
Citation: Cheng, R.-H.; Yu, C.-W.;

Zhang, Z.-L. Optimizing Charging

Pad Deployment by Applying a

Quad-Tree Scheme. Algorithms 2024,

17, 264. https://doi.org/10.3390/

a17060264

Academic Editor: Frank Werner

Received: 16 April 2024

Revised: 5 June 2024

Accepted: 12 June 2024

Published: 14 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Optimizing Charging Pad Deployment by Applying
a Quad-Tree Scheme
Rei-Heng Cheng 1, Chang-Wu Yu 2,* and Zuo-Li Zhang 3,*

1 School of Information Engineering, Xiamen Ocean Vocational College, Xiamen 361100, China;
zhengruiheng@xmoc.edu.cn

2 Department of Computer Science & Information Engineering, Chung Hua University, Hsinchu 30012, Taiwan
3 School of Intelligent Manufacturing, Wenzhou Polytechnic, Wenzhou 325035, China
* Correspondence: cwyu@chu.edu.tw (C.-W.Y.); zuolizhang@wzpt.edu.cn (Z.-L.Z.)

Abstract: The recent advancement in wireless power transmission (WPT) has led to the development of
wireless rechargeable sensor networks (WRSNs), since this technology provides a means to replenish
sensor nodes wirelessly, offering a solution to the energy challenges faced by WSNs. Most of the
recent previous work has focused on charging sensor nodes using wireless charging vehicles (WCVs)
equipped with high-capacity batteries and WPT devices. In these schemes, a vehicle can move close
to a sensor node and wirelessly charge it without physical contact. While these schemes can mitigate
the energy problem to some extent, they overlook two primary challenges of applied WCVs: off-road
navigation and vehicle speed limitations. To overcome these challenges, previous work proposed
a new WRSN model equipped with one drone coupled with several pads deployed to charge the
drone when it cannot reach the subsequent stop. This wireless charging pad deployment aims to
deploy the minimum number of pads so that at least one feasible routing path from the base station
can be established for the drone to reach every SN in a given WRSN. The major weakness of previous
studies is that they only consider deploying a wireless charging pad at the locations of the wireless
sensor nodes. Their schemes are limited and constrained because usually every point in the deployed
area can be considered to deploy a pad. Moreover, the deployed pads suggested by these schemes
may not be able to meet the connected requirements due to sparse environments. In this work,
we introduce a new scheme that utilizes the Quad-Tree concept to address the wireless charging
pad deployment problem and reduce the number of deployed pads at the same time. Extensive
simulations were conducted to illustrate the merits of the proposed schemes by comparing them
with different previous schemes on maps of varying sizes. In the case of large maps, the proposed
schemes surpassed all previous works, indicating that our approach is more suitable for large-scale
network environments.

Keywords: WRSN; drones; wireless charging; Quad-Tree

1. Introduction

Wireless sensor networks (WSNs) are a kind of wireless network, facilitated by an ar-
chitecture that allows sensor nodes (SNs) to be deployed, with data transmission typically
passing through some other intermediate nodes. Deploying WSNs in inaccessible areas
enables automatic data collection, making them valuable for monitoring physical resources
such as in military applications, medical care, and safety monitoring [1]. Sensor nodes are
often deployed outdoors or in hazardous environments, and their battery life is finite. As a
result, power loss can lead to node failure and various serious issues, impacting data trans-
mission and potentially causing network paralysis. Additionally, replacing faulty sensor
nodes in challenging conditions poses significant challenges due to accessibility constraints
and environmental harshness. The difficulty and expense of battery replacement in such
environments have made energy management a critical concern for WSNs. The recent

Algorithms 2024, 17, 264. https://doi.org/10.3390/a17060264 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a17060264
https://doi.org/10.3390/a17060264
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0001-7783-1513
https://doi.org/10.3390/a17060264
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a17060264?type=check_update&version=2

Algorithms 2024, 17, 264 2 of 23

advancement in wireless power transmission (WPT) has led to the development of wireless
rechargeable sensor networks (WRSNs), since this technology provides a mean to replenish
sensor nodes wirelessly, offering a solution to the energy challenges faced by WSNs.

Most of the recent previous work has focused on charging sensor nodes using wireless
charging vehicles (WCVs) equipped with high-capacity batteries and WPT devices. In these
schemes, a vehicle can move close to a sensor node and wirelessly charge it without physical
contact. These studies have involved utilizing multi-functional vehicles [2], simultaneous
charging of multiple sensor nodes [3], designing mobile charging protocols [4], or planning
optimal collaborative charging schedules of multiple vehicles to enhance sensor network
performance [5].

While these schemes can mitigate the energy problem to some extent, they overlook
two primary challenges when applying WCVs for wireless charging: off-road navigation
and vehicle speed limitations [6]. In order to improve the mentioned shortcomings, recent
studies [6–10] have explored the use of unmanned aerial vehicles (UAVs) for charging sensors
in WRSNs. UAVs have now found extensive applications in the commercial sector, includ-
ing surveillance, remote sensing, aerial photography, search and rescue, and on-demand
emergency communication. Here a UAV equipped with WPT devices is called a wireless
charging drone (WCD, or drone in short) [6]. In [8], Su et al. aimed to enhance the total
energy of drones while charging energy-limited devices. Li et al. [9] proposed a method
to charge WRSN sensor nodes using drones, considering energy consumption from flight
distance and striving to improve charging efficiency. Yang et al. [10] investigated drones
equipped with large-capacity batteries to deliver energy to sensor nodes.

One advantage of drones is their ability to access and charge more difficult-to-reach
sensor nodes. In addition, the flying speed of drones is faster than the speed of vehicles.
However, since the battery capacity of drones is limited, the flight distance of the drone is
limited when compared to vehicles. To reduce the need for frequent return trips to the base
station for drones, the development of wireless charging pads (pads) for automatic drone
landing, combined with high-power and efficient wireless power transmission systems,
enables drones to be automatically charged within a short timeframe [6,11,12].

To overcome the off-road navigation and travel speed limitations of vehicles, Chen
et al. [6] first proposed a new WRSN model equipped with one drone coupled with several
pads deployed to charge the drone when it cannot reach the subsequent stop. Their wireless
charging pad deployment aims to apply the minimum number of pads so that at least
one feasible routing path from the base station can be established for the drone to reach
every SN in a given WRSN. The wireless charging pad deployment originally allowed pads
to be deployed to any point in the defined area. However, in [6], Chen et al. proposed
three algorithms that only use sensor locations as potential deployment positions for the
pads. Their simplified pad deployment problem is quite similar to the geometric connected
dominating set, which is known to be NP-complete [6]. The major weakness of Chen
et al.’s best three schemes, which are based on graph theory, is that they only consider
deploying a wireless charging pad at the locations of the wireless sensor nodes. Their
schemes are limited and constrained because usually a pad can be deployed at every point
in the deployed area. Moreover, the deployed pads suggested by these schemes may not be
able to meet the connected requirements due to sparse environments. On the other hand,
the remaining scheme in [6], which is based on geometry, is a blind strategy that does not
consider the positions of the sensors at all. As a result, it always requires the deployment
of more charging pads.

In [13], Chen et al. proposed a novel and adaptive pad deployment scheme that can
adapt to arbitrary locations of the base station, arbitrary geographic distributions of sensor
nodes, and arbitrary sizes of network areas. However, this scheme requires an appropriate
determination of the number of clusters, which leads to a prolonged processing time.

Based on above discussions, this work introduces a new scheme that utilizes the
Quad-Tree concept [14,15] to address the wireless charging pad deployment problem and
reduce the number of deployed pads. The Quad-Tree concept represents spatial positions in

Algorithms 2024, 17, 264 3 of 23

a hierarchical manner [14,15], allowing for the efficient exploration of suitable locations for
pad deployment. By adopting the Quad-Tree concept, the new scheme not only overcomes
the major limitation of previous approaches, which only deploy wireless charging pads at
limited locations, but also efficiently identifies the appropriate locations from the infinite
possible locations for pad deployment.

Extensive simulations were conducted to illustrate the advantages of the proposed
schemes by comparing them with different previous schemes on maps with varying sizes.
For small maps, the previous schemes either struggled to find suitable pad configurations
for certain maps or experienced prolonged processing times. In contrast, the proposed
scheme encountered no issues with these small maps. Additionally, in terms of reducing
the number of used pads, the proposed scheme slightly outperformed previous works.
For medium-sized maps, the proposed schemes significantly outperformed all previous
methods in reducing the number of required pads, with a maximum reduction of 12.37%
and an average reduction of 9.59%. In the case of large maps, the proposed schemes
surpassed all previous works, indicating that our approach is more suitable for large-scale
network environments.

Briefly, the contributions of this work are listed below:

(1) This work firstly applies the Quad-Tree concept to develop a new scheme in order to
efficiently reduce the number of deployed wireless charging pads for the charging
pad deployment problem.

(2) If all spatial positions are expressed by the leaf nodes of a Quad-Tree, the execution
time increases significantly. Therefore, it is necessary to analyze the Quad-Tree node
splitting conditions to reduce the number of used Quad-Tree nodes. To further
reduce the required execution time of the proposed schemes, we also designed some
variations with different minimum units (as the splitting conditions in the Quad-Tree)
to reduce the total execution time.

(3) We also conducted extensive simulations to demonstrate the merits of the proposed
schemes by comparing the proposed schemes with different previous methods on
maps of different sizes.

The rest of this work is organized as follows. Section 2 presents the related work.
Section 3 introduces the proposed Quad-Tree schemes, followed by Section 4, which
presents and discusses the simulation results by comparing the proposed schemes with
previous methods. Finally, Section 5 concludes this work.

2. Related Works
2.1. WPT for WSNs

WPT, a technique for transmitting energy over long distances, finds applications in
various domains such as portable devices, vehicles, and UAVs [16]. In the context of
wireless sensor networks (WSNs), researchers have explored methods for leveraging WPT
to directly supply energy to sensor nodes experiencing energy deficits, thus addressing the
challenge of limited energy resources [17]. Wireless charging technology facilitates energy
transmission to sensors.

The deployment of wireless charging by drones enables continuous energy replenish-
ment for sensors deployed in inaccessible outdoor environments, eliminating the need for
maintaining a physical charging infrastructure. For instance, Joo et al. [18] investigated
the efficiency enhancement of a system providing wireless power for rail transportation
equipment. They analyzed electromagnetic characteristics using finite element methods, in-
cluding magnetic equivalent resistance, inductance, magnetic coupling rate, and magnetic
core loss. Furthermore, they applied the results of magnetic field finite element analysis
to equivalent circuit modeling, analyzing voltage transmission ratio and input/output
characteristics of the CLLC resonant converter designed for wireless power transmission.

In recent years, the advancement of wireless power transfer (WPT) technology has
enabled its use in providing additional energy for wireless sensor networks [2]. Such wire-
less rechargeable sensor networks can serve as development platforms [19], comprising a

Algorithms 2024, 17, 264 4 of 23

base station (BS), several wireless communication sensor nodes capable of wireless charg-
ing, wireless charging vehicles (WCVs), and unmanned aerial vehicles (UAVs) equipped
with WPT devices. The base station collects sensor data and offers rapid battery charging
services for WCVs or UAVs, which can then wirelessly charge sensor nodes to replenish
their energy.

