
Citation: Engelbrecht, A.; Gouldie, R.

Fitness Landscape Analysis of

Product Unit Neural Networks.

Algorithms 2024, 17, 241. https://

doi.org/10.3390/a17060241

Academic Editor: Stefano Mariani

Received: 15 March 2024

Revised: 6 May 2024

Accepted: 15 May 2024

Published: 4 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Fitness Landscape Analysis of Product Unit Neural Networks
Andries Engelbrecht 1,2,* and Robert Gouldie 3

1 Department of Industrial Engigneering and Computer Science Division, Stellenbosch University,
Stellenbosch 7600, South Africa

2 Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology,
Mubarak Al-Abdullah 32093, Kuwait

3 Computer Science Division, Stellenbosch University, Stellenbosch 7600, South Africa; robgouldie@gmail.com
* Correspondence: engel@sun.ac.za

Abstract: A fitness landscape analysis of the loss surfaces produced by product unit neural networks is
performed in order to gain a better understanding of the impact of product units on the characteristics
of the loss surfaces. The loss surface characteristics of product unit neural networks are then compared
to the characteristics of loss surfaces produced by neural networks that make use of summation
units. The failure of certain optimization algorithms in training product neural networks is explained
through trends observed between loss surface characteristics and optimization algorithm performance.
The paper shows that the loss surfaces of product unit neural networks have extremely large gradients
with many deep ravines and valleys, which explains why gradient-based optimization algorithms
fail at training these neural networks.

Keywords: fitness landscape analysis; higher-order neural networks; product unit neural networks

1. Introduction

Usually, neural networks (NNs) are constructed using multiple layers of summation
units (SUs) in all non-input layers. The net input signal to each SU is calculated as the
weighted sum of the inputs connected to that unit. NNs that use SUs are referred to in this
paper as summation unit neural networks (SUNNs). SUNNs with a single hidden layer
of SUs can approximate any function to an arbitrary degree of accuracy provided that a
sufficient number of SUs are used in that hidden layer and provided that a set of optimal
weights and biases can be found [1]. However, this may result in a large number of SUs
in order to approximate complex functions of higher orders. Alternatively, higher-order
combinations of input signals can be used to compute the net input signal to a unit. There
are many types of higher-order NNs [2–5], of which this paper concentrates on product
unit neural networks (PUNNs) [2], which are also referred to as pi–sigma NNs. PUNNs
calculate the net input signal as the weighted product of inputs connected to that unit.
Such units are referred to as product units (PUs). These PUs allow PUNNs to more easily
approximate non-linear relationships and to automatically learn higher-order terms [6],
using fewer hidden units than SUNNs to achieve the same level of accuracy. Additionally,
PUNNs have the advantage of increased accuracy, less training time, and simpler network
architectures [7].

Although PUNNs do provide advantages, they also introduce problems. If the weights
leading to a PU are too large, input signals are transformed to too high an order, which
may result in overfitting. Furthermore, weight updates using gradient-based optimization
algorithms are computationally significantly more expensive than when SUs are used.
PUs have a severe effect on the loss surface of the NN [2,6,8]. The loss surface is the
hyper-surface formed by the objective function values that are calculated across the search
space. In the context of NN training, the objective function is the error function, e.g., sum-
squared error, and the extent of the search space is defined by the range of values that

Algorithms 2024, 17, 241. https://doi.org/10.3390/a17060241 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a17060241
https://doi.org/10.3390/a17060241
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-0242-3539
https://doi.org/10.3390/a17060241
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a17060241?type=check_update&version=1

Algorithms 2024, 17, 241 2 of 20

can be assigned to the NN weights and biases. While analyses of the loss surfaces of
feedforward NNs that employ SUs have been done [9–13], the nature and characteristics
of higher-order NN loss surfaces are not very well understood [12]. Research has shown
that PUs produce convoluted error surfaces, introducing more local minima, deep ravines,
valleys, and extreme gradients [7,14]. Saddle points are likely to become more prevalent
as the dimensionality of the problem increases [12]. As a result, gradient-based training
algorithms become trapped in local minima or become paralyzed (which occurs when the
gradient of the error with respect to the current weight is nearly zero) [7]. Additionally,
the exponential term in PUs induces large, abrupt changes to the weights, causing good
optima to be overshot [15,16].

Furthermore, the high dimensionality of the loss surface makes it very difficult to
visualize its characteristics. Recently, Li et al. [17] worked towards approaches to visualize
NN loss surfaces and to use such visualizations to understand the aspects that make
NNs trainable. Ding et al. [18] considered visualization of the entire search trajectory of
deep NNs and projected the high-dimensional loss surfaces to lower-dimensional spaces.
However, qualitative mechanisms are still in need in order to quantify the characteristics
of the NN loss surface in order to better understand it. Fitness landscape analysis (FLA)
is a formal approach to characterize loss surfaces [19,20], with the goal being to estimate
and quantify various features of the loss surface and to discover correlations between loss
surface features and algorithm performance. FLA can provide insight into the nature of
the PUNN loss surfaces in order to better understand the reasons certain optimization
algorithms fail or succeed to train PUNNs.

The goal of this paper is to perform FLA of PUNN loss surfaces and to determine how
PUNN loss surfaces differ from those of SUNNs. The loss surfaces of oversized PUNNs,
the effects of regularization, and the effects of the search bounds of the loss surface are also
analyzed. The paper maps the performance of selected optimization algorithms to PUNN
loss surface characteristics to determine for which characteristics some algorithms perform
poorly or well.

The rest of this paper is structured as follows: Section 2 describes PUNNs. Section 3
discusses FLA, reviews FLA metrics, and describes the random walks used to gather the
necessary information about the loss surface. Section 4 provides a review of current FLA
studies of NNs. PUNN training algorithms are reviewed in Section 5. The empirical
process followed to analyze the loss surface characteristics of PUNNs is described in
Section 6. Section 7 discusses the loss surface characteristics, while correlations between the
performance of PUNN training algorithms and loss surface characteristics are discussed in
Section 8.

2. Product Unit Neural Networks

Higher-order NNs include functional link NNs [4], sigma–pi NNs [3], second-order
NNs [5], and PUNNs [2]. PUNNs [2,6,8] calculate the net input signal to hidden units as a
weighted product of the input signals, i.e.,

netyj ,p =
I

∏
i=1

z
vji
i,p (1)

instead of using the traditional SU, where the input signal is calculated as a linear weighted
sum of the input signals, i.e.,

netyj ,p =
I+1

∑
i=1

zi,pvji (2)

In the above, netyj ,p is the net input signal to unit yj for pattern p, zi,p is the activation
level of unit zi, vji is the weight between units yj and zi, and I is the total number of units
in the previous layer [14]. The bias is modeled as the (I + 1)-th unit, where zI+1,p = −1
for all patterns, and vj,I+1 represents the bias [14]. A SUNN is implemented with bias
units for the hidden and output layer; a PUNN is implemented with a bias unit for the

Algorithms 2024, 17, 241 3 of 20

output layer only. There are two types of architectures that incorporate PUs [2]: (1) each
layer alternates between PUs and SUs, with the output layer always consisting of SUs; (2) a
group of dedicated PUs are connected to each SU while also being connected to the input
units. This paper makes use of the former architecture, with one hidden layer consisting of
PUs and linear activation functions used in all layers. Using this architecture, the activation
of a PU for a pattern p is expressed as

netyj ,p =
I

∏
i=1

z
vji
i,p =

I
∏
i=1

evji ln(zi,p) = e∑I
i=1 vji ln(zi,p) (3)

for zi,p > 0. If zi,p < 0, then zi,p is written as the complex number zi,p = i2|zi,p|, yielding

netyj ,p = e∑I
i=1 vji ln|zi,p |

× (cos(π
I
∑
i=1

vjiIi) + i sin(π
I
∑
i=1

vjiIi)) (4)

where

Ii =

{
0 if zi > 0
1 if zi < 0

(5)

The above equations illustrate that the computational costs for gradient-based ap-
proaches are higher than when SUs are used.

Durbin and Rumelhart discovered that, apart from the added complexity of working in
the complex domain, which results in double the number of equations and weight variables,
no substantial improvements in results were gained [2,14]. Therefore, the complex part of
Equation (4) is omitted. Refer to [14] for the PUNN training rules using stochastic gradient
descent (SGD).

Research has shown that the approximation of higher-order functions using PUNNs
provides more accurate results, better training time, and simpler network architectures
than SUNNs [7]. Training time is less because PUNNs automatically learn the higher-
order terms that are required to implement a specific function [6]. PUNNs have increased
information capacity compared to SUNNs [2,6]. The information capacity of a single PU is
approximately 3N, compared to 2N for a single SU, where N is the number of inputs to the
unit. The increased information capacity results in fewer PUs required to learn complex
functions, resulting in smaller network architectures.

3. Fitness Landscape Analysis

The concept of FLA comes from the evolutionary context in the study of the land-
scapes of discrete combinatorial problems [19]. FLA has since been successfully adapted
to continuous fitness landscapes [20]. The goal of fitness landscape analysis is to estimate
and quantify various features of the error surface and to discover correlations between
landscape features and algorithm performance. FLA provides a better understanding as
to why certain algorithms succeed or fail as well as providing a deeper understanding of
the optimization problem [21]. The features of a fitness landscape are related to four high
level properties: namely, modality, structure, separability, and searchability. Modality
refers to the number and distribution of optima in a fitness landscape. Structure refers to
the amount of variability in the landscape and describes the regions surrounding the
optima. Separability refers to the correlations and dependencies among the variables
of the loss function. Searchability refers to the ability of the optimization algorithm
to improve the quality of a given solution and can further be considered a metric of
problem hardness [21].

