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Abstract: Current stomach disease detection and diagnosis is challenged by data complexity and
high dimensionality and requires effective deep learning algorithms to improve diagnostic accuracy.
To address this challenge, in this paper, an improved strategy based on the Adam algorithm is
proposed, which aims to alleviate the influence of local optimal solutions, overfitting, and slow
convergence rates by controlling the restart strategy and the gradient norm joint clipping technique.
This improved algorithm is abbreviated as the CG-Adam algorithm. The control restart strategy
performs a restart operation by periodically checking the number of steps and once the number
of steps reaches a preset restart period. After the restart is completed, the algorithm will restart
the optimization process. It helps the algorithm avoid falling into the local optimum and maintain
convergence stability. Meanwhile, gradient norm joint clipping combines both gradient clipping and
norm clipping techniques, which can avoid gradient explosion and gradient vanishing problems and
help accelerate the convergence of the optimization process by restricting the gradient and norm
to a suitable range. In order to verify the effectiveness of the CG-Adam algorithm, experimental
validation is carried out on the MNIST, CIFAR10, and Stomach datasets and compared with the
Adam algorithm as well as the current popular optimization algorithms. The experimental results
demonstrate that the improved algorithm proposed in this paper achieves an accuracy of 98.59%,
70.7%, and 73.2% on the MNIST, CIFAR10, and Stomach datasets, respectively, surpassing the Adam
algorithm. The experimental results not only prove the significant effect of the CG-Adam algorithm in
accelerating the model convergence and improving generalization performance but also demonstrate
its wide potential and practical application value in the field of medical image recognition.

Keywords: deep learning; Adam algorithm; control restart strategy; gradient norm joint clipping;
CG-Adam algorithm