2.2. Charging Approaches

Wireless charging vehicles (WCVs) or mobile chargers (MCs) have the capability
to wirelessly charge sensor nodes within the network area, which can be 1D, 2D, or
3D. Charger types may include charging vehicles, unmanned aerial vehicles (UAVs), or
a combination of both. Previous research on wireless charging for wireless recharge-
able sensor networks (WRSNs) has predominantly focused on utilizing WCVs [20–24] or
UAVs [6,11,16,25–28].

Numerous studies have concentrated on charging sensors using WCVs. For instance,
Nguyen et al. [20] introduced a novel on-demand charging algorithm named the Fuzzy
Q-Charging Algorithm, aiming to enhance the network lifespan by optimizing the time
and location for MCs to perform charging tasks. Fuzzy Q-charging employs fuzzy logic
to determine the optimal charging energy for sensors and proposes a method to identify
the optimal charging time for each charging position. This approach utilizes Q-learning to
determine the next charging position to maximize the network lifespan.

Chen et al. [21] proposed a dual-side charging strategy for mobile charging robot (MR)
traversal planning, aimed at minimizing the length, energy consumption, and completion
time of the MR’s traversal path. Based on MR dual-side charging, adjacent sensors on
both sides of the designated path can wirelessly charge via the MR and simultaneously
transmit sensory data to the MR. The path construction is based on a power map drawn
from the remaining power of sensors in the WRSN and the distance between sensors.
Simultaneously, a charging strategy with dual-side charging capability is determined.

To minimize network energy consumption, Zhong et al. [22] designed an energy-
minimization path construction algorithm based on dual-function vehicles for data collec-
tion and wireless charging. Their proposed algorithm constructs a mobile vehicle path with
anchors for data collection and charging sensor nodes.

Li et al. [23] explored charging sensor nodes with non-deterministic mobility and
proposed the Predicting–Scheduling–Tracking approach to execute charging tasks based
on the network mechanism.

Considering severe node failure problems in networks with high charging demands,
Li et al. [24] addressed the issue by considering the dynamic energy consumption rate of
nodes based on historical statistical data and real-time energy consumption. They proposed
two efficient online billing algorithms, PA and INMA, where PA selects the next charging
node based on the charging probability of the requesting node, and INMA selects the node
that minimizes the energy consumption of other requesting nodes as a charging candidate.

With the advent of wireless charging UAV technology, several studies have explored
the utilization of drones for charging sensors. Chen et al. [6] proposed a method employing
a single UAV equipped with pads to charge sensors. They introduced a new model for
wireless rechargeable sensor networks (WRSNs) incorporating a UAV and multiple pads
strategically deployed to facilitate the UAV’s flight path. This model effectively addresses
charging challenges by overcoming UAV energy limitations.

Yoon [11] developed multiple Minimum Depth Trees (MDTs) for all nodes, consid-
ering both drone and sensor node energy. The parent node dynamically controls data
transmission to prevent its own energy depletion, ensuring balanced data collection for all
nodes and preventing energy drain in hotspot areas.

In another study, Chen et al. [13] investigated the minimal number of pads required
in UAV-based WRSNs. They proposed an adaptive pad deployment scheme capable of
accommodating diverse base station locations, geographic distributions of sensor nodes,
and network area sizes.

Algorithms 2024, 17, 264 5 of 23

Jin et al. [25] tackled the drone scheduling problem to minimize the total charging
time for all sensors under energy constraints. They introduced the Drone Scheduling Algo-
rithm (DSA) to optimize UAV scheduling. Additionally, to ensure sustainable WRSN task
execution, they developed the Deadline Drone Scheduling Algorithm (DDSA), prioritizing
drones charging the highest number of sensors before deadlines.

Wu et al. [26] studied UAV trajectory optimization to maximize energy utilization
efficiency. Liang et al. [27] formulated a charging UAV deployment optimization problem,
aiming to increase the number of sensor nodes within charging scopes, thus improving
network charging efficiency and reducing UAV motion energy consumption.

Addressing 3D WRSNs, Lin et al. [28] devised a spatial discretization scheme to
construct a finite set of charging spots for UAVs and a temporal discretization scheme to
determine suitable charging durations for each spot.

3. Optimizing the Charging Pad Deployment Problem by Applying the
Quad-Tree Scheme

In this section, we propose algorithms to optimize the charging pad deployment
problem using the Quad-Tree scheme.

3.1. Problem, Notation and System Model
3.1.1. Network Model

In a WRSN, many rechargeable sensors, S = {s0, s1, . . . , sn}, are randomly scattered
in an area. These sensors collect specified information in the network and transmit it to the
base station (BS). When the battery level of the sensor is low, the BS dispatches drones to the
sensor location for charging. Considering the limited power of a drone, it may not be able
to fly to the sensor location, perform charging tasks, and then fly back to the BS. Therefore,
it is necessary to configure some charging pads in the network area, P = {p0, p1, . . . , pm},
so that the drone can replenish power on the charging pads to complete the task. In this
article, some additional assumptions about the network are as follows:

(1) There is only one BS and one drone in the WRSN.
(2) Sensors are homogeneous, static, and have the same battery capacity.
(3) The BS knows the location of each sensor.
(4) When a sensor’s battery level is low, the BS receives a notification and subsequently

dispatches the drone for charging. Once the drone completes the charging process, it
returns to the BS.

(5) The BS is located in the center of the network, does not move, and has unlimited
power. Likewise, the charging pad does not move and has unlimited power.

In this paper, we use a 2D map to illustrate the positions of sensors, charging pads, and
base stations. Figure 1 depicts an example network layout. The drones can fly directly from
the base station to sensors 3, 7, 8, and 9 for recharging tasks before returning. Alternatively,
they can fly to pad 1/2 for a full recharge before proceeding to sensors 3, 4, 6, and 7/sensors
1, 2, 5, and 9 for recharging tasks, and then return to pad 1/2 to be recharged before flying
back to the base station. Upon reaching the sensor locations, the drone hovers to charge
the sensors.

Algorithms 2024, 17, 264 6 of 23
Algorithms 2024, 17, x FOR PEER REVIEW 6 of 23

1

4

6

3

7

9

1

2

sensor

Base Station

Pad

Legend5

8

0
2

Figure 1. A schematic network layout; the base station is located at the center of the network, and
the drone can travel directly or via pads to reach sensor locations for recharging tasks.

3.1.2. Drone Energy Consumption Model
For the convenience of later discussion, we use the symbols listed in Table 1 to repre-

sent some characteristics of the drone and sensors.

Table 1. The parameters used to derive the maximum flight distance of the drone.

Symbols Meaning 𝐸௦௦ the maximum battery energy of the sensor (J) 𝐸௫ the maximum battery energy of the drone (J) 𝐸 the energy required for charging a sensor (J) 𝑃௬ the power consumption of the drone during flight (J/s) 𝑃௩ The power consumption for drone hovers during the charging process (J/s) 𝑃௦ௗ the charging speed (J/s) 𝑇 the time to charge a sensor (s) 𝑉௬ the flying speed of the drone (m/s) 𝐷௫ The maximum flying distance of the drone for charging tasks (m) 𝐷௫ௗ The maximum flying distance of the drone for moving between pads (m)
ρ the charging efficiency of the drone to the sensor (percentage)

Under the assumption that the drone arrives when the sensor is either at or near de-
pletion of its battery, the drone needs to recharge the sensor with an amount of energy
denoted as 𝐸௦௦. Considering the charging efficiency, the drone can recharge the sensor
with a rate of 𝜌 × 𝑃௦ௗ energy per second.

Thus, the time required for a drone to complete the charging of a sensor upon reach-
ing its position is as follows: 𝑇 = 𝐸௦௦𝜌 × 𝑃௦ௗ (1)

Considering that the drone hovers while charging the sensor, the energy required for
the charging task needs to account for the energy consumed for hovering: 𝐸 = 𝐸௦௦/𝜌 + 𝑃௩ × 𝑇 (2)

Figure 1. A schematic network layout; the base station is located at the center of the network, and the
drone can travel directly or via pads to reach sensor locations for recharging tasks.

3.1.2. Drone Energy Consumption Model

For the convenience of later discussion, we use the symbols listed in Table 1 to represent
some characteristics of the drone and sensors.

Table 1. The parameters used to derive the maximum flight distance of the drone.

Symbols Meaning

Esensor the maximum battery energy of the sensor (J)
Emax the maximum battery energy of the drone (J)

Echarge the energy required for charging a sensor (J)
Pf ly the power consumption of the drone during flight (J/s)

Phover The power consumption for drone hovers during the charging process (J/s)
Pspeed the charging speed (J/s)
Tcharge the time to charge a sensor (s)
Vf ly the flying speed of the drone (m/s)

Dmaxcharging The maximum flying distance of the drone for charging tasks (m)
Dmaxpad The maximum flying distance of the drone for moving between pads (m)

ρ the charging efficiency of the drone to the sensor (percentage)

Under the assumption that the drone arrives when the sensor is either at or near
depletion of its battery, the drone needs to recharge the sensor with an amount of energy
denoted as Esensor. Considering the charging efficiency, the drone can recharge the sensor
with a rate of ρ × Pspeed energy per second.

Thus, the time required for a drone to complete the charging of a sensor upon reaching
its position is as follows:

Tcharge =
Esensor

ρ × Pspeed
(1)

Considering that the drone hovers while charging the sensor, the energy required for
the charging task needs to account for the energy consumed for hovering:

Echarge = Esensor/ρ + Phover × Tcharge (2)

Algorithms 2024, 17, 264 7 of 23

After subtracting the energy used for the recharging task, the drone has a remaining
energy of Emax − Echarge available for flying. Since the drone must return after completing
the recharging task, the flying distance must be divided by 2. Therefore, the maximum
distance at which the drone can perform recharging tasks can be calculated as follows:

Dmaxcharging = (E max − Echarge

)
/Pf ly × Vf ly ×

1
2

(3)

On the other hand, when the drone flies between pads, it does not need to reserve
energy for recharging tasks or the return trip, as it can be fully recharged at the destination
pad. Therefore, the maximum distance between two pads is determined by Equation (4):

Dmaxpad = Emax/Pf ly × Vf ly (4)

Assuming the sensor remains in the sleeping state while being charged, its energy
consumption is not considered. Furthermore, to further simplify the problem, both the
charging efficiency and the energy consumption for hovering are disregarded; in other
words, ρ = 1 and Phover = 0.

Thus,

Dmaxcharging =
Emax − Esensor

Pf ly
× Vf ly ×

1
2

(5)

Dmaxpad =
Emax

Pf ly
× Vf ly (6)

3.1.3. Problem Definition

In the network model section, the use of pads can extend the drone charging range.
Therefore, in a large-area WRSN, the proper configuration of the pads will undoubtedly
determine the performance of the network. Based on construction cost considerations,
the number of pads should be as small as possible. Since the purpose of using pads is to
expand the range of drone sensor charging services, for any sensor X in the network, after
building a suitable pad, the drone can find at least one path from the BS to X to complete
the charging task. The problem discussed in this article can therefore be defined as follows.

