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Abstract: This paper introduces an innovative method for load frequency control (LFC) in multi-area
interconnected power systems vulnerable to denial-of-service (DoS) attacks. The system is modeled
as a switching system with two subsystems, and an adaptive control algorithm is developed. Initially,
a dynamic linear data model is used to model each subsystem. Next, a model-free adaptive control
strategy is introduced to maintain frequency stability in the multi-area interconnected power system,
even during DoS attacks. A rigorous stability analysis of the power system is performed, and the
effectiveness of the proposed approach is demonstrated by applying it to a three-area interconnected
power system.

Keywords: load frequency control; switching system; event-triggered; model-free adaptive control

1. Introduction

The power system, a critical component of national infrastructure, provides stable and
reliable electrical energy services to diverse socio-economic sectors. It plays a crucial role
in driving modernization and serves as a safeguard for it. The system’s stability, quality,
and safety significantly impact national energy security, living standards, and sustainable
development. Operational disruptions due to unexpected events and uncertainties can
cause frequency deviations from the nominal value in the system. Prolonged frequency
deviations not only affect user experience and damage system equipment but can also
trigger grid collapse, leading to widespread power outages and significant societal losses.
Extensive research has focused on improving the reliable and stable operation of power
systems through the study of LFC methods. This research aims to identify more effec-
tive frequency control strategies to improve the economic and safety aspects of power
systems [1].

Recently, the academic community has proposed diverse control strategies for LFC
in multi-area power systems, employing various theoretical frameworks. These strategies
encompass Model Predictive Control [2,3], Robust Control [4,5], Fuzzy Logic Control [6–8],
Sliding Mode Control [9,10], Linear Matrix Inequality (LMI) Control [11,12], Reinforcement
Learning [13,14], and other methods. Reference [2] integrates dynamic event-triggered
mechanisms and a hybrid H2 performance index to design a robust Model Predictive
Control (MPC) strategy for LFC in power systems, capable of effectively handling network
attacks and disturbances. Reference [3] introduces a novel dynamic event-based model
predictive control strategy designed to enhance the robustness and stability of power
system load frequency control in the presence of cyber attacks. Reference [4] designs a
robust Proportional-Integral (PI)-type LFC scheme for power systems, taking into account
sampling periods and transmission delays in communication networks. Simultaneously,
this scheme introduces an Exponential Decay Rate (EDR) as a design parameter. Adjusting
the value of EDR can achieve robust performance evaluation regarding parameter uncer-
tainty, load fluctuation, and communication networks. Reference [5] presents a robust LFC
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strategy for power systems that effectively accounts for transmission delays and varying
sampling periods, ensuring improved system stability and performance. Reference [7]
presents a sampled memory-event-triggered fuzzy load frequency control method for wind
power systems. This approach is specifically designed to address outliers and transmission
delays, therefore improving system reliability and performance. Reference [10] introduces
a novel sliding model LFC strategy for renewable power systems, addressing time-delay
uncertainty, parameter uncertainty, and load disturbances. Subsequently, the sliding mode
switching surface and controller are designed based on the standard form. Using the isoki-
netic convergence law, the system state is directed to reach the switching surface within a
finite timeframe, ensuring stable sliding motion on this surface. Reference [11] contributes
to power system stability by designing a robust load frequency control (LFC) system ca-
pable of coping with inherent time delays by utilizing Linear Matrix Inequalities (LMI). It
introduces a novel delay margin estimation technique to ascertain the maximum permissi-
ble delay for maintaining system stability, which enhances the control system’s robustness
compared to traditional methods. Using brain-inspired deep meta-reinforcement learning,
reference [13] enhances multi-area grids’ load frequency control (LFC). This approach de-
velops a fault-tolerant LFC system that adapts to disturbances and faults, showing superior
adaptability and robustness compared to traditional methods.