1. Introduction

With the wide application of deep learning in various fields, the optimization algo-
rithm of the model is crucial for the improvement of the training effect. Among many
optimization algorithms, the Adam algorithm has received widespread attention for its
excellent convergence speed and stable performance. However, with the increase in model
complexity and training data size, the Adam algorithm also faces some challenges, such
as gradient vanishing, gradient explosion, and overfitting. To solve these problems, re-
searchers have proposed various optimization strategies. For example, Yun [1] proposed
a new method to accelerate neural network training through a stochastic gradient sam-
pling technique in his research, and Xia and Massei [2] explored a fast adaptive gradient
method, which integrates the loss function and aims to improve the performance of the
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algorithm. Meanwhile, Tang [3] corrected the DP bias in the Adam algorithm, emphasizing
the importance of considering privacy protection in optimization algorithms. In addition,
Kleinsorge et al. [4] proposed the ELRA optimization method, and Hong and Lin [5] in-
vestigated the problem of the high-probability convergence of the Adam algorithm under
an unbounded gradient, all of which provided new perspectives and solutions for the
development of the optimization algorithm. Zhuang [6] explored adaptive strategies in
non-convex optimization problems, focusing on how the learning rate can be automati-
cally adjusted by an adaptive algorithm to achieve a near-optimal convergence rate in the
absence of prior knowledge. Zhang et al. [7] proposed a new gradient descent method,
the asymmetric momentum method, which improves the performance on non-sparse
gradient datasets by improving the momentum allocation during gradient descent. Son
and Yang [8] introduced a new learning rate scheduling algorithm designed to speed up
the convergence of optimization algorithms by automatically adjusting the learning rate,
especially when dealing with noisy gradients in small batch optimization scenarios. Bao
Zhang [9] proposed the SADAM algorithm, which employs a stochastic strategy to escape
stagnation points and saddle points with the aim of improving accuracy without the need
for batch processing. Wang and Klabjan [10] proposed a variance reduction version based
on Adam that focuses on convergence improvement in specific scenarios. Li et al. [11]
provided a proof of the strict convergence of the Adam algorithm for a wide range of
optimization objectives. He et al. [12] explored the convergence of the Adam algorithm
under non-convex objectives and provided theoretical guarantees of the effectiveness of the
Adam algorithm in a wider range of application scenarios by relaxing the hyper-parameter
conditions, thus broadening the scope of its applicability to complex optimization problems.
Bu et al. [13] proposed an automatic gradient trimming technique to improve the ability of
the Adam algorithm to deal with the gradient explosion problem, which aims to reduce
the need for manual parameter tuning and make the optimization process more efficient
and stable by automatically adjusting the trimming threshold. Notsawo [14] investigated
the possibility of improving the efficiency of the Adam algorithm on large-scale datasets
by introducing a stochastic averaging gradient method to reduce the number of gradients
that need to be computed in each iteration and speed up the optimization process. Chen
et al. [15] proposed a new adaptive learning rate method that can automatically adjust the
learning rate during the training process by making the learning rate differentiable, aiming
to improve the efficiency of the training process and the final performance of the model.
Chen [16] explored the optimal value of each hyper-parameter for various gradient descent
methods and provided a method to optimize the selection of hyper-parameters by analyz-
ing the effect of hyper-parameters on the training process in detail. Bieringer et al. [17]
proposed a new algorithm, the AdamMCMC algorithm, which provides a new quantitative
strategy for uncertainty estimation in deep neural network methods by combining the
Metropolis-adjusted Langevin algorithm and momentum-based optimization. Despite the
progress made in optimization algorithms in these studies, there are still limitations in deal-
ing with non-convex optimization problems, large-scale datasets, and gradient explosion
and overfitting problems. Existing stochastic gradient sampling techniques perform well
in accelerating neural network training, but when faced with non-convex optimization
problems, they tend to fall into local optimal solutions and are difficult to find the global
optimal solution. Although the adaptive gradient method improves the performance of the
algorithm by integrating the loss function, it underperforms on large-scale datasets, and the
computational overhead and convergence speed during the training process still need to be
optimized. New optimization methods and high-probability convergence studies provide
new theoretical perspectives and solutions, but their effectiveness in practical applications
has not yet been fully verified, especially in real-world complex datasets and tasks. Overall,
existing studies still have significant shortcomings in enhancing the stability of Adam’s
algorithm and adapting it to complex optimization problems, especially when dealing
with nonconvex optimization, large-scale datasets, gradient explosion, and overfitting
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problems; the stability and convergence speed of the existing methods need to be improved
urgently [18,19].

In order to compensate for the limitations of the existing Adam optimizer, an improved
strategy is proposed in this study that combines the control restart strategy with the
Gradient norm joint clipping technique, aiming to improve the stability and convergence
speed of the algorithm. The control restart strategy helps avoid local optimal solutions and
maintain the stability of the algorithm, while the Gradient norm joint clipping technique
avoids the gradient explosion and vanishing problems by restricting the size of the gradient
and the number of paradigms, while at the same time accelerating the convergence process.
Combining the advantages of both of the above, the CG-Adam algorithm not only performs
excellently in accelerating the convergence and improving the stability but also helps
to improve the generalization ability of the model and reduce overfitting. In this paper,
the principle, implementation method, and effect of the CG-Adam algorithm in practical
applications will be introduced in detail. Through theoretical analysis and experimental
validation, the advantages of this joint optimization strategy in improving model training
effects, accelerating convergence speed, and preventing overfitting will be demonstrated.
Meanwhile, the adaptability of this strategy in different models and scenarios is explored,
providing new optimization ideas and methods for researchers and developers in the field
of deep learning [20].