Given a size × size two-dimension WRSN network N, n sensors S = {s1, s2, . . . , sn}
located at {(s1,x, s1,y), (s2,x, s2,y), . . . , (sn,x, sn,y)} respectively, a base station B located at
(p0,x, p0,y) = (size/2, size/2), and a drone U, the problem is to find out how to place the
minimum number m of charging pads P = {p1, p2, . . . , pm} located at {(p1,x, p1,y), (p2,x, p2,y) . . . ,
(pm,x, pm,y)} to satisfy coverage and connectivity constraints as stated in [6].

Let d(si, pj) represent the distance between sensor si and pad pj and let d
(

pi, pj
)

repre-
sent the distance between pad pi and pad pj, P′ = {B} ∪ P =

{
p′0 = B, p′1, p′2, . . . , p′m

}
,

and Ω be a permutation of a subset Q of P′. A two-tuple (x, y) is called a point in two-
dimension Euclidean plane R2; that is, we have (x, y) ∈ R2. Thus, the objective is to
minimize the number of pads located at the two-dimension Euclidean plane R2, subject to
the constraints specified by Equations (8)–(14).

Minimize ∑every point (x,y) in R2 (ϕx,y) (7)

Subject to:

ϕx,y =

1 i f a pad has been deployed at the point (x, y) ∈ R2,

0 < x ≤ size and 0 < y ≤ size
0 otherwise

(8)

P =
{

pi

∣∣∣ pi = (xi, yi) and ϕxi ,yi
= 1, where(xi, yi) ∈ R2, 0 < xi ≤ size, 0 < yi ≤ size

}
(9)

P′ = {B} ∪ P (10)

Algorithms 2024, 17, 264 8 of 23

∃! Ω such that∑
Ω

(
a0,Ω(1) ×

|Q|−1
∏

k=1
aΩ(k),Ω(k+1) × aΩ(|Q|),j

)
≥ 1, ∀pj ∈ P′,

Where Ω is a permutation of a subset Q of P −
{

pj
} (11)

ai,j =

{
1 i f d

(
p′ i, p′ j

)
≤ Dmaxpad, p′ i ̸= p′ j, p′ i and p′ j ∈ P′

0 otherwise
When i > 0, j > 0, we have p′ i, p′ j ∋ P; and we have p′0 = B

(12)

∑
pj∈P′

bi,j ≥ 1, ∀si ∈ S (13)

bi,j =

{
1 i f d

(
si, p′ j

)
≤ Dmaxcharging, si ∈ S, p′ j ∈ P′

0 otherwise
(14)

Where ai,j and bi,j, respectively, represent whether the distance between pad i and j
is not greater than Dmaxpad, and whether the distance between sensor i and pad j is not
greater than Dmaxcharging.

As for Figure 2, the displayed edges represent the distances that meet the requirements.
For example, because the distance between sensor 7 and pad 1 is less than or equal to
Dmaxcharging, b7,1 is indicated in Figure 2. However, the distance between sensor 8 and pad 1
exceeds Dmaxcharging, so b8,1 is not indicated in Figure 2. From a graph perspective, a graph
that satisfies the condition of Formula (8) must be a connected graph.

Algorithms 2024, 17, x FOR PEER REVIEW 8 of 23

𝑃ᇱ = {𝐵} ∪ 𝑃 (10)

∃! Ω such that ቌ𝑎,ఆ(ଵ) × ෑ 𝑎ఆ(),ఆ(ାଵ)|ொ|ିଵ
ୀଵ × 𝑎 ఆ(|ொ|),ቍஐ ≥ 1, ∀𝑝 ∈ 𝑃ᇱ,

Where Ω is a permutation of a subset 𝑄 of 𝑃 − {𝑝} (11)

𝑎, = ቊ1 𝑖𝑓 𝑑 ቀ𝑝ᇱ, 𝑝ᇱቁ ≤ 𝐷௫ௗ, 𝑝ᇱ ≠ 𝑝ᇱ, 𝑝ᇱ 𝑎𝑛𝑑 𝑝ᇱ ∈ 𝑃ᇱ0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

When i > 0, j > 0, we have 𝑝′, 𝑝′ ∋ 𝑃; and we have 𝑝′ = 𝐵 (12)

 𝑏,ೕ∈ᇱ ≥ 1, ∀𝑠 ∈ 𝑆 (13)

 𝑏, = ቊ1 𝑖𝑓 𝑑൫𝑠, 𝑝′൯ ≤ 𝐷௫, 𝑠 ∈ 𝑆, 𝑝ᇱ ∈ 𝑃′0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (14)

Where 𝑎, and 𝑏,, respectively, represent whether the distance between pad 𝑖 and 𝑗 is not greater than 𝐷௫ௗ, and whether the distance between sensor 𝑖 and pad 𝑗 is not
greater than 𝐷௫.

As for Figure 2, the displayed edges represent the distances that meet the require-
ments. For example, because the distance between sensor 7 and pad 1 is less than or equal
to 𝐷௫, 𝑏,ଵ is indicated in Figure 2. However, the distance between sensor 8 and
pad 1 exceeds 𝐷௫, so 𝑏଼,ଵ is not indicated in Figure 2. From a graph perspective,
a graph that satisfies the condition of Formula (8) must be a connected graph.

8

b7,1

1

4

6

3

7

9

1

2

sensor

Base Station

Pad

Legend

a0,1

0a0,2

b4,1

b3,0

b3,02

5

a1,2

b7,0
b9,0b1,2

b2,2

Figure 2. Illustration of parameters a and b. The listed edges represent the distances that satisfy the
conditions, indicating feasible drone flight paths.

3.2. Proposed Method
The previous approach only allows pads to be placed where sensors are located,

which limits the available placement options. In sparse environments, this approach may
fail to meet connectivity requirements. To address these limitations, the proposed ap-
proach divides the map into grid points where pads can be placed. However, sensor net-
works are typically deployed over large areas. For instance, in a 1 km by 1 km square area,
dividing it into 1 m by 1 m square grid points would result in 1 million possible locations

Figure 2. Illustration of parameters a and b. The listed edges represent the distances that satisfy the
conditions, indicating feasible drone flight paths.

3.2. Proposed Method

The previous approach only allows pads to be placed where sensors are located, which
limits the available placement options. In sparse environments, this approach may fail
to meet connectivity requirements. To address these limitations, the proposed approach
divides the map into grid points where pads can be placed. However, sensor networks are
typically deployed over large areas. For instance, in a 1 km by 1 km square area, dividing it
into 1 m by 1 m square grid points would result in 1 million possible locations for deployed
pads. Clearly, the solution space becomes too large and complex to find suitable and
efficient pad placements. Therefore, this article proposes using the Quad-Tree scheme to
represent spatial positions.

Algorithms 2024, 17, 264 9 of 23

The Quad-Tree represents spatial positions in a hierarchical manner. If all spatial
positions, such as the grid points mentioned earlier, are represented by the leaf nodes of a
Quad-Tree, the total number of Quad-Tree nodes that need to be processed will be much
greater than the number of grid points. Therefore, it is necessary to analyze the conditions
for splitting Quad-Tree nodes to reduce their number.

In addition to leaf nodes, a Quad-Tree node represents a rectangular area. When
information within the subdivided area is needed, the node is divided into four sub-areas.
If the information obtained from a Quad-Tree node remains unchanged before and after
subdivision, then further subdivision is unnecessary. Consider Figure 3 as an example.
Assume the red point represents the center position of Quad-Tree node A, and the blue
point represents the center position of its four child nodes B, C, D, and E. If the cover sets
(the sets of sensors covered by a pad) resulting from placing a pad at the center position
of nodes A to E are all equal, it indicates that Quad-Tree node A does not require further
subdivision. This is because placing a pad at the center of node A already covers all sensors
in the area.

Algorithms 2024, 17, x FOR PEER REVIEW 9 of 23

for deployed pads. Clearly, the solution space becomes too large and complex to find suit-
able and efficient pad placements. Therefore, this article proposes using the Quad-Tree
scheme to represent spatial positions.

The Quad-Tree represents spatial positions in a hierarchical manner. If all spatial po-
sitions, such as the grid points mentioned earlier, are represented by the leaf nodes of a
Quad-Tree, the total number of Quad-Tree nodes that need to be processed will be much
greater than the number of grid points. Therefore, it is necessary to analyze the conditions
for splitting Quad-Tree nodes to reduce their number.

In addition to leaf nodes, a Quad-Tree node represents a rectangular area. When in-
formation within the subdivided area is needed, the node is divided into four sub-areas.
If the information obtained from a Quad-Tree node remains unchanged before and after
subdivision, then further subdivision is unnecessary. Consider Figure 3 as an example.
Assume the red point represents the center position of Quad-Tree node A, and the blue
point represents the center position of its four child nodes B, C, D, and E. If the cover sets
(the sets of sensors covered by a pad) resulting from placing a pad at the center position
of nodes A to E are all equal, it indicates that Quad-Tree node A does not require further
subdivision. This is because placing a pad at the center of node A already covers all sen-
sors in the area.

size

A

B C

ED

Figure 3. When the Quad-Tree node A covers the same sensors (red circle) as the ones within the
range (blue circle) of its four child nodes B, C, D, and E, the Quad-Tree node A does not need to be
subdivided into B, C, D, and E.

Therefore, in this article, the content of each Quad-Tree node is designed as listed in
Table 2.

Table 2. The information stored in a Quad-Tree node.

Symbol Meaning
cx, cy The center position of a Quad-Tree node
size The side length of the rectangular area represented by a Quad-Tree node
dT Detailed description will be described later

coverSet The set of sensors covered by the Quad-Tree node
coverNum The number of sensors in coverSet

status
Whether the Quad-Tree node needs to be split again?

0: Need to be split again.
1: No need to be split again.

Figure 3. When the Quad-Tree node A covers the same sensors (red circle) as the ones within the
range (blue circle) of its four child nodes B, C, D, and E, the Quad-Tree node A does not need to be
subdivided into B, C, D, and E.

Therefore, in this article, the content of each Quad-Tree node is designed as listed in
Table 2.

Table 2. The information stored in a Quad-Tree node.

Symbol Meaning

cx, cy The center position of a Quad-Tree node
size The side length of the rectangular area represented by a Quad-Tree node
dT Detailed description will be described later

coverSet The set of sensors covered by the Quad-Tree node
coverNum The number of sensors in coverSet

status
Whether the Quad-Tree node needs to be split again?

0: Need to be split again.
1: No need to be split again.

Algorithms 2024, 17, 264 10 of 23

In Figure 4 below, all sensors within the radius Dmaxcharging of the blue dot can be
covered by the pad placed at that position (i.e., the UAV can start from the dot position and
reach any sensor within that range to charge, and then safely fly back). All sensors within
the radius Dmaxcharging + dT of the center position of the Quad-Tree node (represented by
the red dot) include all sensors that may be covered when the pad is placed at any position
within this square. The set of these sensors is the coverSet of the Quad-Tree node. From
Figure 2, we can observe that the value of dT is equal to

√
2

2 size.

