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Abstract: Syntheticdata generation methods are used to transform the original data into privacy-
compliant synthetic copies (twin data). With our proposed approach, synthetic data can be simulated
in the same size as the input data or in any size, and in the case of finite populations, even the
entire population can be simulated. The proposed XGBoost-based method is compared with known
model-based approaches to generate synthetic data using a complex survey data set. The XGBoost
method shows strong performance, especially with synthetic categorical variables, and outperforms
other tested methods. Furthermore, the structure and relationship between variables are well
preserved. The tuning of the parameters is performed automatically by a modified k-fold cross-
validation. If exact population margins are known, e.g., cross-tabulated population counts on age
class, gender and region, the synthetic data must be calibrated to those known population margins.
For this purpose, we have implemented a simulated annealing algorithm that is able to use multiple
population margins simultaneously to post-calibrate a synthetic population. The algorithm is, thus,
able to calibrate simulated population data containing cluster and individual information, e.g., about
persons in households, at both person and household level. Furthermore, the algorithm is efficiently
implemented so that the adjustment of populations with many millions or more persons is possible.

Keywords: privacy; complex survey data; synthetic populations; XGBoost; calibration of populations

1. Introduction

The generation of synthetic data is one way to comply with general data protection
laws [1]. However, this is not the only way to solve the problem of confidentiality. Data can
be shared in different forms. In traditional anonymization, data are anonymized under the
paradigm of high data utility to create scientific or public use files. In this process, the data
are altered so that the risk of disclosure to individuals falls below a certain threshold,
under the condition that the data are as useful as possible. Remote execution, secure
labs and remote access are other data-sharing options (with synthetic data required for
remote execution). Query servers deal with perturbed aggregated results using differential
privacy [2], secondary cell suppression [3], or the cellKey method [4] or target record
swapping (see, e.g., [5]). Black-box methods for obtaining predictions on test data are a
way to share not data but predictions on single sensitive variables without having access
to training data. Typically, this is used in a federated learning environment where data
sources are not centralized but distributed across multiple peers [6].

Synthetic data avoid the costly remote access and federated learning approaches and
are an attractive and well-established alternative to the aforementioned approaches.

1.1. Synthetic Data

Synthetic data are used as training data in machine learning, for augmented data or
in the form of population data, and as twin data for the public or for sharing within an
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organization to speed things up so that data can already be used before administrative
issues regarding data access are solved. Instead of introducing changes in the original
data, central structures of the data and relationships between variables are used to generate
new data. The methods for creating synthetic data stem from the machine learning (ML),
AI and statistical modeling domains. They learn the parameters of the models on the
original data and use them to generate artificial data. Synthetic data are associated with
low disclosure risk [7–9] and advantages in the simplicity of the process—once synthetic
data are generated.

Synthetic data have surged in popularity and are now utilized across a myriad of
scenarios where real-world data were traditionally employed. They offer a cost-effective
and hassle-free testing environment that can subsequently be verified with real-world data.
This shift underscores the significant role that synthetic data play in modern data analytics.
This applies to various research areas. For instance, a commonly used synthetic data set
in the literature are the synthetic data of the European Statistics on Income and Living
Conditions (EU-SILC), created by [10], or the synthetic version of the Structure of Earnings
Survey [11], both conducted in all member states of the European Union (as well as some
other countries, such as Switzerland).

The basic motivation to create synthetic data is either to compare methods in simula-
tion studies or to find a way to share confidential data. For both, the quality of synthetic
data is crucial, and the synthetic data need to reflect the properties of real data.
But what is meant by close-to-reality/realistic data? (see, similarly, also [12])

- Socio-demographic-economic structure of persons and strata need to be reflected.
- Marginal distributions and interactions between variables should be represented

correctly.
- Hierarchical and cluster structures have to be preserved.
- Certain marginal distributions must exactly match known values.
- Data confidentiality must be ensured; thus, replication of units (e.g., using a bootstrap

approach) should be avoided.

1.2. Synthetic Populations

Simulating not only a sample survey but the entire population has some advantages.
For example, in agent-based and/or micro-simulation approaches, information about indi-
viduals in the whole population is needed. For example, to simulate the epidemic spread
of COVID-19 under certain conditions in a micro-simulation environment, socioeconomic
and health information is needed on all individuals at a given time.

Note that if only a synthetic sample survey is required, it can be drawn from the
synthetic population using a realistic sampling plan. In this way, the creation of the whole
population is richer in application and more general.

Software for synthetic data simulation in R is, for example, provided by synthpop [13]
for data without any of the mentioned complicated structures (e.g., persons in households)
and surveys obtained with simple random sampling. simPop [14] is the only software that
considers complex data sets to allow hierarchical and cluster structures and samples from
complex survey designs, including sampling weights from complex sampling procedures.
Realistic cluster structures are important, e.g., not to create households with only children
or an 80-year-old mother with a young son, to give some simplified illustrative examples.
simPop additionally allows for population simulation.

1.3. Non-Linear Synthesizers

Recently, non-linear methods from artificial neural networks have also been used
to synthesize data, for example, using generative additive networks (GAN) [15] as a
joint modeling approach. Clearly, using deep learning methods to learn all relationships,
e.g., that a household cannot consist only of children or more complicated logical conditions,
is often not possible and parameter tuning must be performed with great care. Also joint
modeling of all variables in a data set is naturally only visible for a small number of
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variables, and it is quite obvious that, e.g., when applying a joint modeling approach (e.g.,
with GAN), it becomes too noisy with a high number of variables, e.g., when simulating a
complex data set with 25 variables or more. This is also naturally true for LLMs used for
synthetic data generation as, e.g., in [16].

Therefore, fully conditional modeling approaches come into play, where variables are
simulated sequentially. A type of non-linear method that uses a fully conditional modeling
approach and which is well implemented in software (e.g., in the R packages synthpop [13]
and simPop) is random forest adapted to synthesize variables in a data set.

1.4. Calibration

One should not stop at having synthetic twin data sets simulated with a synthesizer,
but additionally modify the synthetic data so that certain marginal sums match the original
data set and/or known characteristics of the population. To give an illustrative example.
Imagine a user calculating the total number of 45–50-year-old men and women for each
region. He would be confused if the results from the synthetic data differed (even slightly)
from the official figures from the national agency. Therefore, some marginal totals have
to be estimated accurately with synthetic data, and synthetic data have to be calibrated to
known population characteristics.

Calibration should always be used when auxiliary information is available [17], not
only for the consistency named before, but also for the reason of using all available informa-
tion that improves the synthetic data. In general, it can be said that there is no calibration
approach if no auxiliary information is available, since there is nothing to calibrate against.
In the case of synthetic data, either population characteristics are known from administra-
tive data, or/and characteristics such as marginal totals are known from the original data.
Calibration can, therefore, be used to adjust the synthetic population to the known external
population totals.

In R, there is a lot of software for calculating calibration weights, e.g., the packages
survey and surveysd are two of them. These weights are calibrated using auxiliary infor-
mation from administrative registers, other accurate sources, or even original data sets.
However, with these tools and methods, it is not possible to calibrate synthetic populations.

1.5. Calibration of Populations

The previously weight-based approaches cannot be used for synthetic populations
because the selection probability of each individual in the population is 1 and, therefore,
the weights should be 1. The recalibration step presented in this paper is a combinatorial
optimization problem with the aim of drawing clusters (such as households) from the
synthetic population (of individuals) in such a way that the difference between the margins
from selection and a given set of population margins is minimized and substantially
extends existing methods. In this way, the cluster information is preserved while the
margins are respected.

In practice, it is a typical situation that auxiliary information is available not only for
persons but also for households or enterprises (employers) and also for employees, etc.
In this case, several different types of multiple margins are known, and these margins are
defined for different types of units in a data set.

