Guest Editorial for the Special Issue “New Trends in Algorithms for Intelligent Recommendation Systems”
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
List of Contributions
- Lin, G.; Zhang, Y. Sparks of Artificial General Recommender (AGR): Experiments with ChatGPT. Algorithms 2023, 16, 432. https://doi.org/10.3390/a16090432.
- Ezeife, C.I.; Karlapalepu, H. A Survey of Sequential Pattern Based E-Commerce Recommendation Systems. Algorithms 2023, 16, 467. https://doi.org/10.3390/a16100467.
- Panteli, A.; Boutsinas, B. Addressing the Cold-Start Problem in Recommender Systems Based on Frequent Patterns. Algorithms 2023, 16, 182. https://doi.org/10.3390/a16040182.
- Chalkiadakis, G.; Ziogas, I.; Koutsmanis, M.; Streviniotis, E.; Panagiotakis, C.; Papadakis, H. A Novel Hybrid Recommender System for the Tourism Domain. Algorithms 2023, 16, 215. https://doi.org/10.3390/a16040215.
- Luo, C.; Wang, Y.; Li, B.; Liu, H.; Wang, P.; Zhang, L.Y. An Efficient Approach to Manage Natural Noises in Recommender Systems. Algorithms 2023, 16, 228. https://doi.org/10.3390/a16050228.
- Tallapally, D.; Wang, J.; Potika, K.; Eirinaki, M. Using Graph Neural Networks for Social Recommendations. Algorithms 2023, 16, 515. https://doi.org/10.3390/a16110515.
- de Campos, L.M.; Fernández-Luna, J.M.; Huete, J.F.; Ribadas-Pena, F.J.; Bolaños, N. Information Retrieval and Machine Learning Methods for Academic Expert Finding. Algorithms 2024, 17, 51. https://doi.org/10.3390/a17020051.
References
- Toffler, A. Future Shock; Random House: New York, NY, USA, 1970. [Google Scholar]
- Anitha, L.; Devi, M.K.; Devi, P.A. A Review on Recommender System. Int. J. Comput. Appl. 2013, 82, 27–31. [Google Scholar] [CrossRef]
- Berger, H.; Denk, M.; Dittenbach, M.; Pesenhofer, A.; Merkl, D. Photo-based user profiling for tourism recommender systems. In Proceedings of the International Conference on Electronic Commerce and Web Technologies, Regensburg, Germany, 3–7 September 2007; pp. 46–55. [Google Scholar]
- Esmaeili, L.; Mardani, S.; Golpayegani, S.A.H.; Madar, Z.Z. A novel tourism recommender system in the context of social commerce. Expert Syst. Appl. 2020, 149, 113301. [Google Scholar] [CrossRef]
- Hong, M.; Jung, J.J. Multi-criteria tensor model for tourism recommender systems. Expert Syst. Appl. 2021, 170, 114537. [Google Scholar] [CrossRef]
- Alrasheed, H.; Alzeer, A.; Alhowimel, A.; Shameri, N.; Althyabi, A. A Multi-Level Tourism Destination Recommender System. Procedia Comput. Sci. 2020, 170, 333–340. [Google Scholar] [CrossRef]
- Herlocker, J.L.; Konstan, J.A.; Borchers, A.; Riedl, J. An algorithmic framework for performing collaborative filtering. In Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Berkeley, CA, USA, 15–19 August 1999; pp. 230–237. [Google Scholar]
- Colombo-Mendoza, L.O.; Valencia-García, R.; Rodríguez-González, A.; Alor-Hernández, G.; Samper-Zapater, J.J. RecomMetz: A context-aware knowledge-based mobile recommender system for movie showtimes. Expert Syst. Appl. 2015, 42, 1202–1222. [Google Scholar] [CrossRef]
- Wang, Z.; Yu, X.; Feng, N.; Wang, Z. An improved collaborative movie recommendation system using computational intelligence. J. Vis. Lang. Comput. 2014, 25, 667–675. [Google Scholar] [CrossRef]
- Katarya, R. Movie recommender system with metaheuristic artificial bee. Neural Comput. Appl. 2018, 30, 1983–1990. [Google Scholar] [CrossRef]