2. Design of the CG-Adam Algorithm
2.1. The Adam Optimization Algorithm

The Adam algorithm is an adaptive learning rate optimizer that combines the advan-
tages of the gradient descent and momentum strategies. Its core mechanism is based on the
computation of first-order and second-order moment estimates of the gradient, which are
used to dynamically adjust the learning rate. The first-order moments represent the mean
of the gradient, and the second-order moments represent the mean of the squared gradient.
As a frequently used optimization tool in neural network training, the Adam algorithm is
notable for its ability to adaptively adjust the learning rate, allowing for personalized learn-
ing rate adjustments for each parameter to better fit the unique needs of each parameter.
This approach avoids the complexity of manually setting the learning rate and shows better
adaptability for handling sparse gradients, real-time data streams, and non-static datasets.
Although Adam performs well in most cases, it may fall into local optimal solutions on
some complex lossy surfaces, thus limiting the effectiveness of the optimization. In the
implementation of the Adam algorithm, the parameters of the first-order moments and
second-order moments, which are responsible for balancing the contribution of first-order
and second-order moments, respectively, further optimize the learning process. In the
Adam algorithm, the parameters used for both are defined as first-order moments and
second-order moments, respectively. The moment estimation vectors for the gradient are
shown in Equations (1) and (2):

mt = β1mt−1 + (1 − β1)gt (1)

vt = β2vt−1 + (1 − β2)g2
t (2)

In Equations (1) and (2), β1 and β2 represent the exponential decay rates for the first-
order moment and second-order moment, respectively; gt is the gradient at step t and is
calculated as shown in Equation (3):

gt = ∇θ ft(θt) (3)

In Equation (3), θt is the parameter vector updated at step t; ft(θt) is the loss function
of the t-th iteration in the neural network; and gt is the gradient of the loss function of the
t-th repetition of the neural network with respect to the parameters. When the decay rate is
very small in the initial stage, the first-order moment and second-order moment estimates
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may deviate from zero, leading to some bias. In order to eliminate this bias, Adam applies
a bias correction to the first-order moments and second-order moments during the decay
process, as shown in Equations (4) and (5):

∧
m = m/

(
1 − βt

1
)

(4)

∧
v = v/

(
1 − βt

2
)

(5)

After each iteration, the parameter θ will be updated, as shown in Equation (6):

θt+1 = θt −
α√
∧
v + ε

∧
mt (6)

In Equation (6), θ represents the learning rate; ε is a small value greater than 0, primarily
used to prevent division by zero in the denominator. Despite the good performance of the
Adam optimization algorithm, it is sensitive to the choice of learning rate and requires a
careful adjustment of hyperparameters. In some non-convex optimization problems, the
hyperparameters may not converge to the global optimum.

2.2. Gradient Norm Joint Clipping

Gradient norm joint clipping trims both the gradient and the norm to ensure the
stability and reasonableness of the gradient during the optimization process. By limiting
the gradient to a suitable range, the gradient explosion and gradient vanishing problems
can be avoided, and it helps to accelerate the convergence of the optimization process.
Therefore, the use of the gradient norm joint clipping technique can effectively improve the
training effect of the optimization algorithm and increase the performance and reliability of
the algorithm. In addition, this technique enhances the stability of training by maintaining
the proper scale of the gradient during optimization and reducing unwanted fluctuations.
It also allows for a more flexible setting of gradient thresholds and fine control of the
optimizer’s behavior, enabling the optimization algorithm to adaptively adjust at different
training stages, improving overall training efficiency and model quality. With these im-
provements, gradient norm joint clipping provides a stronger foundation for optimization
algorithms to effectively address complex training challenges and improve the performance
of the final model. The mathematical expression for gradient norm joint clipping is shown
in Equation (7):

g′t = gt/max(1, ∥gt∥2/clip_value) (7)

In Equation (7), gt is the original gradient of the model parameters at step t of
the iteration. g′t is the clipped gradient. ∥gt∥2 is the L2 norm of the original gradient,
which is the length of the gradient vector in Euclidean space. clip_value is the default
clipping threshold that specifies the maximum allowable length of the gradient vector.
max(1, ∥gt∥2/clip_value) calculates a clipping factor, which is the greater between 1 and
the maximum value of the ratio of the gradient L2 norm to the clip_value threshold. If
∥gt∥2 is less than or equal to the trimming threshold, the clipping factor is 1; otherwise, it
is ∥gt∥2/clip_value. g′t stands for cropping the gradient t by dividing gt by the cropping
factor. If the L2 norm of the gradient is less than or equal to the cropping threshold, the
cropping factor is 1, and the gradient is unchanged; otherwise, the gradient is scaled.

