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Abstract: This study focuses on generating reliable signals from measured noisy signals through
an enhanced sensor fusion method. The main contribution of this research is the development of a
novel sensor fusion architecture that creates virtual sensors, improving the system’s redundancy. This
architecture utilizes an input observer to estimate the system input, then it is introduced to the system
model, the output of which is the virtual sensor. Then, this virtual sensor includes two filtering
stages, both derived from the system’s dynamics—the input observer and the system model—which
effectively diminish noise in the virtual sensors. Afterwards, the same architecture includes a classical
sensor fusion scheme and a voter to merge the virtual sensors with the real measured signals,
enhancing the signal reliability. The effectiveness of this method is shown by applying merged signals
to two distinct diagnosers: one utilizes a high-order sliding mode observer, while the other employs
an innovative extension of a predefined-time observer. The findings indicate that the proposed
architecture improves diagnostic results. Moreover, a three-wheeled omnidirectional mobile robot
equipped with noisy sensors serves as a case study, confirming the approach’s efficacy in an actual
noisy setting and highlighting its principal characteristics. Importantly, the diagnostic systems can
manage several simultaneous actuator faults.

Keywords: sensor fusion; fault diagnosis; predefined-time diagnoser; nonlinear systems; mobile robot

1. Introduction

Modern industrial processes and systems are becoming larger and more complex,
demanding high reliability and performance from the system [1]. To meet these demands,
modern systems incorporate sophisticated control and decision-making structures, includ-
ing fault diagnosis and recovery stages, to exhibit intelligent behavior even under abnormal
conditions.

Regarding fault diagnosis [2–4], this stage deals with abnormal behaviors (faults) by
detecting, locating, and identifying them. The output of this stage can either alert human
operators, or be used by a fault-tolerant system with the aim of removing hazardous
situations. One of the most widely reported approaches in fault diagnosis is the fault
model-based approach [5–7], where the observers, who are the core group focused on
generating results [1,2], are used to determine the existence of faults. All previously
mentioned results assume that the input signal is sufficiently free of noise; however, this
assumption rarely hold in real situations, limiting the use of sophisticated diagnosers.
In particular, the proposed diagnoser in those works are based on asymptotic observers
or finite-time observers. When noise is considered, the performance of such diagnosers
is reduced, producing false fault detection. In other words, the accuracy of diagnosers
depends on the reliability of the measured signals; nevertheless, in many real cases the
sensor noise limits the reliability of such information.

This problem is overcome by using sensor fusion algorithms [8–11]; unfortunately,
in many cases there are not enough different sensors to use such algorithms. Moreover,
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the system sensors may be measuring signals which are not comparable with each other,
which may make merging them with a sensor fusion technique difficult. To avoid this
last drawback, in the literature changing the sensor coordinates has been proposed [12,13];
regrettably this strategy is limited to very particular cases.

This work proposes a novel sensor fusion architecture capable of generating several
virtual sensors comparable with each other. These are merged in a sensor fusion stage
to obtain more reliable output signals for subsequent processes, such as fault diagnosis,
observers, and controllers. The idea behind the proposed architecture is to include two
filter stages that generate feasible system inputs and outputs based on the system model,
significantly reducing signal noise. Additionally, a voter enhances the reliability of virtual
sensor signals by selecting those with the minimum variance.

To show the efficiency of the proposed architecture, its output is used by two diag-
nosers, one based on a high-order sliding mode (HOSM) observer, and the other based on
an enhanced predefined-time observer herein introduced. Both cases show that when the
proposed architecture is used, the efficiency of the diagnosers is improved, i.e., the false
positive/negative fault detections are reduced, and the fault diagnosis is improved.

This work is organized as follows. Section 2 introduces the sensor fusion architecture,
emphasizing how from a subset of output signals and using an input observer scheme,
the virtual sensors may be implemented. This section also introduces a novel diagnoser
based on an enhanced predefined-time observer. Section 3 introduces a three-wheeled
omnidirectional mobile robot, that is the real system on which the proposed architecture
and diagnosers are tested. Section 4 shows the experiments and the derived results. All
of them show that the use of the proposed architecture improves the diagnosis of faults.
Finally, the conclusions are presented.

