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Abstract: This paper proposes a new optimization algorithm for backpropagation (BP) neural
networks by fusing integer-order differentiation and fractional-order differentiation, while fractional-
order differentiation has significant advantages in describing complex phenomena with long-term
memory effects and nonlocality, its application in neural networks is often limited by a lack of
physical interpretability and inconsistencies with traditional models. To address these challenges,
we propose a mixed integer-fractional (MIF) gradient descent algorithm for the training of neural
networks. Furthermore, a detailed convergence analysis of the proposed algorithm is provided.
Finally, numerical experiments illustrate that the new gradient descent algorithm not only speeds up
the convergence of the BP neural networks but also increases their classification accuracy.

Keywords: BP neural networks; fractional-order differentiation; integer-order differentiation

1. Introduction

Integer-order differentiation is a powerful tool for solving problems involving rates of
change. Its roots are in Newton and Leibniz’s research and it has evolved into a fundamental
branch of calculus. In addition, it possesses several excellent characteristics including ease
of understanding, reliable numerical stability, and physical solvability, which make it highly
applicable in real-world situations [1].

Meanwhile, fractional-order differentiation is an extended form of integer-order dif-
ferentiation that enables the description of more complex phenomena such as long-term
memory effects and nonlocality [2]. In the 1960s, it was first used to describe how heat
energy moves through materials in the study of heat conduction and diffusion [3]. Over
time, fractional-order differentiation spread to numerous other fields. In recent years, many
researchers have established various physical models via fractional-order differentiation,
leading to high-quality approximate solutions. For example, Matlob et al. [4] delved into the
application of fractional-order differential calculus in modeling viscoelastic systems. Dehes-
tani et al. [5] introduced fractional-order Legendre–Laguerre functions and explored their
applications in solving fractional partial differential equations. Yuxiao et al. [6] discussed
the variable order fractional grey model. Kuang et al. [7] focused on the application of
fractional-order variable-gain supertwisting control to stabilize and control wafer stages in
photolithography systems. Liu et al. [8] presented a two-stage fractional dynamical system
model for microbial batch processes. These researchers have established physical models
that utilize fractional-order differentiation, leading to high-quality approximate solutions.
In addition, many optimal control problems also involve fractional-order differentiation.
For example, Wang, Li, and Liu et al. [9] focused on establishing necessary optimality condi-
tions and exact penalization techniques for constrained fractional optimal control problems.
Bhrawy et al. [10] solved fractional optimal control problems using a Chebyshev–Legendre
operational technique. Saxena et al. [11] presented a control strategy for load frequency
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using a fractional-order controller combined with reduced-order modeling. Mohammadi
et al. [12] used Caputo-Fabrizio fractional modeling for analyzing hearing loss due to the
Mumps virus.

The emergence of neural networks has greatly improved our ability to analyze and
process huge volumes of data and deal with nonlinearity [13]. The concept of neural
networks originated in the 1950s when people first used computers to simulate human
thinking processes. The earliest neural network had a simple structure comprising neuron
models and connection weights. With advancements in computer technology and data
processing, neural network research experienced a breakthrough in the 1990s. During that
period, the backpropagation algorithm and deep learning were introduced to enhance the
performance of neural networks [14].

In recent years, fractional-order differentiation has found wide applications in neural
networks with the rapid development of new technologies like big data, high-performance
computing, and deep learning [15]. For example, Xu et al. [16] analyzed the characteristic
equations of a neural network model using two different delays as bifurcation parameters.
They developed a new fractional-order neural network model with multiple delays and
demonstrated the impact of fractional order on stability. Pakdaman et al. [17] employed
optimization methods to adjust the weights of artificial neural networks to solve different
fractional-order equations, including linear and nonlinear terms. This approach ensures
that the approximate solutions meet the requirements of the fractional-order equations.
Similarly, Asgharinia et al. [18] employed a fractional-order controller in training radial
basis function neural networks, resulting in improved performance and robustness. More
evidence that fractional-order differentiation actively contributes to neural networks and
produces desirable results is shown in the works of Fei et al. [19], Zhang et al. [20], and
Cao et al. [21]. Comparing these models to integer-order models reveals that fractional-
order neural networks exhibit high accuracy, fast convergence, and efficient memory usage.
For BP neural networks, Bao et al. [22] and Han et al. [23] applied Caputo and Grünwald–
Letnikov fractional-order differentiation to investigate their convergence performances,
respectively, and achieved better results than those found with integer-order differentiation.
However, only using fractional-order differentiation always lacks physical interpretation
and produces inconsistency with many classical models. Thus, it necessitates the fur-
ther study of the integration of the advantages of both integer-order differentiation and
fractional-order differentiation for gradient descent learning of neural networks to improve
the performance of neural networks in classification problems, which is what motivates
the research.