1.6. Outline

The framework and workflow are illustrated in Figure 1. Essentially, the framework
comprises three steps, with the second and third steps introducing new contributions to
literature and software. The three items below match the numbers in Figure 1.
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Section 3.2
non-anonymized data

(survey/sample population)

Section 3.3 - 3.4

Section 4.1 - 4.5

synth. sample

calibrated 
synth. sample

known margins
on individual level

Section 4.2

known margins on
cluster level

see Section 4.6
(see Section 3.5)

Covered in this paper

hierachichal/cluster structure

1

synth. population

2

calibrated 
synth. population

3

input data,
non

anynomized

optional
information

output synth.
data

Figure 1. The workflow to produce a synthetic population and to calibrate it. The contribution covers
the large light blue area together with the synthesis step 2 using XGBoost. The corresponding text
passages are linked to section numbers in the Figure.

1. The synthetic hierarchical structure is simulated, e.g., age and gender of persons
in households.

2. Synthetic data simulation with XGBoost to simulate synthetic population data with
(possible) complex structures (like persons in households) from complex samples
with (possible) complex sampling plans.

3. Calibration of the simulated population to known margins with a new calibration
technique that allows multiple margins for different information (e.g., household
information and personal information simultaneously).

All these steps might be needed to simulate realistic synthetic populations, and we
show the benefits of these new developments.
The remainder of the essential parts of the article is structured as follows.

- In Section 2.3, the well-known XGBoost method is introduced in a general manner.
After this short introduction, the simulation of the synthetic population is shown.

- The first aim is to create a synthetic structural file (Section 2.2, cf. Figure 1, first point)
that includes the cluster information.

- Using the information of the non-anonymized data and the synthetic hierarchi-
cal/cluster structure, the remaining variables can now be simulated using XGBoost
(cf. Figure 1, second point). While random forests build their regression trees indepen-
dently (for each variable to be simulated), XGBoost improves the selection of trees at
each step. XGBoost thus generally combines two important aspects: non-linear adjust-
ments and improvements (due to a loss function) in each selected tree. The adaption of
XGBoost to be used to simulate synthetic variables is described in Section 2.3.3 and the
information used is visible in Figure 1. The cross-validation procedure to determine
the hyperparameters in XGBoost is also reported in Section 2.3.4. After simulation of
the synthetic population (see Figure 1, third step), the quality of the simulated data is
discussed in Section 2.4.

- Section 3 then shows how the simulated population can be calibrated to known
multiple population margins (e.g., margins on households and information on persons
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in Section 3.2) considering the cluster structure in the data. Several subsections
(Sections 3.3–3.5) are dedicated to this problem. Note that the draft version of this
calibration method was already implemented in the R package simPop but has never
been published in a scientific journal, and we have considerably extended the methods
within this contribution.

- Section 3.6 shows the impact of calibration on several statistics.
- Section 4 discusses the implications of these methods for applications and science.
- Since we have also implemented the methods in software, we outline the use of this

software using complex data sets in the Appendices A–C. The corresponding data
set is described in Section 2.1. The illustration with code in an application allows the
reader to see the connection from theory to application in software and to obtain an
impression of how the methods can be used in practice.

2. Synthetic Data Generation
2.1. Data Set Used in the Method Application

This study uses the 2013 Austrian EU-SILC public use data set, consisting of 13,513
observations and 62 variables, to demonstrate developed methods. The EU-SILC survey
collects cross-sectional and longitudinal data on income, poverty, social exclusion and living
conditions from households and individuals across Europe, supporting the EU’s social
policy objectives. Data include detailed income components, social exclusion, housing
conditions, labor, education and health information. The data are weighted for design and
non-response, with stratification and calibration based on Austrian Census characteristics.
For more details on data selection and variables, see Appendix A and sources given therein.

2.2. Simulation of Cluster Structures

As seen in Figure 1 (point 1), the first objective is to generate realistic cluster structures
(such as households of persons). In this way (see also Figure 2), some basic variables,
such as age and sex, are directly sampled from the survey. An example of an unrealistic
household would be a household solely with children or a 95-year-old woman with a
young child. As bootstrapping from the sample poses a risk of re-identification, as few
variables as possible should be chosen in this step.

Figure 2. Step 1: To simulate a basic structure of the data, for example, here, the household structure
by age and sex in each stratum and by considering the sampling weights. n determines the size
of the data to be synthesized and N the size of the synthetic population. Unrealistic clusters (here,
household compositions) are avoided.

The structure of the household of the synthetic population U′ is generated separately
for each combination of strata k and the size of the household l. The number of households
by combination Mkl is estimated with the Horwitz–Thompson estimator from [18] by
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M̂kl := ∑
h∈HS

kl

wh (1)

where HS
kl is the set of all households in stratum k and wh the household weights. To create

realistic household structures, basic variables such as age or sex are sampled with the alias
sampling method proposed by [19]. Each population household h ∈ HU

kl has a selection
probability of

ph =
wh

M̂kl
. (2)

To generate, for example, a household structure, input the cluster structure, stratifi-
cation variable(s), and sampling weights of the data to be synthesized (see Algorithm 1).

Algorithm 1 Simulate cluster structure using simPop

1: Let X be the data to be synthesized.
2: set inp ▷ input data structure from the data set to be synthesized

choose clusterID ▷ optional variable of X with cluster information
choose strata ▷ optional variable(s) of X with stratification information
choose weight ▷ optional variable of X with sampling weights

3: set basicVariables ▷ basic variables (such as age and gender)
4: Estimate the number of households M̂kl in the population using Equation (1)
5: Calculate selection probabilities ph for clusters from Equation (2)
6: create simPop← simulate structure (X, inp, basicVariables, M̂kl , ph)

The code snipped in Appendix C.1 shows the detailed application in software using
simPop.

2.3. Synthetic Data Generation with XGBoost
2.3.1. General Comments on XGBoost

Extreme Gradient Boosting (XGBoost) is a highly sophisticated distributed gradient
boosting algorithm. XGBoost builds many consecutive decision trees to correct errors in
previous trees. There are two main types of decision trees: classification and regression trees.
XGBoost works for both regression and classification, and both types are implemented in
various software products, such as the R package XGBoost (see [20]).

Boosting is an ensemble method with its origin in computer science, which is oppo-
site to the statistical approach of bagging (bootstrap aggregating) used in random forests.
The general idea is to boost the performance of weak learners, which are slightly better than
random chance, by weighting and combining them. Gradient boosting is the formulation
of the boosting approach as gradient descent optimization with an arbitrary differentiable
loss function. It then minimizes the loss by iteratively adding regression (or classification)
trees, also known as CART (Classification and Regression Tree). Since overfitting is a
massive problem in regression trees, ref. [20] proposed adding a regularization term. This
regularization is similar to the regularized greedy forest (RGF) of [21] and favors smaller
and more predictive trees. In addition to the first regularization method, ref. [20] included
two other regularization techniques: shrinkage developed by [22] and feature (column) sub-
sampling used in random forest. The latter improves the computation time and prevents
overfitting. Shrinkage scales newly added weights, and thus decreases the dependency
on individual trees. Furthermore, ref. [20] introduced an evaluation function to measure
the quality of a tree structure, which is similar to the tree impurity function used in deci-
sion trees and random forest. Ref. [20] added more improvements to standard tree boosting.
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2.3.2. Advantages of XGBoost for Synthetic Data Generation

• Ensemble methods such as XGBoost are widely used in the data science community
due to their solid out-of-the-box performance [23] allowing, e.g., also non-linear
relationships. This solid out-of-the-box performance makes the XGBoost algorithm an
optimal candidate for synthetic data generation, as the underlying distributions are
often unknown.