2. Sensor Fusion Architecture

Figure 1 depicts the proposed sensor fusion architecture and the diagnoser. In the
proposed approach, each virtual sensor gives an estimate of the entire set of measured
system outputs, and every virtual sensor is merged, using a classical fusion stage, with
the measured system output generating a cleaner estimated signal. Afterwards, a voter
is used to select the most reliable estimated signal. This single output of the architecture
is a reliable estimate of the system output that may be used by a diagnoser or any other
device demanding reliable measures of the system. It is worth remarking that every virtual
sensor is generated from a subset of the system outputs using an element that we name
a homogenizer.

Figure 1. Sensor fusion architecture and the diagnoser applied in a diagnoser scheme. The sensor
fusion architecture encompasses the homogenizer, EKF, and voter stages. The homogenizer generates
virtual outputs, while the EKF merges real and virtual signals to generate more reliable signals,
the filter reduces the noise from the signals, and the voter selects the best signal (in this work, the
minimum variance signal). The diagnoser leverages these reliable signals to detect, locate, and
identify concurrent and nonconcurrent faults.

This fusion architecture generates more reliable signals, allowing the use of sophisti-
cated diagnosers (such as those based on sliding modes) capable of diagnosing faults in a
short period of time after their occurrence, and drastically reducing the number of false
fault detections.
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Since in this work the output of the proposed fusion architecture is used by a fault
diagnoser, we considered the system model introduced in [14]:

ẋ = f (x) + g(x)u(t) + l(x)m(t), y = h(x) (1)

where the state is x ∈ Rn, the control input is u ∈ Rc, the output is y ∈ Rz, and the fault
magnitude is m ∈ Rd, while f (x) ∈ Rn, g(x) ∈ Rn×c, l(x) ∈ Rn×d, and h(x) ∈ Rz are
smooth functions defined on an open set Ω ⊂ Rn.

Assumption 1. No one m(t) belongs to the kernel of l(x). In other words, any fault occurrence
always affects the system state.

2.1. Sensor Fusion Architecture

The proposed sensor fusion architecture is composed of the signal homogenizer, sensor
fusion, and filter stages.

2.1.1. Homogenizer

Modern systems are endowed with several sensors grouped into different classes
depending on the type of measured signals. The information provided by sensors, although
different in nature, may be redundant. For example, autonomous vehicles include cameras,
GPS, lidar, encoders, among other sensors, that register different types of information.
For example, the GPS gives information related to the vehicle’s position and orientation,
whereas the encoders measure the motors’ positions and velocities. Nevertheless, the
information provided by encoders and GPS may be redundant when direct or inverse
kinematics are used. Our approach leverages system characteristics to add redundancy
to the system information. To formalize these concepts, the following sets and maps
are defined.

Definition 1. Let Σ = {y1, . . . , yz} be the set of system outputs, and y = [y1 . . . yz]T be the
system output vector. Let Σi, Σj ⊂ Σ be two arbitrary subsets of Σ. If there exists a function
Pij : Σi → Σj such that from the information provided by the signals in Σi, the signals in Σj may be
estimated, then Pij is the i-th homogenizer for Σj. The homogenizer value Σ̄i

j = Pij(Σi) is named

the i-th virtual sensor of Σj. If Σj = Σ, then Σ̄i = Pij(Σi), i.e., the whole set of output sensors is
reconstructed from Σi.

For example, assuming that the motor speed and position are measured in the sys-
tem outputs yi and yj, respectively, then the homogenizer Pij can be implemented by an
integration procedure, adding a virtual sensor for the position.

Homogenizer Pij may be implemented in several ways, depending on the relationship
between signals in Σi and Σj. This work proposes the homogenizer depicted in Figure 2,
that is based on the input estimator proposed in [15]. This is for dynamical systems under
the assumption of observability when the system output is Σi ⊂ Σ. For this, signals in Σi
are used to estimate the system input ūi. Afterwards, leveraging ūi and the system model,
the system outputs Σ̄i, due to Σi, are estimated, i.e., the proposed homogenizer is capable
of computing all the signals in Σ. Thus, the homogenizer is represented as a function
Pi : Σi → Σ. As a notation Σ̄i (Σ̄i = Pi(Σi)) is used to indicate that all system outputs are
estimated from the information in Σi. In addition to Σ̄i, the proposed homogenizer also
computes the estimated state x̄i and the estimated input ūi, obtained from Σi.