This paper’s main contribution is to incorporate fractional-order differentiation, which
can describe the memory effect and complex dynamic behavior, to optimize the traditional
integer-order gradient descent process and construct a novel BP neural network using the
proposed MIF optimization algorithm. Experimental results demonstrate that the new
neural network exhibits both integer-order and fractional-order differentiation advantages.

The remainder of this paper proceeds as follows: Section 2 proposes the novel MIF
optimization algorithm for BP neural networks; this is followed by the corresponding
convergence analysis in Section 3. Next, Section 4 illustrates the numerical experiments
and the result analysis. Finally, Section 5 provides concluding remarks.

2. Method
2.1. Network Structure

We employ a three-layer BP neural network structure, as illustrated in Figure 1. In the
neural network model, the input layer consists of n neurons, the hidden layer contains h
neurons, and the output layer has m neurons. The neural network has both forward propa-
gation and backward propagation. The forward propagation process consists of learning
data features of the neural network. For given sample data, let x = (x1, x2, ..., xn)T be the
variable vector of the input layer, y = (y1, y2, ..., yh)

T the variable vector of the hidden
layer, z = (z1, z2, ..., zm)T the variable vector of the output layer, and ẑ = (ẑ1, ẑ2, ..., ẑm)

T
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the desired output. Moreover, let P =
(

pji
)

be the weight matrix connected with the input
layer and the hidden layer, and Q = (qkj) the weight matrix connected to the hidden layer
and the output layer, where i = 1, . . . , n, j = 1, . . . , h, and k = 1, . . . , m. The input and
output of neurons in the jth hidden layer are described by

nethj =
n

∑
i=1

pjixi = Pjx (1)

and
yj = f (nethj) (2)

where Pj =
(

pj1, pj2, . . . , pjn
)

, and f is an activation function. The kth output layer’s input
and output are given by

netok =
h

∑
j=1

qkjyj = Qky (3)

and
zk = f (netok) (4)

where Qk = (qk1, qk2, . . . , qkh). Then, in every iteration, we obtain the output result of the
neural network. Now, we consider a total of t sample inputs. For the d-th sample input
(d ∈ {1, . . . , t}), the neural network model automatically corrects the weight pji and the
weight qkj. The total error equation of the neural network’s performance evaluation is
formulated by

E =
1
2

t

∑
d=1

m

∑
k=1

(
ẑk − zd

k

)2
=

t

∑
d=1

gd

(
netod

k

)
=

t

∑
d=1

gd

(
Qkyd

)
(5)

where

gd

(
netod

k

)
=

1
2

m

∑
k=1

(
ẑk − f

(
netod

k

))2
(6)

and
yd =

(
f
(

nethd
1

)
, f

(
nethd

2

)
, ..., f

(
nethd

h

))T
(7)

The error calculation process above is used as the forward propagation process of the
neural network model. Its weight update by gradient descent through the error equation
can be regarded as the backpropagation of the neural network. For the k-th output layer’s

error Ek =
1
2 ∑t

d=1

(
ẑk − zd

k

)2
, according to the chain rule, the partial derivative of Ek with

respect to qkj is given by

∂Ek
∂qkj

=
t

∑
d=1

∂Ek

∂netod
k

∂netod
k

∂qkj
=

t

∑
d=1

g′d
(

netod
k

)
yd

j (8)

Similarly, the partial derivative of Ek with respect to pji is expressed by

∂Ek
∂pji

=
t

∑
d=1

g′d
(

netod
k

)
qkj f ′(nethd

j )xd
i (9)

Then, the update functions of the weights qkj and pji are calculated by

ql
kj = ql−1

kj − η
∂Ek

∂ql−1
kj

(10)
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and
pl

ji = pl−1
ji − η

∂Ek

∂pl−1
ji

(11)

where l is the iteration number, and η is the learning rate. The neural network’s backward
propagation process is implemented by using the updated weights, which will be applied
to the next iteration.

Figure 1. A three-layer BP neural network architecture.

2.2. Fractional Parameter Update

We incorporate the fractional derivative parameter update method into the neural
network to prevent the neural network from becoming trapped in local optima during the
training process [24]. In the existing literature, the Riemann–Liouville fractional derivative,
the Caputo fractional derivative, and the Grunwald–Letnikov fractional derivative are the
three most commonly used types of fractional-order derivatives.

Definition 1. The Riemann–Liouville fractional-order derivative of f (x) is defined as

RL
a Dα

x f (x) = Dn(aDα−n
x f (x)) =

1
Γ(n − α)

dn

dxn

∫ x

a

f (t)
(x − t)α−n+1 dt (12)

where α is a positive real number and n is the smallest integer greater than α, and Γ =
∫ ∞

0 tz−1e−tdt.

Definition 2. The Caputo fractional-order derivative of f (x) is defined as

C
a Dα

x f (x) =
1

Γ(n − α)

∫ x

a

f (n)(t)
(x − t)α−n+1 dt =

1
Γ(n − α)

∫ x

a
(x − t)α−n+1 f (t)dt (13)

where α is a positive real number and n − 1 < α < n.