Algorithms 2024, 17, x FOR PEER REVIEW 10 of 23

In Figure 4 below, all sensors within the radius 𝐷௫ of the blue dot can be
covered by the pad placed at that position (i.e., the UAV can start from the dot position
and reach any sensor within that range to charge, and then safely fly back). All sensors
within the radius 𝐷௫ + 𝑑𝑇 of the center position of the Quad-Tree node (repre-
sented by the red dot) include all sensors that may be covered when the pad is placed at
any position within this square. The set of these sensors is the coverSet of the Quad-Tree
node. From Figure 2, we can observe that the value of dT is equal to √ଶଶ 𝑠𝑖𝑧𝑒.

Dmaxcharging size

dT

cx, cy

Figure 4. All sensors within the radius 𝐷௫ + 𝑑𝑇 (red circle) of the center position of the
Quad-Tree node (red dot position) encompass all sensors that may be covered when the pad is
placed at any position within this Quad-Tree node’s square area.

Assuming that there are n sensors in the map, each Quad-Tree node’s coverSet needs
to be checked every time it is expanded, and the complexity of checking the coverSet is
O(n). For a map of size m by m, the maximum expanded level L is log2 m + 1, and the
maximum number of nodes that need to be processed is ସಽିଵସିଵ , which is proportional to m2.
Therefore, the worst complexity of Quad-Tree construction (Algorithm 1) is O(nm2).

Algorithm 1. Quad-Tree construction
Tlist: Quad-Tree node list
Tlist = [];
Tlist(1) = BS;
Tind = 1;
while Tlist is not empty

Split the Tlist(Tind) node into four sub-blocks (UL, UR, LL, and LR,) and calculate
their attributes.
If coverSets of Tlist(Tind), UL, UR, LL, and LR are all equal
Tlist(Tind).status = 1
Tind = Tind + 1
else

 Remove Tlist(Tind) node from Tlist
 Append UL, UR, LL and LR into Tlist

In sparser maps, there are more Quad-Tree nodes that do not require subdivision
into the most basic grid points. To further reduce the likelihood of Quad-Tree nodes being

Figure 4. All sensors within the radius Dmaxcharging + dT (red circle) of the center position of the
Quad-Tree node (red dot position) encompass all sensors that may be covered when the pad is placed
at any position within this Quad-Tree node’s square area.

Assuming that there are n sensors in the map, each Quad-Tree node’s coverSet needs to
be checked every time it is expanded, and the complexity of checking the coverSet is O(n).
For a map of size m by m, the maximum expanded level L is log2 m + 1, and the maximum
number of nodes that need to be processed is 4L−1

4−1 , which is proportional to m2. Therefore,
the worst complexity of Quad-Tree construction (Algorithm 1) is O(nm2).

Algorithm 1. Quad-Tree construction

Tlist: Quad-Tree node list
Tlist = [];
Tlist(1) = BS;
Tind = 1;
while Tlist is not empty

Split the Tlist(Tind) node into four sub-blocks (UL, UR, LL, and LR,) and calculate their
attributes.

If coverSets of Tlist(Tind), UL, UR, LL, and LR are all equal
Tlist(Tind).status = 1
Tind = Tind + 1
else

Remove Tlist(Tind) node from Tlist
Append UL, UR, LL and LR into Tlist

In sparser maps, there are more Quad-Tree nodes that do not require subdivision into
the most basic grid points. To further reduce the likelihood of Quad-Tree nodes being

Algorithms 2024, 17, 264 11 of 23

subdivided downward, every time the placement position of a pad is determined, the
sensors covered by it are excluded from consideration. As the number of sensors to be
considered decreases, more Quad-Tree nodes do not require subdivision.

In the methods proposed by Chen et al. [6], the Minimum Set Cover (MSC) algorithm
demonstrates good performance in terms of calculation speed and the number of pads
used. Therefore, we propose an On-Demand Quad-Tree construction method combined
with MSC, as illustrated in Figure 5. The overall procedure involves first executing the
On-Demand Quad-Tree construction based on MSC (Algorithm 2) to configure pads at
appropriate locations. Then, redundant pads are removed using Removing Redundant
Pads (Algorithm 3), which internally calls Connectedness Checking (Algorithm 4) and
Coverage Checking (Algorithm 5) to verify whether the connectedness and coverage
constraints are satisfied. The details of Algorithms 2–5 are described below.

Algorithms 2024, 17, x FOR PEER REVIEW 11 of 23

subdivided downward, every time the placement position of a pad is determined, the sen-
sors covered by it are excluded from consideration. As the number of sensors to be con-
sidered decreases, more Quad-Tree nodes do not require subdivision.

In the methods proposed by Chen et al. [6], the Minimum Set Cover (MSC) algorithm
demonstrates good performance in terms of calculation speed and the number of pads
used. Therefore, we propose an On-Demand Quad-Tree construction method combined
with MSC, as illustrated in Figure 5. The overall procedure involves first executing the
On-Demand Quad-Tree construction based on MSC (Algorithm 2) to configure pads at
appropriate locations. Then, redundant pads are removed using Removing Redundant
Pads (Algorithm 3), which internally calls Connectedness Checking (Algorithm 4) and
Coverage Checking (Algorithm 5) to verify whether the connectedness and coverage con-
straints are satisfied. The details of Algorithms 2–5 are described below.

On Demand Quad-Tree construction
based on MSC

Removing Redundant pads Connectedness checkingCoverage checking

Start

End
Figure 5. The flowchart of the proposed method.

Algorithm 2. On-Demand Quad-Tree construction based on MSC
Tlist: Quad-Tree node list
Sset: the set all sensors
Tlist = [];
Tlist(1)= BS;
Tind = 1;
pads = [BS];
while Sset is not empty
 Find the block m with the largest coverNum in Tlist

if Tlist(m).status == 0
Split the Tlist(Tind) node into four sub-blocks (UL, UR, LL, and LR,) and cal-
culate their attributes.
if coverSets of Tlist(m), UL, UR, LL, and LR are all equal

Tlist(m).status = 1
else

Remove Tlist(m) node from Tlist
Append UL, UR, LL and LR into Tlist

else
if the distance between the center position of Tlist(m) and any pad in pads is
less than 𝑫𝒎𝒂𝒙𝒑𝒂𝒅

Append the center position of Tlist(m) into pads
Sset = Sset − Tlist(m).coverSet
Remove Tlist(m).coverSet from the coverSet of all nodes in the Tlist

else

Figure 5. The flowchart of the proposed method.

Algorithm 2. On-Demand Quad-Tree construction based on MSC

Tlist: Quad-Tree node list
Sset: the set all sensors
Tlist = [];
Tlist(1)= BS;
Tind = 1;
pads = [BS];
while Sset is not empty

Find the block m with the largest coverNum in Tlist
if Tlist(m).status == 0

Split the Tlist(Tind) node into four sub-blocks (UL, UR, LL, and LR,) and calculate their
attributes.

if coverSets of Tlist(m), UL, UR, LL, and LR are all equal
Tlist(m).status = 1

else
Remove Tlist(m) node from Tlist
Append UL, UR, LL and LR into Tlist

Algorithms 2024, 17, 264 12 of 23

Algorithm 2. Cont.

else
if the distance between the center position of Tlist(m) and any pad in pads is less than

Dmaxpad
Append the center position of Tlist(m) into pads
Sset = Sset − Tlist(m).coverSet
Remove Tlist(m).coverSet from the coverSet of all nodes in the Tlist

else
if Tlist(m) is not a basic grid point

Tlist(m) is forcibly split into 4 child nodes and added to Tlist
Remove Tlist(m) node from Tlist

else
Find the pad A which position is closest to Tlist(m) from pads
Place a pad B in the direction of pad A along Tlist(m). The distance between

pad A and B is Dmaxpad
Append pad B into pads

The final set of pad placement locations should undergo a final check to identify any
redundant pads. Here a redundant pad is one that can be removed without affecting the
coverage of all sensors and maintaining connectivity between pads. The algorithms used
in this article to perform this check are described below.

Algorithm 3. Removing Redundant pads

Sset: the set all sensors
P: the set all pads
for each pad p in P

If removing p does not affect the connectivity between pads and coverage of sensors, then
P = P − p

This algorithm checks whether the removal of each pad affects connectivity and
coverage. Assuming ns = |S|, np = |P|, according to the algorithm analyses below, the

computational cost of this algorithm is O
(

np

(
nsnp + n3

p

))
= O

(
nsn4

p

)
.

Algorithm 4. Connectedness checking

P: the set all pads
SC = [BS]
while P is not empty

Find the pad p closest to the element in SC from P,
if its distance is greater than Dmaxpad

return false
else

SC = SC + p;
P = P − p;

return true

Let np = |P| represent the number of pads. Since the number of loops in the algorithm
is dependent on np, and the computational cost of finding the nearest pad in the loop is
O(n2

p), the overall computational cost of this algorithm is O(n3
p).

Algorithms 2024, 17, 264 13 of 23

Algorithm 5. Coverage checking

Sset: the set all sensors
P: the set all pads
for each sensor s in Sset

covered = false
for each pad p in P

if the distance between s and p is less or equal to Dmaxcharging
covered = true
break

if covered == false
return false

return true

It is evident from the above algorithm that when ns = |S|, np = |P|, the algorithm
computational cost is O(nsnp).

4. Simulation Results

To evaluate the merits of the proposed algorithm, we consider a large wireless recharge-
able sensor network (WRSN) comprising 50 to 500 sensor nodes deployed evenly and
randomly within a rectangular area. The BS is deployed at the center of the rectangular
area. The simulations were implemented and executed using MATLAB R2023b, running
on a computer with an Intel Core i5-3470 CPU (3.2 GHz) and 16 GB of RAM. It is important
to note that all simulation results represent the average of 30 simulations. Other relevant
parameters are listed in Table 3.

Table 3. Parameters and values.

Parameters Values

Esensor 200 J
Emax 1000 J
Pf ly 10 J/s
Vf ly 35 m/s

4.1. Performance Comparison

In our simulation, we utilized three types of maps: small-scale (4096 × 4096), medium-
sized (6144 × 6144), and large-scale (8192 × 8192). Across these three map scales, we
computed the required number of charging pads and the algorithm computation time for
six methods: MSC, GNC, TNC, CDC&DSC, our proposed Quad-Tree algorithm (QT&MSC),
and QT&MSC&DSC. MSC, GNC, and TNC were proposed by Chen et al. [6]. CDC&DSC
was proposed by Chen et al. [13]. Additionally, [6,13] were the only current papers we
found that propose a pad allocation algorithm, and the pad configuration obtained using
CDC&DSC is quite streamlined. By combining its proposed algorithm for removing dupli-
cate pads (DSC), we propose a version of QT&MSC&DSC and include it in the comparison.