In order to compute the input ūi, first, the coordinate transformation

Φi(x) = [(ξ i)T , (ηi)T ]T

is applied [15], where ξ i = [(ξ iha)T . . . (ξ ihw)T ]T and ηi is the internal system dynamic.
Notice that ξ iha corresponds to the coordinate transformation obtained from the a-th output
ha(x), with ha, . . . , hw ∈ Σi. Then, by the construction of the coordinate transformation, the
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states ξ i and their derivatives ξ̇ i = [(ξ̇ iha)T . . . (ξ̇ ihw)T ]T can be estimated by higher-order
sliding mode (HOSM) differentiators [16] (by computing the derivatives of the outputs of
the system), where ξ̇ iha = [ξ̇ iha

1 . . . ξ̇ iha
rha

]T , and rha denotes the relative degree of the a-th
output ha(x). Once the state ξ i and its derivative ξ̇ i are estimated, the input ūi is computed
as reported in [15]:

ūi = (Ei)−1




ˆ̇ξ iha
rha

ˆ̇ξ ihb
rhb
...

ˆ̇ξ ihw
rhw

−


Lrha

f ha((Φi)−1)

L
rhb
f hb((Φi)−1)

...
Lrhw

f hw((Φi)−1)



 (2)

where L f h(x) = ∑n
i=1

∂h
∂xi

fi(x) denotes the derivative of h along f , see [17], and the matrix

Ei(x) can be constructed as [15]

Ei(x) =


Lg1(L(rha−1)

f ha) . . . Lgw(L(rha−1)
f ha)

Lg1(L
(rhb

−1)
f hb) . . . Lgw(L

(rhb
−1)

f hb)
...

...
...

Lg1(L(rhw−1)
f hw) . . . Lgw(L(rhw−1)

f hw)

 (3)

Notice that the proposed homogenizer depicted in Figure 2 computes the system states
from ūi. Then, using the system model, the system output is estimated, generating virtual
system outputs.

Figure 2. Implementation of the signal homogenizer i to obtain the virtual sensors Σ̄i, an estimate of
the state x̄i, and an estimate for the input ūi.

2.1.2. Sensor Fusion

The reliability of the values of the system signals in Σ is increased if there exists at least
one homogenizer Pi. In this case, the system outputs y and the signals in Σ̄i are smartly
merged by using an extended Kalman filter (EKFi) to obtain a more accurate value of
signals in Σ [18]. Note that the EKF algorithm requires a discrete system, so the system in
Equation (1) is discretized with the Euler method or any other discretization method. In
addition, herein the subscript k is used to denote the discrete time index.

For the sensor fusion, the signals in the output vector y and the virtual sensors Σ̄i are
arranged into an augmented measurement vector as follows [19]:

ȳi
k = [(yk)

T (yΣ̄i

k )T ]T (4)

where (yΣ̄i

k )T is the vector formed with the virtual sensors Σ̄i. While the augmented
covariance matrix of the measurement noise is given by

R̄i
k =

(
Ry

k 0

0 RyΣ̄i

k

)
(5)
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where Ry
k is the covariance matrix of the noise of the real sensors’ measurements and RΣ̄i

k is
the covariance matrix of the noise of the virtual sensors obtained from the homogenizer i.
The entries of the covariance matrix in Equation (5) are selected based on the respective
measurement noise variance. Similarly, the entries of the process noise covariance matrix
Qi

k are chosen. Once the parameters of the EKFi are set, the standard EKF algorithm [20] is
used to obtain the required sensor fusion.

2.1.3. Filter

The sensor fusion stage generates more reliable signals. These signals are filtered to
reduce their noise even more. To this end, a classical second-order low pass filter (LPF)
is used:

FΣ̄i (s) =
ω2

ni

s2 + 2ζiωni s + ω2
ni

(6)

The parameters ζi and ωni are chosen such that a desired transient and noise reduction
are achieved.

2.1.4. Voter

Finally, a voter selects the output of the sensor fusion architecture. This is depicted
as the min operation in Figure 1. In this case, it selects the signals Σ̄ = Σ̄ fi and x̄ = x̄ fi ,
corresponding to the signal Σ̄ fi with the lowest variance.

2.2. Diagnoser

The naive approach of solving the unknown faults m(t) from Equation (1) and the
estimated state x̄ (output from the proposed architecture) is not possible, since it involves
the computation of ˙̄x, increasing the noise and leading to false faults detection. This
inconvenience is avoided by using a fault diagnoser; in particular, this work proposes a
diagnoser based on a predefined-time observer to swiftly diagnose the fault.

