pp. xiv, 127.
59. Heričko, T.; Šumak, B. Exploring Maintainability Index Variants for Software Maintainability Measurement in Object-Oriented

Systems. Appl. Sci. 2023, 13, 2972. [CrossRef]
60. Microsoft. Visual Studio—Maintainability Index. 2021. Available online: https://docs.microsoft.com/en-us/visualstudio/code-

quality/code-metrics-maintainability-index-range-and-meaning (accessed on 27 November 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/3520312.3534862
https://github.com/Stability-AI/StableLM
http://dx.doi.org/10.1126/science.abq1158
http://doi.org/10.1145/3524842.3528470
https://iq.opengenus.org/gpt-3-5-model/
https://www.mlyearning.org/languages-supported-by-chatgpt/
https://www.mlyearning.org/languages-supported-by-chatgpt/
https://github.com/llv22/gpt4_essay/blob/master/GPT-4-4.JPG
https://github.com/llv22/gpt4_essay/blob/master/GPT-4-4.JPG
https://mpost.io/gpt-4s-leaked-details-shed-light-on-its-massive-scale-and-impressive-architecture
https://openai.com/gpt-4
https://github.com/features/copilot/
https://openai.com/blog/openai-codex/
https://marketplace.visualstudio.com/items?itemName=HuggingFace.huggingface-vscode
https://marketplace.visualstudio.com/items?itemName=HuggingFace.huggingface-vscode
https://plugins.jetbrains.com/plugin/22090-starcoder/versions
https://aws.amazon.com/de/codewhisperer/faqs/
https://aws.amazon.com/de/codewhisperer/faqs/
https://docs.aws.amazon.com/pdfs/codewhisperer/latest/userguide/user-guide.pdf
https://docs.aws.amazon.com/pdfs/codewhisperer/latest/userguide/user-guide.pdf
https://huggingface.co/datasets/code_search_net
https://huggingface.co/datasets/code_search_net
https://huggingface.co/datasets/codeparrot/github-code
https://github.com/sahil280114/codealpaca
https://support.leetcode.com/hc/en-us/articles/360012067053-LeetCode-QuickStart-Guide
https://support.leetcode.com/hc/en-us/articles/360012067053-LeetCode-QuickStart-Guide
http://dx.doi.org/10.1109/TSE.1976.233837
https://www.baeldung.com/cs/time-vs-space-complexity
https://www.baeldung.com/cs/time-vs-space-complexity
http://dx.doi.org/10.3390/app13052972
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-maintainability-index-range-and-meaning
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-maintainability-index-range-and-meaning

	Introduction
	Related Work
	Experimental Setup
	Generative AI Models
	ChatGPT Powered by GPT-3.5
	BingAI Chat Powered by GPT-4.0
	GitHub Copilot Powered by GPT-3.0's Fine-Tuned Model Codex
	StarCoder Powered by StarCoderBase
	Code Llama Powered by Llama 2
	CodeWhisperer
	InstructCodeT5+ 16b Powered by CodeT5+

	Our AI/Human-Generated Program Code Dataset
	LeetCode as a Source for Coding Problems
	Selected Coding Problems for Our Evaluation

	Evaluation Metrics
	Lines of Code
	Cyclomatic Complexity
	Time Complexity and Space Complexity
	Halstead Complexity
	Maintainability Index
	Runtime and Memory Usage

	Prompt Engineering

	Experiments and Results
	Correct Solutions
	Lines of Code
	Cyclomatic Complexity
	Time Complexity
	Space Complexity
	Runtime
	Memory Usage
	Maintainability Index
	Potential of Incorrect AI-Generated Program Code

	Conclusions and Future Work
	References