Figures 6–8 depict the performance of different methods on maps of different sizes.
Firstly, in the small map (Figure 6), MSC, GNC, and TNC failed to find an appropriate

pad configuration for some maps with only 50 scattered sensors. Conversely, the proposed
methods and CDC&DSC encountered no problems with these maps. Without using DSC,
the number of pads used by QT&MSC could be reduced by up to 2.92% compared to MSC,
with an average reduction of only 0.48%. CDC&MSC exhibited a maximum reduction of
7.73% and an average reduction of 5.11%. When combined with DSC, QT&MSC&DSC
achieved reductions of up to 8.02% and an average of 5.05%. Therefore, in terms of reducing
the number of pads used, CDC&DSC and QT&MSC&DSC performed similarly, indicating
that appropriate removal of redundant pads offers advantages.

Algorithms 2024, 17, 264 14 of 23

Algorithms 2024, 17, x FOR PEER REVIEW 13 of 23

return false
return true

It is evident from the above algorithm that when 𝑛௦ = |𝑆|, 𝑛 = |𝑃| , the algorithm
computational cost is O(𝑛௦𝑛).

4. Simulation Results
To evaluate the merits of the proposed algorithm, we consider a large wireless re-

chargeable sensor network (WRSN) comprising 50 to 500 sensor nodes deployed evenly
and randomly within a rectangular area. The BS is deployed at the center of the rectangu-
lar area. The simulations were implemented and executed using MATLAB, running on a
computer with an Intel Core i5-3470 CPU (3.2 GHz) and 16 GB of RAM. It is important to
note that all simulation results represent the average of 30 simulations. Other relevant
parameters are listed in Table 3.

Table 3. Parameters and values.

Parameters Values 𝐸௦௦ 200 J 𝐸௫ 1000 J 𝑃௬ 10 J/s 𝑉௬ 35 m/s

4.1. Performance Comparison
In our simulation, we utilized three types of maps: small-scale (4096 × 4096), medium-

sized (6144 × 6144), and large-scale (8192 × 8192). Across these three map scales, we com-
puted the required number of charging pads and the algorithm computation time for six
methods: MSC, GNC, TNC, CDC&DSC, our proposed Quad-Tree algorithm (QT&MSC),
and QT&MSC&DSC. MSC, GNC, and TNC were proposed by Chen et al. [6]. CDC&DSC
was proposed by Chen et al. [13]. Additionally, [6,13] were the only current papers we
found that propose a pad allocation algorithm, and the pad configuration obtained using
CDC&DSC is quite streamlined. By combining its proposed algorithm for removing du-
plicate pads (DSC), we propose a version of QT&MSC&DSC and include it in the compar-
ison.

Figures 6–8 depict the performance of different methods on maps of different sizes.

(a) (b)

Figure 6. Comparisons of (a) the required number of pads and (b) the average execution time of
related methods on small-scale maps.

Figure 6. Comparisons of (a) the required number of pads and (b) the average execution time of
related methods on small-scale maps.

Algorithms 2024, 17, x FOR PEER REVIEW 14 of 23

(a) (b)

Figure 7. Comparisons of (a) the required number of pads and (b) the average execution time of
related methods on medium-scale maps.

(a) (b)

Figure 8. Comparisons of (a) the required number of pads and (b) the average execution time of
related methods on large-scale maps.

Firstly, in the small map (Figure 6), MSC, GNC, and TNC failed to find an appropri-
ate pad configuration for some maps with only 50 scattered sensors. Conversely, the pro-
posed methods and CDC&DSC encountered no problems with these maps. Without using
DSC, the number of pads used by QT&MSC could be reduced by up to 2.92% compared
to MSC, with an average reduction of only 0.48%. CDC&MSC exhibited a maximum re-
duction of 7.73% and an average reduction of 5.11%. When combined with DSC,
QT&MSC&DSC achieved reductions of up to 8.02% and an average of 5.05%. Therefore,
in terms of reducing the number of pads used, CDC&DSC and QT&MSC&DSC performed
similarly, indicating that appropriate removal of redundant pads offers advantages.

However, Figure 6b illustrates the high computational complexity associated with
DSC. CDC requires appropriate determination of the number of clusters. In our simula-
tion environment, CDC generated a significant number of clusters, leading to prolonged
processing time for DSC. Compared to MSC, the average computation time increased by
2588.89%. The issue with QT&MSC is relatively minor. Compared to MSC, QT&MSC ex-
perienced an average increase in computation time of 164.44%, while QT&MSC&DSC,
which incorporates DSC, experienced an average increase of 201.43%.

As the network size expands to 6144 × 6144, the gap between the proposed methods
and MSC widens slightly. During the simulations, it was observed that MSC, TNC, and
GNC algorithms fail when nodes are distributed far apart, as they struggle to find suitable
sensor locations meeting the adjacency conditions from the base station. For 50 sensors,

Figure 7. Comparisons of (a) the required number of pads and (b) the average execution time of
related methods on medium-scale maps.

Algorithms 2024, 17, x FOR PEER REVIEW 14 of 23

(a) (b)

Figure 7. Comparisons of (a) the required number of pads and (b) the average execution time of
related methods on medium-scale maps.

(a) (b)

Figure 8. Comparisons of (a) the required number of pads and (b) the average execution time of
related methods on large-scale maps.

Firstly, in the small map (Figure 6), MSC, GNC, and TNC failed to find an appropri-
ate pad configuration for some maps with only 50 scattered sensors. Conversely, the pro-
posed methods and CDC&DSC encountered no problems with these maps. Without using
DSC, the number of pads used by QT&MSC could be reduced by up to 2.92% compared
to MSC, with an average reduction of only 0.48%. CDC&MSC exhibited a maximum re-
duction of 7.73% and an average reduction of 5.11%. When combined with DSC,
QT&MSC&DSC achieved reductions of up to 8.02% and an average of 5.05%. Therefore,
in terms of reducing the number of pads used, CDC&DSC and QT&MSC&DSC performed
similarly, indicating that appropriate removal of redundant pads offers advantages.

However, Figure 6b illustrates the high computational complexity associated with
DSC. CDC requires appropriate determination of the number of clusters. In our simula-
tion environment, CDC generated a significant number of clusters, leading to prolonged
processing time for DSC. Compared to MSC, the average computation time increased by
2588.89%. The issue with QT&MSC is relatively minor. Compared to MSC, QT&MSC ex-
perienced an average increase in computation time of 164.44%, while QT&MSC&DSC,
which incorporates DSC, experienced an average increase of 201.43%.

As the network size expands to 6144 × 6144, the gap between the proposed methods
and MSC widens slightly. During the simulations, it was observed that MSC, TNC, and
GNC algorithms fail when nodes are distributed far apart, as they struggle to find suitable
sensor locations meeting the adjacency conditions from the base station. For 50 sensors,

Figure 8. Comparisons of (a) the required number of pads and (b) the average execution time of
related methods on large-scale maps.

Algorithms 2024, 17, 264 15 of 23

However, Figure 6b illustrates the high computational complexity associated with
DSC. CDC requires appropriate determination of the number of clusters. In our simula-
tion environment, CDC generated a significant number of clusters, leading to prolonged
processing time for DSC. Compared to MSC, the average computation time increased by
2588.89%. The issue with QT&MSC is relatively minor. Compared to MSC, QT&MSC
experienced an average increase in computation time of 164.44%, while QT&MSC&DSC,
which incorporates DSC, experienced an average increase of 201.43%.

As the network size expands to 6144 × 6144, the gap between the proposed methods
and MSC widens slightly. During the simulations, it was observed that MSC, TNC, and
GNC algorithms fail when nodes are distributed far apart, as they struggle to find suitable
sensor locations meeting the adjacency conditions from the base station. For 50 sensors,
MSC, GNC, and TNC encountered problems in finding appropriate pad configurations in
some maps. Additionally, MSC and TNC also faced issues when there were 100 sensors.
However, because GNC utilizes flight range to choose the next optimal position, resulting
in larger coverage compared to using the two-hop method as in MSC and TNC, GNC did
not encounter similar problems with 100 sensors.

There were no issues with the proposed methods and CDC&DSC, as these algorithms
consider that when the relevant adjacent position cannot be found, pads are filled in
at the appropriate positions and connected to the nearest candidate pad position. Ex-
cluding the cases of 50 or 100 sensors, without using DSC, the number of pads used by
QT&MSC could be reduced by up to 7.67% compared to MSC, with an average reduction
of 3.74%. CDC&MSC exhibited a maximum reduction of 7.73% and an average of 7.40%.
QT&MSC&DSC decreased by 12.37% at most and 9.59% on average. Therefore, in terms
of reducing the number of pads used, QT&MSC is slightly less effective than CDC&DSC,
while QT&MSC&DSC performs better than CDC&DSC.

However, Figure 7b again highlights the problem of high computational complexity
of DSC. Compared with MSC, CDC&DSC increases the calculation time by an average of
4137.68%. QT&MSC and QT&MSC&DSC, respectively, increase the calculation time by an
average of 383.26% and 463.92% compared to MSC.

When the network scale expands to 8192 × 8192, the gap between the proposed
methods and MSC widens. As analyzed previously, in environments with 50 to 150 sensors,
MSC, GNC, and TNC encounter problems with some maps being unable to find suitable
pad configurations. Conversely, our proposed methods and CDC&DSC have no such
issues. Excluding scenarios with 50, 100, and 150 sensors, CDC&DSC can reduce the
number of pads by up to 10.18%, with an average reduction of 7.21% compared to MSC.
Without using DSC, the number of pads used by QT&MSC can be reduced by up to 13.14%,
and on average by 10.37%, compared to MSC. The performance of QT&MSC exceeds
that of CDC&MSC. Moreover, after combination with DSC, QT&MSC&DSC achieves a
maximum reduction of 16.61% and an average reduction of 13.11%. In large-scale network
environments, both QT&MSC and QT&MSC&DSC surpass CDC&DSC. The reduction
ratio of the average number of pads compared to MSC in CDC&DSC is slightly lower than
that in the medium-sized network environment. The average reduction ratio of QT&MSC
increases significantly, indicating that QT&MSC is more suitable for large-scale network
environments than CDC&DSC.

Figure 8b illustrates that CDC&DSC increases the calculation time by 3727.14% on
average compared to MSC. QT&MSC and QT&MSC&DSC, respectively, increase the cal-
culation time by 591.29% and 687.13% on average compared to MSC. This is because QT
requires more network cutting time for larger network areas and considers more possible
locations for placing pads, resulting in better results than MSC, which only considers the
locations of sensors. CDC places pads at the center of each cluster after clustering, so the
result of clustering determines the quality of the resulting pad configuration.

Figure 8 illustrates that in large-size maps, the performance gap between QT&MSC
and CDC&DSC tends to widen. Therefore, an additional performance comparison of
QT&MSC, CDC&DSC, and QT&MSC&DSC under extremely large maps (16,384 × 16,384)

Algorithms 2024, 17, 264 16 of 23

is included. Since MSC, GNC, and TNC cannot complete pad configuration in this environ-
ment, these three methods are excluded from this part of the experiment. In the 8192 × 8192
environment, QT&MSC achieves a maximum reduction of 9.84% and an average reduction
of 3.39% compared to CDC&DSC, while QT&MSC&DSC achieves a maximum reduction
of 10.93% and an average reduction of 6.35%. Figure 9 shows that in a 16,384 × 16,384
network environment, the number of pads used by QT&MSC is reduced by up to 9.97% and
an average reduction of 9.24% compared to CDC&DSC, while QT&MSC&DSC is reduced
by up to 12.05% and an average reduction of 10.82%. On average, the proposed methods
tend to perform better than CDC&DSC. Additionally, in terms of usage time, compared to
CDC&DSC, the average reduction time of QT&MSC is reduced from 68.70% in Figure 8
to 45.02% in Figure 9, and the average reduction time of QT&MSC&DSC is reduced from
64.12% to 38.18%. This indicates that as the graph size increases, the need for a Quad-Tree
to crop the graph also increases, reducing the time advantage of CDC&DSC.

