
Citation: Aldamani, R.; Abuhani,

D.A.; Shanableh, T. LungVision: X-ray

Imagery Classification for On-Edge

Diagnosis Applications. Algorithms

2024, 17, 280. https://doi.org/

10.3390/a17070280

Academic Editor: Maryam Ravan

Received: 3 June 2024

Revised: 23 June 2024

Accepted: 24 June 2024

Published: 27 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

LungVision: X-ray Imagery Classification for On-Edge
Diagnosis Applications
Raghad Aldamani †, Diaa Addeen Abuhani † and Tamer Shanableh *

Computer Science and Engineering Department, American University of Sharjah, Sharjah P.O. Box 26666,
United Arab Emirates; g00085944@aus.edu (R.A.); b00086137@aus.edu (D.A.A.)
* Correspondence: tshanableh@aus.edu
† These authors contributed equally to this work.

Abstract: This study presents a comprehensive analysis of utilizing TensorFlow Lite on mobile
phones for the on-edge medical diagnosis of lung diseases. This paper focuses on the technical
deployment of various deep learning architectures to classify nine respiratory system diseases
using X-ray imagery. We propose a simple deep learning architecture that experiments with six
different convolutional neural networks. Various quantization techniques are employed to convert
the classification models into TensorFlow Lite, including post-classification quantization with floating
point 16 bit representation, integer quantization with representative data, and quantization-aware
training. This results in a total of 18 models suitable for on-edge deployment for the classification of
lung diseases. We then examine the generated models in terms of model size reduction, accuracy, and
inference time. Our findings indicate that the quantization-aware training approach demonstrates
superior optimization results, achieving an average model size reduction of 75.59%. Among many
CNNs, MobileNetV2 exhibited the highest performance-to-size ratio, with an average accuracy loss
of 4.1% across all models using the quantization-aware training approach. In terms of inference time,
TensorFlow Lite with integer quantization emerged as the most efficient technique, with an average
improvement of 1.4 s over other conversion approaches. Our best model, which used EfficientNetB2,
achieved an F1-Score of approximately 98.58%, surpassing state-of-the-art performance on the X-ray
lung diseases dataset in terms of accuracy, specificity, and sensitivity. The model experienced an F1
loss of around 1% using quantization-aware optimization. The study culminated in the development
of a consumer-ready app, with TensorFlow Lite models tailored to mobile devices.

Keywords: medical diagnosis; CNN image classification; model quantization; on-edge image
classification

1. Introduction

Despite the recent technological advancements and growing popularity of mobile
devices, they have not yet become widely integrated as essential components in diagnostic
imaging [1]. The hesitance to adopt mobile devices in the medical field is usually explained
by concerns regarding patients privacy [2], the lack of regulations that ensure the images
are visible and manipulated in a clinically acceptable manner [3], and most importantly,
whether or not mobile devices can add a value to the diagnostic process in the first place [4].
Recently, multiple studies shed light on the aforementioned privacy [5,6], scalability [7], and
usability [8] concerns. The findings of these works showed that it is feasible to utilize mobile
devices for medical diagnosis in the near future, provided that extra precaution measures
are taken into consideration. For this reason, we believe it is safe to move forward one step
ahead and look into the possibility of utilizing neural networks for medical diagnosis on
mobile phones.

Generally speaking, deploying neural networks on mobile devices requires reducing
the model into a size that is compatible with the operating systems and application size

Algorithms 2024, 17, 280. https://doi.org/10.3390/a17070280 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a17070280
https://doi.org/10.3390/a17070280
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0009-0009-6675-1185
https://orcid.org/0000-0002-7651-3094
https://doi.org/10.3390/a17070280
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a17070280?type=check_update&version=1

Algorithms 2024, 17, 280 2 of 17

restrictions of these devices. For instance, Android’s Google Play enforces an application
size limitation of 200 MB at max [9], while the App Store of IOS has a slightly higher
bound of 500 MB [10]. In practice, the application size can influence the user satisfaction,
device performance, and storage capacity. As a result, developers aim towards reducing
the size of the application as much as possible without compromising on the quality of
the application. These consequences explain the fact that the average android application
has a size of around 12 MB, while IOS applications have an average size of 35 MB [11],
which are far below the maximum application size restrictions enforced by the respective
operating systems.