Multi-area interconnected power systems depend on power communication networks
for exchanging information and transmitting control commands across regions. Although
power communication networks offer advantages like low cost, they also pose new chal-
lenges to modern control systems [15]. Reference [16] introduced an advanced LFC strategy
for power systems strategically designed to withstand specific categories of DoS attacks.
The strategy employs a time-varying Lyapunov function methodology that adapts to the
attack parameters’ characteristics, effectively ensuring system stability. Reference [17]
explores the application of adaptive dynamic programming-based auxiliary control to a
particular class of discrete-time networked systems. Reference [18] explores resilient load
frequency control of power systems, addressing random time delays and time-delay attacks.
The proposed approach allows practical adjustments for real power systems, balancing
accuracy and computational efficiency while considering communication delays. Refer-
ence [19] explores the delay-dependent stability of load frequency control under conditions
of adjustable computation accuracy and complexity. The researchers propose a novel
tuning scheme with adjustable conservatism and computational complexity. Reference [20]
focuses on event-triggered load frequency control for power systems, specifically consid-
ering limited communication bandwidth. The approach aligns with control performance
standards, ensuring stability and efficiency in the presence of communication constraints.
The LFC scheme, based on the theory of switched systems in [21], effectively mitigates the
DoS attacks’ effects in open communication networks. It calculates the maximum duration
and frequency of potential attacks the system can endure and devises a load frequency
control strategy for mitigating denial-of-service attacks. This strategy utilizes a dual-loop
communication channel and PI controller.

Constructing an accurate mathematical model for power systems remains challenging
due to their highly nonlinear and uncertain dynamic characteristics. Therefore, designing
model-independent load frequency controllers is crucial. Model-free adaptive control, a
data-driven algorithm, directly designs and analyzes controllers using input-output data
from the controlled system. This approach enables parameter adaptation and structural
adjustments for unknown nonlinear control systems and has found applications in var-
ious fields [22,23]. Reference [24] introduced a model-free adaptive quasi-sliding mode
control algorithm grounded in a data-driven approach. This algorithm effectively handles
nonuniformly sampled nonlinear systems, mitigates the impact of external disturbances,
and enhances the system’s robustness and stability. Additionally, the LFC scheme was
developed for power systems in [25], using an event-triggered and data-driven approach.
However, to our knowledge, there have been limited discussions on MFAC methods for
power systems based on switching systems. In this study, we investigate the model-free
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adaptive LFC method according to switching systems for multi-area power systems un-
der denial-of-service attacks. We conceptualize the multi-area power system under DoS
attacks as a switching system composed of two subsystems. We design a switching model-
free adaptive controller (SSMFAC) based on this system and use the Lyapunov theory
to demonstrate system stability. Finally, we validate the effectiveness of this approach
using a three-area interconnected power system. The main contributions of this paper are
summarized as follows:

(1) In this paper, a data-driven load frequency control algorithm based on the switching
method is proposed for a multi-area interconnected power system under DoS attack.
A switching system model with two subsystems is established to represent the power
system under a DoS attack with multi-area interconnection. On this basis, an MFAC
algorithm for the switching system is designed.

(2) In this paper, an event-triggered MFAC is developed for the LFC, and the proposed
design alleviates the communication and computation burden of the system com-
pared to existing model-free adaptive control (MFAC) methods in the reference [22].
In addition, existing MFAC system stability analyses use the shrinkage mapping
technique tool. However, in this paper, stability analysis is given using the Lyapunov
theory approach.

2. Problfm Formulation
2.1. Power System Model

Interconnected power systems comprise multiple regions interconnected via tie lines.
Frequency variations in one region can affect neighboring regions through propagation. To
keep frequency and tie-line power deviations within specified limits, we term the overall
output signal of each control system the Area Control Error (ACE):

ACEi = βi∆ fi + ∆Ptie−i (1)

where βi represents the frequency deviation factor, βi = 1/Ri + Di, and Di denote the
generator damping coefficients, and Ri corresponds to the bias coefficient. The linear model
representing interconnected power systems was introduced in reference [14]. The dynamic
behavior of this model is described by the following equations:

∆ ḟi(t) = 1
Mi

(∆Pmi(t)− ∆Pdi(t)− ∆Ptie−i(t)− Di∆ fi(t))
∆Ṗmi(t) = 1

Tchi
(∆Pvi(t)− ∆Pmi(t))

∆Ṗgi(t) = 1
Tgi

(
∆Pci(t)− 1

Ri
∆ fi(t)− ∆Pvi(t)

)
∆Ṗtie(t) = 2π ∑n

j=1,j ̸=i Tij
(
∆ fi(t)− ∆ f j(t)

) (2)

The relevant parameters and associated signals in the equation are defined as shown in
Table 1.