Definition 3. The Grunwald–Letnikov fractional-order derivative f (x) is defined as

GL
a Dα

x = lim
h→0

1
hα

[ x−a
h ]

∑
k=0

(−1)kΓ(α + 1)
Γ(k + 1)Γ(α − k + 1)

f (x − kh) (14)
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where α is a positive real number.

We employ Caputo fractional-order differentiation in this paper for the following
reasons: (1) Caputo fractional-order differentiation has a more unambiguous physical sig-
nificance. It can be regarded as performing integer-order differentiation on function f first,
followed by integration with a weight. This weight can be viewed as a “memory effect”, in
which the function’s value at time x is influenced by its value at time t, with the degree of
influence decreasing with the increase in time interval x − t [25]. (2) The Caputo fractional
order’s initial point is the same as that for the integer order. We know that the Caputo
fractional-order derivative’s initial value problem can be written as f (0), f ′(0), ... f (n−1)(0).
These are all integer-order derivatives in those forms. Since the initial values are known
and the calculation of complicated fractional-order derivatives is not necessary, this greatly
simplifies the problem’s solution [26]. (3) In comparison to the other two definitions of
fractional order, the Caputo fractional-order derivative in the application of neural net-
works greatly reduces the amount of calculation. Meanwhile, it is closer to the integer
order, making it more appropriate for neural networks’ error calculation process.

In order to simplify the computational complexity of neural networks, this paper
chooses the power function and calculates its fractional derivative. For the power function
f (x) = (x − a)p, its n-th derivative is

f (n)(x) =
Γ(p + 1)

Γ(p − n + 1)
(x − a)p−n (15)

Substituting f (n)(x) into the Caputo derivative definition 2 yields

C
a Dα

x =
1

Γ(n − α)

∫ x

a

Γ(p+1)
Γ(p−n+1) (t − a)p−n

(x − t)α−n+1 dt (16)

This integral can be further simplified by the properties of the Gamma function. When
n = p (in which case p is an integer and p ≥ α), the integration becomes relatively simple.
Finally, we obtain a specific form of fractional derivative for the power function used in
this paper

dα

dxα
(x − a)p =

Γ(p + 1)
Γ(p − α + 1)

(x − a)p−α

Therefore, the gradient is calculated by

Dα
qkj

Ek =
t

∑
d=1

(
qkj

)1−α

Γ(2 − α)
g′d
(

netod
k

)
yd

j (17)

Dα
pji

Ek =
t

∑
d=1

(
pji

)1−α

Γ(2 − α)
g′d
(

netod
k

)
qkj f ′(nethd

j )xd
i (18)

Finally, according to Formulas (1)–(18), combining fractional-order gradients and the
integer-order gradient, the updated weights of the neural network model are

ql
kj = ql−1

kj − η

 ∂Ek

∂ql−1
kj

+ τDα
ql−1

kj
Ek

 (19)

pl
ji = pl−1

ji − η

 ∂Ek

∂pl−1
ji

+ τDα
pl−1

ji
Ek

 (20)

where τ is a parameter greater than zero.
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2.3. Algorithms

This subsection will provide the proposed MIFBP neural network (MIFBPNN) al-
gorithms. To further demonstrate the algorithm’s superiority, this paper compares this
algorithm to the BP neural network (BPNN) and fractional-order BP neural network
(FBPNN) algorithms. These three algorithms are presented in Algorithms 1–3.

Algorithm 1 BPNN

1. Initialize the weight matrices pji, qkj, and the learning parameter η

2. Compute the lth error function Ek = ∑t
d=1 gd

(
Qkyd

)
3. Update the weight matrices by ql

kj = ql−1
kj − η ∂Ek

∂ql−1
kj

and pl
ji = pl−1

ji − η ∂Ek
∂pl−1

ji

4. Check if the total error function E meets the accuracy requirements or l > lmax, exit
the algorithm; If not, go to step 2.

Algorithm 2 FBPNN

1. Initialize the weight matrices pji, qkj, the learning parameter η, and the parameter α

2. Compute the lth error function Ek = ∑t
d=1 gd

(
Qkyd

)
3. Update the weight matrices by ql

kj = ql−1
kj − ηDα

ql−1
kj

Ek and pl
ji = pl−1

ji − ηDα
pl−1

ji
Ek

4. Check if the total error function E meets the accuracy requirements or l > lmax, exit
the algorithm; If not, go to step 2.

Algorithm 3 MIFBPNN

1. Initialize the weight matrices pji, qkj, the learning parameter η, and the parameters α
and τ

2. Compute the lth error function Ek = ∑t
d=1 gd

(
Qkyd

)
3. Update the weight matrices by

ql
kj = ql−1

kj − η

 ∂Ek

∂ql−1
kj

+ τDα
ql−1

kj
Ek


and

pl
ji = pl−1

ji − η

 ∂Ek

∂pl−1
ji

+ τDα
pl−1

ji
Ek


4. Check if the total error function E meets the accuracy requirements or l > lmax, exit

the algorithm; If not, go to step 2.