Gradient norm joint clipping can simultaneously limit the size of the gradient and
the number of gradient paradigms, effectively controlling the magnitude of the gradient
change, thus improving the stability of the optimization algorithm. By clipping the gradient
and the number of gradient paradigms, the effects of gradient explosion, gradient vanishing,
and outliers on the optimization process can be prevented, which helps the model converge
faster and improves the model’s generalization ability.
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2.3. Control Restart Strategy

The core idea of the control restart strategy is to periodically check the number of
steps during the optimization process and perform a restart operation once the number
of steps reaches a predefined restart period. The restart operation consists of resetting
the optimizer state and the step counter to their initial values so that the optimization
process can restart in the next cycle. The introduction of this restart strategy effectively
improves the robustness and efficiency of the optimization algorithm. By dynamically
adjusting the restart cycle, the algorithm is able to adaptively optimize according to the
characteristics of the problem, further improving its performance. This flexible restart
strategy provides an effective solution for the application of optimization algorithms to
cope with optimization challenges in different scenarios. In addition to this, the control
restart strategy has some additional advantages. It prevents the optimization process from
falling into local optimal solutions and thus explores better global solutions. In addition,
the strategy is able to better handle non-convex optimization problems by restarting the
optimization process periodically, which makes the optimizer perform better in the face
of complex and multi-peaked loss functions. Taken together, the control restart strategy
not only improves the robustness and efficiency of the algorithm but also enhances the
adaptability and stability of the algorithm in dealing with complex optimization problems,
making it an indispensable and important technique in solving practical optimization tasks.
The control restart strategy is shown in Equation (8):

t′ = tmodT (8)

In Equation (8), t is the current number of iterations; mod denotes the modulo op-
eration; and t′ denotes the control of the step count within a cycle T when executing a
restart cycle. The step counter t′ indicates the number of steps in the current cycle. At the
beginning, t′ is initialized to 0, and the value of t′ is increased by 1 for each step performed
as the optimization process proceeds. The value of t′ is reset to 0 when t′ reaches the cycle
length T in order to restart the counting, thus completing one cycle. The introduction of
this restart cycle effectively controls the step counting of the optimization algorithm so that
the number of steps in each cycle can be well controlled and managed, thus improving the
stability and efficiency of the optimization algorithm. The deviation correction factor takes
into account the restart logic, and the deviation correction formula can be redefined, as
shown in Equations (9)–(12):

mt′ = β1mt′−1 + (1 − β1)gt (9)

vt′ = β2vt′−1 + (1 − β2)g2
t (10)

∧
mt′ = mt/

(
1 − βt′

1

)
(11)

∧
vt′ = vt/

(
1 − βt′

2

)
(12)

In Equations (9)–(12), the restart strategy converts the timestamp t into t′, which gives
the parameter update process the property of periodic adjustment through t′ and is able to
better adapt to the periodically changing data distribution and model parameters. These
adjustments not only take into account the bias correction and dynamic adjustment of the
gradient estimation in each cycle but also ensure the periodic impact of the bias correction,
thus improving the stability and generalization performance of the algorithm.

The formula for denom is shown in Equation (13):

denom =

√
∧
vt + ε (13)

In Equation (13), denom denotes the denominator term in the step adjustment;
∧
vt

denotes the bias-corrected second-order moment estimate, which represents the moving
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average of the squared gradient; and ε denotes a small constant that is usually used
to prevent the denominator from being zero. By adding a small constant ε to the bias-
corrected second-order moment estimate and then taking its square root, we ensure that
the denominator term denom is not too small. This helps to avoid errors in the division
operation during parameter updating due to the second-order moment estimates being too
small and also ensures the stability of the gradient update.