Defining xi(t) =
[

∆ fi ∆Pmi ∆Pgi ∆Ei ∆Ptie−i
]⊤, yi(t) = ACEi(t), and ui(t) =

∆Pci(t) as system inputs, and ϑT
i (t) =

[
∆Pdi(t)∑N

j=1,j ̸=i Tij∆ f j(t)
]

as the disturbance vector,
the dynamic model (1) can be transformed into the following state-space equation:{

ẋ(t) = Ax(t) + Bu(t) + Fϑ(t)
y(t) = Cx(t)

(3)

where
x(t) =

[
x1(t) x2(t) . . . xN(t)

]T ,

y(t) =
[

y1(t) y2(t) . . . yN(t)
]T ,

u(t) =
[

u1(t) u2(t) . . . uN(t)
]T ,

∆Pd(t) =
[

∆Pd1(t) ∆Pd2(t) . . . ∆PdN(t)
]T ,
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A =


A11 A12 . . . A1N
A21 A22 . . . A2N

...
...

...
...

AN1 AN2 . . . ANN

,

B = diag
[

B1 B2 . . . BN
]
,

C = diag
[

C1 C2 . . . CN
]

F = diag
[

F1 F2 . . . FN
]
.

The state and matrix representation of the region are as follows:

Aii =


− Di

Mi
1

Mi
0 0 −1

Mi
0 −1

Tchi
1

Tchi
0 0

−1
RTgi

0 −1
Tgi

0 0

βi 0 0 0 1
2π ∑n

j=1,j ̸=i Tij 0 0 0 0

, Aij =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

−2πTij 0 0 0 0



Bi =
[

0 0 1
Tgi

0 0
]T

, Ci =

[
0 0 0 0 1
βi 1 0 0 0

]
Fi =

[
−1
Mi

0 0 0 0
]T

,

To accurately represent the operational behavior of power systems, this research
employs a discretization process on the continuous state-space equation. Given a specific
sampling period T, the discrete representation of the power system model is articulated
as follows: {

x(k + 1) = Gx(k) + Hu(k) + Wϑ(k)
y(k) = Cx(k)

(4)

in the equation, the variable k is formally defined as the discrete-time point used for
sampling within the system, and G = eAT , H =

∫ T
0 eAtBdt, W =

∫ T
0 eAtFdt, represents

unknown matrices.

Table 1. Definition of related signals in region i.

Symbolic Meaning

∆ fi Frequency deviation (Hz)
∆Pmi The amount of mechanical power variation in the generator (pu)
∆Pgi The governor increases the power (pu)

∆Ptie−i The governor increases the power (pu)
Tgi Governor time constant (s)
Tij Synchronous coefficient of tie line (pu/Hz)
Tti Prime mover time constant (s)
Hi Equivalent inertia coefficient (pu/s)

∆PLi Load disturbance (pu)
Di Equivalent damping coefficient (pu/Hz)
Ri Equivalent damping coefficient (Hz/pu)
βi Frequency deviation factor (pu/Hz)

∆Pci Control input (pu)

2.2. Modeling of LFC System under DoS Attacks

DoS attacks are common network attacks targeting power systems. These attacks dis-
rupt communication links within the grid, severing information exchange among internal
components and obstructing the transmission of sensor measurement data and control com-
mands over network channels. Significantly, DoS attacks do not require prior or extensive
familiarity with the physical power system or grid topology. These attacks can be periodic
or intermittent. Consequently, DoS attacks are regarded as low-cost, high-impact attack
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strategies that real-world adversaries can exploit to compromise critical data transmitted
across communication networks.