In general, deep learning models suffer from a lack of explainability, leading to an
uncertainty in the reliability of real-world systems. This problem is addressed in [12] by
adding a reliability estimate to the predictions of the generated models and modelling
aleatoric and epistemic uncertainties in the deep learning models. Neural network models
tend to have a high number of weights (parameters) that rarely go below a million. Conse-
quently, a trained model is stored along with all its associated weights, resulting in a large
model size. This makes it infeasible to have a functional neural network model within your
application build. For this reason, many developers opt for having the neural network on an
external resource, such as a database or a cloud [13]. However, external resources decrease
the security of the diagnosis process, given the possibility of data leakage, privacy breaches,
or unintentional third-party access to patients’ records. A more reasonable solution is
model quantization [14], where the way in which weights are stored is altered to reduce the
size of the model, with minimal impact on the overall performance. Quantization can be
carried out through storing the weights in smaller formats than the usual float-32, such as
float-16, int-8, or even int-4 in some cases. These formats have proven useful and sufficient
to maintain a good performance while reducing the size of the model to as much as fourth
the original size.

In this paper, we provide a thorough comparison study concerning neural networks’
deployment on mobile devices for medical diagnosis. We investigate the use of different
TensorFlow Lite quantization techniques, classification architectures, and their impact on
user’s experience. The X-ray lung diseases dataset [15] is considered as a case study.

2. Literature Review

The task of classifying lung diseases using X-ray images has been a point of discussion
for the past decade. Many works have explored the use of convolutional neural networks for
the task and achieved reasonably decent results. Cococi et al. [16] used a Slim convolutional
neural network to classify pneumonia disease from other diseases using a mobile phone,
and achieved an accuracy of 94.4%. The authors show that the accuracy score drops
significantly by adding a third class for classification, achieving a score of only 84.66%.
Upon quantization using TensorFlow Lite, the authors noticed a drop of 2.43% in the binary
classification task and a 0.83% drop in the three classes classification task, without clearly
highlighting the form of quantization followed. Muneeb et al. [17] used a CNN model
compressed using TensorFlow Lite int-8 quantization to classify six classes from the Chest
X-ray14 dataset [18]. The authors reported an accuracy of around 65.82% and highlighted a
6% drop after quantization. Hendrick et al. [19] used GoogleNet to distinguish Tuberculosis
disease from others. The proposed methodology achieved an accuracy of 98.39% for the
binary problem described. The authors later deployed the model on an IOS device to
assess its functionality, but without highlighting the methodology followed. Other works
included the use of a pre-trained NASNetMobile to classify pneumonia, which achieved
an accuracy score of 97.39% on the testing data [20]. Generally speaking, it can be noticed
that only a subset of the lung diseases dataset is usually taken into consideration, with the
maximum number of classes used being that which is carried out in [17] using 6 classes,
even though the biggest version of the lung diseases dataset contains 9 different classes.
Table 1 summarizes the results obtained in previous work in regard to X-ray imagery
classification for mobile devices.

Algorithms 2024, 17, 280 3 of 17

Table 1. Summary results of existing work including the number of classes used in each.

Work Architecture #Classes Used F1-Score Mobile Deployment

Hendrick et al. [19] GoogleNet 2 98.39 Deployed the model on an iOS device but did
not highlight the approach followed

Naskinova et al. [20] NASNet 2 97.39 Did not deploy the model on a mobile device
to ensure feasibility

Cococi et al. [16] Slim-Net 2 94.40 Used TensorFlow Lite post quantization and
reported a 2.43% drop in accuracy

Cococi et al. [16] Slim-Net 3 84.66 Used TensorFlow Lite post quantization and
reported a 0.83% drop in accuracy

Muneeb et al. [17] Deep CNN 6 65.82 Used TensorFlow Lite integer quantization
and reported a 6.0% drop in accuracy

3. Materials and Methods
3.1. Dataset and Pre-Processing

The dataset used in this study is the publicly available X-ray lung diseases dataset.
The dataset consists of 9 classes, each representing a respiratory system disease which can
be seen in Figure 1.