• The key improvements to previous ensemble methods are subsampling the data set
with replacement and choosing a random feature set. These improvements lead
to highly independent base classifiers, and thus the XGBoost algorithm is robust
to overfitting.

• The XGBoost algorithm is scalable and generally faster than the classical gradient boost
machine (GBM), which makes it an excellent choice for generating large synthetic
data sets.

• Another important advance that makes this algorithm convenient in practice is its
sparsity awareness. With the sparsity-aware split finding, it works with missing values
by default. The split-finding algorithm learns the default direction at each branch
directly from the non-missing data.

• Cache awareness and out-of-core computing are improvements that allow XGBoost
for parallel computing.

• For both regression and classification, both types are implemented in various software
products, such as the R package XGBoost (see [20]).

However, if existing XGBoost implementations are used without adaptations to simu-
late synthetic data, complex structures, such as people in households and complex sample
designs, cannot be taken into account. In this contribution and the software provided
simPop, the application of XGBoost is adapted in such a way (see Section 2.3.3) to allow
synthesizing complex data and procedures made available for hyperparameter tuning. In
this contribution, we have adapted the application of XGBoost (and provided the new
tools in the software simPop) to synthesize complex data. We have also made available
procedures for hyperparameter tuning. See Section 2.3.3 for more details.

2.3.3. Sequentional Approach to Simulate Variables of a Data Set Using XGBoost

After the simulation of the household structure of the population, other variables
can be generated (cf. Figure 1, point 2). An additional variable is simulated using the
(simplified) scheme below. In the XGBoost training step, one response variable of the
original survey S is predicted using variables xS

.,1, . . . , xS
.,j as a predictor matrix with n

observations and j dimension. The predictors must already be simulated in the synthetic
data set.

predictors︷ ︸︸ ︷ response︷ ︸︸ ︷ additional︷ ︸︸ ︷
S =


xS

1,1 xS
1,2 · · · xS

1,j xS
1,j+1 xS

1,j+2 · · ·
xS

2,1 xS
2,2 · · · xS

2,j xS
2,j+1 xS

2,j+2 · · ·
...

...
. . .

...
...

... · · ·
xS

n,1 xS
n,2 · · · xS

n,j xS
n,j+1 xS

n,j+2 · · ·


(3)

In the synthesis step, the new variable in position j + 1 is generated for the synthe-
sized population U with observations N using a prediction with the XGboost parameters
formerly trained.
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input︷ ︸︸ ︷ predicted︷ ︸︸ ︷ next︷ ︸︸ ︷
U′ =


xU′

1,1 xU′
1,2 · · · xU′

1,j xU′
1,j+1 xU′

1,j+2 · · ·
xU′

2,1 xU′
2,2 · · · xU′

2,j xU′
2,j+1 xU′

2,j+2 · · ·
...

...
. . .

...
...

... · · ·
xU′

N,1 xU′
n,2 · · · xU′

N,j xU′
N,j+1 xU′

N,j+2 · · ·


(4)

After simulating the j + 1 variable, the training of the parameters for the next (j + 2)
variable can be performed again based on the original data set, and the j + 1 variable can
be generated for the population using the trained parameters for the already simulated
input variables. Please note that the “predictors” in Equations (3) and (4) may not represent
directly the predictor variables but a design matrix that also reflects interactions of predictor
variables, transformations of predictors, quadratic terms of predictors, etc.

In our case, the generation of additional categorical values is performed by sampling
from conditional distributions estimated by an XGBoost classifier. For each stratum, the XG-
Boost model is fitted to the sample data xS

j+1 with the variables xS
1j+1, . . . , xS

nj+1, where n
is the number of individuals in the sample S. Each record is weighted by the respective
sampling weights w = (w1, . . . , wn)′. For each stratum k and the synthetic population
variable xU′

j = (xU′
1j , . . . , xU′

Nj)
′, the conditional probabilities pU′

ir := P(xU′
ij = r|xU′

i,1 , . . . , xU′
i,j )

of the new variable xU′
j+1 are estimated from the already generated variables xU′

1 . . . xU′
j by

the XGBoost algorithm with the softmax objective functions (see Equation (5)).

p̂U′
i,r =

ezi,r

∑R
j=1 ezj,r

, (5)

where r ∈ {1, . . . , R} is the set of R categories and zi,r is the XGBoost prediction score for
the respective category r. The category of xn,j+1 is then chosen with a weighted sampling,
where the weights are the estimated conditional probabilities p̂U′

i,r .
The proposed method has the advantage that predicted variables can contain random

zeros, which are combinations that do not occur in the sample but are present in the popu-
lation. Algorithm 2 describes how to generate additional categorical variables. XGBoost
has many hyperparameters, such as the learning rate (η), minimum loss reduction to make
further partitions (γ), and the maximum depth of the tree.

In Appendix C.2, it is shown how to simulate in an exemplary way two new variables
(economic status and citizenship of a person) in software.

In addition to categorical variables, an XGBoost implementation is also available for
continuous variables. The simPop function simContinuous has a similar structure to that
of its categorical counterpart but is not further explained in this paper.

2.3.4. Modified k-Fold Cross-Validation

To tune the XGBoost hyperparameters accordingly, a slightly modified k-fold cross-
validation procedure is proposed. For every additional variable xU′

j , the hyperparameter
grid is k-fold cross-validated on the resulting new synthetic variable compared to the
sample variable xS

j .
The basis of comparing the sample and the synthetic population variable is computing

a weighted contingency table. Each tS,U′
i of the one-dimensional contingency tables tS

and tU′ with R categories is estimated by the Horwitz-–Thompson estimator. Then, the
residuals (e) are calculated by

ei = tU′
i − tS

i (6)
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and the MSE is used to compare the discrepancies between the expected tS
i and the realized

tU′
i frequencies.

MSE =
1
n

n

∑
i=1

(ei)
2 (7)

The hyperparameters with the lowest average MSE are then used to generate the
variable for the synthetic population U′.

A grid/combination of various hyperparameters can be set for which the optimal
combination is then selected. Such hyperparameters are, for example, the maximum depth
of a tree, the learning rate and the evaluation metric. A complete list is provided here
https://xgboost.readthedocs.io/en/latest/parameter.html (accessed on 6 May 2024).

Algorithm 2 Simulate an Additional Variable using XGBoost

1: Use X the data to be synthesized
2: choose one of the following:
3: Option 1: set simPop← result from Algorithm 1
4: Option 2: set simPop← result from Algorithm 1 plus already simulated additional

variables with Algorithm 2.
5: set availablevars← variables of simPop
6: set newvar← variable to be simulated in the synthetic population
7: Define model parameters for the XGBoost algorithm

• set max.depth ∈ [0, ∞] ▷ maximum depth of a tree. 0: no limit on depth.
• set eta ∈ [0, 1] ▷ learning rate. The higher the more conservative boosting.
• set gamma ∈ [0, ∞] ▷ minimum loss reduction required
• set ... ▷ additional hyperparameters

8: set objective ← “multi:softprob” for categorical response und squared error für
continuous response as default (can be overwritten)

9: Initialize xgboost_params with max.depth, eta, gamma, ..., objective
10: fitted_params← train XGBoost (X, availablevars, newvar, model_params) . Fit on

the data to be synthetized using the same variables as contained in simPop and newvar
as shown in Equation (3). ▷ Hyperparameter training with cross validation

11: update simPop ← simulate variable (simPop, availablevars, newvar,
xgboost_params, fitted_params) ▷ Demonstrated in Equation (4)

Appendix C.3 shows a selection of hyperparameters and the corresponding cross-
validation procedure with the help of the R package simPop.