First, we assume that the estimated system state x̄ is partitioned as x̄ = [x̄m x̄m̄], where
the states in x̄m are directly affected by the faults, i.e., lm(x̄)m(t) ̸= 0 when m(t) ̸= 0, and
the states in x̄m̄ are not affected by the faults, i.e., lm̄(x̄)m(t) = 0 when m(t) ̸= 0; then, from
Equation (1) we obtain[

˙̄xm
˙̄xm̄

]
=

[
fm(x̄)
fm̄(x̄)

]
+

[
gm(x̄)
gm̄(x̄)

]
u(t) +

[
lm(x̄)
lm̄(x̄)

]
m(t) (7)

The diagnoser is proposed as the following predefined-time observer:

˙̂xm = fm(x̄) + gm(x̄)u(t) + Θ (8)

where Θ (that is related to the fault value) is the observer feedback law that must be selected
to ensure that x̂m converges to x̄m at a predefined-time Tc. The estimation error is

e = x̄m − x̂m (9)

where the measurements of xm are in Σ̄. The time derivative of the error in Equation (9) is

ė = lm(x̄)m(t)− Θ (10)

Proposition 1 shows how to compute Θ. The proof of this proposition is based on the
next theorem, presented in [21].

Theorem 1 ([21]). Consider the nonlinear system

ẋ(t) = f (x, t; ρ) (11)
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where the system state is x ∈ Rn, the system parameters are ρ ∈ Rb, which are assumed to be
constant, and f : Rn → Rn is assumed to be a continuous nonlinear function. If there exists a
continuous definite-positive radially unbounded function V : Rn → R such that

V̇(x) ≤ − γ

Tc
(αV(x)p + βV(x)q)κ , ∀x ∈ Rn \ {0} (12)

with constants β, α, p, q, κ > 0, κp < 1, and κq > 1, and the constant γ is given by

γ =
Γ(mp)Γ(mq)

ακΓ(κ)(q − p)

(
α

β

)mp

(13)

where Γ is the gamma function [22], mp = 1−κp
q−p , and mq = κq−1

q−p .
Then, the origin of (11) is predefined-time stable with Tc as its predefined time.

Proposition 1. Let ∆ = lm(x̄)m(t), where its i-th component is bounded by a positive constant,
i.e., |∆i| ≤ ξi < ∞, ξi ∈ R+. If the i-th entry Θi of the observer feedback law Θ is chosen as

Θi = [
γ

Tc
(α|ei|p + β|ei|q)k + ξi]sign(ei), i = 1, . . . , d (14)

then, the origin of the error system (10) is predefined-time stable with Tc as its predefined time.

Proof. For every estimation error ei consider the continuous radially unbounded Lya-
punov function V(ei) = |ei|, i = 1, . . . , d. The time derivative of each Lyapunov function
V(ei) yields

V̇(ei) = sign(ei)[∆i − Θi]

= − γ

Tc
(α|ei|p + β|ei|q)k − ξi + ∆isign(ei)

≤ − γ

Tc
(αV(ei)

p + βV(ei)
q)k − ξi + |∆isign(ei)|

= − γ

Tc
(αV(ei)

p + βV(ei)
q)k − (ξi − |∆isign(ei)|)

≤ − γ

Tc
(αV(ei)

p + βV(ei)
q)k

(15)

where γ is computed using Equation (13). Thus, by using Theorem 1, every ei is predefined-
time stable, i = 1, . . . , d. Therefore, the origin of the error system (10) is predefined-time
stable with Tc as its predefined time.

Since the origin of (10) is reached in a predefined time, it implies that e(t) = 0, and
ė(t) = 0 for t ≥ Tc. Then, the equivalent observer feedback law Θeq is obtained such that
ė = 0 holds. Hence, from Equation (10), Θeq is found as

0 = lm(x̄)m(t)− Θeq

Θeq = lm(x̄)m(t)
(16)

So, if e = 0, ė = 0, and Assumption 1 holds, then the estimation of the fault magnitudes
m(t) can be computed from Equation (16) as

m̂(t) = l−1
m (x̄)Θeq (17)

where the pseudoinverse l−1
m exists by Assumption 1. In order to remove the high-frequency

components of each estimated fault m̂i, due to the high-frequency signals of Θeq, second-
order LPFs, such as the ones proposed in Section 2.1.3, are required:

Fmi (s) =
ω2

nmi

s2 + 2ζmi ωnmi s + ω2
nmi

, i = 1, . . . , d (18)
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where the filter settling time tsmi =
4

ζmi ωnmi
, i = 1, . . . , d should be selected to be approxi-

mately equal to Tc to ensure a fast convergence to the real fault mi(t).