FLA is performed by randomly sampling points from the landscape, calculating the
fitness value for each sampled point, and then analyzing the relationship between the

Algorithms 2024, 17, 241 4 of 20

spatial and qualitative characteristics of the sampled points. Therefore, it is important to
consider the manner in which points are sampled for FLA. The samples need to be large
enough to sufficiently describe and represent the search space in order to accurately
estimate the characteristics of the search space. However, samples need to be obtained
without a complete enumeration of every point in the search space because the search
space is infinite. A balance needs to be obtained between comprehensive sampling of
the search space and the computational efficiency in doing so. It is important to note
that FLA has to be done in a computationally affordable manner to make it a viable
option compared to selecting the optimization algorithm and hyper-parameters through
a trial-and-error approach. However, Malan argues that this is not completely true, as
FLA still provides a deeper understanding of the problem, providing clarification of the
“black-box” nature of NNs [20]. The computational effort in FLA is largely dependent on
the sampling techniques.

The sampling techniques considered in this paper are uniform and random-walk-based
sampling. Uniform sampling simply takes uniform samples from the whole landscape
within set bounds. No bias is given to any points in the landscape, thus providing a more
objective view of the entire landscape. However, many points are required in order for
it to be effective [20]. Alternatively, random walk sampling refers to “walking” through
the landscape by taking random steps in all dimensions. Random walk methods have the
advantage of gathering fitness information of neighboring points, which is required for
certain fitness measures. However, simple random walks do not provide enough coverage
of the search space [20]. Instead, progressive random walks (PRWs) are used [22]. PRWs
provide better coverage by starting on the edge of the search space and then randomly
moving through all dimensions, with a bias towards the opposite side of the search space.
Finally, the Manhattan random walk (MRW) [22] is similar to the PRW, but each step moves
in only one dimension. MRWs allow gradient information of the landscape to be estimated.
Refer to [22] for a more detailed discussion and a visualization of the coverage of the
sampling techniques.

The magnitude of change in fitness throughout the landscape is quantified using
gradient measures [23]. The average estimated gradient Gavg and the standard deviation
of the gradient Gdev are both obtained by sampling with MRWs. A low value for Gdev is
indicative that Gavg is a good estimator of the gradient. Larger values of Gdev indicate that
the gradients of certain walks deviate a lot from Gavg. This is an indication of “cliffs” or
sudden “peaks” or “valleys” present in the landscape [23].

The variability of the fitness values or ruggedness of the landscape is estimated with
the first entropic measure (FEM) [22]. Malan and Engelbrecht [22] proposed two measures
based on the FEM: namely, micro ruggedness (FEM0.01), where the step sizes of the PRWs
are 1% of the search space, and macro ruggedness (FEM0.1), where the step sizes of the
PRWs are 10% of the search space. The FEM measures provide a value in [0, 1], where
0 indicates a flat landscape, and larger values indicate a more rugged landscape. For a
detailed description of the FEM measures and pseudocode, see [23].

The fitness–distance correlation (FDC) was introduced by Jones [24] as a measure of
global problem hardness. The FDC measure is based on the premise that for a landscape
to be easily searched, error should decrease as distance to the optimum decreases in the
case of minimization problems. The FDC measures the covariance between the fitness
of a solution and its distance to the nearest optimum. Fitness should therefore correlate
well with the distance to the optimum if the optimum is easy to locate. However, the
FDC requires knowledge of the global optima, which is often unknown for optimization
problems. Therefore, this measure was extended by Malan [20] by making use of the fittest
points in the sample instead of the global optima (FDCs). Instead of estimating how well
the landscape guides the search towards the optimum, the FDCs quantifies how well the
problem guides the search towards areas of better fitness. Therefore, FDCs changes the
focus from a measure of problem hardness to searchability. The FDCs measure gives a

Algorithms 2024, 17, 241 5 of 20

value in [−1, 1], where 1 indicates a highly searchable landscape, −1 indicates a deceptive
landscape, and 0 indicates a lack of information in the landscape to guide the search.

The dispersion metric (DM) [25] is calculated by comparing the overall dispersion of
uniformly sampled points to a subset of the fittest points. The DM describes the underlying
structure of the landscape by estimating the presence of funnels. A funnel in a landscape is
a global basin shape that consists of clustered local minima [20]. A single-funnel landscape
has an underlying unimodal “basin”-like structure, whereas a multi-funnel landscape has
an underlying multimodal-modal structure. Multi-funnel landscapes can present problems
for optimization algorithms because they may become trapped in sub-optimal funnels [20].
A positive value for DM indicates the presence of multiple funnels.

Neutrality of the landscape can be characterized by the M1 and M2 measures [26]. M1
calculates the proportion of neutral structures in a PRW in order to estimate the overall
neutrality of the landscape. M2 estimates the relative size of the largest neutral region. The
M1 and M2 measures both produce values in [0, 1], where 1 indicates a completely neutral
landscape, and 0 indicates that the landscape has no neutral regions.

4. Neural Network Fitness Landscape Analysis

Though NNs have been studied extensively and have been widely applied, the land-
scape properties of the loss function are still poorly understood [12]. A review of early
analyses of NN error landscapes can be found in [21].

Recent FLA of feedforward NNs have provided valuable insights into the character-
istics of the loss surfaces produced when SUs are used in the hidden and output layers.
Gallagher [27] applied principal component analysis to simplify the error landscape repre-
sentation to visualize NN error landscapes. It was found that NN error landscapes have
many flat areas with sudden cliffs and ravines: a finding recently supported by Rakitian-
skaia et al. [28]. Using formal random matrix theory, proofs have been provided to show
that NN error landscapes contain more saddle points than local minima, and the number of
local minima reduces as the dimensionality of the loss surfaces increases [12]. This finding
was also recently supported by Rakitianskaia et al. [28] and Bosman et al. [29].

Bosman et al. [30] analyzed fitness landscape properties under different space bound-
aries. The study showed that larger bounds result in highly rugged error surfaces with
extremely steep gradients and provide little information to guide the training algorithm.
Rakitianskaia et al. [28] and Bosman et al. [29] showed that more hidden units per hidden
layer reduce the number of local minima and simplify the shape of the global attractor,
while more hidden layers sharpen the global attractor, making it more exploitable. In
addition, the dimensionality of loss surfaces increases, which results in more rugged, flatter
landscapes with more treacherous cliffs and ravines. Bosman et al. [10] investigated land-
scape changes induced by the weight elimination penalty function under various penalty
coefficient values. It was shown that weight elimination alters the search space and does
not necessarily make the landscape easier to search. The error landscape becomes smoother,
while more local minima are introduced. The impact of the quadratic loss and entropic loss
on the error landscape indicate that entropic loss results in stronger gradients and fewer
stationary points than the quadratic loss function. The entropic loss function results in a
more searchable landscape.

In order to cover as much as possible insightful areas of the loss surfaces of NNs,
Bosman et al. [11] proposed a progressive gradient walk to specifically characterize basins
of attraction. Van Aardt et al. [26] developed measures of neutrality specifically for NN
error landscapes.

Dennis et al. [13] evaluated the impact of changes in the set of training samples to NN
error surfaces by considering different active learning approaches and mini-batch sizes. It
was shown that aspects of structure (specifically gradients), modality, and searchability
are highly sensitive to changes in the training examples used to adjust the NN weights.
It was also found that different subsets of training examples produce minima at different
locations in the loss surface.

Algorithms 2024, 17, 241 6 of 20

Very recently, Bosman et al. [31] analyzed the impact of activation functions on loss
surfaces. It was shown that the rectified linear activation function yields the most convex
loss surfaces, while the exponential linear activation function yields the flattest loss surface.

Yang et al. [32] analyzed the local and global properties of NN loss surfaces. Changes
to the loss surface characteristics, such as variation of control parameter values, were ana-
lyzed, as well as the impact of different training phases on the loss surfaces. Sun et al. [33]
provided a recent review of research on the global structure of NN loss surfaces, with
specific focus on deep linear networks. Approaches to perturb the loss function to elim-
inate bad local minima were analyzed, as well as the impact of initialization and batch
normalization. Recent loss surface analyses focused on gaining a better understanding of
the loss surfaces of deep NNs [34–37].

Despite the advances made in gaining a better understanding of NN loss surfaces, no
FLA studies exist to analyze the characteristics of loss surfaces produced when PUs are
used. Therefore, a need exists for such an analysis, which is the focus of this paper.

5. Training Algorithms for Product Unit Neural Networks

Various optimization algorithms have been applied to train PUNNs, including SGD
and meta-heuristics such as particle swarm optimization (PSO) and differential evolution
(DE). This section reviews these optimization algorithms for training PUNNs. The general
training process is discussed in Section 5.1, while SGD, PSO, and DE are respectively
discussed in Sections 5.2–5.4.

5.1. Training Procedure

Training is the process of finding a set of weights and biases such that the NN ap-
proximates the mapping of inputs to outputs well. Training of a network is therefore an
optimization problem. The purpose of training is to obtain the best combination of weight
and bias values such that the error function is minimized for a particular set of examples.
PSO and DE are both population-based optimization algorithms, with each algorithm
using a population of individuals. Each individual represents a candidate solution, i.e., a
unique combination of weights and biases: thus, one NN. The objective function used to
determine the quality of an individual is the training error of all training patterns passed
through the NN which the individual represents. The optimization algorithm provides the
best individual, which is the NN with the optimal combination of weights and biases that
minimizes the training error.

5.2. Stochastic Gradient Descent

Gradient descent (GD) [38] is possibly the most popular approach used to train NNs.
GD requires an error function to measure the NN’s error at approximating the target. GD
calculates the gradient of the error function with respect to the NN weights to determine
the direction the algorithm must move towards in the weight space in order to locate a
local optimum. The “stochastic” component in SGD is introduced by adjusting the weights
after a single pattern that is randomly selected from the training set. Random selection of
training examples also prevents any bias that may occur due to the order in which patterns
occur in the training set [14]. SGD has the disadvantage of fluctuating changes in the sign
of the error derivatives as a result of weight adjustment after each pattern. This causes the
NN to occasionally unlearn what the previous steps have learned. Therefore, SGD makes
use of momentum to average the weight changes in order to ensure that the search path
continues in the average downhill direction. Refer to [14] for the PUNN training rule using
SGD, and find the pseudocode in Algorithm 1. In this algorithm, α is the momentum, η
is the learning rate, t is the number of epochs, ET is the training error, tk,p and ok,p are the
target and actual output values for the k’th output unit, respectively, for pattern p, and K
is the number of units in the output layer. Refer to [14] for the derivations of ∆wkj(t) and
∆vkj(t) in the context of PUNNs.