2.4. Synthetic Data Validation

Evaluating the quality of simulated synthetic data is a crucial step to ensure that the
generated data are useful, reliable and fit for their intended purpose. The primary dimen-
sions and methods used to assess synthetic data quality from an “absolute” perspective are
the following:

• Statistical similarity measures how well the synthetic data replicate the statistical
properties of the real data. Key aspects include descriptive statistics, distributional
properties and correlation structures.

• Data utility measures how well synthetic data can be used in place of real data for
specific tasks. This includes the predictive performance by training the machine
learning models on the synthetic data and evaluating their performance on real
data. Moreover, models trained on synthetic data should generalize well to real data,
indicating that the synthetic data capture the essential patterns and relationships.

• Integrity and consistency checks ensure that the synthetic data maintain logical and
business rules inherent in the real data:

• While synthetic data should closely resemble real data, they should also introduce
some variability, e.g., ensure the synthetic data contain new combinations of features

https://xgboost.readthedocs.io/en/latest/parameter.html
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that are plausible within the context of the real data but were not present in the original
data set.

In the following, we concentrate on statistical similarity and utility, indicating that
variability is guaranteed by the simPop framework and consistency is mainly modeled by
design (see Section 2.2).

The newly proposed XGBoost synthetic generation method was compared to the
multinomial approach developed by [14]. Both methods generated 100 synthetic versions
of the Austrian European Union Statistics on Income and Living Conditions (EU-SILC)
survey from 2019. First, a single generated synthetic population is examined, and second,
all 100 synthetic populations together are compared. The mosaic plots in Figure 3 show
the comparison for a single synthetic population for the two categorical variables, marital
status (P114000) and chronic disease (P103000). The red areas show a lower than expected
group frequency, so under-representation of the respective group, whereas the blue areas
indicate an over-representation. The XGBoost approach shows promising results, as the
overall deviation from the sample is smaller than that of the multinomial approach. As this
is only an excerpt of one combination of one generated population, Figure 4 shows a
comparison across all 100 synthetic populations. The color scale ranges from white (small
mean chi-square test statistic) to red (large mean chi-square test statistic) for the variable
combinations. As seen for the single population comparison, the multi-run comparison
confirmed the good performance of the XGBoost approach.
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Figure 3. Comparison between a single synthetic population and the original survey data by the
residual colored mosaic plot of chronic illness (P103000). The label -2 regards to non-selected persons
and ∗ to missing values.
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Figure 4. Comparison between the average of all 100 synthetic population and the original survey
data by the residual colored mosaic plot of the marital status (P114000), and chronic illness (P103000).
The label -2 regards to non-selected persons and ∗ to missing values.

Table 1 shows the performance across all generated variables, namely, the self-defined
current economic status (P001000), citizenship (P111010nu), marital status (P114000) and
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highest level of education achieved (P137000) in all synthetic populations, and chronic
illness (P103000). The XGBoost approach outperforms the multinomial for all three per-
formance metrics: mean squared error (MSE), mean absolute error (MAE) and the χ2

test statistics.

Table 1. Overview of the categorical performance metrics for both XGBoost and multinomial approach
across all generated 100 synthetic populations.

MSE MAE χ2 Test Statistics

Multinomial 42 0.42 117.381
XGBoost 5 0.21 121.291

3. Calibration of a Population
3.1. Post-Calibration with Combinatorial Optimization

The post-calibration step can be described as a combinatorial optimization problem
that aims to select households from the synthetic population in such a way that the dif-
ference between the margins from the selection and a given set of population margins is
minimized. To be more precise, let U′ be a synthetic population generated from a sample S,
let f (t, t̂) be an objective function that measures the difference between two sets of margins
t and t̂, then the optimization problem can be defined as follows:

min
t̂

f (t, t̂) (8)

t̂ =

 t̂1
...

t̂M

 (9)

t̂m =
N

∑
i=1

δi1[individual i part of margin cell m] m = 1, . . . , M (10)

δi ∈ {0, 1}, i = 1, . . . , N (11)

δi = δj ∀ individuals j in same household as individual i, (12)

with N as the number of people in the synthetic population and 1[.] representing the indica-
tor functions that equal 1 if the expression in [.] is true. The vectors t and t̂ represent the
target population margins and the population margins of the selected synthetic population,
respectively. Each tm, m = 1, . . . , M contains the number of people for a set of variables,
e.g., number of people by age, sex and geographic region. Setting δi = 1 implies that the
individual i is selected from the synthetic population U’, and to preserve the household
structure, so are all individuals j belonging to the same household as the individual i.

The use of combinatorial optimization to create synthetic populations was presented
in [24,25]. Since such problems are difficult to solve, they are often split into several smaller
problems by dividing the synthetic population into non-overlapping groups, typically
representing small geographical areas for which the margins t are available. Many smaller
problems are easier to solve than one large problem. When solving combinatorial optimiza-
tion problems, so-called metaheuristics are usually used. These algorithms try to comb the
search space of possible solutions in an efficient way to find at least a local minima of f () in
a reasonable amount of time. The meta-heuristic used in this contribution is the so-called
simulated annealing algorithm (SA; [26,27]). SA is inspired by a physical process in which
the material is cooled in a controlled manner. The pseudo-code of the SA as implemented
in simPop for the post-calibration problem is presented in Algorithm 3.

A more detailed description of the SA algorithm is given in the Appendix B.1.
An important aspect of SA is that worse solutions can be accepted, especially at the

beginning of the algorithm when the temperature T is high. This can prevent SA from
getting trapped in local optima. Ref. [28] compared the SA algorithm with deterministic
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re-weighting and conditional probabilities to create a synthetic population at different
spatial scales and concluded that the SA algorithm consistently outperformed the other
two methods.

Algorithm 3 has the following disadvantages:

• It is only possible to supply one target distribution t as constraint. This can be a
major limitation if only the marginal and not the joint distribution of variables for
re-calibration are not available or accessible.

• Convergence of the SA is very slow because households are replaced using simple
random sampling. Applying this algorithm to real-world applications, a population
of tens of millions of people will yield costly run times and possibly fail to converge.

• Parameters T, c and n can strongly influence the convergence of the SA and adopt-
ing the choice of these parameters when the problem is split into multiple smaller
subgroups is not supported.

Algorithm 3 Calibration of the Synthetic Population using Simulated Annealing

1: Set starting values regarding:
- Maximum number of iterations
- Starting temperature T, cooldown rate and maximum number of cooldowns c
- Initial swap rate n
- Allowed relative error ϵ > 0

2: Initialize a first selection ∆ = (δ1, . . . , δN′), calculate initial synthetic margins m, and the
value of the objective function:

Obj = f (t, t̂) =
M

∑
m=1
|tm − t̂m|

3: Randomly add and remove n persons, including all household members, resulting in a
new selection ∆new.

4: Calculate the new value of the objective function Objnew using ∆new.
5: if Objnew

N ≤ ϵ then
6: Convergence reached, terminate the algorithm and return ∆new.
7: end if
8: if Objnew < Obj then
9: Update ∆← ∆new.

10: else
11: Update current selection ∆ with new selection ∆new if u < exp

(
−Objnew−Obj

T

)
where

u is drawn from U(0, 1); otherwise, keep ∆.
12: end if
13: Increment counters and reduce temperature, if needed.
14: if Maximum number of iteration or minimum temperature reached then
15: Terminate the algorithm and return current selection ∆.
16: else
17: Go to step 3.
18: end if

In [29], applying the SA algorithm to a synthetic population of the Bangladesh Coastal
Zone revealed various challenges. The population, which consists of 37.2 million individ-
uals, was generated using a micro data set from the 2011 Bangladesh National Census
through IPUMS (see [30]). The improvements to the SA algorithm discussed here are
largely influenced by its application to this real-life data set. Subsequently, we will present
the SA improvements in detail.
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3.2. Including Multiple Different Target Margins

The SA has been adopted to support the use of multiple target margins that can refer
to margins of persons and households, e.g., number of persons by age and geographic
region and number of households by tenancy and geographic region.