3. Case Study

The three-wheeled omnidirectional mobile robot depicted in Figure 3 is considered for
this case study.

Figure 3. Three-wheeled omnidirectional mobile robot.

3.1. Prototype

Our prototype, depicted in Figure 3, is a three-wheeled omnidirectional mobile robot.
It has three omnidirectional wheels driven by EC 22 brushless Maxon motors connected
to gearbox reducers with a ratio of 109:1. Each motor shaft speed and rotational direc-
tion is controlled by the Maxon DECS 50/5 driver. As a computational unit, the 32-bit
Experimenter Kit Delfino F28335 Texas Instruments microcontroller is used.

The position and orientation of the mobile robot are measured by a Marvelmind Starter
set HW 4.9 indoor GPS system, while every motor shaft velocity is obtained by Maxon
encoders with a resolution of 512 counts per turn. The sensors have a frequency of 100 Hz
and the sensors’ data are collected with a sampling time of 0.025 s.

3.2. Model of the Three-Wheeled Omnidirectional Mobile Robot

The state space representation of a three-wheeled omnidirectional mobile robot in
global coordinates is taken from [23]; then, the motors’ dynamics are added such that the
following state space model is derived:
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ẋ1 = x4

ẋ2 = x5

ẋ3 = x6

ẋ4 = a1x4 − a2x5x6 − b1 cos(x3)v1 −
√

3b1 sin(x3)v2

ẋ5 = a2x4x6 + a1x5 − b1 sin(x3)v1 +
√

3b1 cos(x3)v2

ẋ6 = a3x6 + b2v3

ẋ7 = −λ1(x7 − 18000u1 − Υsign(Ω1))

ẋ8 = −λ2(x8 − 18000u2 − Υsign(Ω2))

ẋ9 = −λ3(x9 − 18000u3 − Υsign(Ω3))

(19)

where

v1 =
x7 − Υsign(Ω1)

18000
+

x8 − Υsign(Ω2)

18000
− 2

x9 − Υsign(Ω3)

18000

v2 =
x7 − Υsign(Ω1)

18000
− x8 − Υsign(Ω2)

18000

v3 =
x7 − Υsign(Ω1)

18000
+

x8 − Υsign(Ω2)

18000
+

x9 − Υsign(Ω3)

18000

the signals ui are the inputs to the system, Ωi represent the shaft velocity of the i-th motor,
i = 1, 2, 3; the states x1, x2, and x3 are the positions at the coordinates (x, y), and the
orientation φ of the mobile robot, respectively. While x4, x5 are the mobile robot linear
velocities vx, vy, respectively, and x6 is the angular velocity φ̇ of the vehicle about its center
of mass. The states x7, x8, and x9 represent the motor velocities (RPM). Since real motors
have fast dynamics, the parameters λ1 = 100, λ2 = 100, and λ3 = 100 are chosen such that
a fast convergence is achieved, whilst the parameter Υ = 1000 (RPM) is selected according
to the datasheet of the motors. The other system parameters are identified by using the
least squares approach in [24]. The derived parameters are reported in Table 1.

Table 1. Identified parameters of the system.

Parameter Value Parameter Value

a1 −10.3949 b1 2.9695
a2 2.5026 b2 29.5783
a3 −15.2935

3.3. Signal Homogenizer

The system output vector is y = [y1 y2 y3 y4 y5 y6]
T , where the GPS output signals

y1 = x, y2 = y, and y3 = φ, are the (X,Y) position in a global framework and the orientation
φ of the mobile robot, respectively; the encoders’ output signals are y4 = Ω1, y5 = Ω2,
and y6 = Ω3. Hence, the set of system outputs is Σ = {y1, y2, y3, y4, y5, y6}. From the
set Σ, two subsets are generated: Σ1 = {y1, y2, y3}, which contains the GPS outputs; and
Σ2 = {y4, y5, y6} for the encoder’s outputs.