3. Convergence Analysis

In this section, we will prove the convergence properties of the MIFBPNN. To proceed,
we need the following assumptions.

Assumption 1. The activation function f is a Sigmoid function.

Assumption 2. The weights qkj and pji are bounded during the MIFBPNN training process.

Assumption 3. The learning rate η and the parameter τ are positive numbers and have upper
bounds.



Algorithms 2024, 17, 220 7 of 16

We have the following main results.

Theorem 1. Suppose that the Assumptions (1)–(3) are satisfied, then we conclude that the MIF-
BPNN is convergent.

Proof of Theorem 1. This proof consists of two parts. First, we prove that the error function
sequence El is monotonic. Then we demonstrate that the sequence El is bounded. To explore
the monotonicity of the sequence El , we compute

E∗ = El − El−1 =
t

∑
d=1

m

∑
k=1

(
gd

(
Ql

kyd,l
)
− gd

(
Ql−1

k yd,l−1
))

(21)

According to the Taylor expansion formula and (21), we obtain

gd

(
Ql

kyd,l
)
− gd

(
Ql−1

k yd,l−1
)

= g′d
(

Ql−1
k yd,l−1

)(
Ql

kyd,l − Ql−1
k yd,l−1

)
+

1
2

g′′d (ε1)
(

Ql
kyd,l − Ql−1

k yd,l−1
)2

where ε1 is the Lagrange constant between Ql
kyd,l and Ql−1

k yd,l−1.
Moreover, we see that

Ql
kyd,l − Ql−1

k yd,l−1 = Ql
k

(
yd,l − yd,l−1

)
+

(
Ql

k − Ql−1
k

)
yd,l−1

= Ql−1
k ξ l

d + ∆Ql
kξ l

d + ∆Ql
kyd,l−1

(22)

where ∆Ql
k = Ql

k − Ql−1
k and ξ l

d = yd,l − yd,l−1

Then, substituting (22) to (21) yields

E∗ =
t

∑
d=1

m

∑
k=1

g′d
(

Ql−1
k yd,l−1

)
Ql−1

k ξ l
d +

t

∑
d=1

m

∑
k=1

g′d
(

Ql−1
k yd,l−1

)
∆Ql

kξ l
d

+
t

∑
d=1

m

∑
k=1

g′d
(

Ql−1
k yd,l−1

)
∆Ql

kyd,l−1 +
1
2

t

∑
d=1

m

∑
k=1

g′′d (ε2)
(

Ql
kyd,l − Ql−1

k yd,l−1
)2

(23)

We process Ql−1
k ξ l

d according to the Taylor extension formula to obtain

Ql−1
k ξ l

d = Ql−1
k

(
yd,l − yd,l−1

)
=

h

∑
j=1

ql−1
kj

(
f
(

Pl
j xd

)
− f

(
Pl−1

j xd
))

=
h

∑
j=1

ql−1
kj

(
f ′
(

Pl−1
j xd

)
∆Pl

j xd +
1
2

f ′′(ε2)
(

∆Pl
j xd

)2
) (24)

where ∆Pl
j = Pl

j − Pl−1
j and ε2 is the Lagrange constant between Pl

j xd and Pl−1
j xd. Accord-

ing to (20), (23) and (24), we have
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t

∑
d=1

m

∑
k=1

g′d
(

Ql−1
k yd,l−1

)
Ql−1

k ξ l
d

=
t

∑
d=1

m

∑
k=1

h

∑
j=1

n

∑
i=1

g′d
(

Ql−1
k yd,l−1

)
ql−1

kj f ′
(

Pl−1
j xd

)
∆pl

jix
d
i

+
1
2

t

∑
d=1

m

∑
k=1

h

∑
j=1

g′d
(

Ql−1yd,l−1
)

ql−1
kj f ′′(ε2)

(
∆Pl

j xd
)2

(25)

where

∆pl
ji = pl

ji − pl−1
ji = −η

 ∂Ek

∂pl−1
ji

+ τDα
pl−1

ji
Ek

 = −η

((
pl−1

ji

)α−1
Γ(2 − α) + τ

)
Dα

pl−1
ji

Ek (26)

For simplicity, we define

φ1 =
t

∑
d=1

m

∑
k=1

h

∑
j=1

n

∑
i=1

g′d
(

Ql−1
k yd,l−1

)
ql−1

kj f ′
(

Pl−1
j xd

)
∆pl

jix
d
i (27)

φ2 =
1
2

t

∑
d=1

m

∑
k=1

h

∑
j=1

g′d
(

Ql−1
k yd,l−1

)
ql−1

kj f ′′(ε2)
(

∆Pl
j xd

)2
(28)