Let t1, . . . , tM be the different set of target population margins, where each ti contains
the population totals on either number of households or number of people, for a set of
variables, e.g., number of households by household size and geographic region.

tm =

 tm,1
...

tm,Rm

 m = 1, . . . , M (13)

In addition, let t̂1, . . . , t̂M be the corresponding number of households or people in the
current synthetic population. We propose the following objective function when dealing
with multiple sets of margins:

f (t, t̂) =

√√√√ 1
M

M

∑
m=1

(
Rm

∑
r=1
|tm,r − t̂m,r|

)2

. (14)

For the case p = 1, where only one contingency table is used, this objective function
reduces to the sum of the absolute differences between the target and synthetic margins.
Although not explicitly needed to apply the SA algorithm, it is strongly recommended that
the sum over each of the margins t1, . . . , tM yields either the same number of households
or the same number of people.

Rm

∑
r=1

tm,r =

{
NH if tm corresponds to household margins
NP if tm corresponds to person margins

(15)

m = 1, . . . , M (16)

With changing the objective function f (t, t̂), we also slightly adopted the termination
criterion, which means that the SA algorithm will terminate if

NHϵH ≥
Rm

∑
r=1
|tm,r − t̂m,r| if tm corresponds to household margins

NPϵP ≥
Rm

∑
r=1
|tm,r − t̂m,r| if tm corresponds to person margins

(17)

for all m = 1, . . . , M, where ϵH and ϵP ∈ (0, 1) and NH and NP refer to the number
of households and people in the target margins, respectively. ϵH and ϵP can be loosely
interpreted as the maximum allowed average rate of the absolute difference between the
target margins t1, . . . , tM and the margins of the current selection ∆. Equation (17) allows
the SA algorithm to terminate even if for not all cells of the target margins the absolute
difference is lower than NH

Rm
ϵH or NP

Rm
ϵP, making the use of very detailed target margins

more feasible.

3.3. Efficient Re-Sampling of Households

The slow convergence rate of the SA can be improved by selecting and deselecting
individuals in a more targeted way. Instead of a purely random sample of individuals,
the improved version of the SA selects individuals with a certain probability. For individu-
als belonging to margins where the current person or household count is higher (lower)
than specified by the target margins, they should be deselected (selected) with a higher
probability. Thus, the improved sampling aims to calculate sampling probabilities for each
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person based on their impact on the objective function. Let us denote em,r as the differences
between the target population counts, tm,r, and the synthetic counts t̂m,r

em,r = tm,r − t̂m,r r = 1, . . . , R; t = 1, . . . , Mr. (18)

For each individual i, we calculate the values e1,r(1,i), . . . , eM,r(M,i), which correspond
to all the differences between the target and the synthetic counts for the categories the
individual i is part of. When adding persons and subsequently households, e.g., changing
δi from 0 to 1, we propose a sampling probability pi for individual i with

pi =


vi
Ni

if vi > 0

exp(− ∑
u:vu≤0

vu
Nu

) otherwise (19)

with

vi =
1
M

M

∑
m=1

∣∣∣em,r(m,i)

∣∣∣ · sgn

(
M

∑
m=1

em,r(m,i)

)
(20)

and Ni as the number of people in the synthetic population that belong to the same set of
margins t1,r(1,i), . . . , tM,r(M,i) as individual i. If vi < 0, individuals belonging to the same
set of margins as individual i are over-represented in the synthetic data, e.g., individual
i should not be additionally included to the synthetic population. In this case, i has a
diminishing small sampling probability exp(− ∑

u:vu≤0

vu
Nu

). In the case p = 1, the sampling

probability reduces to

e1,r(i)

Ni
=

t1,r(i) − t̂1,r(i)

Ni
, (21)

with the objective function
R1
∑

i=r
|t1,r − t̂1,r|. That is, the sampling probability for the indi-

vidual i is proportional to t1,r(i) − t̂1,r(i), in other words, its contribution to the objective
function. The sampling probability for removing individuals from the synthetic population,
e.g., changing δi from 1 to 0, is calculated in the same way as described before with the only
difference that em,r is calculated by

em,r = t̂m,r − tm,r, m = 1, . . . , M, r = 1, . . . , Rm. (22)

Since sampling with probability can be very computationally intensive if the set to be
drawn from is very large, e.g., exceeds the order of 104, we use the efficient implementation
for weighted sampling from the R package wrswoR (see [31]).

3.4. Initialise and Adjust Number of Swaps N

The initial number of swaps (n) significantly affects the convergence of the Simulated
Annealing (SA) algorithm. A high n increases the acceptance rate of worse solutions,
while a low n limits improvement of the objective function. The initial swap rate n should
depend on the objective function and population size, with a practical starting value given
by specific equations. The swap rate can be adjusted during the SA process to maintain
population stability and ensure convergence. Appendix B.2 reports the details of selecting
the number of swaps.

3.5. Automatically Choosing T and Forcing Cooldowns

The starting temperature T also influences SA convergence; too high a T causes aimless
searching, while too low a T risks premature convergence to a local optimum. The tem-
perature Tadj can be adjusted automatically based on the objective function. Additionally,
a procedure to force cooldowns helps avoid stagnation by reducing iterations if the objec-
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tive function remains unchanged over several iterations. Details on the automatic choice of
T are given in Appendix B.3.

3.6. Application of the SA Algorithm

The SA algorithm including the improvements is fully implemented in the function
calibPop() in the R package simPop. Some parameters have been added that reflect
various hyperparameters described above (see Appendix B.4).

For demonstration purposes, we post-calibrate the synthetic population from the
previous section and use the data set eusilcP as the target population. We choose the
following two post-calibration scenarios to highlight the improvements to the algorithm:

• Post-calibrate the synthetic population on a single target margin using the number of
individuals by region, gender and citizenship

• Post-calibrate the synthetic population on two target margins using the number of
individuals by region, gender and citizenship and number of households by region
and household size.

In both scenarios, a value of ϵ = 0.1 was set as default. The R code to apply the
post-calibration scenarios to the synthetic data can be found in the Appendix C under
Appendices C.4 and C.5. We performed this calculation on a server running Ubuntu 18.04
Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60 GHz with 8 cores and 125 GB memory. With the
improved version of SA using only the single target margin, the algorithm converges in
a few seconds instead of almost 50 min when using the older version implemented in
simPop 1.2.1. When running the improved version with ϵ = 0.01, it converges in almost
10 s.

The results of the first scenario are shown in Figure 5, where the distribution of the
variables used for post-calibration is displayed. The colors indicate the distribution before
calibration, after calibration using the old implementation SA 1.2.1, the improved imple-
mentation SA 2.1.2 and the improved implementation using ϵ = 0.01 SA eps = 0.01.
The black lines represent the target distribution. Citizenship pb220a is shown in the hori-
zontal panels and gender rb090 in the vertical panels. The distributions using the improved
method seem to be more similar to the target margins, especially for large populations,
e.g., the box on the left for people with the nationality “AT”. Table 2 shows the mean
absolute error (MAE), the mean absolute percentage error (MAPE), as well as the average
Aitchison distance (see [32,33]), compared to the target distribution. Using the improved
implementation instead of the old, the MAE and MAPE are drastically reduced, especially
for ϵ = 0.01. For the average Aitchison distance, we observe similar values for the old and
new improvements, but again a drastic improvement for ϵ = 0.01.