- Airen, S.; Agrawal, J. Movie Recommender System Using K-Nearest Neighbors Variants. Natl. Acad. Sci. Lett. 2022, 45, 75–82. [Google Scholar] [CrossRef]
- Kuroiwa, T.; Bhalla, S. Book recommendation system for utilisation of library services. Int. J. Comput. Sci. Eng. 2010, 5, 207–213. [Google Scholar] [CrossRef]
- Núñez-Valdez, E.R.; Quintana, D.; González Crespo, R.; Isasi, P.; Herrera-Viedma, E. A recommender system based on implicit feedback for selective dissemination of eBooks. Inf. Sci. 2018, 467, 87–98. [Google Scholar] [CrossRef]
- Jomsri, P. Book recommendation system for digital library based on user profiles by using association rule. In Proceedings of the Fourth edition of the International Conference on the Innovative Computing Technology (INTECH 2014), Luton, UK, 13–15 August 2014; pp. 130–134. [Google Scholar] [CrossRef]
- Celma, Ò.; Serra, X. FOAFing the music: Bridging the semantic gap in music recommendation. Web Semant. Sci. Serv. Agents World Wide Web 2008, 6, 250–256. [Google Scholar] [CrossRef]
- Sánchez-Moreno, D.; Gil González, A.B.; Muñoz Vicente, M.D.; López Batista, V.F.; Moreno García, M.N. A collaborative filtering method for music recommendation using playing coefficients for artists and users. Expert Syst. Appl. 2016, 66, 234–244. [Google Scholar] [CrossRef]
- Vall, A.; Dorfer, M.; Eghbal-zadeh, H.; Schedl, M.; Burjorjee, K.; Widmer, G. Feature-combination hybrid recommender systems for automated music playlist continuation. User Model. User-Adapt. Interact. 2019, 29, 527–572. [Google Scholar] [CrossRef]
- Walter, F.E.; Battiston, S.; Schweitzer, F. A model of a trust-based recommendation system on a social network. Auton. Agent. Multi. Agent. Syst. 2008, 16, 57–74. [Google Scholar] [CrossRef]
- Nguyen, T.T.S.; Lu, H.Y.; Lu, J. Web-Page Recommendation Based on Web Usage and Domain Knowledge. IEEE Trans. Knowl. Data Eng. 2014, 26, 2574–2587. [Google Scholar] [CrossRef]
- Xie, X.; Wang, B. Web page recommendation via twofold clustering: Considering user behavior and topic relation. Neural Comput. Appl. 2018, 29, 235–243. [Google Scholar] [CrossRef]
- Núñez-Valdéz, E.R.; Cueva Lovelle, J.M.; Sanjuán Martínez, O.; García-Díaz, V.; Ordoñez De Pablos, P.; Montenegro Marín, C.E. Implicit feedback techniques on recommender systems applied to electronic books. Comput. Human Behav. 2012, 28, 1186–1193. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Núñez-Valdez, E.R.; García-Díaz, V. Guest Editorial for the Special Issue “New Trends in Algorithms for Intelligent Recommendation Systems”. Algorithms 2024, 17, 255. https://doi.org/10.3390/a17060255
Núñez-Valdez ER, García-Díaz V. Guest Editorial for the Special Issue “New Trends in Algorithms for Intelligent Recommendation Systems”. Algorithms. 2024; 17(6):255. https://doi.org/10.3390/a17060255
Chicago/Turabian StyleNúñez-Valdez, Edward Rolando, and Vicente García-Díaz. 2024. "Guest Editorial for the Special Issue “New Trends in Algorithms for Intelligent Recommendation Systems”" Algorithms 17, no. 6: 255. https://doi.org/10.3390/a17060255
APA StyleNúñez-Valdez, E. R., & García-Díaz, V. (2024). Guest Editorial for the Special Issue “New Trends in Algorithms for Intelligent Recommendation Systems”. Algorithms, 17(6), 255. https://doi.org/10.3390/a17060255