The formula for step_size is shown in Equation (14):

step_size = lr/
(

1 − βt′
1

)
(14)

In Equation (14), step_size can be adaptively adjusted according to the actual situation.
This adaptivity can make the optimization algorithm better adapted to different data distri-
butions, thus improving the robustness and generalization performance of the algorithm.

The formula for θnew is shown in Equation (15):

θnew = θ −
∧
mt′

denom
step_size (15)

In Equation (14), by comprehensively considering the gradient normalization and
step size control, the parameter update rule can effectively optimize the parameters and
improve the performance and convergence speed of the optimization algorithm. At the
same time, the algorithm’s adaptability to different data is also enhanced by adaptively
adjusting the step size and normalized gradient.

By introducing a control restart strategy, the CG-Adam optimizer adds significant
flexibility and efficiency to the Adam algorithm. This design not only helps avoid local
optimum traps during training and accelerates model convergence but also further en-
hances the generalization ability of the model by facilitating a broader exploration of the
parameter space.

2.4. The CG-Adam Algorithm

In the use of optimization algorithms, various parameters need to be considered, and
the learning rate is crucial. The learning rate needs to be determined by a combination of
factors and is usually set at different values during different training phases. The Adam
algorithm employs an adaptive adjustment of the learning rate technique to ensure that
the learning rate does not decay too quickly. In order to achieve this goal, Adam performs
an exponentially weighted average of the gradient and its square, which is essentially
an accumulation calculation of the historical gradient and can effectively attenuate the
influence of the historical gradient on the current gradient. In the initial stage of iteration,
the Adam algorithm is prone to rapid convergence due to the rapid accumulation of
the first-order momentum of the gradient, resulting in significant oscillations around the
optimum and exhibiting instability. When the algorithm falls into a local optimum, it is
also difficult to jump out of the local optimum.

In this paper, a new adaptive learning rate algorithm is proposed for the above
problem; CG-Adam is an improved version of the Adam optimization algorithm that
combines the control restart strategy and Gradient norm joint clipping. The specific steps
of this algorithm are shown in Algorithm 1.

For a clearer description of Algorithm 1, the algorithm flowchart (Scheme 1) is
shown below.
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Algorithm 1 CG-Adam

1: Input: initial point θt, first moment decay β1, second moment decay β2, Gradient clipping
threshold clip_value, Restart period T.
2: Initialize: set the initial value of momentum m0 and v0 to 0. Initialize t’ to 0 for cycle counting.
Initialize restart_step to 0 to control the restart strategy. Set the initial step of the optimizer to 0.
i.e., m0 = 0, v0 = 0, t′ = 0, restart_step = 0, step = 0.
3: For t = 1 to T do
4: gt = ∇θ ft(θt)
5: mt = β1mt−1 + (1 − β1)gt
6: vt = β2vt−1 + (1 − β2)g2

t
7: if t’ == 0 then
8: restart_step = 0
9: end for
10: if restart_step == 0 then

11:
∧

mt′ = mt/
(

1 − βt′
1

)
12:

∧
vt′ = vt/

(
1 − βt′

2

)
13: for each θ parameter in group[ params ] do
14: mt′ = β1mt′−1 + (1 − β1)gt
15: vt′ = β2vt′−1 + (1 − β2)g2

t
16: g′t = gt/max(1, ∥gt∥2/clip_value)

17: denom =

√
∧
vt + ε

18: step_size = lr/
(

1 − βt′
1

)
19: θnew = θ −

∧
mt′

denow step_size
20: end for
21: update t’ to the value of the next cycle, t′ = tmodT
22: restart_step = (restart_step + 1) mod T
end for
Return: Returns the final optimized parameter θt.
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3. Experimental Design and Analysis of Results
3.1. Experimental Environment Configuration

This experiment is based on the deep learning framework of Pytorch. The CG-Adam
algorithm is jointly improved by the control restart strategy and Gradient norm joint
clipping. The specific versions of the software mainly used in the experiment are shown in
Table 1.

Table 1. The specific versions of the software mainly used in the experiment.