Subsequently, we model DoS attacks using random variables following the Bernoulli dis-
tribution: {

Pr{α(k) = 2} = E{α(k)} = α
Pr{α(k) = 1} = 1 −E{α(k)} = 1 − α

(5)

here, we use the Bernoulli distribution to model the distribution of random variables
associated with DoS attacks where α ∈ (0, 1), when α(k) = 2, indicates that DoS attacks
have occurred.

In this context, an on-off signal is introduced as a means to depict two distinct at-
tack scenarios.

α(k) =

{
1 u(k) = u(k)
2 u(k) = u(k − 1)

In the context of DoS attacks, the hybrid power system in each region can be repre-
sented by i switching system ℘α(k)(α(k) = 1, 2) :{

x̄(k) = Āx̄(k) + B̄ūα(k)(k) + F̄ϑ(k)
y(k) = C̄x̄(k)

(6)

where ū1(k) = u(k), ū2(k) = u(k − 1), Ā = G, B̄ = H, F̄ = W .
Each subsystem can be represented by the following model:{

x̄α(k)(k + 1) = Āx̄α(k)(k) + B̄ūα(k)(k) + F̄ϑ(k)
yα(k)(k) = C̄x̄α(k)(k)

(7)

2.3. Dynamic Linearization Scheme

From a holistic perspective, considering the impact of governor dead zones and
physical limitations, the power system can be characterized as a profoundly intricate
nonlinear system. The LFC subsystem model (7) can be redefined as a comprehensive
nonlinear function:

y(k + 1) = fα(k)(y(k), u(k)) (8)

In the equation, fα(k)(·) denotes an unknown nonlinear function. Before linearizing the
nonlinear power system, we establish the following two assumptions.

Assumption 1. The partial derivative of fα(k)(·) with respect to the variable u(k) is continuous at
any given sampling instant k.

Assumption 2. The nonlinear system (8) adheres to the generalized Lipschitz condition, which
implies that for all instances of k > 0 and ∆u(k) ̸= 0, the following condition is met:

|∆y(k + 1)| ≤ b|∆u(k)| (9)

where ∆y(k + 1) = y(k + 1)− y(k), ∆u(k) = u(k)− u(k − 1), b > 0 is a constant.

Remark 1. From a practical standpoint, the two assumptions above on the power system (3) are both
reasonable and fulfilled. Assumption 1 is a common restriction for a general nonlinear system and
the continuity of fα(k)(·) can be inferred from Equation (3). Assumption 2 restricts the maximum
pace at which the system output can vary. If the change in ∆Pci is limited, the change in output
energy ACEi generated by the power system is also limited, from an energy utilization standpoint.

Theorem 1. For subsystems (7) meeting Assumptions 1 and 2, under the condition |∆u(k)| ̸= 0,
there exists a time-varying model called the parameter pseudo-partial derivative (PPD). This
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parameter ensures that the nonlinear power subsystem model is equivalent to the following compact
form dynamic linearization (CFDL) data equations:

∆y(k + 1) = ϕα(k)(k)∆u(k) (10)

The parameter ϕα(k)(k) is defined as time-varying and remains bounded at every instant.

3. Controller Design

Consider the following input performance index:

J(u(k)) = |yd(k + 1)− y(k + 1)|2 + λα(k)|u(k)− u(k − 1)|2 (11)

where λα(k) > 0 represents the weight factor, and yd(k + 1) correlates with the targeted or
intended system output.