Algorithms 2024, 17, x FOR PEER REVIEW 3 of 17

Table 1. Summary results of existing work including the number of classes used in each.

Work Architecture #Classes Used F1-Score Mobile Deployment
Hendrick et al. [19] GoogleNet 2 98.39 Deployed the model on an iOS device but did not highlight the approach followed

Naskinova et al. [20] NASNet 2 97.39 Did not deploy the model on a mobile device to ensure feasibility
Cococi et al. [16] Slim-Net 2 94.40 Used TensorFlow Lite post quantization and reported a 2.43% drop in accuracy
Cococi et al. [16] Slim-Net 3 84.66 Used TensorFlow Lite post quantization and reported a 0.83% drop in accuracy

Muneeb et al. [17] Deep CNN 6 65.82 Used TensorFlow Lite integer quantization and reported a 6.0% drop in accuracy

3. Materials and Methods
3.1. Dataset and Pre-Processing

The dataset used in this study is the publicly available X-ray lung diseases dataset.
The dataset consists of 9 classes, each representing a respiratory system disease which can
be seen in Figure 1.

Figure 1. X-ray lung diseases dataset based on the category of the disease.

These diseases include obstructive pulmonary diseases (OLD), degenerative infec-
tious diseases (DID), higher and lower density diseases, encapsulated lesions, mediastinal
changes, chest changes, obstructive inflammatory processes (OIP), in addition to the nor-
mal case distributed over 6753 images. The dataset is lightly imbalanced (See Figure 2)
and contains images of inconsistent dimensions. For training purposes, all images were
resized to a 384 × 384 resolution.

Figure 1. X-ray lung diseases dataset based on the category of the disease.

These diseases include obstructive pulmonary diseases (OLD), degenerative infec-
tious diseases (DID), higher and lower density diseases, encapsulated lesions, mediastinal

Algorithms 2024, 17, 280 4 of 17

changes, chest changes, obstructive inflammatory processes (OIP), in addition to the normal
case distributed over 6753 images. The dataset is lightly imbalanced (See Figure 2) and
contains images of inconsistent dimensions. For training purposes, all images were resized
to a 384 × 384 resolution.

Algorithms 2024, 17, x FOR PEER REVIEW 4 of 17

Figure 2. X-ray lung diseases dataset: number of instances per class.

3.2. Neural Network Architectures
Transfer learning [21] is a common idea used to enhance the training performance of

deep learning models. Typically, the weights of a pre-trained architecture are used as a
starting point to a new training process. In this study, we examine 6 different neural net-
works suitable for image classification, pre-trained on the ImageNet dataset [22]. Various
architectures are examined with the aim of deploying the best performing one on a re-
source-constrained device; hence, we selected pre-trained neural networks which were
approximately 100 MB in size. Figure 3 demonstrates an overview of the proposed meth-
odology.

Figure 3. Overview of the proposed methodology.

Once the classification models are generated, we convert them to TensorFlow Lite to
make them suitable for mobile devices. As explained in the next section, we use 3 different

Figure 2. X-ray lung diseases dataset: number of instances per class.

3.2. Neural Network Architectures

Transfer learning [21] is a common idea used to enhance the training performance
of deep learning models. Typically, the weights of a pre-trained architecture are used
as a starting point to a new training process. In this study, we examine 6 different neu-
ral networks suitable for image classification, pre-trained on the ImageNet dataset [22].
Various architectures are examined with the aim of deploying the best performing one
on a resource-constrained device; hence, we selected pre-trained neural networks which
were approximately 100 MB in size. Figure 3 demonstrates an overview of the proposed
methodology.

Algorithms 2024, 17, x FOR PEER REVIEW 4 of 17

Figure 2. X-ray lung diseases dataset: number of instances per class.

3.2. Neural Network Architectures
Transfer learning [21] is a common idea used to enhance the training performance of

deep learning models. Typically, the weights of a pre-trained architecture are used as a
starting point to a new training process. In this study, we examine 6 different neural net-
works suitable for image classification, pre-trained on the ImageNet dataset [22]. Various
architectures are examined with the aim of deploying the best performing one on a re-
source-constrained device; hence, we selected pre-trained neural networks which were
approximately 100 MB in size. Figure 3 demonstrates an overview of the proposed meth-
odology.