Algorithms 2024, 17, 241 7 of 20

Algorithm 1: Stochastic gradient descent learning algorithm.
Initialize weights (w, v), η, α, and the number of epochs while stopping condition(s)
not true do

Let ET = 0;
for each training pattern p do

Do the feedforward phase to calculate yj,p(∀j = 1, ..., J) and
ok,p(∀k = 1, ..., K);

Compute output error signals δok,p and hidden layer error signals δyj,p ;
Adjust weights wkj and vji (backpropagation of errors);
wkj(t) + = ∆wkj(t) + α∆wkj(t − 1);
vkj(t) + = ∆vkj(t) + α∆vkj(t − 1);
ET + = ∑K

k=1(tk,p − ok,p)
2;

end
t = t + 1

end

5.3. Particle Swarm Optimization

PSO is a population-based stochastic search algorithm inspired by the flocking behav-
ior of birds [39]. A swarm of particles is maintained, where the position of each particle is
adjusted according to its own experience and that of its neighbors while trying to maintain
the previous search direction [14]. The positions of the particles are adjusted by adding a
velocity, vi(t), to the current position, vi(t), as follows:

xi(t + 1) = xi(t) + vi(t + 1) (6)

The optimization process is driven by the velocity vector, which reflects the experi-
ential knowledge of the particle and socially exchanged information from the particle’s
neighborhood. The experiential knowledge of a particle is generally referred to as the
cognitive component and the socially exchanged information is referred to as the social
component of the velocity equation. The inertia global best (gbest) PSO [40] is considered
for the purposes of this study, for which the social component of the particle velocity update
reflects information obtained from all the particles in the swarm. The social information is
the best position found by the swarm, and is referred to as ŷ(t) [14]. The velocity of particle
i is calculated as

vij(t + 1) = ωvij(t) + c1r1j(t)(yij(t)− xij(t)) + c2r2j(t)(ŷj(t)− xij(t)) (7)

where vij(t) and xij(t) are the velocity and position, respectively, in dimension j at time
t. The inertia weight is given by ω, while c1 and c2 are the acceleration constants. The
stochastic element of the PSO is incorporated with the random variables r1ij(t), r2ij(t),
which are sampled from a uniform distribution over [0, 1]. Finally, yij(t) and ŷj(t) denote
the personal and global best positions, respectively, in dimension j for particle i.

The performance of the PSO algorithm has been shown to be sensitive to the choice
of control parameter values [41]. The control parameter values must be chosen such that
a good balance of exploration and exploitation is obtained. Eberhart and Shi [42] found
empirically that ω = 0.7298 and c1 = c2 = 1.496 lead to convergent trajectories. This
control parameter value combination satisfies theoretically derived stability conditions and
exhibits strong performance characteristics [43].

In the context of NN training, each particle represents the weights and biases for one
NN. Pseudocode for the gbest PSO is provided in Algorithm 2.

Algorithms 2024, 17, 241 8 of 20

Algorithm 2: Pseudocode for the inertia gbest PSO.

Create and initialize an nx-dimensional swarm;
while stopping condition(s) not true do

for each particle i = 1,...,ns do
//set the personal best position;
if f (xi) < f (yi) then

yi = xi;
end
//set the global best position;
if f (yi) < f (ŷ) then

ŷ = yi;
end

end
for each particle i = 1,...,ns do

update the velocity using equation (17);
update the position using equation (16);

end
end

5.4. Differential Evolution

DE [44] is a population-based stochastic search algorithm for solving optimization
problems over continuous spaces. DE is a variant of the family of evolutionary algorithms
(EAs). An EA uses mechanisms inspired by biological evolution, such as reproduction,
mutation, recombination, and selection. DE differs from other EAs in the order that the
operators are applied and the way that the mutation operator is implemented. Mutation oc-
curs through the creation of trial vectors, which are recombined with the parent individuals
to produce offspring. The trial vectors are calculated as

ui(t) = xi1(t) + β(xi2(t)− xi3(t))

where xi(t) is a selected individual that is perturbed with the difference of two randomly
selected individuals, xi2(t) and xi3(t), multiplied by a scalar β ∈ (0, ∞). Offspring x′i(t)
are then produced through discrete recombination of the trial vectors ui(t) and the parent
vectors xi(t) through the following crossover operator:

x′ij(t) =

{
uij(t) if j ∈ J
xij(t) otherwise

where J is the set of indices that will undergo perturbation according to a recombination
probability pr. The next generation is created by replacing a parent with its offspring only
if its offspring has better fitness than the parent.

In the context of NN training, each individual in the DE population represents the
weights and biases of a single NN. Refer to Algorithm 3 for pseudocode for the DE algorithm.

Algorithms 2024, 17, 241 9 of 20

Algorithm 3: Pseudocode for a general DE algorithm.

Let t = 0 be the generation counter;
Initialize the control parameters β and pr;
Create and initialize the population C(0) to consist of ns individuals;
while stopping condition(s) not true do

for each individual xi(t) ∈ C(t) do
Evaluate the fitness f (xi(t));
Create the trial vector ui(t) by applying the mutation operator;
Create an offspring x′i(t) by applying the crossover operator;
if f (x′i(t)) is better than f (xi(t)) then

Add x′i(t) to C(t + 1);
else

Add xi(t) to C(t + 1);
end

end
end
Return the individual with the best fitness as the solution;

6. Empirical Procedure

The empirical procedure followed in this study is presented. Section 6.1 outlines the
datasets used, and the corresponding network architectures are detailed in Section 6.2.
Section 6.3 describes the sampling and FLA metric parameters. Section 6.4 describes the
performance metrics and parameters of the NN training algorithms used.

6.1. Datasets

Four well-known benchmark classification problems of varying dimensionality and
five regression problems are used:

1. The quadratic function (f1): f (x) = x2, with x ∼ U(−1, 1). The training and test sets
consisted of 50 randomly generated patterns.

2. The cubic function (f2): f (x) = x3 − 0.04x, with x ∼ U(−1, 1). The training and test
sets consisted of 50 randomly generated patterns.

3. The Hénon time series (f3): xt = 1 + 0.3xt−2 − 1.4x2
t−1, with x1, x2 ∼ U(−1, 1). The

training and test sets consisted of 200 randomly generated patterns.
4. The surface function (f4): f (x, y) = y7x3 − 0.5x6, with x, y ∼ U(−1, 1). The training

and test sets consisted of 300 randomly generated patterns.
5. The sum of powers function (f5): f (x) = x2 + x5, with x ∼ U(−1, 1). The training

and test sets consisted of 100 randomly generated patterns.

The classification datasets used are listed in Table 1.

6.2. Network Architecture

Three different types of network architectures, with different numbers of hidden units,
are used, as listed in Table 1:

• Optimal architectures: For fair comparisons between the loss surfaces of PUNNs
and SUNNs, optimal architectures were used. For the regression problems, the ar-
chitectures were taken from [16], and the classification problems were determined
by training on an increasing number of hidden units until overfitting was observed.
The optimal architectures result in models that do not overfit nor underfit the
training data.

• Oversized architectures: Oversized architectures were used to investigate the effects
of overfitting on the PUNN loss surfaces. Oversized PUNNs used the same number of
hidden units as the SUNNs for all problems except for f3, where seven hidden units
were used.

Algorithms 2024, 17, 241 10 of 20

• Regularized architectures: Weight decay with the L2 penalty was used on oversized
architectures to study the effects of regularization on the loss surfaces. The loss
function becomes E = ET + λ ∑N

i=1 w2
i , where ET is the training error, λ is the penalty

coefficient, N is the number of weights, and wi is the i-th weight. The effects of
regularization were only investigated for the classification problems. The optimal
value for the penalty coefficient, λ, was obtained using a grid search over values
for λ in {10, 1, 0.1, 1e − 2, 1e − 3, 1e − 4, 1e − 5}. The optimal λ value was 0.0001 for
all problems.

Table 1. Datasets and optimal network architecture.

Dataset Inputs PUNN Hidden SUNN Hidden Outputs PUNN Dimensionality SUNN Dimensionality

XOR 2 1 2 1 4 9
Iris 4 2 4 3 17 35

Wine 13 2 10 3 35 173
Diabetes 8 1 8 1 10 81

f 1 1 1 2 1 3 7
f 2 1 2 3 1 5 10
f 3 2 5 5 1 16 21
f 4 2 3 8 1 10 33
f 5 1 2 3 1 5 10

6.3. Fitness Landscape Measures and Sampling Parameters

Since the weights of an NN can take on any real number, the boundaries of the fitness
landscape are infinite. However, bounds have to be provided within which the FLA metrics
can be applied. This study used two sets of bounds for all problems. The first set of
bounds, i.e., [−1, 1], focuses on areas where optimization algorithms are most likely to
explore [21]. Additionally, [−1,1] bounds limit the hyper-volume of the landscape, which
facilitates better coverage when sampling and, subsequently, more accurate estimates of
the fitness landscape measures. Larger bounds were also used. It is important to note
that the bounds of the landscape represent the order of the exponential terms in the PU.
With larger bounds, the PUNN performs significantly higher-order transformations of the
input signals. To investigate the non-linear nature of the PUNN, [−3, 3] was used for all
classification problems. For the regression problems, [−3, 3] was used for functions f1, f2
and f3, [−7, 7] was used for f4, and [−5, 5] was used for f5.