Substituting Equation (10) into the performance index (11), set the derivative of (11)
with respect to u(k) be zero:

u(k) = u(k − 1) +
ρα(k)ϕα(k)(k)

λα(k) +
∣∣∣ϕα(k)(k)

∣∣∣2 (yd(k + 1)− y(k)) (12)

in this context, the symbol ρα(k) shows the factor of step size, ρα(k) ∈ (0, 1].
Next, to estimate the parameter ϕα(k)(k), we design the following performance index:

J
(

ϕα(k)(k)
)
=
∣∣∣∆y(k)− ϕα(k)(k)∆u(k − 1)

∣∣∣2 + µα(k)

∣∣∣ϕα(k)(k)− ϕ̂α(k)(k − 1)
∣∣∣2 (13)

where ϕ̂α(k)(k) represents the estimate of ϕα(k)(k), and µα(k) > 0 is a weighting coefficient.
Minimizing the performance index (13), we obtain the following PPD estimation

algorithm:

ϕ̂α(k)(k) = ϕ̂α(k)(k − 1) +
ηα(k)∆u(k − 1)

µα(k) + ∆u2(k − 1)
×
(

∆y(k)− ϕ̂α(k)(k − 1)∆u(k − 1)
)

(14)

where ηα(k)(k) denote step size factor.
To broaden the applicability of the PPD estimation algorithm (14), we incorporate the

following reset algorithm:

ϕ̂α(k)(k) = ϕ̂α(k)(1) if
∣∣∣θ̂α(k)(k)

∣∣∣ ≤ ε or sign
(

ϕ̂α(k)(k)
)
̸= sign

(
ϕ̂α(k)(1)

)
(15)

where ε > 0 is a small constant.

ϕ̂α(k)(k) = ϕ̂α(k)(k − 1) +
ηα(k)∆u(k − 1)

µα(k) + ∆u2(k − 1)
×
(

∆y(k)− ϕ̂α(k)(k − 1)∆u(k − 1)
)

(16)

ϕ̂α(k)(k) = ϕ̂α(k)(1), if
∣∣∣ϕ̂α(k)(k)

∣∣∣ ≤ ε, or sign
(

ϕ̂α(k)(k)
)
̸= sign

(
ϕ̂α(k)(1)

)
(17)

u(k) = u(k − 1) +
ρα(k)ϕ̂α(k)(k)

λα(k) +
∣∣∣ϕ̂α(k)(k)

∣∣∣2 (yd(k + 1)− y(k)) (18)

In this section, we design an event-triggered, data-driven LFC strategy to conserve
valuable bandwidth resources. The decision to transmit the most recent sampled data to
the corresponding SSMFAC controller will be based on the following triggering conditions:

kr+1 = kr + min
rkr∈N+

{
rkr | e(kr)

TΩe(kr) ⩾ δ
}

(19)
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where e(kr) = y(kr)− y(k) represents the triggering error, kr is an integer denoting the
triggering instant, and δ is the triggering threshold parameter.

Combining algorithms (16)–(18), we obtain the following event-triggered SSMFAC
algorithm:

ϕ̂α(k)(k)

 = ϕ̂α(k)(kr − 1) +
ηα(k)∆u(k−1)

µα(k)+∆u2(k−1) ×
(

∆y(k)− ϕ̂α(k)(k − 1)∆u(k − 1)
)

k = kr

= ϕ̂α(k)(kr − 1) k ∈ (kr−1, kr)
(20)

ϕ̂α(k)(k) = ϕ̂α(k)(1), if
∣∣∣ϕ̂α(k)(k)

∣∣∣ ≤ ε, or sign
(

ϕ̂α(k)(k)
)
̸= sign

(
ϕ̂α(k)(1)

)
(21)

u(k) =

 u(kr − 1) +
ρα(k)ϕ̂α(k)(k)

λα(k)+|ϕ̂α(k)(k)|2
× (yd(k + 1)− y(kr)) k = kr

u(kr − 1) k ∈ (kr−1, kr)
(22)

The schematic diagram of SSMFAC is shown in Figure 1.

Figure 1. Block diagram of SSMFAC.