Figure 3. Overview of the proposed methodology.

Once the classification models are generated, we convert them to TensorFlow Lite to
make them suitable for mobile devices. As explained in the next section, we use 3 different

Figure 3. Overview of the proposed methodology.

Algorithms 2024, 17, 280 5 of 17

Once the classification models are generated, we convert them to TensorFlow Lite to
make them suitable for mobile devices. As explained in the next section, we use 3 different
quantization solutions for that purpose. Hence, the total number of models generated and
examined in this work is 18 (i.e., 6 CNN architectures times 3 quantization solutions). The
algorithm followed to generate these models is illustrated in Figure 4.

Algorithms 2024, 17, x FOR PEER REVIEW 5 of 17

quantization solutions for that purpose. Hence, the total number of models generated and
examined in this work is 18 (i.e., 6 CNN architectures times 3 quantization solutions). The
algorithm followed to generate these models is illustrated in Figure 4.

Figure 4. Illustration of the proposed model generation algorithm.

In the rest of this section, we provide a brief description of the CNN architectures
used in this work for lung disease classification, and a justification of their use in this work.

The first CNN architecture is the ResNet50 neural network [23], which is a deep con-
volutional neural network architecture which comprises 50 layers and utilizes residual
connections to alleviate the vanishing gradient problem. These residual connections also
enable the training of deeper networks with improved accuracy and faster convergence
compared to traditional architectures.

Figure 4. Illustration of the proposed model generation algorithm.

In the rest of this section, we provide a brief description of the CNN architectures used
in this work for lung disease classification, and a justification of their use in this work.

The first CNN architecture is the ResNet50 neural network [23], which is a deep
convolutional neural network architecture which comprises 50 layers and utilizes residual
connections to alleviate the vanishing gradient problem. These residual connections also

Algorithms 2024, 17, 280 6 of 17

enable the training of deeper networks with improved accuracy and faster convergence
compared to traditional architectures.

We also experiment with the use of MobileNetV2 [24] for image classification. This
network is a lightweight convolutional neural network designed for mobile and embedded
vision applications. It utilizes depth wise separable convolutions and inverted residuals
to achieve high efficiency and accuracy. MobileNetV2 is well-suited for tasks requiring
real-time inference on resource-constrained devices, which is similar to the task at hand in
terms of mobile phone deployment constraints.

The third CNN architecture we experiment with is the DenseNet [25], which is a neural
network architecture in which each layer is connected to every other layer in a feed-forward
fashion. It facilitates feature reuse, encourages feature propagation, and alleviates the
vanishing gradient problem. DenseNet achieves state-of-the-art performance on various
computer vision tasks with fewer parameters compared to traditional architectures, which
may be handy in terms of use for mobile devices.

The forth CNN architecture we experiment with is the NASNet [26], which employs
reinforcement learning or evolutionary algorithms to explore vast architectural spaces,
resulting in highly efficient and accurate models tailored to specific tasks. NASNet demon-
strates superior performance across various domains, showcasing the potential of an
automated architecture search in deep learning. In this study, NASNetMobile is used, given
the problem we are trying to address, and taking into consideration the small number of
parameters the mobile version has when compared to larger versions of NASNet models.

The fifth the CNN architecture is the EfficientNetB2 [27], which is part of the Efficient-
Net family, featuring a compound scaling method that balances network depth, width,
and resolution for improved efficiency and accuracy. It strikes a balance between compu-
tational cost and performance, making it suitable for resource-constrained environments
while achieving state-of-the-art results in computer vision tasks. EfficientNetB2 leverages a
lightweight backbone with efficient building blocks to optimize both inference and training
speed without compromising model quality.

The last CNN architecture we experiment with is the EfficientNetB2V2 [28], which is
an enhanced version of EfficientNetB2. It further optimizes the architecture of EfficientNet
for improved performance and efficiency. It incorporates advancements in network design,
regularization techniques, and training methodologies to achieve better accuracy with re-
duced computational cost. EfficientNetB2V2 retains the balance between model complexity
and computational efficiency, making it well-suited for a wide range of computer vision
applications on diverse hardware platforms.