For adequate coverage of the search space, the number of independent PRWs and
MRWs was set to the dimensionality of the loss surface. PRWs and MRWs started each walk
at one of the corners of the landscape. To perform a walk from every corner would require
performing 2N walks, which becomes computationally infeasible for high dimensions.
Therefore, this study performed a walk at every (2N

N)th corner of the landscape as recom-
mended by Malan [20]. Each PRW performs 1000 steps and each MRW performs 2000 steps
at step sizes of 1% of the domain. Uniform sampling makes use of 500 × N independent
samples for the FDCs measure and 2000 samples for the DM. For dispersion, the 10%
best solutions were used as recommended by [20]. The values used for the threshold ϵ for
neutrality measures M1 and M2 are provided in Table 2.

Table 2. Threshold ϵ values used for neutrality measures.

Datasets: XOR Iris Wine Diabetes f1 f2 f3 f4 f5

Small bounds: 0.02 2 2 2 0.02 0.02 0.2 2 0.2

Large bounds: 2 20 2000 20 0.2 2 2 2000 2

Algorithms 2024, 17, 241 11 of 20

6.4. Training Procedure

All weights were randomly initialized in the interval [−1, 1]. Algorithm performance
was evaluated in terms of the mean squared training error ET and the mean squared
generalization error EG. Each simulation was executed for 500 epochs. The results are
reported as averages over 30 independent runs to account for the stochasticity in the
training algorithms. The standard deviation for each result is also reported. The dataset
was split for every training simulation into a training set (75%) and a test set (25%). The
control parameters used for PSO were c1 = c2 = 1.496 and ω = 0.7298 [45], β = 0.7 and
pr = 0.3 for DE [14], and α = 0.9 and η = 0.1 for SGD [14].

7. Empirical Analysis of Loss Surface Characteristics

This section discusses the results of the FLA of PUNN loss surfaces for the different
architectures in comparison to the loss surfaces produced by SUNNs. Section 7.1 discusses
the results obtained from the optimal network architectures, while Sections 7.2 and 7.3,
respectively, consider the oversized and regularized architectures. The results for the re-
gression problems are given in Table 3, and those for the classification problems are given in
Table 4. In these tables, oPUNN refers to the optimal PUNN architectures, osPUNN refers to
the oversized PUNN architectures, and rPUNN refers to regularized PUNN architectures.

Table 3. Fitness landscape analysis results for the regression problems; values in parentheses are
standard deviations.

Function Bounds Architecture Gavg Gdev M1 M2 FEM0.01 FEM0.1 DM FDCs

f1 [−1, 1] SUNN 0.726 1.286 0.387 0.07 0.447 0.538 −0.152 0.266
(0.254) (0.465) (0.086) (0.01) (0.054) (0.01) (0.017) (0.092)

oPUNN 8.362 31.416 0.385 0.087 0.495 0.506 −0.251 0.214
(1.676) (7.704) (0.035) (0.012) (0.015) (0.008) (0.018) (0.037)

osPUNN 11.385 45.936 0.259 0.052 0.377 0.495 −0.217 0.261
(3.737) (12.606) (0.121) (0.039) (0.068) (0.016) (0.016) (0.064)

[−3, 3] SUNN 12.399 22.713 0.135 0.041 0.411 0.541 −0.143 0.239
(3.301) (5.982) (0.091) (0.021) (0.083) (0.026) (0.006) (0.039)

oPUNN 2.2 × 107 2.03 × 108 0.338 0.106 0.105 0.189 −0.254 0.258
(1.3 × 107) (1.12 × 108) (0.071) (0.021) (0.007) (0.005) (0.006) (0.021)

osPUNN 1.8 × 107 1.62 × 108 0.175 0.052 0.15 0.28 −0.24 0.283
(5.2 × 106) (4.27 × 107) (0.114) (0.038) (0.041) (0.016) (0.008) (0.021)

f2 [−1, 1] SUNN 0.672 1.25 0.368 0.066 0.451 0.554 −0.03 0.159
(0.207) (0.367) (0.118) (0.022) (0.063) (0.016) (0.018) (0.022)

oPUNN 13.381 50.094 0.213 0.038 0.393 0.492 −0.024 0.378
(5.497) (21.381) (0.096) (0.016) (0.016) (0.012) (0.018) (0.055)

osPUNN 10.417 37.775 0.178 0.036 0.338 0.493 −0.191 0.345
(5.75) (18.663) (0.075) (0.014) (0.046) (0.011) (0.021) (0.055)

[−3, 3] SUNN 12.949 24.253 0.561 0.166 0.404 0.556 −0.101 0.199
(5.467) (10.481) (0.201) (0.082) (0.083) (0.015) (0.006) (0.031)

oPUNN 2.2 × 107 1.95 × 108 0.344 0.144 0.171 0.291 −0.243 0.211
(1.2 × 107) (9.7 × 107) (0.177) (0.061) (0.044) (0.014) (0.01) (0.053)

osPUNN 13,436 93,694 0.372 0.141 0.129 0.17 −0.204 0.053
(58,348) (419,741) (0.091) (0.034) (0.032) (0.003) (0.003) (0.0217)

f3 [−1, 1] SUNN 0.848 1.602 0.826 0.328 0.416 0.566 −0.085 0.181
(0.372) (0.714) (0.147) (0.177) (0.069) (0.017) (0.006) (0.028)

oPUNN 4.158 14.343 0.406 0.157 0.326 0.529 −0.184 0.29
(1.824) (6.052) (0.113) (0.051) (0.039) (0.021) (0.008) (0.054)

osPUNN 5.755 17.105 0.3 0.108 0.37 0.574 −0.14 0.234
(2.356) (7.527) (0.061) (0.024) (0.04) (0.018) (0.012) (0.045)

[−3, 3] SUNN 19.43 37.182 0.331 0.099 0.41 0.571 −0.101 0.164
(9.244) (17.911) (0.121) (0.038) (0.07) (0.015) (0.013) (0.02)

oPUNN 6.6 × 106 5.84 × 107 0.083 0.037 0.225 0.487 −0.209 0.245
(4.9 × 106) (4.12 × 107) (0.11) (0.043) (0.042) (0.019) (0.007) (0.01)

osPUNN 1.8 × 107 1.18 × 108 0.022 0.008 0.297 0.533 −0.181 0.244
(2.1 × 107) (1.10 × 108) (0.059) (0.016) (0.036) (0.018) (0.003) (0.02)

f4 [−1, 1] SUNN 0.403 0.814 0.196 0.039 0.425 0.568 −0.08 0.117
(0.182) (0.386) (0.08) (0.014) (0.077) (0.012) (0.016) (0.015)

oPUNN 182.973 897.002 0.102 0.029 0.296 0.447 −0.266 0.216
(164.901) (779.389) (0.07) (0.019) (0.083) (0.019) (0.016) (0.059)

osPUNN 90.959 517.255 0.02 0.006 0.324 0.525 −0.212 0.208
(76.819) (497.354) (0.022) (0.005) (0.041) (0.014) (0.017) (0.031)

Algorithms 2024, 17, 241 12 of 20

Table 3. Cont.

Function Bounds Architecture Gavg Gdev M1 M2 FEM0.01 FEM0.1 DM FDCs

[−7, 7] SUNN 131.74 263.355 0.969 0.04 0.399 0.578 −0.088 0.128
(69.262) (143.143) (0.093) (0.094) (0.078) (0.021) (0.012) (0.005)

oPUNN 3.54×1035 7.15×1036 0.043 0.018 0.136 0.166 −0.228 0.062
(5.98 × 1035) (1.16 × 1037) (0.12) (0.045) (0.009) (0.011) (0.017) (0.018)

osPUNN 1.64 × 1036 3.88 × 1037 0.015 0.01 0.149 0.223 −0.144 0.044
(2.75 × 1036) (6.87 × 1037) (0.068) (0.044) (0.016) (0.028) (0.009) (0.004)

f5 [−1, 1] SUNN 0.722 1.361 0.904 0.193 0.433 0.547 −0.059 0.188
(0.182) (0.377) (0.082) (0.079) (0.071) (0.015) (0.017) (0.093)

oPUNN 20.303 91.099 0.611 0.185 0.379 0.48 −0.229 0.229
(9.02) (39.774) (0.038) (0.064) (0.052) (0.003) (0.019) (0.047)

osPUNN 20.6 95.352 0.516 0.156 0.382 0.481 −0.205 0.244
(6.339) (29.048) (0.096) (0.055) (0.035) (0.011) (0.015) (0.04)

[−5, 5] SUNN 56.337 105.426 0.602 0.155 0.419 0.547 −0.126 0.178
(23.83) (44.429) (0.195) (0.05) (0.072) (0.019) (0.017) (0.019)

oPUNN 4.5 × 1018 5.67 × 1019 0.301 0.129 0.103 0.258 −0.267 0.185
(3.12 × 1018) (3.59 × 1019) (0.167) (0.063) (0.024) (0.012) (0.01) (0.018)

osPUNN 1.45 × 1027 2.17 × 1028 0.106 0.061 0.103 0.304 −0.234 0.14
(4.60 × 1026) (8.25 × 1027) (0.076) (0.049) (0.012) (0.014) (0.014) (0.022)

Table 4. Fitness landscape analysis results for the classification problems; values in parentheses are
standard deviations.