In order to generate the homogenizers P1 : Σ1 → Σ and P2 : Σ2 → Σ, the structure
depicted in Figure 2 is applied. For the homogenizer P2, the coordinate transformation is
chosen as ξ2h4

1 = y4, ξ2h5
1 = y5, and ξ2h6

1 = y6. So, the estimated input ū2 (see Figure 2) is
computed from Equation (2) as

ū2 = (E2)−1




˙̂ξ2h4
1

˙̂ξ2h5
1

˙̂ξ2h6
1

−

−λ1(ξ̂
2h4
1 − Υsign(Ω1))

−λ2(ξ̂
2h5
1 − Υsign(Ω2))

−λ3(ξ̂
2h6
1 − Υsign(Ω3))


 (20)
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where ξ̂2h4
1 , ξ̂2h5

1 , ξ̂2h6
1 and their derivatives are estimated by using HOSM differentiators [16].

The matrix E2 is given by

E2 =

18000λ1 0 0
0 18000λ2 0
0 0 18000λ3

 (21)

Then, using the system model in Equation (19), Σ̄2, the virtual output associated with
Σ2 is computed. In a similar way, the homogenizer P1 and Σ̄1 are computed.

3.4. Sensor Fusion

This subsection shows how to compute the merged output of the Kalman filter Σ̄ f2 ; a
similar procedure should be used for Σ̄ f1 .

At the sensor fusion stage, the entries of Σ are smartly merged with Σ̄2 by using the
EKF. The augmented measurement vector is

ȳ2
k = [(yk)

T (yΣ̄2

k )]T (22)

where yk = [y1k y2k y3k y4k y5k y6k]
T are both the real GPS and encoder’s outputs, and

yΣ̄2

k = [ȳ2
1k ȳ2

2k ȳ2
3k ȳ2

4k ȳ2
5k ȳ2

6k]
T are the virtual outputs taken from Σ̄2. Based on Equation

(5), the augmented covariance of the measurement noise is

R̄2
k =

(
Ry

k 0
0 RΣ̄2

k

)
(23)

where
Ry

k = diag(0.0517, 0.0138, 0.1035, 4237, 5269, 5408) (24)

RΣ̄2

k =diag(0.0279, 0.0057, 0.0214, 27777, 27306, 39973) (25)

Note that the entries of Equation (23) are selected based on the variance noise, as well
as the entries of the parameter Q2

k , which in this case are chosen as

Q2
k = diag(0.005 0.005 0.005 0.5 0.5 0.5 0.5 0.5 0.5) (26)

Then, the augmented measurement vector in Equation (22), the augmented measure-
ment noise covariance matrix in Equation (23), and the process noise covariance matrix Q2

k
in Equation (26) are used by the known EKF algorithm to produce the merged signal Σ̄′ f2 .

3.5. Filter

The signals from the sensor fusion stage are filtered by the second-order LPF described
in Equation (6). The parameters of the filter are chosen as ωn2 = 60 rad/s and ζ2 = 0.8,
such that a good compromise between the noise reduction and the settling time of the filter
is achieved. So, the derived filter is

FΣ̄2(s) =
40000

s2 + 320s + 40000
(27)

3.6. Voter

Finally, the voter selects Σ̄ f2 and x̄ f2 , since Σ̄ f2 has the lowest noise variance. The
obtained noise variances after the filter stage are reported in Table 2.
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Table 2. Noise variance comparison.

Σ̄ f1 (GPS) Variance Σ̄ f2 (Encoders) Variance

Σ̄ f1
1 (x) 0.0772 Σ̄ f2

1 (x) 0.0353

Σ̄ f1
2 (y) 0.0173 Σ̄ f2

2 (y) 0.0076

Σ̄ f1
3 (φ) 0.1245 Σ̄ f2

3 (φ) 0.0308

Σ̄ f1
4 (Ω1) 327,610 Σ̄ f2

4 (Ω1) 26,072

Σ̄ f1
5 (Ω2) 333,730 Σ̄ f2

5 (Ω2) 25,752

Σ̄ f1
6 (Ω3) 582,470 Σ̄ f2

6 (Ω3) 38,149

x̄ f11
4 (ẋ) 0.0022 x̄ f2

4 (ẋ) 0.0005

x̄ f1
5 (ẏ) 0.0018 x̄ f2

5 (ẏ) 0.0003

x̄ f1
6 (φ̇) 0.0083 x̄ f2

6 (φ̇) 0.0024

3.7. Diagnoser

Here, the predefined-time observer described in Section 2.2 is designed. First, the
states of the system in Equation (19) are separated as follows: x̄m = [x̄7 x̄8 x̄9]