Algorithms 2024, 17, x FOR PEER REVIEW 16 of 23

reduced from 64.12% to 38.18%. This indicates that as the graph size increases, the need
for a Quad-Tree to crop the graph also increases, reducing the time advantage of
CDC&DSC.

(a) (b)

Figure 9. Comparisons of (a) the required number of pads and (b) the average execution time of
QT&MSC, QT&MSC&DSC, CDC&MSC methods on extremely large-scale maps.

In the above experiments, it can be observed that as the sensor density increases,
there is a trend of increased pad usage for each method. Additionally, the rate of increase
in pad usage tends to slow as sensor density rises. Theorem 2 in reference [6] proposes
that for an 𝑙 by 𝑚 square area, the upper limit of pad usage is given by ଶ√ଶௗೌೣೌඈ ଶ√ଶௗೌೣೌඈ. Furthermore, since the base station is located at the center of the

map in this study, the upper limit of pad usage should be revised to (2 /ଶௗೌೣೌ/√ଶඈ)(2 /ଶௗೌೣೌ/√ଶඈ). For the small, medium, large, and xlarge maps mentioned

above, the upper limits of pad usage are 16, 16, 36, and 100, respectively. The number of
pads used by each method for various sensor counts is also below these upper limits,
which can indeed serve as a reference upper limit calculation formula. For the proposed
method, QT&MSC, when the number of sensors in the network is increased to 5000, the
number of pads used for the small, medium, large, and extremely large maps is only
46.25%, 81.88%, 71.67%, and 77.30% of the aforementioned upper limits, respectively.
Therefore, finding a more precise upper limit will be a direction for future research.

4.2. Performance Comparison of Special Test Maps
To observe the differences between the results obtained by the proposed method and

the optimal ones, we generated several sets of test maps with known optimal solutions
using the architecture shown in Figure 10. Initially, we positioned sensors (1–4) in the
corners. Due to flying distance constraints, placing sensor 1 requires the use of at least
pads 1 and 2 to connect it with the base station. Nevertheless, placing any sensors within
the 𝐷௫ range of the base station, pad 1, or pad 2 does not require additional
pads (the same applies to other corner sensors).

Figure 9. Comparisons of (a) the required number of pads and (b) the average execution time of
QT&MSC, QT&MSC&DSC, CDC&MSC methods on extremely large-scale maps.

In the above experiments, it can be observed that as the sensor density increases, there
is a trend of increased pad usage for each method. Additionally, the rate of increase in
pad usage tends to slow as sensor density rises. Theorem 2 in reference [6] proposes that

for an l by m square area, the upper limit of pad usage is given by
⌈

2l√
2dmaxpad

⌉⌈
2m√

2dmaxpad

⌉
.

Furthermore, since the base station is located at the center of the map in this study, the

upper limit of pad usage should be revised to (2
⌈

l/2
dmaxpad/

√
2

⌉
)(2
⌈

m/2
dmaxpad/

√
2

⌉
). For the

small, medium, large, and xlarge maps mentioned above, the upper limits of pad usage
are 16, 16, 36, and 100, respectively. The number of pads used by each method for various
sensor counts is also below these upper limits, which can indeed serve as a reference
upper limit calculation formula. For the proposed method, QT&MSC, when the number
of sensors in the network is increased to 5000, the number of pads used for the small,
medium, large, and extremely large maps is only 46.25%, 81.88%, 71.67%, and 77.30% of the
aforementioned upper limits, respectively. Therefore, finding a more precise upper limit
will be a direction for future research.

4.2. Performance Comparison of Special Test Maps

To observe the differences between the results obtained by the proposed method and
the optimal ones, we generated several sets of test maps with known optimal solutions
using the architecture shown in Figure 10. Initially, we positioned sensors (1–4) in the
corners. Due to flying distance constraints, placing sensor 1 requires the use of at least pads
1 and 2 to connect it with the base station. Nevertheless, placing any sensors within the

Algorithms 2024, 17, 264 17 of 23

Dmaxcharging range of the base station, pad 1, or pad 2 does not require additional pads (the
same applies to other corner sensors).

Algorithms 2024, 17, x FOR PEER REVIEW 17 of 23

（4096，4096）

Dmaxpad

Dmaxcharging

Dmaxcharging

Dmaxcharging

Dmaxcharging

Dmaxcharging

Dmaxcharging

Dmaxcharging

Dmaxcharging

Dmaxcharging
6

57

8

4

31

2

（1，8192） （8192，8192）

（1，1） （8192，1）

21

4 3

Figure 10. The basic structure for generating the special test maps.

In this section, all generated test maps are square network areas of size 8192 × 8192,
with the base station located at the center. The test maps are divided into four main
groups. The first to fourth groups of test maps, respectively, include sensors placed in one
to four corners, with the remaining sensors randomly scattered within a specified range
according to the number of sensors required. Each group of maps is further subdivided
into subcategories ranging from 50, 100, 150, 200, …, to 500 sensors, with 30 maps per
subcategory. For example, in the case of the second group with 50 sensors, sensor 1 and
sensor 2 are fixed at positions (1, 8192) and (8192, 8192), respectively. The remaining 48
sensors are then randomly distributed within circular areas centered around pad 1, pad
2, pad 3, pad 4, or the base station, with a radius of 𝐷௫. Of course, all sensors
must be located within the 8192 × 8192 network area. Therefore, the total number of test
maps in this section is 4 × 10 × 30. Additionally, the optimal number of pads used in the
first to fourth groups of test maps is 3, 5, 7, and 9, respectively.

While the optimal number of pads remains constant within the same set of maps
regardless of the number of sensors, the results displayed in Figures 11–14 indicate that,
in general, the number of pads used increases as the number of sensors in the network
increases. This could be attributed to the fact that with more sensors, there are fewer po-
sitions that can cover all sensors simultaneously, leading the algorithms to require more
pads to cover all sensors due to deviations in pad placement from the optimal positions.
As the complexity of sensor distribution increases from the first group of maps to the
fourth group, there is a trend of increasing ratios in the number of pads used by the MSC,
GNC, and TNC methods compared to the optimal solution. For maps with 500 sensors,
the ratio of pads used by MSC compared to the optimal solution increases from 133.33%
to 142.59%, for GNC from 137.78% to 157.04%, and for TNC from 193.33% to 215.19%. In
contrast, CDC&DSC remains relatively stable, increasing from 152.22% to 154.81%. How-
ever, the method proposed in this paper, QT&MSC, decreases from 124.44% to 114.07%.
In terms of computation time, QT&MSC only increases the time by 4.10% to 60.65% com-
pared to MSC, but it is only 0.88% to 1.59% of the time taken by CDC&MSC. The number

Figure 10. The basic structure for generating the special test maps.

In this section, all generated test maps are square network areas of size 8192 × 8192,
with the base station located at the center. The test maps are divided into four main
groups. The first to fourth groups of test maps, respectively, include sensors placed in
one to four corners, with the remaining sensors randomly scattered within a specified range
according to the number of sensors required. Each group of maps is further subdivided
into subcategories ranging from 50, 100, 150, 200, . . . , to 500 sensors, with 30 maps per
subcategory. For example, in the case of the second group with 50 sensors, sensor 1 and
sensor 2 are fixed at positions (1, 8192) and (8192, 8192), respectively. The remaining
48 sensors are then randomly distributed within circular areas centered around pad 1, pad
2, pad 3, pad 4, or the base station, with a radius of Dmaxcharging. Of course, all sensors must
be located within the 8192 × 8192 network area. Therefore, the total number of test maps
in this section is 4 × 10 × 30. Additionally, the optimal number of pads used in the first to
fourth groups of test maps is 3, 5, 7, and 9, respectively.

While the optimal number of pads remains constant within the same set of maps
regardless of the number of sensors, the results displayed in Figures 11–14 indicate that,
in general, the number of pads used increases as the number of sensors in the network
increases. This could be attributed to the fact that with more sensors, there are fewer
positions that can cover all sensors simultaneously, leading the algorithms to require more

Algorithms 2024, 17, 264 18 of 23

pads to cover all sensors due to deviations in pad placement from the optimal positions. As
the complexity of sensor distribution increases from the first group of maps to the fourth
group, there is a trend of increasing ratios in the number of pads used by the MSC, GNC,
and TNC methods compared to the optimal solution. For maps with 500 sensors, the ratio
of pads used by MSC compared to the optimal solution increases from 133.33% to 142.59%,
for GNC from 137.78% to 157.04%, and for TNC from 193.33% to 215.19%. In contrast,
CDC&DSC remains relatively stable, increasing from 152.22% to 154.81%. However, the
method proposed in this paper, QT&MSC, decreases from 124.44% to 114.07%. In terms
of computation time, QT&MSC only increases the time by 4.10% to 60.65% compared to
MSC, but it is only 0.88% to 1.59% of the time taken by CDC&MSC. The number of pads
obtained by QT&MSC is closer to the optimal solution compared to other methods, which
may be attributed to its global optimization effect achieved by the QT&MSC method, which
subdivides the network as needed from a global perspective.

Algorithms 2024, 17, x FOR PEER REVIEW 18 of 23

of pads obtained by QT&MSC is closer to the optimal solution compared to other meth-
ods, which may be attributed to its global optimization effect achieved by the QT&MSC
method, which subdivides the network as needed from a global perspective.

(a) (b)

Figure 11. Comparisons of (a) the required number of pads and (b) the average execution time of
related methods on the first group of special test maps.

(a) (b)

Figure 12. Comparisons of (a) the required number of pads and (b) the average execution time of
related methods on the second group of special test maps.

(a) (b)

Figure 11. Comparisons of (a) the required number of pads and (b) the average execution time of
related methods on the first group of special test maps.

Algorithms 2024, 17, x FOR PEER REVIEW 18 of 23

of pads obtained by QT&MSC is closer to the optimal solution compared to other meth-
ods, which may be attributed to its global optimization effect achieved by the QT&MSC
method, which subdivides the network as needed from a global perspective.

(a) (b)

Figure 11. Comparisons of (a) the required number of pads and (b) the average execution time of
related methods on the first group of special test maps.

(a) (b)

Figure 12. Comparisons of (a) the required number of pads and (b) the average execution time of
related methods on the second group of special test maps.

(a) (b)

Figure 12. Comparisons of (a) the required number of pads and (b) the average execution time of
related methods on the second group of special test maps.

Algorithms 2024, 17, 264 19 of 23

Algorithms 2024, 17, x FOR PEER REVIEW 18 of 23

of pads obtained by QT&MSC is closer to the optimal solution compared to other meth-
ods, which may be attributed to its global optimization effect achieved by the QT&MSC
method, which subdivides the network as needed from a global perspective.