Figure 6 shows the results of the second scenario using two target distributions—one
for the number of individuals and one for the number of households As a comparison the
distribution before calibration and the distribution using only one set of target margins
are displayed. The upper part of the Figure 6 shows that the margins for the number of
people are reproduced slightly worse when multiple margins are used. The distribution on
the number of households is, however, represented better when also considered during
calibration, as can be seen in the bottom part of Figure 6.

Table 3 shows the MAE, the MAPE and the average Aitchison distance compared to the
target distribution for the second scenario. Using multiple margins yields slighter higher
error measures for the person margins but much lower ones for the household margins.
The household margins before the calibration yield a low average Aitchison distance
because the relative distribution is already quite similar to the relative target distribution.
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Figure 5. Distribution of people after post-calibration by variables “db040”, citizenship (horizontal
panels) and gender (vertical panels). Colored bars show the distribution after applying the old version
of calibPop (SA 1.2.1), the improved version of calibPop (SA 2.1.2) and the improved version of
calibPop with ϵ = 0.01. The black lines represent the target distribution, the red bars the distribution
before calibration.

Table 2. Mean absolute error, mean absolute percentage error and average Aitchison distance between
target totals and population totals before and after calibration from the first scenario.

MAE MAPE Avg. Aitchison

Before calibration 618.31 71.31 2.52
SA 1.2.1 158.47 22.13 1.68
SA 2.1.2 75.26 17.36 1.73
SA ϵ = 0.01 8.02 7.41 1.27

Table 3. Mean absolute error, mean absolute percentage error and average Aitchison distance between
target totals and population totals before and after calibration from calibration from the first scenario.

MAE MAPE Avg. Aitchison

Person margins
Before calibration 618.20 71.31 2.52
Single margins 75.26 17.36 1.73
Multiple margins 80.44 29.72 2.33

Household margins
Before calibration 280.22 40.03 0.31
Single margins 113.19 16.83 1.24
Multiple margins 54.72 9.75 0.48
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Figure 6. Distribution of people (left side) and households after post-calibration. The colors indicate
using only one set of target margins (single margins) on people and target margins on people and
households simultaneously (multiple margins). The black lines represent the target distribution,
the red bars the distribution before calibration.

4. Conclusions

Important improvements for the synthesis of complex data sets using the R package
simPop were presented. Although the methods work to simulate synthetic data from
simple structured data sets, they are also able to deal with more complex situations that
are not addressed in the literature or other software. The methods can also be used for
complex samples conducted with complex survey designs and calibrated samples that
additionally contain information on multiple margins of different types of unit (e.g., persons
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and households). Thus, values on specified margins of the synthesized data correspond
to the values of margins of the original data and/or the additional information on known
population characteristics.

With the presented methods and tools, one can even create a whole population from
a complex sample. This is especially important for micro-simulation and agent-based
simulations. Hereby, in a first step, a population is generated with the help of our presented
methods. For micro-simulation tasks, this population is then stochastically extrapolated up
to a defined time horizon, taking into account various relevant scenarios, e.g., for policy
measures, demographic development, migration, etc. The base population is then used as
a proxy for the real and unknown population.

Another important feature not detailed in this paper is that the synthetic data set can
be generated from multiple inputs. These inputs can be census or sample data.

The integration of XGBoost as a fully conditional simulation method into the R package
simPop has been carried out in such a way that it fully matches the S4 class structure of the
package to allow its application to data including the challenges mentioned. In addition, hy-
perparameter tuning is built-in—an important point in achieving better results than with fixed
default settings. XGBoost has been shown to be a competitive method for synthesizing data.
Realistic cluster structures and logical conditions are naturally considered by construction,
and multiple relationships are considered by sequentially synthesizing variables.

After synthesizing the data, we developed a post-calibration to calibrate for multiple
margins. It is now possible to calibrate against multiple margins even if they are defined
for different types of units (e.g., persons and households) at the same time.

All of these improvements raise the simulation of synthetic data to a higher level and
account for many practical and complex real-world problems.
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Appendix A. Details on Selected Variables of the EU-SILC Data

A representative real-world data set from the European Union Statistics of Income
and Living Conditions (EU-SILC) survey was selected for this study to demonstrate the
application of the developed methods. These data sets primarily serve to measure Europe’s
risk of poverty and social cohesion, playing an instrumental role in monitoring progress
towards the Lisbon 2010 strategy and Europe 2020 objectives outlined by the European
Union. The core objective of EU-SILC is the timely and comparable acquisition of cross-
sectional and longitudinal data, focusing on income, poverty, social exclusion and living
conditions. The survey includes data collected from households and individuals, with
around 90% of its output comprising annual variables. The remaining data are either
modules collated every three or six years or ad hoc modules designed to address specific
policy needs. Participating countries send data on individuals and households to Eurostat
in accordance with legally determined deadlines and agreed guidelines and procedures.

In particular, this study uses the Austrian EU-SILC public use data set from 2013
with 13,513 observations and 62 variables. These cross-sectional data include variables
on income, poverty, social exclusion and other living conditions. Information on social
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exclusion and housing conditions is collected primarily at the household level, while labor,
education and health information is sourced from individuals aged 16 years and older.
Income variables at the detailed component level are also collected predominantly from
individuals. The equivalized household income variable and household sizes are shown
in the Appendix A in Table A1. Other relevant variables are shown in the Appendix A in
Table A2, where the official names of the variables according to Eurostat are also displayed.

Design and non-response weights are calculated differently for the primary sampling
units (PSU) and the higher-order sampling units (second to fourth order). For PSUs, the
Austrian Central Statistical Office calculates the design weights according to the stratified
simple random sample with 70 strata. The stratification is based on several criteria, includ-
ing the province, the number of households in the survey area and the characteristics of
the target group. For the latter, households with foreigners and a higher risk of poverty
were oversampled. A logistic regression model estimates the response probabilities for the
calculation of the non-response weights. The non-response weights for higher-order sampling
units are calculated in a similar way as for the primary sampling units. A logistic regression
model estimates the response probabilities. Since more information is available from the pre-
vious survey, the regression model contains more variables than the PSU model. The model
contains 43 predictors ranging from survey attributes, e.g., contact attempt, to characteristics
of income and living conditions, e.g., net income. Finally, the weights of the data are calibrated
to match the known population characteristics from the Austrian Census.

Table A1. Overview and description of the Austrian EU-SILC variables used to generate synthetic
data including the distribution of income and household size. (Part I)

Name Description Type Distribution

Equivalized household income

Yearly income
according to
OECD equivalence
scale

continuous
(median = 26.5)

HID
Longitudinal
section household
ID

multinomial 5983
levels

D004010 Household size continuous
(median = 2)

1 
 16.21%

2 
 25.41%

3 
 20.94%

4 
 21.82%

5 
 9.66%

6 
 4.31% 7 

 1.24%
8 

 0.41%

Table A2. Overview and description of the Austrian EU-SILC variables used to generate synthetic
data. (Part II).

Name Desc Type Distribution

sex Sex multinomial
2 levels

age Age continuous
median 46
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Table A2. Cont.

Name Desc Type Distribution

bundesld Region multinomial
9 levels

P001000 Economic status multinomial
12 levels

P111010nu Citizenship 1 multinomial
7 levels

P114000 Marital status multinomial
7 levels

P137000 Highest education level multinomial
7 levels

P103000 chronic illness multinomial
4 levels

For a comprehensive description of the variables used and more information on this
data set, the package manual of R package laeken [34,35] provides a detailed guide.

Appendix B. Details on the Simulated Annealing Algorithm for the Calibration
of Populations

Appendix B.1. Detailed Calibration Algorithm

Algorithm A1 presents the Simulated Annealing algorithm in more detail.
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Algorithm A1 Detailed calibration algorithm

1: Duplicate the synthetic population K times to include N′ = N ·K individuals, increasing
the likelihood of finding a composition (δ1, . . . , δN).