4. Convergence Analysis

Theorem 2. Considering the switched multi-area power system represented by Equation (7), which
complies with Assumptions 1 and 2, with respect to ∀j, l and when j ̸= l, employing the switching
system model-free adaptive controller scheme (20)–(22), given positive scalars o1, o2, if there exist
ηi, µi, ρi, and λi such that:

ℵ =

(
Ξ1 Ξ2
∗ Ξ3

)
< 0 (23)

where Ξ1 =

(
(1 − o1)Qi(1 − o1)− Qi (1 − o1)Qio2
∗ o2Qio2 − Ω

)
, Ξ2 = diag

{
δ

1
2 , δ

1
2

}
, Ξ3 =

diag{−I,−I}. The tracking error e(k)of the switched multi-area power system (7) is bounded.

Proof of Theorem 2. If the conditions of the reset algorithm (17) are met, it becomes clear
that the parameter ϕ̂α(k)(k) is bounded. Let ϕ̃α(k)(k) = ϕ̂α(k)(k)− ϕα(k)(k) represent the
PDD estimation error. By subtracting ϕα(k)(k) from both sides of the parameter estimation
algorithm (20), we obtain:

ϕ̃α(k)(k) =

(
1 −

ηα(k)∆u2(k − 1)

µα(k) + ∆u2(k − 1)

)
ϕ̃α(k)(k − 1) + ϕα(k)(k − 1)− ϕα(k)(k) (24)

Obtaining the absolute value of Equation (24), we find:

∣∣∣ϕ̃α(k)(k)
∣∣∣ = ∣∣∣∣∣

(
1 −

ηα(k)∆u2(k − 1)
µα(k) + ∆u(k − 1)

)∣∣∣∣∣∣∣∣ϕ̃α(k)(k − 1)
∣∣∣+ ∣∣∣ϕα(k)(k − 1)− ϕα(k)(k)

∣∣∣ (25)
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Since
∣∣∣ϕα(k)(k)

∣∣∣ ≤ d1 is bounded, there exists
∣∣∣ϕα(k)(k − 1)− ϕα(k)(k)

∣∣∣ ≤ 2d1

Choosing µα(k) > 0, 0 < ηα(k) < 1, we can derive ηα(k)∆u2(k − 1) < ∆u2(k − 1) < µα(k) +

∆u2(k − 1). Consequently, there must exist γ constant y such that:

0 < γ <

(
ηα(k)∆u2(k − 1)

µα(k) + ∆u2(k − 1)

)
< 1 (26)

Substituting Equation (26) into Equation (25), we obtain:∣∣∣ϕ̃α(k)(k)
∣∣∣ ⩽ (1 − γ)

∣∣∣ϕ̃α(k)(k − 1)
∣∣∣+ 2d1

⩽ (1 − γ)2
∣∣∣ϕ̃α(k)(k − 2)

∣∣∣+ 2d1(1 − γ) + 2d1

⩽ · · ·

⩽ (1 − γ)k−1
∣∣∣ϕ̃α(k)(1)

∣∣∣+ 2d1

γ

(27)

Therefore, Equation (27) is bounded, and since ϕ̃α(k)(k) is bounded, ϕ̂α(k)(k) is also bounded.
The boundedness of tracking error.
We define the system’s tracking error as:

e(k) = yd(k)− y(k) (28)

By substituting Equations (19) and (13) into Equation (29), we obtain:

e(k + 1) = yd(k + 1)− y(k + 1)

= yd(k + 1)− y(k)− ϕα(k)(k)∆u(k)

= e(k)−
ρα(k)ϕ̂α(k)(k)ϕα(k)(k)

λα(k) +
∣∣∣ϕ̂α(k)(k)

∣∣∣2 (e(k)− e(kr))

= (1 − Θ(k))e(k) + Θ(k)e(kr)

(29)

where Θ(k) =
ρα(k)ϕ̂α(k)(k)ϕα(k)(k)

λα(k)+|ϕ̂α(k)(k)|2
Next, consider the following Lyapunov function:

V(k) = Vα(k)(e(k)) = eT(k)Qα(k)e(k) (30)

For the i th subsystem:
Vi(e(k)) = eT(k)Qie(k) (31)