Software Version

Python 3.10
torch 2.0.1

torchvision 0.15.0
lightning 2.1.2
Wandb 0.16.0

In order to test the effectiveness of the CG-Adam algorithm, image classification exper-
iments were conducted on three commonly used datasets: the MNIST dataset, the CIFAR10
dataset, and the Stomach dataset. MNIST is a binary image dataset containing handwritten
digits. CIFAR-10 is a dataset containing color images for the image classification task. The
images cover a wide range of object classes. The Stomach image dataset encompasses
multiple categories. Characterizations of the datasets are shown in Table 2.

Table 2. Characterizations of the datasets.

Dataset Number of
Samples Training Set Test Set Validation

Set Category

MNIST 70,000 55,000 10,000 5000 10
CIFAR10 60,000 45,000 10,000 5000 10
Stomach 1885 900 485 500 8

The Stomach dataset is a medical image dataset focused on gastrointestinal diseases.
It contains over 110,000 high-quality images and a large amount of video data, all collected
and annotated by specialized medical experts from the same Behram Hospital. This dataset
is valuable for the automated detection and categorization of gastrointestinal diseases, as
well as for medical education and research. Through the application of machine learning
and data analytics, this gastrointestinal dataset helps facilitate the development of medical
technology and improve the accuracy of clinical diagnosis. In this paper, experiments were
conducted using 1885 labeled images from this dataset.

3.2. Experimental Results and Analysis

The improved algorithm proposed in this paper inherits the advantages of the adaptive
learning rate of the Adam algorithm and enhances the robustness and efficiency of the
whole optimization process. This improvement strategy makes the CG-Adam algorithm
more suitable for a wide range of deep learning tasks, especially when encountering
gradient instability and optimization challenges, and ensures more reliable performance.
In order to thoroughly evaluate the performance benefits of the CG-Adam algorithm, this
study selected the SGD algorithm, Adagrad algorithm, Adadelta algorithm, and Adam
algorithm, and the improved algorithms, the Nadam algorithm and the StochGradAdam
algorithm, and conducted a series of comparative experiments. Through extensive testing
on multiple datasets and under different learning rate settings, the aim is to gain a deeper
understanding of the performance of these algorithms. The comparison of the experimental
results for different optimization algorithms is shown in Table 3. The reason for the bold
numbers in the table is that CG-Adam shows the best results when compared to the other
six algorithms.
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Table 3. The comparison of the experimental results for different optimization algorithms.

Dataset Optimization Algorithm Accuracy Loss

SGD 97.36% 0.091
Adagrad 97.84% 0.066
Adadelta 96.42% 0.133

MNIST Adam 98.52% 0.064
Nadam 98.50% 0.062

StochGradAdam 97.82% 0.078
CG-Adam 98.59% 0.059

SGD 49.09% 1.467
Adagrad 33.54% 1.852
Adadelta 25.58% 1.979

CIFAR10 Adam 69.55% 1.232
Nadam 68.87% 1.638

StochGradAdam 68.07% 1.04
CG-Adam 70.7% 1.181

SGD 57.6% 1.17
Adagrad 68.40% 0.992
Adadelta 55.80% 2.110

Stomach Adam 69.80% 1.046
Nadam 67.66% 2.10

StochGradAdam 67.2% 1.166
CG-Adam 73.2% 1.020

Based on the comparative experimental data in Table 3, it can be concluded that the
performance of the improved CG-Adam algorithm is superior to the performance of the
unimproved Adam algorithm. The accuracy of the CG-Adam algorithm on the CIFAR10
dataset reaches 70.7%, which is 1.15% higher than that of the unimproved Adam algorithm,
and the loss value of the CG-Adam algorithm is 1.181, which is 0.051 lower than that of the
unimproved Adam algorithm. The accuracy of the CG-Adam algorithm on the Stomach
dataset reaches 73.2%, which is 3.4% higher than that of the unimproved Adam algorithm,
and the loss value of the CG-Adam algorithm is 1.020, which is 0.026 lower than that of the
unimproved Adam algorithm. The CG-Adam algorithm achieves better accuracy on all
three datasets, which demonstrates that the proposed CG-Adam algorithm can be used in
the processing of different types of datasets (both basic black-and-white images and more
complex color RGB images) and verifies its outstanding generalization capability.