φ3 =
t

∑
d=1

m

∑
k=1

g′d
(

Ql−1
k yd,l−1

)
∆Ql

kξ l
d (29)

φ4 =
t

∑
d=1

m

∑
k=1

g′d
(

Ql−1
k yd,l−1

)
∆Ql

kyd,l−1 (30)

φ5 =
1
2

t

∑
d=1

m

∑
k=1

g′′d (ε2)
(

Ql
kyd,l − Ql−1

k yd,l−1
)2

(31)

From (17), we obtain

t

∑
d=1

g′d
(

Ql−1
k yd,l−1

)
ql−1

kj f ′
(

Pl−1
j xd

)
xd

i =
(

pl−1
ji

)α−1
Γ(2 − α)Dα

pl−1
ji

Ek (32)

Furthermore, it follows from (26), (27) and (32) that

φ1 = Γ(2 − α)
m

∑
k=1

h

∑
j=1

n

∑
i=1

(
pl−1

ji

)α−1
(

Dα
pl−1

ji
Ek

)
∆pl

ji

= −ηΓ(2 − α)
m

∑
k=1

h

∑
j=1

n

∑
i=1

(
pl−1

ji

)α−1
(

Dα
pl−1

ji
Ek

)2((
pl−1

ji

)α−1
Γ(2 − α) + τ

)

⩽ −τηΓ(2 − α)
m

∑
k=1

h

∑
j=1

n

∑
i=1

(
pl−1

ji

)α−1
(

Dα
pl−1

ji
Ek

)2

= −τηΓ(2 − α)
m

∑
k=1

h

∑
j=1

(
pl−1

ji

)α−1
∥Dα

Pl−1
j

Ek∥2

(33)

where Dα
Pl−1

j
Ek = (Dα

pl−1
ji

Ek)1×h and

φ3 ⩽
1
2

t

∑
d=1

m

∑
k=1

g′d
(

Ql−1
k yd,l−1

)(
∥∆Ql

k∥
2 + ∥ξ l

d∥
2
)

(34)
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By using (2), (3), (18) and (19), we have

t

∑
d=1

g′d
(

netod
k

)
yd

j =
t

∑
d=1

g′d
(

Ql−1
k yd,l−1

)
f
(

Pl
j xd

)
=

(
ql−1

kj

)α−1
Γ(2 − α)Dα

ql−1
kj

Ek (35)

and

φ4 =
t

∑
d=1

m

∑
k=1

h

∑
j=1

g′d
(

Ql−1
k yd,l−1

)
yd,l−1

j ∆ql
kj = Γ(2 − α)

m

∑
k=1

h

∑
j=1

(
ql−1

kj

)α−1
∆ql

kj

(
Dα

ql−1
kj

Ek

)
(36)

where

∆ql
kj = ql

kj − ql−1
kj = −η

 ∂E
∂ql−1

kj

+ τDα
ql−1

kj
E

 = −η

((
ql−1

kj

)α−1
Γ(2 − α) + τ

)
Dα

ql−1
kj

Ek (37)

Thus, we obtain

φ4 = −ηΓ(2 − α)
m

∑
k=1

h

∑
j=1

(
ql−1

kj

)α−1
((

ql−1
kj

)α−1
Γ(2 − α) + τ

)(
Dα

ql−1
kj

Ek

)2

⩽ −τηΓ(2 − α)
m

∑
k=1

h

∑
j=1

(
ql−1

kj

)α−1
(

Dα
ql−1

kj
Ek

)2

= −τηΓ(2 − α)
m

∑
k=1

(
ql−1

kj

)α−1
∥Dα

Ql−1
k

Ek∥2

(38)

where Dα
Ql−1

k
Ek = (Dα

ql−1
kj

Ek)1×m.

φ5 =
1
2

g′′d (ε2)
t

∑
d=1

m

∑
k=1

(
Ql

kyd,l − Ql−1
k yd,l + Ql−1

k yd,l − Ql−1
k yd,l−1

)2

=
1
2

g′′d (ε2)
t

∑
d=1

m

∑
k=1

(
∆Ql

kyd,l + Ql−1
k ξ l

d

)2

⩽ g′′d (ε2)
t

∑
d=1

m

∑
k=1

(
∥∆Ql

k∥
2∥yd,l∥2 + ∥Ql−1

k ∥2∥ξ l
d∥

2
)

(39)

Next, let

A1 = max
{

sup|gd(t)|, sup
∣∣g′d(t)∣∣, sup |g′′d (t)|, sup | f ′(x)|, sup | f ′′(x)|

}
, (40)

A2 = max ∥xd∥, 1 ⩽ d ⩽ t (41)

A3 = max ∥Φ∥, (42)

where Φ =
{

qkj, pji

}
represents the vector consisting of all stretched weighted parameters

qkj and pji. Then, we obtain through (33)–(42) that

∥∆Ql
k∥

2 ⩽ 2η2
(

Aα−1
3 Γ(2 − α)