2: Set the initial conditions:
• Start temperature T > 0
• Cooling rate rT ∈ (0, 1)
• Minimum temperature Tmin
• Maximum number of cooldowns C > 100
• Counter for number of cooldowns NC = 1
• Initial number of selections/deselections n = Obj · medhsize

5
• Reduction rate for number of swaps rn ∈ (0, 1)
• Allowed relative error ϵ > 0
• Number of iterations until cooling c
• Counter for iterations until next cooldown nc = 1

3: Initialize a first selection ∆ = (δ1, . . . , δN′), calculate initial synthetic margins m, and
the value of the objective function:

Obj = f (t, t̂) =
M

∑
m=1
|tm − t̂m|

4: Randomly add and remove n persons, including all household members, from the
selection ∆ by setting δi = 0 or δi = 1 for each member of the drawn household,
resulting in a new selection ∆new.

5: Calculate the new value of the objective function Objnew using ∆new.
6: if Objnew

N ≤ ϵ then
7: Convergence reached, terminate the algorithm and return ∆new.
8: end if
9: if Objnew < Obj then

10: Update ∆← ∆new.
11: else
12: Update current selection ∆ with new selection ∆new if u < exp

(
−Objnew−Obj

T

)
where

u is drawn from U(0, 1); otherwise, keep ∆.
13: end if
14: Increment nc; if nc > c, start the next cooldown, otherwise, repeat from step 4:

• n← max(1, ⌊n · rn⌋)
• T ← T · rT
• NC ← NC + 1
• nc ← 1

15: if NC > C or T < Tmin then
16: Terminate the algorithm and return current selection ∆.
17: else
18: Go to step 4.
19: end if

Appendix B.2. Initialise and Adjust Number of Swaps N

The convergence of the SA algorithm is greatly influenced by the initial number
of swaps (n). Choosing a very high n can lead to frequent changes in ∆ due to a high
acceptance rate for a worse solution. In contrast, selecting a very low n can limit the
potential to improve the objective function. Naturally, n should depend on the initial value
of f (t, t̂) and the size of the synthetic population. An initial choice of the swap rate n is
as follows:

n = min(max
m,r

(|tm,r − t̂m,r|) ·
2
3

, 0.05 · NP
medhsize

). (A1)
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The first part is related to the objective function, and the second to the size of the target
population. This suggested starting value proved practical during the work in [29].

The swap rate n can also be controlled during the SA algorithm for faster convergence.
When selecting or deselecting individuals, the whole household is chosen; thus, the number
of individuals in the synthetic population can change, affecting the algorithm’s convergence.
To address this, a scaling factor is introduced to maintain the total number of individuals or
households at the same level as the target margins. Before the sampling step, the number
of draws for the selection of persons and households to be included and excluded is
adjusted by

nin =max(⌈n− gap⌉, 1) (A2)

nout =max(⌈n + gap⌉, 1) , (A3)

where

gap = rre ·
1

R
∑

r=1
Mr

(
M

∑
m=1

Rm

∑
r=1

tm,r − t̂m,r

)
(A4)

rre ∈(0, 1). (A5)

For ∑
r,t

tm,r − t̂m,r > 0, the number of individuals or households selected is overall

smaller than the target population margins. Multiplying with the factor 1
R
∑

r=1
Mr

yields an

estimate of the average number of individuals or households missing in each of the margin
cells of the synthetic population. On the other hand ∑

r,t
tm,r − t̂m,r < 0 implies that too

many individuals or households have been selected. The value gap is, thus, an estimated
difference to the desired total population in terms of individuals NP or households NH .
Considering Equations (A2) and (A3), it is clear to see that choosing rre = 1 would imply
that nin and nout can overcompensate for this difference calculated in Equation (A4) and

the solutions would likely begin to jump above and below the desired total
Mr
∑

t=1
tm,r. With a

value of rre = 0.5, half of the estimated difference is addressed when adding and removing
individuals from the current selection. Thus, the value of rre = 0.5 is recommended to
stabilize the solutions.

Appendix B.3. Automatically Choosing T and Forcing Cooldowns

The starting temperature T can strongly influence the convergence of the SA. If T is
chosen too high, the algorithm jumps aimlessly through the search space and, depending
on the cooling rate rT , it takes some time for the SA to narrow down to a solution. If T, on
the other hand, is chosen too small, the SA may become stuck in a local optimum too early
and have no possibility to improve further. The starting temperature Tadj can optionally be
adjusted automatically in the initialization phase of the SA by

Tadj =max(T, ra
1

R
∑

r=1
Mr

M

∑
m=1

Rm

∑
r=1

tm,rϵm) (A6)

ϵm =

{
ϵH if tm corresponds to household margins
ϵP if tm corresponds to person margins

(A7)

m = 1, . . . , M, (A8)
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where ra ∈ (0, 1). Besides the individual adjustment of T, the SA algorithm can become
stuck between cooldowns and further improvements of the current solution can only be
achieved after successive cooldowns with decreasing T as well as n. Since c usually sets
the number of iterations between cooldowns to several hundreds, we implemented a
procedure that forces a cooldown if the value of the objective function has not changed
since h iterations and the previous h values of the objective function, Obj1, . . . , Objh, satisfy

σObj

Obj
< rh, (A9)

with σObj as the standard deviation and Obj as the arithmetic mean of Obj1, . . . , Objh. This
addition has the sole purpose of decreasing the number of iterations if the solution starts to
become stuck for a given n and T. For the work in [29], we chose ra = 0.2 and rh = 0.05.

Appendix B.4. Hyperparameters in Package simPop for Population Calibration

Table A3 shows the connection of parameters in the equations above to function
arguments in the software implementation.

Table A3. Some of the new function arguments of function calibPop().

Function Argument Parameter

choose.temp.factor ra
scale.redraw rre
observe.times h
observe.break rh

hhTables, persTables t1, . . . , tM

We refer to other newly added parameters, such as splitUpper, redist.var and
redist.var.factor, to the help page ?calibPop. They can be useful for calibrating syn-
thetic data with a high geographic resolution, such as local administrative units level 2
(LAU2) or more granular.

Appendix C. R-Code Examples

The proposed synthetic data generation and calibration tools have been implemented in
the R package simPop and the extensive source code is available in the functions simCate-
gorical, simContinuous, crossValidation, addKnownMargins and calibPop. A demon-
stration of an application of these functions on the EU-SILC data set is illustrated below.

Appendix C.1. Simulation of Synthetic Data with XGBoost

The following code snipped shows how to simulate a cluster structure in software R.
To generate the household structure, first, the data input is specified naming the data set,
the (optional) cluster structure, the (optional) stratification variable(s) (in each strata, the
simulation is taken independently), and the (optional) vector of sampling weights. Secondly,
the function simStructure is used, with the basic household variables specified in the
function argument basicHHvars. Note that there are different methods available, such
as “direct” with estimation of the population totals for each combination of stratum and
household size using the Horvitz–Thompson estimator, “multinom” with the estimation of
the conditional probabilities within the strata using a multinomial log-linear model and
random draws from the resulting distributions, or “distribution” with random draws from
the observed conditional distributions within the strata.