Let ∆Vi(k + 1) = Vi(k + 1)− Vi(k) to obtain

∆Vi(k + 1) = [(1 − Θ(k))e(k) + Θ(k)er(k)]
TQi[(1 − Θ(k))e(k) + Θ(k)er(k)]

− eT(k)Qie(k)

= ℓT(k)Λℓ(k)

(32)

where ℓ(k) = [e(k)e(kr)], Λ =

[
∇1 ∇2
∗ ∇3

]
,∇1 = (1 − Θ(k))Qi(1 − Θ(k)) − Qi,∇2 =

(1 − Θ(k))QiΘ(k),∇3 = Θ(k)QiΘ(k).
Let λmin = b2/4, using the inequality a2 + b2 ≥ 2ab, we choose λ > λmin such that

there exists a constant 0 < M < 1 satisfying:
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0 < M ≤
ϕα(k)(k)ϕ̂α(k)(k)

λα(k) +
∣∣∣ϕ̂α(k)(k)

∣∣∣2 ≤
b
∣∣∣ϕ̂α(k)(k)

∣∣∣
λα(k) +

∣∣∣ϕ̂α(k)(k)
∣∣∣2 ≤ b

2
√

λmin
= 1 (33)

consequently, can have o1 < Θ(k) < o2.
Let us consider the event-triggered scheme (19) can have:

∆Vi(k + 1) ≤ ℓT(k)Λℓ(k) + δ − e(kr)
TΩe(kr) (34)

By utilizing the Schur complement lemma and combining it with Equation (34), have:

∆Vi(k + 1) ≤ ℓT(k)ℵ(k)ℓ(k) < 0 (35)

where ℵ =

(
Ξ1 Ξ2
∗ Ξ3

)
, Ξ1 =

(
(1 − o1)Qi(1 − o1)− Qi (1 − o1)Qio2
∗ o2Qio2 − Ω

)
, Ξ2 =

diag
{

δ
1
2 , δ

1
2

}
, Ξ3 = diag{−I,−I}.

The analysis demonstrates that Vi(k + 1) is constrained within a certain range, indi-
cating that the tracking error e(k) is similarly bounded. In summary, the tracking error
remains within certain bounds, ensuring stable system behavior.

The output y(k) is bounded because yd(k) is constant and the tracking error
e(k) converges.

5. Simulation Example

To validate the effectiveness of the proposed load frequency control scheme based
on switched systems, this study employs a three-area interconnected power system as the
simulation model. The system parameters are derived from data in reference [15] and are
provided in Table 2. The total sampling time is denoted by 60 s, with a sampling period of
T = 0.001 s. Other parameters include T12 = 0.21, T13 = 0.24, T23 = 0.13 .

Table 2. Simulation parameters for the power system.

Parameters Area 1 Area 2 Area 3

D/(pu/Hz) 1.0 1.5 1.8
M/(pu· s) 10 12 12

R/(Hz/pu) 0.05 0.05 0.05
Tt/s 0.30 0.17 0.20
Tg/s 0.37 4 0.35

Assuming a data transmission success rate of E{α(k)} = 0.6, the controller parameters
are denoted by η1 = 0.3, η2 = 0.5, µ1 = 1.4, µ2 = 1.2, ρ1 = 2.5, ρ2 = 2.8, λ1 = 1.2, λ2 = 2.7,
Ω = 1016, δ = 0.003 and the initial responses for the three regions are represented by
uj(1) = 0, ϕ̂j(1) = 0.3.

Furthermore, a load disturbance of 0.02 per unit (p.u.) is introduced simultaneously
in each region. The system frequency deviation curves, tie-line power variation curves,
and system output curves are depicted in Figures 2–4. Notably, after running for a certain
duration, the deviations in frequency and variations in tie-line power within each region
eventually diminish to zero. The simulation results demonstrate the favorable control
performance of the proposed algorithm. Figure 5 shows the switching signals.
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Figure 2. The curve of frequency deviation response.
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Figure 3. The response curve of change in tie-line power.
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Figure 4. The curve of ACEi.
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Figure 5. Any 100 switching sequences in the system.