T and
x̄m̄ = [x̄1 x̄2 x̄3 x̄4 x̄5 x̄6]

T . So, the dynamics of the states x̄m are

˙̄x7 = −λ1(x̄7 − 18000[u1(t) + m1(t)]− Υsign(Ω1))

˙̄x8 = −λ2(x̄8 − 18000[u2(t) + m2(t)]− Υsign(Ω2))

˙̄x9 = −λ3(x̄9 − 18000[u3(t) + m3(t)]− Υsign(Ω3))

(28)

where m(t) = [m1 m2 m3]
T represents the actuator faults at the first, second, and third

actuator, respectively, and u(t) = [u1(t) u2(t) u3(t)]T is the vector of the control inputs to
the system. Then, the predefined-time observer is designed as in Equation (8):

˙̂x7 = −λ1(x̄7 − 18000u1(t)− Υsign(Ω1)) + Θ1
˙̂x8 = −λ2(x̄8 − 18000u2(t)− Υsign(Ω2)) + Θ2

˙̂x9 = −λ3(x̄9 − 18000u3(t)− Υsign(Ω3)) + Θ3

(29)

The observer estimation errors are e1 = x̄7 − x̂7, e2 = x̄8 − x̂8, and e3 = x̄9 − x̂9. In
order to drive the estimations errors to zero in a predefined-time Tc, the feedbacks Θ1, Θ2,
and Θ3 are chosen, as in Proposition 1:

Θ1 = [
γ

Tc
(α|e1|p + β|e1|q)k + ξ1]sign(e1)

Θ2 = [
γ

Tc
(α|e2|p + β|e2|q)k + ξ2]sign(e2)

Θ3 = [
γ

Tc
(α|e3|p + β|e3|q)k + ξ3]sign(e3)

(30)

The selected parameters are reported in Table 3. Now, the estimations of the fault
magnitudes m̂1, m̂2, and m̂3 are computed as in Equation (17):m̂1

m̂2
m̂3

 =


1

λ118000 0 0
0 1

λ218000 0
0 0 1

λ318000


Θ1eq

Θ2eq
Θ3eq

 (31)

The filters to extract the desired information from the high-frequency signals m̂i,
i = 1, 2, 3, are designed as in Equation (18), such that their settling time is ts = 0.125 s:

Fmi (s) =
1600

s2 + 64s + 1600
∀i = 1, 2, 3. (32)
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Table 3. Selected parameters for the diagnoser.

Parameter Value Parameter Value

γ 4.9968 q 3
Tc 0.15 k 0.5
α 1 ξ1 100000
β 2 ξ2 100000
p 1.5 ξ3 300000

4. Results

The fusion architecture proposed here is supplied with real data from a mobile robot
and assessed using two diagnosers: one based on HOSM [25,26], and the other based on
the proposed extension to a predefined-time observer.

Experimental Results

The architecture and the diagnosers are executed in Simulink, with the real data
obtained from the prototype shown in Figure 3. The sampling time in Simulink is 0.001 s
and the selected solver is ode3 (Bogacki–Shampine). The HOSM parameters are chosen
as λ = [3, 1.5, 1.1, 3, 1.5, 1.1, 3, 1.5, 1.1]T and L = [50,000, 50,000, 50,000], according to [15].
The chosen parameters for the proposed predefined-time diagnoser are reported in Table 3,
while the selected parameters for the sensor fusion architecture are reported in Section 3.
When the proposed sensor fusion architecture is not applied, the GPS signals are used by
the diagnosers and the differentiator ż = −τ(z − y) is computed for the predefined-time
diagnoser, where ż is the estimated derivative of the signal y, and τ is a designing parameter
which is chosen as τ = 5.

The considered fault scenario consists of abrupt faults occurring either simultaneously
or non-simultaneously at the actuators of the mobile robot. The detection fault threshold
is ±0.035 and it is represented as a red line in the graphics of the experiments. The time
intervals and magnitudes of fault occurrences are:

• Faults at the first actuator: m1 = 0.12 during the interval [5 s, 8 s] and m1 = 0.7 during
the interval [22 s, 22.5 s].