(a) (b)

Figure 11. Comparisons of (a) the required number of pads and (b) the average execution time of
related methods on the first group of special test maps.

(a) (b)

Figure 12. Comparisons of (a) the required number of pads and (b) the average execution time of
related methods on the second group of special test maps.

(a) (b)

Figure 13. Comparisons of (a) the required number of pads and (b) the average execution time of
related methods on the third group of special test maps.

Algorithms 2024, 17, x FOR PEER REVIEW 19 of 23

Figure 13. Comparisons of (a) the required number of pads and (b) the average execution time of
related methods on the third group of special test maps.

(a) (b)

Figure 14. Comparisons of (a) the required number of pads and (b) the average execution time of
related methods on the fourth group of special test maps.

Observing the above results, it is apparent that there is a trend of increased pad usage
for each method as the number of sensors increases across different levels of sensor dis-
tribution complexity (from group 1 to group 4). However, this trend is evidently less sig-
nificant compared to the results in Section 4.1. Therefore, it can be preliminarily inferred
that the difficulty each method faces in finding optimal solutions, as mentioned in the
second possible reason proposed in Section 4.1, should be relatively minor.

4.3. Impact on Changing the Size of the Minimum Unit of the Quad-Tree
According to the previous simulation results, it is found that the Quad-Tree takes

more time to partition large-size maps. During the Quad-Tree partitioning process, the
minimum unit will not be further divided. Therefore, increasing the size of the minimum
unit of Quad-Tree and ending Quad-Tree division earlier should reduce the time required
for Quad-Tree division and also reduce the number of positions that need to be considered
during subsequent MSC runs, thus further reducing the algorithm running time. How-
ever, due to insufficient partitioning, the optimal pad placement may have been over-
looked, increasing the number of pads used in the resulting pad configuration. The fol-
lowing simulation uses QT&MSC-n to represent the performance of the QT&MSC algo-
rithm when the minimum unit is set to n meters by n meters in size. The original QT&MSC
is used as the comparison baseline, and its minimum division unit is 1 m by 1 m.

Figure 15 illustrates the performance of QT&MSC with varying minimum Quad-Tree
units in a 4096 × 4096 network environment. The data indicate that as the minimum Quad-
Tree unit size increases, the number of pads required for QT&MSC also increases, ranging
from 1.63% to 27.25%. Simultaneously, the reduction in execution time also rises from
7.38% to 61.00%, aligning with the anticipated impact of larger Quad-Tree units.

Figure 14. Comparisons of (a) the required number of pads and (b) the average execution time of
related methods on the fourth group of special test maps.

Observing the above results, it is apparent that there is a trend of increased pad
usage for each method as the number of sensors increases across different levels of sensor
distribution complexity (from group 1 to group 4). However, this trend is evidently less
significant compared to the results in Section 4.1. Therefore, it can be preliminarily inferred
that the difficulty each method faces in finding optimal solutions, as mentioned in the
second possible reason proposed in Section 4.1, should be relatively minor.

4.3. Impact on Changing the Size of the Minimum Unit of the Quad-Tree

According to the previous simulation results, it is found that the Quad-Tree takes
more time to partition large-size maps. During the Quad-Tree partitioning process, the
minimum unit will not be further divided. Therefore, increasing the size of the minimum
unit of Quad-Tree and ending Quad-Tree division earlier should reduce the time required
for Quad-Tree division and also reduce the number of positions that need to be considered
during subsequent MSC runs, thus further reducing the algorithm running time. However,
due to insufficient partitioning, the optimal pad placement may have been overlooked,

Algorithms 2024, 17, 264 20 of 23

increasing the number of pads used in the resulting pad configuration. The following
simulation uses QT&MSC-n to represent the performance of the QT&MSC algorithm when
the minimum unit is set to n meters by n meters in size. The original QT&MSC is used as
the comparison baseline, and its minimum division unit is 1 m by 1 m.

Figure 15 illustrates the performance of QT&MSC with varying minimum Quad-Tree
units in a 4096 × 4096 network environment. The data indicate that as the minimum
Quad-Tree unit size increases, the number of pads required for QT&MSC also increases,
ranging from 1.63% to 27.25%. Simultaneously, the reduction in execution time also rises
from 7.38% to 61.00%, aligning with the anticipated impact of larger Quad-Tree units.

Algorithms 2024, 17, x FOR PEER REVIEW 20 of 23

(a) (b)

Figure 15. Comparisons of (a) the required number of pads and (b) the average execution time of
the proposed QT&MSC method while changing the minimal unit size of QT on small-scale maps.

In a network environment of 6144 × 6144, Figure 16 illustrates that as the minimum
Quad-Tree unit increases, the number of pads required for QT&MSC rises from 0.91% to
21.42%. Simultaneously, the reduction in execution time increases from 4.23% to 53.58%.
Similar trends are observed in the 8192 × 8192 maps depicted in Figure 17, where the num-
ber of pads required for QT&MSC increases from 1.09% to 23.70% with the increasing
minimum Quad-Tree unit, while the reduction in execution time grows from 4.41% to
62.07%.

(a) (b)

Figure 16. Comparisons of (a) the required number of pads and (b) the average execution time of
the proposed QT&MSC method while changing the minimal unit size of QT on medium-scale maps.

Figure 15. Comparisons of (a) the required number of pads and (b) the average execution time of the
proposed QT&MSC method while changing the minimal unit size of QT on small-scale maps.

In a network environment of 6144 × 6144, Figure 16 illustrates that as the mini-
mum Quad-Tree unit increases, the number of pads required for QT&MSC rises from
0.91% to 21.42%. Simultaneously, the reduction in execution time increases from 4.23%
to 53.58%. Similar trends are observed in the 8192 × 8192 maps depicted in Figure 17,
where the number of pads required for QT&MSC increases from 1.09% to 23.70% with the
increasing minimum Quad-Tree unit, while the reduction in execution time grows from
4.41% to 62.07%.

Algorithms 2024, 17, x FOR PEER REVIEW 20 of 23

(a) (b)

Figure 15. Comparisons of (a) the required number of pads and (b) the average execution time of
the proposed QT&MSC method while changing the minimal unit size of QT on small-scale maps.

In a network environment of 6144 × 6144, Figure 16 illustrates that as the minimum
Quad-Tree unit increases, the number of pads required for QT&MSC rises from 0.91% to
21.42%. Simultaneously, the reduction in execution time increases from 4.23% to 53.58%.
Similar trends are observed in the 8192 × 8192 maps depicted in Figure 17, where the num-
ber of pads required for QT&MSC increases from 1.09% to 23.70% with the increasing
minimum Quad-Tree unit, while the reduction in execution time grows from 4.41% to
62.07%.

(a) (b)

Figure 16. Comparisons of (a) the required number of pads and (b) the average execution time of
the proposed QT&MSC method while changing the minimal unit size of QT on medium-scale maps.
Figure 16. Comparisons of (a) the required number of pads and (b) the average execution time of the
proposed QT&MSC method while changing the minimal unit size of QT on medium-scale maps.

Algorithms 2024, 17, 264 21 of 23
Algorithms 2024, 17, x FOR PEER REVIEW 21 of 23

(a) (b)

Figure 17. Comparisons of (a) the required number of pads and (b) the average execution time of
the proposed QT&MSC method while changing the minimal unit size of QT on large-scale maps.

Overall, across the three different map sizes, QT&MSC-8 consistently reduces com-
putation time by approximately 4% to 7% while increasing the pad count by around 1%.
On the other hand, QT&MSC-512 saves over 50% of execution time but increases the pad
count by more than 20%. Further exploration and analysis on how to select the optimal
size of Quad-Tree minimum units will be one of our future research directions.

5. Conclusions
In this work, we introduced a novel approach utilizing the Quad-Tree concept to ad-

dress the wireless charging pad deployment problem, aiming to reduce the number of
deployed pads. However, our proposed scheme may overlook the optimal pad placement
due to insufficient segmentation, potentially leading to an increase in the number of pads
required in the resulting configuration. Conversely, reducing the minimum unit of the
Quad-Tree could increase the time needed for Quad-Tree division and also expand the
number of positions that need to be considered, thus potentially prolonging the algo-
rithm’s running time. Therefore, further exploration and theoretical analysis are needed
to determine the optimal size of Quad-Tree segmentation units. Additionally, determin-
ing a more precise upper bound on the number of pads used by the proposed method,
considering the characteristics of the Quad-Tree, will be a direction for our future research.

Furthermore, we recognize that other Quad-Tree-like geometric methods may offer
additional opportunities for devising new pad deployment schemes in the future. These
alternative methods could potentially enhance the efficiency and effectiveness of wireless
charging pad deployment, warranting further investigation and research.

The values of Dmaxcharging and Dmaxpad of every specific drone are quite ideal and different
due to different battery size, flying speed, power consumption rates, charging speed,
charging position and direction, etc. However, in real conditions, the two adopted system
parameters should be much less than Dmaxcharging and Dmaxpad to guarantee the coverage and
connectivity property of the constructed flight network. After adopting such large system
parameters, the number of required pads and the costs would increase by applying our
proposed algorithm. Another issue is the delay time between when a sensor issues a
charging request and a drone visits (from the base station) and starts to charge the desired
sensor, which should be shorter than the waiting time the sensor can accept. Similarly,
when considering the delay time issue, either a sensor should issue its charging request
early, or more pads need to be deployed to shorten the maximum shortest path between
the sensor and base station in the network to meet the needs of the actual situations.

Figure 17. Comparisons of (a) the required number of pads and (b) the average execution time of the
proposed QT&MSC method while changing the minimal unit size of QT on large-scale maps.

Overall, across the three different map sizes, QT&MSC-8 consistently reduces com-
putation time by approximately 4% to 7% while increasing the pad count by around 1%.
On the other hand, QT&MSC-512 saves over 50% of execution time but increases the pad
count by more than 20%. Further exploration and analysis on how to select the optimal
size of Quad-Tree minimum units will be one of our future research directions.

5. Conclusions

In this work, we introduced a novel approach utilizing the Quad-Tree concept to
address the wireless charging pad deployment problem, aiming to reduce the number of
deployed pads. However, our proposed scheme may overlook the optimal pad placement
due to insufficient segmentation, potentially leading to an increase in the number of pads
required in the resulting configuration. Conversely, reducing the minimum unit of the
Quad-Tree could increase the time needed for Quad-Tree division and also expand the
number of positions that need to be considered, thus potentially prolonging the algorithm’s
running time. Therefore, further exploration and theoretical analysis are needed to deter-
mine the optimal size of Quad-Tree segmentation units. Additionally, determining a more
precise upper bound on the number of pads used by the proposed method, considering the
characteristics of the Quad-Tree, will be a direction for our future research.

Furthermore, we recognize that other Quad-Tree-like geometric methods may offer
additional opportunities for devising new pad deployment schemes in the future. These
alternative methods could potentially enhance the efficiency and effectiveness of wireless
charging pad deployment, warranting further investigation and research.