Function Bounds Architecture Gavg Gdev M1 M2 FEM0.01 FEM0.1 DM FDCs

XOR [−1, 1] SUNN 0.608 1.139 0.369 0.107 0.461 0.561 −0.163 0.241
(0.163) (0.294) (0.082) (0.049) (0.076) (0.02) (0.028) (0.015)

oPUNN 0.88 1.439 0.383 0.073 0.479 0.583 −0.033 0.374
(0.059) (0.096) (0.047) (0.027) (0.08) (0.019) (0.013) (0.011)

osPUNN 0.873 1.441 0.271 0.051 0.47 0.583 0.012 0.341
(0.086) (0.134) (0.03) (0.009) (0.055) (0.004) (0.002) (0.032)

[−3, 3] SUNN 12.166 22.568 0.584 0.208 0.459 0.552 −0.168 0.332
(3.902) (7.388) (0.25) (0.167) (0.072) (0.013) (0.026) (0.064)

oPUNN 3.392 6.095 0.981 0.41 0.475 0.645 −0.153 0.311
(0.112) (0.468) (0.003) (0.03) (0.023) (0.007) (0.022) (0.044)

osPUNN 3.503 6.421 0.938 0.36 0.482 0.672 −0.122 0.280
(0.381) (0.713) (0.028) (0.147) (0.036) (0.01) (0.009) (0.033)

rPUNN 3.82 6.937 0.941 0.391 0.51 0.665 −0.117 0.228
(0.294) (0.493) (0.033) (0.146) (0.053) (0.013) (0.004) (0.007)

Iris [−1, 1] SUNN 0.423 0.746 0.997 0.022 0.367 0.579 −0.136 0.216
(0.15) (0.287) (0.014) (0.09) (0.074) (0.017) (0.011) (0.008)

oPUNN 4.88 × 106 3.74 × 106 0.73 0.29 0.21 0.198 −0.255 0.071
(1.08 × 106) (8.52 × 106) (0.091) (0.035) (0.077) (0.034) (0.003) (0.006)

osPUNN 7.23×104 6.75×105 0.418 0.168 0.212 0.329 −0.165 0.084
(2.023 × 104) (1.92 × 106) (0.093) (0.045) (0.067) (0.045) (0.01) (0.01)

[−3, 3] SUNN 8.567 16.237 0.726 0.169 0.169 0.578 −0.143 0.202
(3.178) (6.114) (0.187) (0.086) (0.086) (0.017) (0.015) (0.01)

oPUNN 2.52 × 1026 2.55 × 1027 0.194 0.087 0.132 0.157 −0.218 0.028
(7.51 × 1026) (7.58 × 1027) (0.055) (0.017) (0.023) (0.007) (0.002) (0.004)

osPUNN 3.41 × 1026 4.12 × 1027 0.022 0.012 0.133 0.169 −0.142 0.013
(1.85 × 1027) (2.23 × 1028) (0.027) (0.013) (0.015) (0.004) (0.007) (0.007)

rPUNN 7.36 × 1026 1.14 × 1028 0.024 0.012 0.132 0.171 −0.143 0.022
(4.03 × 1027) (6.27 × 1028) (0.036) (0.018) (0.017) (0.004) (0.001) (0.0001)

Wine [−1, 1] SUNN 2.373 5.093 0.317 0.093 0.247 0.567 −0.13 0.141
(0.763) (1.609) (0.036) (0.025) (0.023) (0.02) (0.003) (0.005)

oPUNN 4.45×105 2.383×106 0.283 0.114 0.217 0.341 −0.208 0.05
(6.995 × 105) (3.764 × 106) (0.089) (0.036) (0.062) (0.05) (0.01) (0.002)

osPUNN 3.197 × 107 2.635 × 108 0.039 0.017 0.166 0.397 −0.103 0.017
(1.377 × 108) (1.108 × 109) (0.045) (0.017) (0.036) (0.073) (0.001) (0.005)

[−3, 3] SUNN 60.468 130.321 0.998 0.024 0.244 0.569 −0.132 −0.093
(19.425) (40.745) (0.027) (0.109) (0.021) (0.018) (0.001) (0.01)

oPUNN 6.19 × 1028 5.11 × 1029 0.05 0.027 0.149 0.174 −0.206 0.023
(2.50 × 1029) (2.04 × 1030) (0.095) (0.039) (0.016) (0.004) (0.01) (0.009)

osPUNN 3.80 × 1033 5.15 × 1034 0.002 0.001 0.161 0.184 −0.093 0.004
(3.04 × 1034) (4.06 × 1035) (0.021) (0.007) (0.008) (0.003) (0.01) (0.001)

rPUNN 8.27 × 1033 1.04 × 1035 0.002 0.001 0.161 0.184 −0.067 0.002
(9.93 × 1034) (1.23 × 1036) (0.03) (0.018) (0.008) (0.003) (0.009) (0.001)

Diabetes [−1, 1] SUNN 0.644 1.473 0.902 0.352 0.35 0.549 −0.058 0.066
(0.45) (1.019) (0.114) (0.218) (0.057) (0.022) (0.018) (0.006)

oPUNN 2.17 × 105 1.16 × 106 0.606 0.242 0.243 0.203 −0.194 0.067
(4.26 × 105) (2.35 × 106) (0.07) (0.025) (0.085) (0.041) (0.007) (0.018)

osPUNN 3.19 × 105 2.85 × 106 0.145 0.058 0.165 0.362 −0.12 0.031
(1.01 × 106) (8.67 × 106) (0.088) (0.034) (0.051) (0.06) (0.012) (0.01)

[−3, 3] SUNN 13.958 33.822 0.41 0.128 0.363 0.553 −0.08 0.068
(9.367) (23.323) (0.077) (0.04) (0.051) (0.02) (0.007) (0.006)

oPUNN 4.74 × 1029 3.74 × 1030 0.216 0.103 0.137 0.169 −0.24 0.044
(1.42 × 1030) (1.12 × 1031) (0.138) (0.052) (0.023) (0.005) (0.008) (0.007)

osPUNN 1.68 × 1048 3.37 × 1049 0.006 0.002 0.145 0.173 −0.086 0.012
(1.05 × 1049) (2.20 × 1050) (0.051) (0.019) (0.006) (0.003) (0.008) (0.001)

rPUNN 8.41 × 1043 1.62 × 1045 0.006 0.002 0.144 0.173 −0.076 0.004
(2.78 × 1044) (5.34 × 1045) (0.046) (0.016) (0.006) (0.006) (0.003) (0.003)

Algorithms 2024, 17, 241 13 of 20

7.1. Optimal Architectures

For SUNN and PUNN loss surfaces, the nature of the PUNN loss surface is best
captured by the Gavg and Gdev metrics, which are substantially larger for PUNNs for every
scenario except for the XOR problem. Even for loss surfaces with smaller bounds, the
PUNN Gavg is significantly larger than that of SUNN for the majority of the problems.
Larger bounds resulted in loss surfaces with even larger gradients, especially for the
diabetes and f4 problems. The large values for Gdev mean that the gradients of certain
walks deviate substantially from Gavg. This is an indication of sudden cliffs or valleys
present in the loss surfaces. The Gavg and Gdev metrics portray the treacherous nature of
the PUNN landscape, i.e., that of extreme gradients and deep ravines and valleys.

The ruggedness of loss surfaces is estimated using entropy using the FEM0.01 and
FEM0.1 metrics. The amount of entropy can be interpreted as the amount of “information”
or variability in the loss surface [22]. There exists a prominent trend between the gradi-
ent and ruggedness measures. Loss surfaces with smaller gradients are related to very
rugged surfaces, where extremely large gradients are related to smoother surfaces. This
relationship is observed for all of the problems, where Iris, Wine, Diabetes, and f4 have
large gradients and smaller FEM values. Conversely, XOR, f1, and f2 have smaller gradi-
ents and larger FEM values. Except for XOR, the PUNN loss surfaces are smoother than
the SUNN loss surfaces, which is validated with the smaller values obtained for FEM0.01
and FEM0.1. SUNN landscapes tend to have more variability or “information”, whereas
PUNN landscapes tend to be smoother, with more consistent increases or decreases of loss
values. Since surfaces with larger bounds have larger gradients, larger bounds tend to
produce smoother loss landscapes. The macro-ruggedness values of FEM0.1 exceed the
corresponding micro-ruggedness values of FEM0.01 for all scenarios, indicating that larger
step sizes experience more variation in both NN loss surfaces.

FDCs estimates how searchable a loss surface is by quantifying how well the surface
guides the search towards areas of better quality. The PUNN FDCs values for the regression
problems are all moderately positive, indicating that PUNN landscapes are not deceptive
but possess informative landscapes, making them more searchable. PUNN loss surfaces for
all regression problems except f1 are more searchable than those of SUNNs. This does not
hold for the classification problems, where PUNN loss surfaces tend to be less searchable.
Further, the searchability of both PUNN and SUNN loss surfaces decreases for classification
problems. This is a result of the fact that the classification problems are higher dimensional,
and thus, the volume of the landscape grows exponentially with the dimension of the
landscape. Therefore, the distances between solutions of good quality become very large,
producing smaller FDCs values. This also explains the fact that landscapes with larger
bounds are less searchable for all problems.

DM indicates the presence of funnels. Negative values indicate single funnels,
while positive values indicate multi-funnels. Negative values were obtained for all loss
surfaces, indicating single-funnel landscapes that create basin-like structures for both
PUNNs and SUNNs. It is important to note that the DM measure does not estimate
modality. Therefore, it is possible and likely to still have multiple local minima residing
in the global basin structure. PUNN landscapes tend to produce more negative DM
values, which is indicative of a simpler global topology for PUNN surfaces. Landscapes
with larger bounds produce more negative DM values, correlating with landscapes of
simpler global topology. Single-funneled landscapes are more searchable landscapes [20],
which suggests why PUNN landscapes are more searchable with respect to FDCs than
SUNN landscapes for regression problems.

The neutrality metrics M1 and M2 show a general trend of smaller neutrality for
PUNN landscapes, indicating that the SUNN loss surfaces are more neutral than those of
PUNNs. This is in agreement with the observation of larger gradients in the PUNN loss
surfaces. Larger bounds create even less neutral loss surfaces for PUNNs, correlating with
the observation that larger bounds create larger gradients. The effects that larger bounds
have on neutrality is amplified when architectures are higher-dimensional, such as Iris,

Algorithms 2024, 17, 241 14 of 20

Wine, Diabetes, and f4; for lower-dimensional architectures, e.g., f2 and XOR, larger bounds
actually create more neutral PUNN loss surfaces. The higher-dimensional architectures
have more weights in the PUs, and thus, solution quality is more susceptible to changes in
the weights. Another reason why SUNN loss surfaces are more neutral is because of their
tendency to have more saddle points. This is a result of the fact that SUNN architectures
tend to be higher-dimensional, for which, according to theoretical findings, saddle points
are more prevalent [12]. Furthermore, M2 tends to differ less drastically and is similar in
cases such as f1, f4, f5, and Wine. This indicates that, although PUNN loss surfaces tend
not to be as neutral as SUNN loss surfaces in general, the longest neutral areas of both tend
to be the same size.