• Faults at the second actuator: m2 = 0.8 during the interval [10 s, 10.8 s] and m2 = 0.5
during the interval [22 s, 23 s].

• Faults at the third actuator: m3 = −0.5 during the interval [10 s, 12 s], m3 = −0.1
during the interval [18 s, 18.5 s] and m3 = −0.12 during the interval [22.5 s, 24 s].

Notice that the faults m1 and m2 are concurrent during the interval [22 s, 23 s], also
m2 and m3 occur simultaneously during the interval [10 s, 10.8 s]. At the considered fault
scenario, the faults correspond to an actuator loss of effectiveness of around 20%, 50%, and
70%. Also, the faults occur in small intervals of time such as 0.5 s. Although the system is
affected by the faults during small intervals of time, Figure 4 shows that the faults cause a
significant deviation from the fault-free trajectory.

Figures 5 and 6 present the fault detection using the proposed predefined-time di-
agnoser and the HOSM diagnoser reported in [26], respectively. In both figures, the
simulations on the left correspond to the case where the proposed sensor fusion architec-
ture is used, and on the right when it is not used. We highlight that the use of the proposed
sensor fusion architecture is of major importance, in fact when this architecture is omitted,
the graphics in the right columns of Figures 5 and 6 show a poor performance in fault de-
tection, exacerbating the number of false fault detections. In addition, the predefined-time
diagnoser estimates faults faster than the HOSM, it also reduces false fault detections. For
example, HOSM (Figure 6) detects a false fault detection in actuator 3, when the estimated
fault reaches the threshold of 0.035 at 6.45 s.
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Figure 4. Mobile robot trajectory comparison.

Fault actuator 1

Fault actuator 2

Fault actuator 3

Figure 5. The proposed diagnoser based on a predefined-time observer is used, with (left) and
without (right) the proposed sensor fusion architecture.
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Fault actuator 1

Fault actuator 2

Fault actuator 3

Figure 6. A previously reported diagnoser based on an HOSM differentiator is used, with (left) and
without (right) the proposed sensor fusion architecture.

Finally, Figure 7 shows that it is relevant to select the virtual sensors with the lowest
variance. In fact, when Σ̄ f1 is used (the one with the biggest variance), the graphics in the
left column of Figure 7 show a poor performance compared with the graphics in the right
column, when Σ̄ f2 is used.

Table 4 reports the RMS fault identification errors of the diagnosers when the sensor
fusion architecture is applied, while Table 5 reports the RMS errors when the sensor fusion
architecture is not used. From the comparison of the two tables, the proposed diagnoser
architecture provides the lowest fault estimation error. Moreover, the tables show that the
sensor fusion architecture reduces the fault estimation errors of the considered diagnosers.

Table 4. Sensor fusion architecture RMS fault identification errors.

Diagnoser m̂1 m̂2 m̂3

Predefined-Time 0.0201 0.0147 0.0247
HOSM 0.0233 0.0166 0.0268

Table 5. RMS fault identification errors when the sensor fusion architecture is not applied.

Diagnoser m̂1 m̂2 m̂3

Predefined-Time 0.0822 0.0808 0.0636
HOSM 0.0421 0.0428 0.0463
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Fault actuator 1

Fault actuator 2

Fault actuator 3

Figure 7. Comparison of the diagnosis with Σ̄1 (left) and Σ̄2 (right).

5. Conclusions

A fusion sensor architecture is introduced, comprising a homogenizer, sensor fusion
stage, and voter. It has a dual purpose: generating virtual sensors comparable to the system
output and providing reliable estimated signals (state and system outputs) for diagnosers,
controllers, etc. To test this architecture, a case study focusing on diagnosing faults in
actuators of a mobile robot was conducted, utilizing two diagnosers. In both cases, the
results demonstrate that employing the proposed architecture enhances the efficiency of
the diagnosis process. Specifically, false positive/negative fault detections are drastically
reduced, and diagnoser convergence time is minimized.

As mentioned above, the reported diagnoser requires the input observability property
from the system. Additionally, using a Kalman filter demands fast CPUs for real-time
applications. In some cases, these could be considered limitations to be overcome.

In future endeavors, this architecture will be applied in various domains, including
controller design, and particle filters will be considered.
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