)2
+ τ2)∥Dα

Ql−1
k

Ek∥2 (43)

∥∆Pl
j ∥2 ⩽ 2η2

((
Aα−1

3 Γ(2 − α)
)2

+ τ2
)
∥Dα

Pl−1
j

Ek∥2 (44)

∥ ∆Φl ∥2⩽ ∥∆Ql
k∥

2 + ∥∆Pl
j ∥2

⩽ 2η2
((

Aα−1
3 Γ(2 − α)

)2
+ τ2

)(
∥Dα

Ql−1
k

Ek∥2 + ∥Dα
Pl−1

j
Ek∥2

) (45)
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Moreover, (24), (43) and (44) imply

∥ξ l
d∥

2 = ∥yd,l − yd,l−1∥2 = ∥Pl
j xd − Pl−1

j xd∥2 = ∥ f ′(ε2)∆Pl
j xd∥2 ⩽ A2

1 A2
2∥∆Pl

j ∥2 (46)

Hence, from (27)–(46), we obtain

φ1 ⩽ −τηmΓ(2 − α)Aα−1
3 ∥Dα

Pl−1
j

Ek∥2 (47)

φ2 ⩽
1
2

D
m

∑
k=1

h

∑
j=1

A1 A3g′d
(

Ql−1
k yd,l−1

)(
∆Pl−1

j xd
)2

⩽
1
2

mDA2
1 A2

2 A3 ∥ ∆Φ ∥2 (48)

φ3 ⩽
1
2

A1

t

∑
d=1

m

∑
k=1

((
∆Ql

k

)2
+ A2

1 A2
2

(
∆Pl

j

)2
)
⩽

mD
2

A1

(
1 + A2

1 A2
2

)
∥∆Φ∥2 (49)

φ4 ⩽ −τηmΓ(2 − α)Aα−1
3 ∥Dα

Ql−1
k

Ek∥2 (50)

φ5 ⩽ A1

t

∑
d=1

m

∑
k=1

(
hA2

1 ∥ ∆Ql
k ∥

2 +A2
1 A2

2 A2
3 ∥ Ql−1

k ∥2
)
⩽ mDA1

(
hA2

1 + A2
1 A2

2 A2
3

)
∥ ∆Φ ∥2 (51)

We note from (45) that

∥Dα
Ql−1

k
Ek∥2 + ∥Dα

Pl−1
j

Ek∥2 ⩾
∥∆Φl∥2

2η2
((

Aα−1
3 Γ(2 − α)

)2
+ τ2

) (52)

So, using (46)–(52), we convert E∗ into the following:

E∗ ⩽ −τηmΓ(2 − α)Aα−1
3

(
∥Dα

Ql−1
k

Ek∥2 + ∥Dα
Pl−1

j
Ek∥2

)
+ m

(
1
2

DA2
1 A2

2 A3 +
1
2

DA1

(
1 + A2

1 A2
2

)
+ DA1

(
A2

1 + A2
1 A2

2 A2
3

))
∥ ∆Φ ∥2

⩽ − 1
2η

τmΓ(2 − α)Aα−1
3((

Aα−1
3 Γ(2 − α)

)2
+ τ2

) ∥ ∆Φ ∥2

+ m
(

1
2

DA2
1 A2

2 A3 +
1
2

DA1

(
1 + A2

1 A2
2

)
+ DA1

(
hA2

1 + A2
1 A2

2 A2
3

))
∥ ∆Φ ∥2

⩽ − 1
2η

τmΓ(2 − α)Aα−1
3

2τΓ(2 − α)Aα−1
3

∥ ∆Φ ∥2

+ m
(

1
2

DA2
1 A2

2 A3 +
1
2

DA1

(
1 + A2

1 A2
2

)
+ DA1

(
hA2

1 + A2
1 A2

2 A2
3

))
∥ ∆Φ ∥2

⩽ − 1
4η

∥ ∆Φ ∥2 +

(
1
2

DA2
1 A2

2 A3 +
1
2

DA1

(
1 + A2

1 A2
2

)
+ DA1

(
hA2

1 + A2
1 A2

2 A2
3

))
∥ ∆Φ ∥2

(53)

Therefore, the error function sequence El is monotonically decreasing. Next, since

1
4η

⩾
1
2

DA2
1 A2

2 A3 +
1
2

DA1

(
1 + A2

1 A2
2

)
+ DA1

(
hA2

1 + A2
1 A2

2 A2
3

)
(54)

then, we obtain the learning rate

η ⩽
1

2DA2
1 A2

2 A3 + 2DA1
(
1 + A2

1 A2
2
)
+ 4DA1

(
hA2

1 + A2
1 A2

2 A2
3
) (55)
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Now, we start to prove the above sequence is also bounded. Let