3.3. Model Quantization

Once the lung disease models are generated, the next step is to convert them to a
representation suitable for mobile devices, as illustrated in Figure 4 above. This can be
achieved using model quantization techniques [28], which are used to reduce the size
and computational complexity of neural networks to make it suitable for deployment
on resource-constrained devices. Model quantization usually involves manipulating the
format and number of bits used for representing model weights and biases, or model
weights for short. Quantization is important when a fact inference time is required on
mobile devices or edge devices in general. Typically, quantization results in a loss of
classification accuracy; however, it is subject to the quantization technique followed and the
amount of size reduction required. This section provides a brief discussion of the different
quantization techniques used in this study, along with the expected impact on the model
performance, size, and inference time. TensorFlow Lite framework is used to implement
the quantization techniques discussed in this study.

3.3.1. Floating Point Quantization

Floating Point 16 (FP16) quantization involves storing the numerical values using
16-bit floating point format, as opposed to the default 32-bit format. This simple procedure

Algorithms 2024, 17, 280 7 of 17

reduces the memory storage usage and accelerates the computation while having a minimal
impact on the overall model’s performance, and enables deployment on edge devices such
as a mobile phone.

3.3.2. Integer Quantization with Representative Data

Integer quantization using representative data [29] is a method in which a subset
of real data samples, known as representative data, is used to simulate model inference
during quantization. This approach captures the distribution of activations and weights
to ensure that the quantized values accurately represent the model’s behavior on unseen
data. Integer quantization with representative data helps preserve model accuracy while
reducing memory footprint and inference latency, making it suitable for deployment in
resource-constrained environments.

3.3.3. Quantization-Aware Training

Quantization-aware training (QAT) [30] is a pre-training technique used to train neural
networks while considering the effects of quantization on model performance. During
training, QAT simulates the quantization process by applying quantization functions
to both activations and weights, allowing the model to adapt to the reduced precision
environment. QAT enables the neural network to learn representations that are more robust
to quantization, resulting in improved accuracy when deployed on low-bit platforms such
as edge devices or specialized hardware.

3.4. Mobile App Deployment

For mobile phone deployment, we developed a fully functional application using the
Flutter framework on Android Studio. The main purpose of implementing a complete
application is to make sure that our app would be within the constraints of Android’s
Google Play in terms of size and usability. The application designed takes X-ray images
through two ways, by either uploading the X-ray image to the application from the gallery
or by taking a picture of the X-ray image using the mobile phone’s camera. The integration
of the models into the application is straightforward, as Flutter’s framework provides
multiple packages that can handle various aspects of this integration seamlessly. The
deployment typically involves converting and optimizing the trained model into the
TensorFlow Lite format, using techniques like Quantization-Aware Training (QAT) to
reduce size and enhance performance. However, several challenges are faced during
this process. Optimizing model size and inference time is critical due to mobile device
constraints and app store size limits. Quantization techniques are essential to address these
issues and ensure real-time inference performance. Ensuring the final application size is
crucial, as the inclusion of development packages alongside the model can significantly
increase the app’s total size. The details about the mobile app developed for this research
project are available in Appendix A.

3.5. Evaluation Metrics

In general, several metrics can be utilized to evaluate the performance of image
classifying. The metrics used in this paper are summarized below.

The first metric is accuracy, which determines an algorithm’s ability to make accurate
predictions, measured by the ratio of true positive (TP) and true negative (TN) predictions
combined, and divided by the total number of predictions.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

The second metric is specificity, which measures the proportion of true negatives
that are correctly identified by the model. It is calculated by dividing the number of true
positive predictions (TP) by the sum of true positives and false positives (FP).

Algorithms 2024, 17, 280 8 of 17

Speci f icity =
TP

TP + FP
(2)

The third metric is sensitivity, which determines an algorithm’s capability in recogniz-
ing samples, determined by dividing the true positives (TP) by the total of true positives
(TP) and false negatives (FN).

Sensitivity =
TP

TP + FN
(3)

The fourth metric is the F1-Score, which considers both the sensitivity and specificity
described earlier in this paper. It provides a more balanced evaluation to the model
performance.