The values of Dmaxcharging and Dmaxpad of every specific drone are quite ideal and
different due to different battery size, flying speed, power consumption rates, charging
speed, charging position and direction, etc. However, in real conditions, the two adopted
system parameters should be much less than Dmaxcharging and Dmaxpad to guarantee the
coverage and connectivity property of the constructed flight network. After adopting
such large system parameters, the number of required pads and the costs would increase
by applying our proposed algorithm. Another issue is the delay time between when a
sensor issues a charging request and a drone visits (from the base station) and starts to
charge the desired sensor, which should be shorter than the waiting time the sensor can
accept. Similarly, when considering the delay time issue, either a sensor should issue
its charging request early, or more pads need to be deployed to shorten the maximum
shortest path between the sensor and base station in the network to meet the needs of the
actual situations.

Algorithms 2024, 17, 264 22 of 23

Author Contributions: Conceptualization, R.-H.C. and Z.-L.Z.; methodology, C.-W.Y.; software,
R.-H.C.; validation, Z.-L.Z. and C.-W.Y.; writing—original draft preparation, Z.-L.Z. and R.-H.C.;
writing—review and editing, Z.-L.Z. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported in part by Wenzhou Science and Technology Commissioner
Project (Grant No. X2023012), in part by 2023 Zhejiang Province Industry University Cooperation
Collaborative Education Project (Grant No. 323), in part by the first batch of teaching innovation
teams for teachers in higher vocational colleges in Wenzhou (Grant No. 1).

Data Availability Statement: Data are contained within the article.

Acknowledgments: The authors would like to thank Chung Hua University for supporting
this research.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Almomani, A.; Mahmoud, M.A.; Ahmad, M.S. Factors That Influence the Acceptance of Internet of Things Services by Customers

of Telecommunication Companies in Jordan. J. Organ. End User Comput. 2018, 30, 51–63. [CrossRef]
2. Xie, L.; Shi, Y.; Hou, Y.T.; Lou, W.; Sherali, H.D.; Midkiff, S.F. Multi-Node Wireless Energy Charging in Sensor Networks.

IEEE/ACM Trans. Netw. 2015, 23, 437–450. [CrossRef]
3. Fu, L.; He, L.; Cheng, P.; Gu, Y.; Pan, J.; Chen, J. ESync: Energy Synchronized Mobile Charging in Rechargeable Wireless Sensor

Networks. IEEE Trans. Veh. Technol. 2015, 65, 7415–7431. [CrossRef]
4. Lin, C.; Zhou, J.; Guo, C.; Song, H.; Wu, G.; Obaidat, M.S. TSCA: A Temporal-Spatial Real-Time Charging Scheduling Algorithm

for On-Demand Architecture in Wireless Rechargeable Sensor Networks. IEEE Trans. Mob. Comput. 2017, 17, 211–224. [CrossRef]
5. Long, N.T.; Huong, T.T.; Bao, N.N.; Binh, H.T.T.; Le Nguyen, P.; Nguyen, K. Q-learning-based distributed multi-charging

algorithm for large-scale WRSNs. Nonlinear Theory Its Appl. IEICE 2023, 14, 18–34. [CrossRef]
6. Chen, J.; Yu, C.W.; Ouyang, W. Efficient Wireless Charging Pad Deployment in Wireless Rechargeable Sensor Networks. IEEE

Access 2020, 8, 39056–39077. [CrossRef]
7. Qureshi, B.; Aziz, S.A.; Wang, X.; Hawbani, A.; Alsamhi, S.H.; Qureshi, T.; Naji, A. A state-of-the-art Survey on Wireless

Rechargeable Sensor Networks: Perspectives and Challenges. Wirel. Netw. 2022, 28, 3019–3043. [CrossRef]
8. Su, C.; Ye, F.; Wang, L.-C.; Wang, L.; Tian, Y.; Han, Z. UAV-Assisted Wireless Charging for Energy-Constrained IoT Devices Using

Dynamic Matching. IEEE Internet Things J. 2020, 7, 4789–4800. [CrossRef]
9. Li, S.; Wang, A.; Sun, G.; Liu, L. Improving charging performance for wireless rechargeable sensor networks based on charging

UAVs: A joint optimization approach. In Proceedings of the 2020 IEEE Symposium on Computers and Communications (ISCC),
Rennes, France, 7–10 July 2020; pp. 1–7. [CrossRef]

10. Yang, L.; Su, Z.; Yang, H.; Na, Z.; Yan, F. An Efficient Charging Algorithm for UAV-aided Wireless Sensor Networks. In
Proceedings of the 2020 IEEE 6th International Conference on Computer and Communications (ICCC), Chengdu, China, 11–14
December 2020; pp. 834–838. [CrossRef]

11. Yoon, I. Data Acquisition Control for UAV-Enabled Wireless Rechargeable Sensor Networks. Sensors 2023, 23, 3582. [CrossRef]
[PubMed]

12. Rahman, S.; Akter, S.; Yoon, S. Energy-efficient charging of sensors for UAV-aided wireless sensor network. Int. J. Internet
Broadcast. Commun. 2022, 14, 80–87. [CrossRef]

13. Chen, Y.; Gu, Y.; Li, P.; Lin, F. Minimizing the Number of Wireless Charging PAD for UAV-Based Wireless Rechargeable Sensor
Networks. Int. J. Distrib. Sens. Netw. 2021, 17, 15501477211055958. [CrossRef]

14. Frisken, S.F.; Perry, R.N. Simple and Efficient Traversal Methods for Quadtrees and Octrees. J. Graph. Tools 2002, 7, 1–11. [CrossRef]
15. Choi, G.-H.; Lee, W.; Kim, T.-W. Voyage optimization using dynamic programming with initial quadtree based route. J. Comput.

Des. Eng. 2023, 10, 1185–1203. [CrossRef]
16. Lu, X.; Wang, P.; Niyato, D.; Kim, D.I.; Han, Z. Wireless networks with RF energy harvesting: A contemporary survey. IEEE

Commun. Surv. Tutor. 2014, 17, 757–789. [CrossRef]
17. Xie, L.; Shi, Y.; Hou, Y.T.; Lou, A. Wireless power transfer and applications to sensor networks. IEEE Wirel. Commun. 2013, 20,

140–145. [CrossRef]
18. Joo, C.; Kim, T. The Efficiency Improvement of Track-Type Wireless Power Transmission Systems through Electromagnetic Finite

Element Analysis. Energies 2023, 16, 8045. [CrossRef]
19. Chen, J.; Chen, H.; Ouyang, W.; Yu, C.W. A Temporal and Spatial Priority With Global Cost Recharging Scheduling in Wireless

Rechargeable Sensor Networks. Int. J. Grid High Perform. Comput. 2022, 14, 1–31. [CrossRef]
20. Nguyen, P.L.; La, V.Q.; Nguyen, A.D.; Nguyen, T.H.; Nguyen, K. An on-demand charging for connected target coverage in

WRSNs using fuzzy logic and Q-learning. Sensors 2021, 21, 5520. [CrossRef]
21. Chen, T.-S.; Chen, J.-J.; Gao, X.-Y.; Chen, T.-C. Mobile Charging Strategy for Wireless Rechargeable Sensor Networks. Sensors 2022,

22, 359. [CrossRef]

https://doi.org/10.4018/JOEUC.2018100104
https://doi.org/10.1109/TNET.2014.2303979
https://doi.org/10.1109/TVT.2015.2481920
https://doi.org/10.1109/TMC.2017.2703094
https://doi.org/10.1587/nolta.14.18
https://doi.org/10.1109/ACCESS.2020.2975635
https://doi.org/10.1007/s11276-022-03004-x
https://doi.org/10.1109/JIOT.2020.2968346
https://doi.org/10.1109/ISCC50000.2020.9219670
https://doi.org/10.1109/ICCC51575.2020.9345142
https://doi.org/10.3390/s23073582
https://www.ncbi.nlm.nih.gov/pubmed/37050642
https://doi.org/10.7236/IJIBC.2022.14.4.80
https://doi.org/10.1177/15501477211055958
https://doi.org/10.1080/10867651.2002.10487560
https://doi.org/10.1093/jcde/qwad055
https://doi.org/10.1109/COMST.2014.2368999
https://doi.org/10.1109/MWC.2013.6590061
https://doi.org/10.3390/en16248045
https://doi.org/10.4018/IJGHPC.316152
https://doi.org/10.3390/s21165520
https://doi.org/10.3390/s22010359

Algorithms 2024, 17, 264 23 of 23

22. Zhong, P.; Xu, A.; Zhang, S.; Zhang, Y.; Chen, Y. EMPC: Energy-minimization path construction for data collection and wireless
charging in WRSN. Pervasive Mob. Comput. 2021, 73, 101401. [CrossRef]

23. Li, Y.; Zhong, L.; Lin, F. Predicting-scheduling-Tracking: Charging nodes with non-deterministic mobility. IEEE Access 2021, 9,
2213–2228. [CrossRef]

24. Zhu, J.; Feng, Y.; Liu, M.; Chen, G.; Huang, Y. Adaptive Online Mobile Charging for Node failure Avoidance in Wireless
Rechargeable Sensor Networks. Comput. Commun. 2018, 126, 28–37. [CrossRef]

25. Jin, Y.; Xu, J.; Wu, S.; Xu, L.; Yang, D.; Xia, K. Bus network assisted drone scheduling for sustainable charging of wireless
rechargeable sensor network. J. Syst. Archit. 2021, 116, 102059. [CrossRef]

26. Wu, P.; Xiao, F.; Sha, C.; Huang, H.; Sun, L. Trajectory Optimization for UAVs’ Efficient Charging in Wireless Rechargeable Sensor
Networks. IEEE Trans. Veh. Technol. 2020, 69, 4207–4220. [CrossRef]

27. Liang, S.; Fang, Z.; Sun, G.; Lin, C.; Li, J.; Li, S.; Wang, A. Charging UAV deployment for improving charging performance of
wireless rechargeable sensor networks via joint optimization approach. Comput. Netw. 2021, 201, 108573. [CrossRef]

28. Lin, C.; Yang, W.; Dai, H.; Li, T.; Wang, Y.; Wang, L.; Wu, G.; Zhang, Q. Near Optimal Charging Schedule for 3-D Wireless
Rechargeable Sensor Networks. IEEE Trans. Mob. Comput. 2021, 22, 3525–3540. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.pmcj.2021.101401
https://doi.org/10.1109/ACCESS.2020.3046857
https://doi.org/10.1016/j.comcom.2018.05.002
https://doi.org/10.1016/j.sysarc.2021.102059
https://doi.org/10.1109/TVT.2020.2969220
https://doi.org/10.1016/j.comnet.2021.108573
https://doi.org/10.1109/TMC.2021.3137308

	Introduction
	Related Works
	WPT for WSNs
	Charging Approaches

	Optimizing the Charging Pad Deployment Problem by Applying the Quad-Tree Scheme
	Problem, Notation and System Model
	Network Model
	Drone Energy Consumption Model
	Problem Definition

	Proposed Method

	Simulation Results
	Performance Comparison
	Performance Comparison of Special Test Maps
	Impact on Changing the Size of the Minimum Unit of the Quad-Tree

	Conclusions
	References