7.2. Oversized Architectures

Recall that oversized architectures are investigated to analyze the effect of overfitting
behavior on the PUNN loss surfaces. The loss surfaces produced by PUNNs with oversized
hidden layers are referred to as complex PUNN landscapes (CPLs) for the purposes of this
section. The landscapes of PUNNs with optimal architectures are referred to as optimal
PUNN landscapes (OPLs).

Most of the differences between CPLs and OPLs are a result of the differences in
dimensionality: CPLs tend to have larger gradients, as indicated by larger Gavg values for
most problems. CPLs have larger Gdev values, which is indicative of more sudden ravines
and valleys in the landscape. Smaller M1 and M2 values for CPLs show that OPLs are more
neutral than CPLs. This can be attributed to the larger gradients of CPLs. FDCs values tend
to be smaller for CPLs than for OPLs. This a result of the dimensionality differences, as
discussed in the previous section, as well as the fact that the oversized architectures have
irrelevant weights, introducing extra dimensions to the search space. The extra dimensions
do not add any extra information and only divert the search, thus making the landscape
less searchable. Larger DM values are obtained from CPLs, indicating that they have
multi-funnel landscapes. Therefore, the global underlying structures of CPLs are more
complex than OPLs, which is in agreement with the fact that CPLs are less searchable than
OPLs, and is the case with multi-funnel landscapes. There is a mixed result with respect
to the micro-ruggedness of the CPLs: even though CPLs tend to have larger gradients
than OPLs, which is usually an indication of a smoother landscape, CPLs produce larger
FEM0.01 values than OPLs for XOR, Iris, f3, and f4. The macro-ruggedness FEM0.1 values
of CPLs tend to be larger than OPLs, which suggests that CPLs experience more variation in
the landscape with larger step sizes than OPLs. Therefore, CPLs possess higher variability
across the landscapes than OPLs.

7.3. Regularized Architectures

For the purposes of this section, the loss surfaces produced by regularized PUNNs are
referred to as regularized PUNN landscapes (RPLs). The only noticeable effect that regular-
ization has on the fitness landscapes of a PUNN is changes in the gradient measures. RPLs
have larger magnitudes of gradients, as indicated by larger Gavg values. Larger gradients
are caused by the addition of the penalty term to the objective function, which increases
the overall error and causes larger loss values and, thus, larger gradients. Additionally,
larger Gdev values indicate that regularization creates sudden ravines and valleys in the
landscape, possibly introducing more local minima. The regularization coefficient λ has a
severe effect on the landscape [14,21]. However, a value of λ < 0.001 (for SUNNs) is not
likely to influence the error landscape significantly [21]. Referring to Table 2, the optimal
value obtained from tuning the penalty coefficient was λ = 0.0001 for all problems. This
was most likely due to the fact that a smaller value for λ made the contribution of the
penalty term insignificant to the overall error. Therefore, as a result of the small optimal
value used for λ, no other significant changes to the fitness landscape were detected by the
fitness landscape measures besides Gavg and Gdev.

Algorithms 2024, 17, 241 15 of 20

8. Performance and Loss Surface Property Correlation

The purpose of this section is to find correlations between good (or bad) performance
of the optimization algorithms and the fitness landscape characteristics of the PUNN loss
surfaces produced for the different classification and regression problems. The purpose of
the section is not to compare the performances of the optimization algorithms. Comparisons
of PUNN training algorithms can be found in [7,15,16].

The performance results for the different PUNN training algorithms are summarized
in Tables 5 and 6 for the regression and classification problems, respectively. Provided
in these tables are the average training error ET , the best training error achieved over the
independent runs, the average generalization error EG, the best generalization error, and
deviation values (given in parentheses).

Table 5. Training results for the regression problems.

Function Algorithm Architecture ET Best ET EG Best EG

f1 PSO oPUNN 0.059 (0.006) 0.05 0.062 (0.008) 0.051
osPUNN 0.048 (0.013) 0.032 0.055 (0.01) 0.037

oPUNN 0.01 (0.002) 0.009 0.012 (0.002) 0.009
osPUNN 0.011 (0.002) 0.008 0.012 (0.003) 0.008

DE oPUNN 0.062 (0.01) 0.053 0.059 (0.005) 0.049
osPUNN 0.051 (0.008) 0.039 0.058 (0.009) 0.051

oPUNN 0.009 (0.002) 0.008 0.011 (0.002) 0.009
osPUNN 0.011 (0.001) 0.01 0.011 (0.002) 0.008

f2 PSO oPUNN 0.029 (0.003) 0.025 0.04 (0.008) 0.028
osPUNN 0.027 (0.003) 0.024 0.032 (0.006) 0.023

oPUNN 0.011 (0.005) 0.008 0.015 (0.005) 0.011
osPUNN 0.016 (0.005) 0.01 0.015 (0.008) 0.01

DE oPUNN 0.031 (0.004) 0.027 0.037 (0.01) 0.028
osPUNN 0.034 (0.003) 0.03 0.038 (0.003) 0.035

oPUNN 0.013 (0.002) 0.01 0.013 (0.004) 0.01
osPUNN 0.017 (0.002) 0.014 0.017 (0.003) 0.012

f3 PSO oPUNN 0.37 (0.016) 0.349 0.578 (0.022) 0.554
osPUNN 0.409 (0.011) 0.391 0.58 (0.038) 0.538

oPUNN 0.37 (0.043) 0.324 0.663 (0.045) 0.577
osPUNN 0.433 (0.071) 0.301 0.646 (0.104) 0.539

DE oPUNN 0.386 (0.028) 0.338 0.597 (0.02) 0.563
osPUNN 0.396 (0.017) 0.376 0.639 (0.125) 0.517

oPUNN 0.3 (0.028) 0.263 0.862 (0.461) 0.517
osPUNN 0.343 (0.057) 0.271 0.776 (0.086) 0.696

f4 PSO oPUNN 0.028 (0.007) 0.019 0.031 (0.005) 0.024
osPUNN 0.039 (0.006) 0.032 0.051 (0.022) 0.033

oPUNN 0.038 (0.014) 0.024 0.063 (0.028) 0.035
osPUNN 0.457 (0.379) 0.121 0.696 (0.646) 0.171

DE oPUNN 0.029 (0.007) 0.022 0.033 (0.005) 0.027
osPUNN 0.032 (0.008) 0.025 0.043 (0.011) 0.027

oPUNN 0.025 (0.005) 0.02 0.025 (0.005) 0.019
osPUNN 0.355 (0.167) 0.218 0.37 (0.192) 0.135

f5 PSO oPUNN 0.081 (0.016) 0.063 0.09 (0.019) 0.061
osPUNN 0.075 (0.029) 0.043 0.101 (0.037) 0.065

oPUNN 0.023 (0.014) 0.011 0.027 (0.017) 0.014
osPUNN 0.029 (0.011) 0.014 0.059 (0.036) 0.021

DE oPUNN 0.063 (0.018) 0.041 0.099 (0.031) 0.072
osPUNN 0.058 (0.015) 0.03 0.331 (0.469) 0.074

oPUNN 0.018 (0.004) 0.013 0.021 (0.003) 0.018
osPUNN 0.024 (0.009) 0.014 0.028 (0.006) 0.019

Algorithms 2024, 17, 241 16 of 20

Table 6. Training results for the classification problems.

Problem Algorithm Architecture ET Best EG Best
ET ET EG EG

XOR PSO oPUNN 0.003 (0.002) 0.0 0.003 (0.002) 0.0
osPUNN 0.005 (0.005) 0.001 0.005 (0.005) 0.001

oPUNN 0.001 (0.001) 0.0 0.001 (0.001) 0.0
osPUNN 0.004 (0.003) 0.001 0.004 (0.003) 0.001
rPUNN 0.003 (0.002) 0.001 0.003 (0.002) 0.001

DE oPUNN 0.002 (0.001) 0.001 0.002 (0.001) 0.001
osPUNN 0.002 (0.001) 0.001 0.002 (0.001) 0.001

oPUNN 0.001 (0.001) 0.0 0.001 (0.001) 0.0
osPUNN 0.002 (0.001) 0.0 0.002 (0.001) 0.0
rPUNN 0.004 (0.004) 0.001 0.004 (0.004) 0.001

Iris PSO oPUNN 0.137 (0.014) 0.121 0.131 (0.012) 0.119
osPUNN 0.152 (0.018) 0.125 0.156 (0.015) 0.132

oPUNN 0.191 (0.036) 0.143 0.188 (0.038) 0.143
osPUNN 0.602 (0.21) 0.357 0.669 (0.23) 0.354
rPUNN 0.47 (0.14) 0.286 0.498 (0.141) 0.325

DE oPUNN 0.127 (0.01) 0.119 0.127 (0.011) 0.118
osPUNN 0.161 (0.03) 0.118 0.161 (0.031) 0.121

oPUNN 0.226 (0.028) 0.185 0.222 (0.018) 0.197
osPUNN 0.674 (0.32) 0.387 1.059 (0.994) 0.414
rPUNN 0.477 (0.201) 0.236 0.577 (0.334) 0.256

Wine PSO oPUNN 0.209 (0.004) 0.202 0.242 (0.033) 0.2
osPUNN 0.859 (0.175) 0.661 1.231 (0.626) 0.682

oPUNN 0.271 (0.044) 0.229 37,960.156 (75,919.546) 0.237
osPUNN 2133.681 (1469.965) 745.362 8.76×1012 (1.75×1013) 165,730.721
rPUNN 1200.283 (1463.764) 201.401 8.35×108 (1.068×109) 11,838.192