δl−1 = ∥Dα
Ql−1

k
Ek∥2 + ∥Dα

Pl−1
j

Ek∥2
(56)

According to (53)–(56) we obtain

E∗ ⩽ −
(

τηmΓ(2 − α)Aα−1
3

−2η2m
((

Aα−1
3 Γ(2 − α)

)
+ τ2

)(1
2

DA2
1 A2

2 A3 +
1
2

DA1

(
1 + A2

1 A2
2

)
+ DA1

(
hA2

1 + A2
1 A2

2 A2
3

)))
δl−1

⩽ −
(

τηΓ(2 − α)Aα−1
3

−4τη2Γ(2 − α)Aα−1
3

(
1
2

DA2
1 A2

2 A3 +
1
2

DA1

(
1 + A2

1 A2
2

)
+ DA1

(
hA2

1 + A2
1 A2

2 A2
3

)))
δl−1

⩽ −ρδl−1

(57)

where

ρ = τηΓ(2 − α)Aα−1
3

− 4τη2Γ(2 − α)Aα−1
3

(
1
2

DA2
1 A2

2 A3 +
1
2

DA1

(
1 + A2

1 A2
2

)
+ DA1

(
hA2

1 + A2
1 A2

2 A2
3

)) (58)

From (57), we infer that

0 ⩽ El ⩽ El−1 − ρδl−1 ⩽ El−2 − ρδl−2 − ρδl−1 ⩽ El−3 − ρδl−3 − ρδl−2 − ρδl−1 ⩽ ... ⩽ E0 − ρ
l−1

∑
w=0

δw (59)

Then,

l−1

∑
w=0

δw ⩽
1
ρ

E0 (60)

When l → ∞, we have ∑∞
w=0 δw ⩽ 1

ρ E0 < ∞ and liml→∞ δl = 0. Therefore, according

to (57)–(59) the sequence El is bounded. Using the monotone convergence theorem, we
conclude that the sequence El converges.

4. Numerical Experiments
4.1. Experiment Preparation

In this section, we use the MNIST handwritten dataset to evaluate the efficiency of
the MIFBPNN. We also use BPNN and FBPNN to perform comparison experiments. The
MNIST handwritten digit dataset contains 70,000 handwritten digit images ranging from
0 to 9, each with a size of 28 × 28 pixels, represented as a 784 × 1 vector. Each element in
the vector takes values ranging from 0 to 255. We first build a 784-50-10 neural network
model (n = 784, h = 30, m = 10) based on the characteristics of the MNIST data, and
in our experiments, we found that when the number of hidden layers is 50, we could
achieve high accuracy in the test set, which greatly reduces the computational amount of
the neural network model. The activation function uses the Sigmoid function, which is
expressed as f (x) = 1

1+e−x . Then, we divided the dataset into 60,000 handwritten images
to use as the training set, and the remaining 10,000 sets of data to use as the test set. As
the convergence of the neural network does not mean that the network has completely
learned all the features and patterns of the dataset, but rather that the network has reached
a relatively stable state, in order to study this stable state, in the experiments of this paper,
we set the condition: When the accuracy of the test set of every 10 epochs grows no more
than 0.001, then exit the training. In this way, it is possible to determine whether the neural
network has reached a stable state based on the number of epochs, and thus better evaluate
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the neural network. (The experimental platform for these experiments was a PC running
Windows OS, with an i7-11657G7 CPU and M40 GPU).

4.2. Optimal Parameters Tuning

In the experiment, we set the same parameters for each model to more effectively
compare the three models used in this paper. There are three parameters in the proposed
MIFBPNN. We first determined η = 0.7 and α = 0.6 based on the BP neural network
training result in Table 1 and the training result of the FBPNN in Table 2. Based on the
training outcomes of the MIFBPNN in Table 3, we discovered τ = 0.2.

Table 1. Test set accuracy of the BP neural network with various parameter values of η.

η = 0.1 η = 0.2 η = 0.3 η = 0.4 η = 0.5 η = 0.6 η = 0.7 η = 0.8 η = 0.9

Accuracy 93.79% 94.15% 94.50% 95.20% 95.22% 95.30% 95.65% 95.60% 95.45%
Training epoch 246 297 245 257 217 191 163 197 203

Table 2. Test set accuracy of the FBPNN with η = 0.7 and various parameter values of α.

η = 0.7 α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 0.8 α = 0.9

Accuracy 96.28% 95.86% 95.87% 95.76% 96.01% 96.65% 96.13% 95.93% 95.70%
Training epoch 79 75 55 63 70 68 67 73 57

Table 3. Test set accuracy of the MIFBPNN with η = 0.7, α = 0.6 and various parameter values of τ.