The experimental setup was as follows:

(1) The epoch in this experiment is set to 100 to ensure that the algorithms are compared
with the same number of training rounds.

(2) The batch size in this experiment is set to 128 to maintain the consistency of the
experiment.

(3) The initial learning rate of all algorithms in this experiment is set to 0.001.
(4) Due to the need to adjust the restart period and cropping value of the CG-Adam algo-

rithm, multiple experiments are performed on each dataset, and the best experimental
results are selected.

(5) Comparison experiments are conducted on the MNIST, CIFAR10, and Stomach
datasets, respectively.

The CG-Adam algorithm aims to improve the generalization ability of the model and
avoid falling into local optima. To test the performance of the CG-Adam algorithm on
different neural networks, different types of neural networks were trained on different
datasets. A simple fully connected neural network was used for training on the MNIST
dataset, and a MobileNetV2 lightweight neural network was used for training on the
CIFAR10 and Stomach datasets. In this experiment, in order to present the performance
of the CG-Adam algorithm with different combinations of learning rates, three different
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combinations were designed. The performance of the CG-Adam algorithm on the CIFAR10
dataset when combined with different learning rates is shown in Figure 1.
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(a) The comparison of accuracy. (b) The comparison of loss values.

In Figure 1, it is shown that in the three sets of experiments with different learning rates,
the CG-Adam algorithm with a learning rate of 0.001 achieves the optimal values of acc
and loss, so the learning rate of 0.001 is set as the initial value of the CG-Adam algorithm.

The training results of the seven algorithms on the MNIST dataset are shown in
Figure 2.

The training results of the seven algorithms on the CIFAR10 dataset are shown in
Figure 3.
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The training results of the seven algorithms on the Stomach dataset are shown in
Figure 4.
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As can be seen in Figure 4, the SGD algorithm and Adadelta algorithm significantly lag
behind the other algorithms in terms of accuracy and loss values. The CG-Adam algorithm
shows high accuracy from the beginning of the training phase, especially when compared
to other algorithms based on the improvement of Adam (e.g., the Nadam algorithm and
the StochGradAdam algorithm). This achievement is attributed to CG-Adam’s controlled
restart strategy, which resets the algorithm’s state when a specific cycle is reached, thus
indirectly enabling efficient tuning of the learning rate. This mechanism not only facilitates
the rapid improvement of the model’s performance at the early stage of training but also
maintains the stability of the model throughout the training process, which ultimately leads
to a steady upward trend in the accuracy curve of the CG-Adam algorithm. Throughout the
training process, the CG-Adam algorithm outperforms Adam and the other five algorithms.

The GPU occupancy comparison of seven algorithms is shown in Figure 5.
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The time and GPU utilization required to train each algorithm on the smoothed
Stomach dataset can be seen in Figure 5. Throughout the training process, the CG-Adam
algorithm has lower GPU utilization compared to the other six algorithms. Considering
that the CG-Adam algorithm employs a controlled restart strategy to indirectly change
the learning rate during training, its training time is slightly increased compared to the
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other algorithms. This is due to the fact that the control restart strategy requires adjusting
the learning rate in a specific cycle, which may lead to slower model convergence, thus
lengthening the training time. For some application scenarios that require fast iterations,
this increased training time may be detrimental. In addition, the low GPU occupancy
of the CG-Adam algorithm may mean that GPU resources are underutilized at certain
moments. This reduction in resource utilization may pose an efficiency problem in some
HPC environments, especially if there is a need to maximize hardware resource utilization.