DE oPUNN 0.201 (0.006) 0.191 0.219 (0.019) 0.199
osPUNN 1.266 (0.287) 0.845 1.398 (0.27) 0.938

oPUNN 0.32 (0.051) 0.224 11738.17 (23,472.638) 0.257
osPUNN 3225.567 (3009.275) 668.72 9.77×108 (1.95×109) 458.885
rPUNN 3387.882 (3452.529) 28.73 4.53×1010 (9.04×1010) 12,196.997

Diabetes PSO oPUNN 0.197 (0.018) 0.166 0.205 (0.016) 0.185
osPUNN 0.226 (0.013) 0.204 3.36 (6.239) 0.216

oPUNN 0.22 (0.004) 0.215 0.23 (0.005) 0.224
osPUNN 0.404 (0.136) 0.256 0.423 (0.161) 0.232
rPUNN 0.326 (0.081) 0.257 0.435 (0.273) 0.259

DE oPUNN 0.192 (0.008) 0.18 0.202 (0.017) 0.176
osPUNN 0.228 (0.009) 0.211 0.244 (0.009) 0.23

oPUNN 0.224 (0.002) 0.221 0.225 (0.005) 0.219
osPUNN 0.512 (0.233) 0.237 0.498 (0.229) 0.239
rPUNN 0.365 (0.201) 0.231 265.822 (530.72) 0.228

Results for SGD are not provided because it failed to train PUNNs for all problems.
SGD only succeeded when the weights were initialized very close to the optimal weights.
The reasons behind the failure of SGD can now be understood using FLA: It was observed
that the average gradients Gavg for PUNN loss surfaces were exceptionally large and were
orders of magnitude larger than those of SUNN loss surfaces. The standard deviations
Gdev for PUNN loss surfaces were also very large—indicative of sudden ravines or
valleys in the PUNN loss surfaces. These characteristics trap or paralyze SGD. Larger
values of Gdev suggest that not all the MRWs sampled such extreme gradients. Taking
into consideration that the longest neutral areas of both SUNN and PUNN loss surfaces
tend to be the same size, only certain parts of the PUNN loss surface have extreme
gradients, whereas some areas are still relatively level. Such loss surfaces are impossible
to search using gradient-based algorithms. Gavg and Gdev are the only measures that
differ substantially between PUNN and SUNN loss surfaces. Therefore, the gradient
measures are likely to be the most relevant fitness landscape measures that explain why
SGD works for SUNNs and fails for PUNNs.

Smaller ET values were obtained for OPLs compared to CPLs for all classification
problems. Note that the dimensionality difference between OPLs and CPLs is the most
significant for the classification problems. Loss surfaces with larger bounds—hence, larger

Algorithms 2024, 17, 241 17 of 20

landscape volumes—are also correlated with worse training performance. Therefore, the
performance of both PSO and DE deteriorates for loss surfaces with higher dimensionality.
This agrees with findings in the literature [14] and is referred to as the “curse of dimension-
ality”. The deterioration in training performance for CPLs can be explained by the observed
loss surface characteristics. CPLs were found to be less searchable: possessing more com-
plex global structures (multi-funnels) and having increased ruggedness. Therefore, the
DM, FEM, and FDCs measures capture the effects that the “curse of dimensionality” have
on the loss surface. A general trend of overfitting and inferior EG is observed for CPLs
for Diabetes, Iris, Wine, and the majority of regression problems. The correlation of DM,
FEM, and FDCs with the training and generalization performance indicates that they are
meaningful fitness landscape measures for performance prediction for PUNNs, especially
where oversized PUNN architectures are used.

Training of regularized PUNN architectures resulted in lower ET for nearly all prob-
lems compared to oversized PUNN architectures, suggesting that regularization makes
the RPLs more searchable. The only effect that regularization had on the PUNN loss
surfaces was larger gradient measures. Larger Gavg values can be linked with improved
training performance on RPLs. For Diabetes and Wine, the PUNNs with larger bounds
produced very large EG and ET values. However, the best EG and ET values are still small.
This observation along with the fact that EG and ET have large deviations suggests that a
few simulations became stuck in poor areas. This can be correlated to the fact that large
Gdev values were observed for RPLs, which suggests sudden valleys and ravines. These
landscape features are possibly the reason that the PSO and DE algorithms became stuck,
leading to poor performance. Furthermore, DE became stuck in areas of worse quality for
more problems, suggesting that large values of Gdev are an indication to use PSO instead
of DE. Furthermore, EG decreased for RPLs compared to CPLs; therefore, regularization
proved effective at improving the generalization performance of PUNNs.

9. Conclusions

The main purpose of this work was to perform a fitness landscape analysis (FLA) on
the loss surfaces produced by product unit neural networks (PUNNs). The loss surface
characteristics of PUNNs were analyzed and compared to those of SUNNs to determine in
what way PUNN and SUNN loss surfaces differ.

PUNN loss surfaces have extremely large gradients on average, with large amounts of
deviation over the landscape suggesting many deep ravines and valleys. Larger bounds
and regularized PUNN architectures lead to even larger gradients. Stochastic gradient
descent (SGD) failed to train PUNNs due to the treacherous gradients of the PUNN loss sur-
faces. The gradients of PUNN loss surfaces are significantly larger than those of SUNN loss
surfaces, which explains why gradient descent works for SUNNs and not PUNNs. There-
fore, optimization algorithms that make use of gradient information should be avoided
when training PUNNs. Instead, meta-heuristics such as particle swarm optimization (PSO)
and differential evolution (DE) should be used. PSO and DE successfully trained PUNNs
of all architectures for all problems.

PUNN loss surfaces are less rugged, more searchable in lower dimensions, and less
neutral than SUNN loss surfaces. The smoother PUNN loss surfaces were strongly corre-
lated with the larger gradient measures and were found to possess simpler overall global
structures than SUNN loss surfaces, where the latter had more multi-funnel landscapes.
Oversized architectures created higher-dimensional landscapes, decreasing searchability,
increasing ruggedness, and having an overall more complex multi-funnel global structure.
The FEM, DM, and FDCs metrics correlated well with the poor training performance DE
and PSO achieved for oversized PUNN architectures. FEM, DM, and FDCs captured the
effects of the “curse of dimensionality” on PUNN loss surfaces. Regularized PUNN loss
surfaces were more searchable than complex PUNN loss surfaces, leading to better training
and generalization performance. The Gavg metric described the effect regularization had on
PUNN loss surfaces and was found to correlate well with the better training performance

Algorithms 2024, 17, 241 18 of 20

of DE and PSO for regularized PUNNs. Regularized PUNN loss surfaces had more deep
ravines and valleys that trapped PSO and DE. Finally, PSO is suggested for loss surfaces
that have large Gdev values.

Author Contributions: Conceptualization, A.E.; methodology, A.E. and R.G.; software, R.G.; val-
idation, A.E. and R.G.; formal analysis, R.G.; investigation, R.G. and A.E.; resources, R.G.; data
curation, R.G.; writing—original draft preparation, A.E. and R.G.; writing—review and editing, A.E.;
visualization, R.G.; supervision, A.E.; project administration, A.E. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets generated during and/or analyzed during the current
study are available from the corresponding author on reasonable request.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

CPL complex product unit neural network landscape
DE differential evolution
DM dispersion metric
EA evolutionary algorithm
FDC fitness–distance correlation
FEM first entropic measure
FLA fitness landscape analysis
gbest global best
GD gradient descent
MRW Manhattan random walk
NN neural network
OPL optimal product unit neural network landscape
PRW progressive random walk
PSO particle swarm optimization
PU product unit
PUNN product unit neural network
RPL regularized product unit neural network landscape
SGD stochastic gradient descent
SU summation unit
SUNN summation unit neural network

References
1. Funahashi, K.I. On the Approximate Realization of Continous Mappings by Neural Networks. Neural Netw. 1989, 2, 183–192.

[CrossRef]
2. Durbin, R.; Rumelhart, D. Product Units: A Computationally Powerful and Biologically Plausible Extension to Backpropagation

Networks. Neural Comput. 1989, 1, 133–142. [CrossRef]
3. Gurney, K. Training Nets of Hardware Realizable Sigma-Pi Units. Neural Netw. 1992, 5, 289–303. [CrossRef]
4. Hussain, A.; Soraghan, J.; Durbani, T. A New Neural Network for Nonlinear Time-Series Modelling. J. Comput. Intell. Financ.

1997, 5, 16–26.
5. Milenkovic, S.; Obradovic, Z.; Litovski, V. Annealing Based Dynamic Learning in Second-Order Neural Networks. In Proceedings

of the International Conference on Neural Networks, Washington, DC, USA, 3–6 June 1996; Volume 1, pp. 458–463.
6. Leerink, L.; Giles, C.; Horne, B.; Jabri, M. Learning with Product Units. In Proceedings of the Advances in Neural Information

Processing Systems, Denver, CO, USA, 27–30 November 1995; Volume 7, pp. 537–544.
7. Ismail, A.; Engelbrecht, A. Training Product Units in Feedforward Neural Networks using Particle Swarm Optimization. In

Proceedings of the International Conference on Artificial Intelligence, Chicago, IL, USA, 8–10 November 1999; Bajić, V., Sha, D., Eds.;
Development and Practice of Artificial Intelligence Techniques; IEEE: New York, NY, USA, 1999; pp. 36–40.

http://doi.org/10.1016/0893-6080(89)90003-8
http://dx.doi.org/10.1162/neco.1989.1.1.133
http://dx.doi.org/10.1016/S0893-6080(05)80027-9

Algorithms 2024, 17, 241 19 of 20

8. Janson, D.; Frenzel, J. Training Product Unit Neural Networks with Genetic Algorithms. IEEE Expert 1993, 8, 26–33. [CrossRef]
9. Bosman, A.; Engelbrecht, A.; Helbig, M. Visualising Basins of Attraction for the Cross-Entropy and the Squared Error Neural

Network Loss Functions. Neurocomputing 2020, 400, 113–136. [CrossRef]
10. Bosman, A.; Engelbrecht, A.; Helbig, M. Fitness Landscapes of Weight-Elimination Neural Networks. Neural Process. Lett. 2018,

48, 353–373. [CrossRef]
11. Bosman, A.; Engelbrecht, A.; Helbig, M. Progressive Gradient Walk for Neural Network Fitness Landscape Analysis. In

Proceedings of the Genetic and Evolutionary Computation Conference, Worksop on Fitness Landscape Analysis, Kyoto, Japan,
15–19 July 2018.