R> library(simPop)
R> ## load the demo data set
R> data(eusilcS)
R>
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R> ## create the structure
R> inp <- specifyInput(data = eusilcS,
R> hhid = "db030", # variable with cluster information
R> strata = "db040", # optional stratification
R> weight = "db090") # variable with sampling weights
R>
R>
R> simPop <- simStructure(data = inp, # data structure
R> method = "direct",
R> basicHHvars = c("age", "rb090"))

In doing so, simStructure requires all information about the structure of a data set.
For surveys with complex sampling designs, more information has to be provided (e.g.,
function argument weight) than for the simulation of survey samples obtained with simple
random sampling or by simulating census data. In our case, the data set is collected on the
basis of a complex sample design, and in addition, there is a household structure, e.g., all
persons within a household are surveyed (function argument hhid). To reflect heterogeneity
in the population, samples are often drawn within strata, e.g., regions (functional argument
strata). Note that specifyInput generates a S4-class object [36] including all necessary
information.

R> class(simPop)

[1] "simPopObj"
attr(,"package")

The implemented print method already shows some basic information.

R> simPop

--------------
synthetic population of size
81838 x 7

build from a sample of size
11725 x 20
--------------

variables in the population:
db030,hhsize,db040,age,rb090,pid,weight

Appendix C.2. Synthesizing Additional Variables

In the example below, two new variables, "pl030" (person’s economic status) and
"pb220a" (citizenship)), are simulated for the population. All function arguments and
parameters for the xgboost algorithm can be passed through model_params. The complete
list of the hyperparameters is listed in [37].

R> model_params <- list(max.depth = 10, # maximum depth of a tree
R> eta = 0.5, # learning rate
R> nrounds = 5, # max number of boosting iterations
R> objective = "multi:softprob") # softmax objective
R>
R> simPop <- simCategorical(simPop,
R> additional = c("pl030", "pb220a"),
R> method = "xgboost",
R> model_params = model_params)
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The print method shows the successful simulation of these two new variables.

R> simPop

--------------
synthetic population of size
81838 x 9

build from a sample of size
11725 x 20
--------------

variables in the population:
db030,hhsize,db040,age,rb090,pid,weight,pl030,pb220a

The population now consists of the basic variables, the structure variables and the
newly generated categorical variables ("pl030" (person’s economic status) and "pb220a"
(citizenship)). Table A4 displays a snippet of the initial five observations from the already
simulated data.

Table A4. An excerpt of the synthetic population generated by the proposed XGBoost approach.

db030 hhsize db040 Age rb090 Pid Weight pl030 pb220a

1 4570 1 Lower Austria 68 male 4570.1 1.00 5 AT
2 1735 1 Carinthia 65 male 1735.1 1.00 5 AT
3 655 2 Burgenland 55 female 655.1 1.00 5 AT
4 836 3 Burgenland 64 female 836.1 1.00 7 AT
5 2984 4 Carinthia 13 female 2984.4 1.00 4 AT

Appendix C.3. Hyperparameter Tuning for XGBoost

R> grid <- expand.grid(nrounds = c(5, 10),
R> max_depth = 10,
R> eta = c(0.2, 0.3, 0.5),
R> eval_metric = "mlogloss",
R> stringsAsFactors = F)

R> additionals <- c("pl030", "pb220a")
R>
R> # Remove variables and regenerate with crossValidation
R> simPop@pop@data[, (additionals) := NULL]
R>
R> simPop <- crossValidation(simPop,
R> additionals = additionals,
R> fold = 3, #
R> hyper_param_grid = grid)
R>
R> simPop

--------------
synthetic population of size
81838 x 9

build from a sample of size
11725 x 20
--------------
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variables in the population:
db030,hhsize,db040,age,rb090,pid,weight,pl030,pb220a

Appendix C.4. Post-Calibration First Scenario

R> data(eusilcP) # use to derive target margins
R>
R> # build target margins
R> margins <- xtabs( ~ region + gender + citizenship,
R> data = eusilcP)
R> margins <- as.data.frame(margins)
R> # rename to match column names in synthetic data
R> colnames(margins) <- c("db040", "rb090", "pb220a", "freq")
R>
R> # add target margins to simPop-object
R> simPop <- addKnownMargins(simPop, margins)

R> # apply simulated annealing for each "db040"
R> simPop_adj <- calibPop(simPop,
R> split = "db040",
R> epsP.factor = 0.1,
R> choose.temp = TRUE,
R> choose.temp.factor = 0.2,
R> nr_cpus = 1,
R> verbose = FALSE)

Appendix C.5. Post-Calibration Second Scenario

R> # target margins for persons
R> persTables <- xtabs(~ region + gender + citizenship,
R> data = eusilcP)
R> persTables <- as.data.frame(persTables)
R> colnames(persTables) <- c("db040", "rb090", "pb220a", "Freq")
R>
R> # target margins for households
R> filter_hid <- !duplicated(eusilcP$hid)
R> # re-code household size
R> eusilcP$hsize4 <- pmin(4, as.numeric(eusilcP$hsize))
R> simPop@pop@data$hhsize4 <- pmin(4, as.numeric(simPop@pop@data$hhsize))
R>
R> hhTables <- xtabs(~ region + hsize4,
R> data = eusilcP[filter_hid, ])
R> hhTables <- as.data.frame(hhTables)
R> colnames(hhTables) <- c("db040", "hhsize4", "Freq")
R>
R> # run simulated annealing
R> simPop_adj_2tables <- calibPop(simPop, split = "db040",
R> temp=1, epsP.factor = 0.1,
R> epsH.factor = 0.1,
R> persTables = persTables,
R> hhTables = hhTables,
R> nr_cpus = 1, verbose = TRUE)
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33. Fačevicová, K.; Hron, K.; Todorov, V.; Templ, M. General approach to coordinate representation of compositional tables. Scand. J.

Stat. 2018, 45, 879–899. [CrossRef]
34. Alfons, A.; Templ, M. Estimation of Social Exclusion Indicators from Complex Surveys: The R Package laeken. J. Stat. Softw. 2013,

54, 1–25. [CrossRef]
35. Templ, M. Imputation and Visualization of Missing Values; Springer International Publishing: Cham, Switzerland, 2023; p. 561,

in print.
36. Chambers, J. Extending R; Chapman & Hall/CRC the R Series; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2016.
37. XGBoost Developers. XGBoost Parameters. 2020. Available online: https://xgboost.readthedocs.io/en/latest/parameter.html

(accessed on 15 December 2020).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://CRAN.R-project.org/package=wrswoR
http://dx.doi.org/10.1111/sjos.12223
http://dx.doi.org/10.1111/sjos.12326
http://dx.doi.org/10.2139/ssrn.2244876
https://xgboost.readthedocs.io/en/latest/parameter.html

	Introduction
	Synthetic Data
	Synthetic Populations
	Non-Linear Synthesizers
	Calibration
	Calibration of Populations
	Outline

	Synthetic Data Generation
	Data Set Used in the Method Application
	Simulation of Cluster Structures
	Synthetic Data Generation with XGBoost
	General Comments on XGBoost
	Advantages of XGBoost for Synthetic Data Generation
	Sequentional Approach to Simulate Variables of a Data Set Using XGBoost
	Modified k-Fold Cross-Validation

	Synthetic Data Validation

	Calibration of a Population
	Post-Calibration with Combinatorial Optimization
	Including Multiple Different Target Margins
	Efficient Re-Sampling of Households
	Initialise and Adjust Number of Swaps N
	Automatically Choosing T and Forcing Cooldowns
	Application of the SA Algorithm

	Conclusions
	Details on Selected Variables of the EU-SILC Data
	Details on the Simulated Annealing Algorithm for the Calibration of Populations
	Detailed Calibration Algorithm
	Initialise and Adjust Number of Swaps N
	Automatically Choosing T and Forcing Cooldowns
	Hyperparameters in Package simPop for Population Calibration

	R-Code Examples
	Simulation of Synthetic Data with XGBoost
	Synthesizing Additional Variables
	Hyperparameter Tuning for XGBoost
	Post-Calibration First Scenario
	Post-Calibration Second Scenario

	References