In the comparison study between the CG-Adam algorithm and the other six algo-
rithms, the CG-Adam algorithm shows higher accuracy and more robust convergence on
the Stomach dataset, which further proves that the CG-Adam algorithm has a significant
advantage in improving the learning rate adjustment problem and model generalization
ability. After 100 training iterations, CG-Adam not only converges faster than other al-
gorithms but also improves the optimization efficiency and the ability to get rid of local
optimums, especially compared with the Adam algorithm. This not only emphasizes CG-
Adam’s advantage in generalization performance but also highlights its wide application
in different datasets and tasks.

The experimental data fully demonstrate the sophistication of the CG-Adam algorithm,
especially in improving the generalization ability and accelerating the convergence speed.
The fact that CG-Adam achieves the highest accuracy on different datasets and maintains
the highest accuracy values during the training process further confirms the efficiency and
wide applicability of CG-Adam.

4. Conclusions

In this study, the CG-Adam algorithm effectively avoids the shortcoming of the Adam
algorithm that tends to fall into local optimums during the training process, which greatly
improves the generalization of the model over multiple levels. Although the performance
of the CG-Adam algorithm is significantly improved, its memory requirement is increased
compared with the Adam algorithm. The experimental results on three datasets, MNIST,
CIFAR10, and Stomach, show that the CG-Adam algorithm outperforms other algorithms
in terms of accuracy and convergence speed, showing its obvious performance advantages.
The algorithm proposed in this paper not only highlights the effectiveness of CG-Adam
in overcoming the inherent defects of the Adam algorithm but also proves the key role of
CG-Adam in improving the performance of multi-dataset processing.

Author Contributions: Conceptualization, methodology, and writing—original draft preparation,
H.Y.; software, project administration, and resources, Y.S.; data curation, J.W.; writing—review and
editing, supervision, and formal analysis, H.S.; funding acquisition, Q.Z., L.X. and L.Z. All authors
have read and agreed to the published version of the manuscript.

Funding: 1. Liaoning Provincial Department of Education Basic Research Project for Higher Educa-
tion Institutions (General Project), Shenyang University of Technology, Research on Optimization
Design of Wind Turbine Cone Angle Based on Fluid Physics Method (LJKZ0159); 2. Basic Research
Project of Liaoning Provincial Department of Education “Training and Application of Multimodal
Deep Neural Network Models for Vertical Fields” project number: JYTMS20231160; 3. Research on the
Construction of a New Artificial Intelligence Technology and High-Quality Education Service Supply
System in the 14th Five-Year Plan for Education Science in Liaoning Province, 2023–2025, project
number: JG22DB488; 4. “Chunhui Plan” of the Ministry of Education, Research on Optimization
Model and Algorithm for Microgrid Energy Scheduling Based on Biological Behavior, project no.
202200209; and 5. Shenyang Science and Technology Plan “Special Mission for Leech Breeding and
Traditional Chinese Medicine Planting in Dengshibao Town, Faku County”, project no. 22-319-2-26.

Data Availability Statement: CIFAR10: https://www.kaggle.com/datasets/gazu468/cifar10-classification-
image (accessed on 1 May 2022); Stomach: https://doi.org/10.1038/s41597-020-00622-y (accessed
on 28 August 2020); and MNIST: https://www.cvmart.net/dataSets/detail/236 (accessed on 24
December 2021).

Conflicts of Interest: The authors declare no conflicts of interest.

https://www.kaggle.com/datasets/gazu468/cifar10-classification-image
https://www.kaggle.com/datasets/gazu468/cifar10-classification-image
https://doi.org/10.1038/s41597-020-00622-y
https://www.cvmart.net/dataSets/detail/236


Algorithms 2024, 17, 272 13 of 13

Abbreviations
The list of abbreviations and symbols is shown below.

CG-Adam Control restart strategy gradient norm joint clipping Adam
AdamMCMC Combining Metropolis-adjusted Langevin with momentum-based optimization
SADAM Stochastic Adam
lr Learning rate
ELRA Exponential learning rate adaption gradient descent
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