12. Choromanska, A.; Henaff, M.; Mathieu, M.; Arous, G.; LeCun, Y. The Loss Surfaces of Multilayer Networks. In Proceedings of
the Eighteenth International Conference on Artificial Intelligence and Statistics, San Diego, CA, USA, 9–12 May 2015; pp. 192–204.

13. Dennis, C.; Engelbrecht, A.; Ombuki-Berman, B. An Analysis of the Impact of Subsampling on the Neural Network Error Surface.
Neurocomputing 2021, 466, 252–264. [CrossRef]

14. Engelbrecht, A. Computational Intelligence: An Introduction, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2007.
15. Ismail, A.; Engelbrecht, A. Global Optimization Algorithms for Training Product Unit Neural Networks. In Proceedings of the

IEEE International Conference on Neural Networks, Como, Italy, 24–27 July 2000.
16. Ismail, A.; Engelbrecht, A. Pruning Product Unit Neural Networks. In Proceedings of the IEEE International Joint Conference on

Neural Network, Honolulu, HI, USA, 12–17 May 2002.
17. Li, H.; Xu, Z.; Taylor, G.; Studer, C.; Goldstein, T. Visualizing the Loss Landscape of Neural Nets. In Proceedings of the Conference

on Neural Processing Systems, Red Hook, NY, USA, 3–8 December 2018.
18. Ding, R.; Li, T.; Huang, X. Better Loss Landscape Visualization for Deep Neural Networks with Trajectory Information. In

Proceedings of the Machine Learning Research, Seattle, WA, USA, 30 November–1 December 2023.
19. Jones, T. Evolutionary Algorithms, Fitness Landscapes and Search. Ph.D. Thesis, The University of New Mexico, Albuquerque,

NM, USA, 1995.
20. Malan, K. Characterising Continuous Optimisation Problems for Particle Swarm Optimisation Performance Prediction. Ph.D.

Thesis, University of Pretoria, Pretoria, South Africa, 2014.
21. Bosman, A. Fitness Landscape Analysis of Feed-Forward Neural Networks. Ph.D. Thesis, University of Pretoria, Pretoria, South

Africa, 2019.
22. Malan, K.; Engelbrecht, A. A Progressive Random Walk Algorithm for Sampling Continuous Fitness Landscapes. In Proceedings

of the IEEE Congress on Evolutionary Computation, Beijing, China, 6–11 July 2014; pp. 2507–2514.
23. Malan, K.; Engelbrecht, A. Ruggedness, Funnels and Gradients in Fitness Landscapes and The Effect on PSO Performance. In

Proceedings of the IEEE Congress on Evolutionary Computation, Cancun, Mexico, 20–23 June 2013; pp. 963–970.
24. Jones, T.; Forrest, S. Fitness Distance Correlation as a Measure of Problem Difficulty for Genetic Algorithms. In Proceedings of

the 6th International Conference on Genetic Algorithms, San Francisco, CA, USA, 15–19 July 1995; pp. 184–192.
25. Lunacek, M.; Whitley, D. The Dispersion Metric and The CMA Evolution Strategy. In Proceedings of the 8th Annual Conference

on Genetic and Evolutionary Computation, Washinghton, DC, USA, 8–12 July 2006; pp. 477–484.
26. Van Aardt, W.; Bosman, A.; Malan, K. Characterising Neutrality in Neural Network Error Landscapes. In Proceedings of the

IEEE Congress on Evolutionary Computation, San Sebastian, Spain, 5–8 June 2017; pp. 1374–1381.
27. Gallagher, M. Multi-layer Perceptron Error Surfaces: Visualization, Structure and Modelling. Ph.D. Thesis, University of

Queensland, St. Lucia, QLD, Australia, 2000.
28. Rakitianskaia, A.; Bekker, E.; Malan, K.; Engelbrecht, A. Analysis of Error Landscapes in Multi-layerd Neural Nertworks for

Classification. In Proceedings of the IEEE Congress on Evolutionary Computation, Vancouver, BC, Canada, 24–29 July 2016.
29. Bosman, A.; Engelbrecht, A.; Helbig, M. Loss Surface Modality of Feed-Forward Neural Network Architectures. In Proceedings

of the IEEE International Joint Conference on Neural Networks, Glasgow, UK, 19–24 July 2020.
30. Bosman, A.; Engelbrecht, A.; Helbig, M. Search Space Boundaries in Neural Network Error Landscape Analysis. In Proceedings

of the IEEE Symposium on Foundations of Computational Intelligence, Athens, Greece, 6–9 December 2016.
31. Bosman, A.; Engelbrecht, A.; Helbig, M. Empirical Loss Landscape Analysis of Neural Network Activation Functions. In

Proceedings of the Companion Conference on Genetic and Evolutionary Computation, Lisabon, Portugal, 15–19 July 2023;
pp. 2029–2037.

32. Yang, Y.; Hodgkinson, L.; Theisen, R.; Zou, J.; Gonzalez, J.; Ramchandran, K.; Mahoney, M. Taxonomizing Local versus Global
Structure in Neural Network Loss Landscapes. In Proceedings of the Conference on Neural Processing Systems, Online,
6–14 December 2021.

33. Sun, R.; Li, D.; Liang, S.; Ding, T.; Srikant, R. The Global Landscape of Neural Networks: An overview. IEEE Signal Process. Mag.
2020, 37, 95–108. [CrossRef]

34. Baskerville, N.; Keating, J.; Mezzadri, F.; Najnudel, J.; Granziol, D. Universal Characteristics of Deep Neural Network Loss
Surfaces from Random Matrix Theory. J. Phys. A Math. Theor. 2022, 55, 494002. [CrossRef]

35. Liang, R.; Liu, B.; Sun, Y. Empirical Loss Landscape Analysis in Deep Learning: A Survey. Syst. Eng. Theory Pract. 2023,
43, 813–823.

36. Nakhodnov, M.; Kodryan, M.; Lobacheva, E. Loss Function Dynamics and Landscape for Deep Neural Networks Trained with
Quadratic Loss. Dokl. Math. 2022, 106, S43–S62. [CrossRef]

http://dx.doi.org/10.1109/64.236478
http://dx.doi.org/10.1016/j.neucom.2020.02.113
http://dx.doi.org/10.1007/s11063-017-9729-9
http://dx.doi.org/10.1016/j.neucom.2021.09.023
http://dx.doi.org/10.1109/MSP.2020.3004124
http://dx.doi.org/10.1088/1751-8121/aca7f5
http://dx.doi.org/10.1134/S1064562422060187

Algorithms 2024, 17, 241 20 of 20

37. Nguyen, Q.; Hein, M. The Loss Surface of Deep and Wide Neural Networks. In Proceedings of the 34th International Conference
on Machine Learning, Sydney, Australia, 6–11 August 2017.

38. Werbos, P. Beyond Regression: New Tools for Prediction and Analysis in The Behavioural Sciences. Ph.D. Thesis, Harvard
University, Cambridge, MA, USA, 1974.

39. Eberhart, R.; Kennedy, J. A New Optimizer using Particle Swarm Theory. In Proceedings of the Sixth International Symposium
on Micromachine and Human Science, Nagoya, Japan, 4–66 October 1995; pp. 39–43.

40. Shi, Y.; Eberhart, R. Parameter Selection in Particle Swarm Optimization. In Proceedings of the Seventh Annual Conference on
Evolutionary Programming, San Diego, CA, USA, 25–27 March 1998; pp. 591–600.

41. Van den Bergh, F.; Engelbrecht, A. A Study of Particle Swarm Optimization Particle Trajectories. Inf. Sci. 2006, 176, 937–971.
[CrossRef]

42. Eberhart, R.; Shi, Y. Evolving Artificial Neural Networks. In Proceedings of the International Conference on Neural Networks
and Brain, Cambridge, MA, USA, 1–3 December 1998; pp. 5–13.

43. Cleghorn, C.; Engelbrecht, A. Particle Swarm Stability A Theoretical Extension using the Non-Stagnate Distribution Assumption.
Swarm Intell. 2018, 12, 1–22. [CrossRef]

44. Storn, R. On the Usage of Differential Evolution for Function Optimization. In Proceedings of the Biennial Conference of the
North American Fuzzy Information Processing Society, Berkeley, CA, USA, 19–22 June 1996; pp. 519–523.

45. Clerc, M.; Kennedy, J. The Particle Swarm-Explosion, Stability, and Convergence in A Multidimensional Complex Space. IEEE
Trans. Evol. Comput. 2002, 6, 58–73. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.ins.2005.02.003
http://dx.doi.org/10.1007/s11721-017-0141-x
http://dx.doi.org/10.1109/4235.985692

	Introduction
	Product Unit Neural Networks
	Fitness Landscape Analysis
	Neural Network Fitness Landscape Analysis
	Training Algorithms for Product Unit Neural Networks
	Training Procedure
	Stochastic Gradient Descent
	Particle Swarm Optimization
	Differential Evolution

	Empirical Procedure
	Datasets
	Network Architecture
	Fitness Landscape Measures and Sampling Parameters
	Training Procedure

	Empirical Analysis of Loss Surface Characteristics
	Optimal Architectures
	Oversized Architectures
	Regularized Architectures

	Performance and Loss Surface Property Correlation
	Conclusions
	References