The release times and intervals between sensor outputs are depicted in Figures 6–8,
with 255,669, 36,389 and 22,658 trigger occurrences among all sample intervals. Addi-
tionally, a comparison was made with the PI control method and frequency curves under
the PI and SSMFAC control methods have been plotted in Figure 9. Based on the graph
analysis, the SSMFAC control strategy demonstrates superior performance compared to
the PI control scheme, showcasing smaller overshoot and faster convergence speed. This
observation indicates the effectiveness of the SSMFAC approach in achieving better control
system performance.

Figure 6. Event triggering intervals in area 1.

Additionally, we utilized the “tic” and “toc” functions in MATLAB to measure the
average running time of the two algorithms, which were 1.734 s and 2.2505 s, respectively.
The results indicate that the SSMFAC method offers a low computational burden while
ensuring control performance. In Table 3, we evaluated the effectiveness of the proposed
approach using two performance criteria: the Integral of Absolute Error (IAE) and the
Integral of Time multiplied by Absolute Error (ITAE). We compared the results with
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those obtained from the ETSSMFAC and PI schemes. The results show that the SSMFAC
algorithm proposed in this paper performs better.

Figure 7. Event triggering intervals in area 2.

Figure 8. Event triggering intervals in area 3.

f
P

ti
e

Time(s)

A
C

E

SSMFAC

PI

Figure 9. Comparison with PI controller.
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Table 3. performance comparison.

Control Program IAE ITAE

SSMFAC 0.00014845 0.00078395
ET-SSMFAC 0.00015734 0.00083537

PI 0.00016796 0.0017093

While the event-triggered SSFMAC algorithms (20) and (22) have demonstrated ef-
fectiveness in theoretical simulations, it is important to consider practical factors that can
influence system control. One such factor is the susceptibility to noise; we have incorpo-
rated noise into our simulations to evaluate the robustness of the SSFMAC algorithm under
realistic conditions. We modeled noise with mean 0 and variance 0.000000003 as Gaussian
white noise added to the input signal.

Figure 10 shows that the system remains stable and performs satisfactorily, but the
control accuracy is slightly degraded due to noise. Including noise in the simulations
highlights the practical challenges the SSFMAC algorithm faces. While the algorithm
remains robust under noisy conditions, additional filtering techniques are necessary to
maintain control performance. Future work could focus on developing more advanced
noise reduction methods and adaptive filtering techniques to further enhance the control
system’s robustness.

Time(s)

f(
H

z
)

without Noise

with Noise

Figure 10. Noise impact on system response.

In the following sections, we replace constant disturbance with variable load dis-
turbance to test whether the proposed algorithm is capable of dealing with the complex
working environment. The trajectory of the load power change is shown in Figure 11,
and the response curves are drafted in Figure 12. It can be seen that the control scheme
designed in this paper still has superior tracking performance, even if the work environ-
ment is changeable. Once again, the operating information confirms the effectiveness and
practicability of the SSMFAC algorithm.
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Figure 11. Random loaddisturbances.
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Figure 12. Frequency responses of the LFC scheme.

6. Conclusions

This paper has a new data-driven load frequency control scheme tailored for power
systems vulnerable to Denial-of-Service attacks. The method employs an input-output
data-driven LFC algorithm, eliminating the need for a precise power system model and
thus streamlining controller design. First, the multi-area interconnected power system
under DoS attacks is modeled as a switching system consisting of two subsystems. An
event-triggered model-free adaptive LFC algorithm is subsequently introduced within
the switching system framework to manage load frequency control. The effectiveness of
this scheme is demonstrated by applying it to a three-area interconnected power system.
Simulation results confirm that the switching-based, model-free adaptive LFC algorithm
maintains robust performance even when facing DoS attacks. However, the methodology
has certain limitations, including the inherent dependence on data quality, potential compu-
tational complexity, and possible stability issues in highly dynamic or noisy environments
typically associated with model-free adaptive control approaches.
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