η = 0.7, α = 0.6 τ = 0.1 τ = 0.2 τ = 0.3 τ = 0.4 τ = 0.5 τ = 0.6 τ = 0.7 τ = 0.8 τ = 0.9

Accuracy 97.52% 97.64% 97.34% 97.30% 97.27% 97.41% 97.46% 97.49% 97.36%
Training epoch 63 71 54 55 50 51 47 56 55

Tables 1–3 show that the MIFBPNN achieves a stable state faster and has a higher
accuracy rate than the FBPNN and BPNN, which may suggest that the MIFBPNN is able to
learn better under the same circumstances.

4.3. Training for Different Training Sets’ Sizes

A larger training set can provide more sample data for the model to learn from, which
can help to improve the accuracy and generalizability of the model. Typically, the size
of the training set can have an impact on the training results. Here, we investigate the
performance of the three neural networks by adjusting various training set sizes, and the
experimental results are displayed in Table 4, which shows that a larger training set can aid
the model in better-capturing patterns and features from the data.

Table 4. Performance of different neural networks under optimal hyperparameters on various sizes
of training sets.

Training Dataset Size BP FBP MIFBP
Accuracy Training Epoch Accuracy Training Epoch Accuracy Training Epoch

10,000 91.69% 124 92.99% 86 94.55% 79
20,000 93.71% 176 93.29% 76 96.06% 64
30,000 93.81% 140 93.85% 68 96.94% 69
40,000 94.20% 109 94.23% 58 97.17% 55
50,000 95.23% 157 95.69% 71 97.28% 61
60,000 95.65% 163 96.95% 68 97.64% 71

Table 4 shows that, in terms of training accuracy and the number of layers to stop
training, the MIFBPNN performs best on training datasets of all sizes, followed by the
FBPNN. It is worth noting that change in the MIFBPNN’s accuracy from the training
dataset of 10,000 to 60,000 was the smallest, followed by that of the FBPNN. This can also
be viewed as evidence that the MIFBPNN is more general and has a stronger capacity for
convergence and learning while maintaining high accuracy.
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4.4. Training Performances of Different Neural Networks

In this subsection, we demonstrate the performance of the three neural networks using
the optimal parameters and a training dataset of 60,000. Figures 2 and 3 depict the three
neural networks’ test accuracy and test set loss performance, respectively, and Figure 4
depicts the three neural networks’ training set loss performance.

Figure 2. Test accuracy performance.

Figure 3. Test loss performance.



Algorithms 2024, 17, 220 14 of 16

Figure 4. Training loss performance.

The MIFBPNN has the highest accuracy, followed by the FBPNN, as can be seen
in Figure 3. In terms of convergence speed, the accuracy of the MIFBPNN and FBPNN
reaches a relatively stable state in about 50 and 80 epochs, while the BP neural network
experiences this process in about 120 epochs. The MIFBPNN has the smallest loss and can
reach the minimum loss fastest, both in the training set loss and the test set loss, as shown by
Figures 3 and 4.

Based on the above experimental results, it can be concluded that MIFBPNN exhibits
high accuracy and fast convergence speed in various training set sizes under different
experimental conditions. Especially on the maximum size training set (60,000 samples),
the MIFBPNN not only achieved the highest accuracy (97.64%) but also had lower training
epoch (71 epochs) than the other two networks, demonstrating its excellent learning ability
and generalization ability. Furthermore, from the chart analysis, it can be seen that the
MIFBPNN outperforms BPNN and FBPNN in terms of testing accuracy, testing loss, and
training loss. Especially in terms of minimizing losses, MIFBP networks can achieve lower
loss values faster, which is of great significance for optimizing and improving efficiency
in practical applications. Secondly, the MIFBPNN also demonstrated its superiority in
parameter adjustment experiments. After fixing η = 0.7 and α = 0.6, and adjusting the τ
parameters, it is found that the network performed best at τ = 0.2, with an accuracy of
97.64%. This result not only demonstrates the advantage of MIFBPNN in parameter sensi-
tivity but also highlights its adjustment flexibility and efficiency in practical applications.
However, the limitation of this article is that it only applies the MIF algorithm to BPNN,
and manual adjustments are used during the parameter adjustment process. In future work,
attempts can be made to apply the MIF algorithm to other neural networks, and heuristic
algorithms can be considered when adjusting parameters α, η, and τ. Furthermore, the
computational effort of the MIFBPNN is not explained in this article. These issues are
worth exploring in future work.

5. Conclusions

In this paper, we develop a new MIF gradient descent algorithm to construct the
MIFBP neural network. Our research demonstrates the MIFBP neural network’s superior
performance on the typical MNIST handwritten dataset. For various training set sizes,
the MIFBP network outperforms conventional BP and FBPNN in terms of accuracy, con-
vergence speed, and generalization. Additionally, in both training and testing scenarios,
the MIFBPNN achieves the highest accuracy and the lowest loss under optimal parame-
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ter conditions. The MIFBPNN has shown good classification performance in the MNIST
handwritten data and may perform challenging pattern recognition and prediction tasks in
various fields in the future.
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