F1 =
2 × Speci f icity × Sensitivity

Speci f icity + Sensitivity
(4)

We also examine the inference time, which refers to the duration it takes for a machine
learning model to process input data and generate predictions or outputs. It is a critical
metric for assessing the real-time performance and efficiency of models when the speed of
prediction may impact the users experience.

4. Experimental Results and Discussion

In this section, we examine the effect of different quantization techniques on the
models at hand in terms of the generated model size, model performance and inference
time. Following the work reported in the literature, the dataset was split 80–20 for training
and testing. All models used were pre-trained on ImageNet and were followed by a
simple classification head that consists of a dense layer of 512 nodes, followed by another
dense layer for classification utilizing a softmax activation function. The hyperparameters
tuned for this experiment include the number of neurons in the final dense layer between
[64, 128, 256], the dropout rate between [0.3, 0.5, 0.7], and the learning rate used [0.1,
0.01, 0.001]. The optimal parameter choice was 256, 0.5, and 0.001, respectively, based on
hyperparameter tuning. The models were later trained using a categorical cross entropy
loss for 15 epochs. An early stopping criterion was used to avoid overfitting with a patience
of 3 monitoring accuracy.

Having generated the classification models using the 6 CNN architectures and con-
verting them to TensorFlow Lite using the 3 quantization techniques, it was noticed that
the all the quantization techniques of interest reduce the model’s size by varying ratios.
Additionally, the influence of quantization on the model’s performance degradation is
based on the combination of CNN architecture and quantization technique used. The
impact of quantization on the user’s experience, in terms of app inference time, seems to be
faster across all models, with some exceptions.

4.1. Model Size

In terms of quantization impact on model sizes, all techniques reduced the sizes of orig-
inal models by different rations. In general, Quantization-Aware Training (QAT) achieved
the highest reduction percentage across all models, with the exception of DenseNet121
with an average reduction ratio of 76.62%. Integer quantization using representative data
(INT-Rep) achieved similar percentages, resulting in an average reduction percentage of
75.59% across all models. Floating Point 16 (FP16) optimization seemed to have the least
reduction ratio, with an average of 13.84% but with a much higher standard deviation of
6.53%, in comparison to approximately 1.9% and 1.4% for INT-Rep and QAT techniques,
respectively. Across all models, MobileNetV2 was the most resilient model to quantize,
with an average reduction ratio of 50.14%, whereas NASNet was the easiest to quantize,
with an average reduction of 59.14% across all three quantization techniques.

Table 2 provides a more detailed look into the size reduction using different optimiza-
tion techniques across different CNN models.

Algorithms 2024, 17, 280 9 of 17

Table 2. Impact of quantization techniques on different lung disease model sizes (MB).

Technique/Model ResNet50 MobileNetV2 DenseNet121 NasNetMobile EfficientNetB2 EfficientNetV2B2

Original (FP32) 102.4 11.5 33.7 23.9 38.5 42.4
FP16 93.6 11 28.6 18.4 32.1 35.9

INT-REP 24.1 3.2 7.5 5.6 9.4 10.6
QAT 23.8 3 7.6 5.3 8.8 9.9

%Maximum Opt. 76.76% 73.91% 77.74% 77.82% 77.14% 76.65%

4.2. Classification Model Performance

In terms of classification model performance, as expected, the original models without
quantization achieved the best performance, with the EfficientNetB2 model achieving a
98.58% F1-Score with 98.60% specificity and 98.59% sensitivity scores. The V2 series of
the same model showed a similar performance, with an F1-Score of almost 98%. This is
followed by the classification results of ResNet50, which achieved a 96.60% F1-Score.

Comparing our results with existing literature revealed that our proposed solution
exceeded the performance of the existing work. It is important to note that the existing
work used a subset of the lung disease classes; some used as few as two classes and others
used up to six classes. In our work, on the other hand, we have used all nine classes of the
dataset. We believe that the main reason behind the low performance of previous works
arises from the training methodologies followed. This is expected, as these works used
off-the-shelf solutions. Common drawbacks include the lack of the use of transfer learning,
severely reducing the image sizes and resulting in a loss of information, and over-training
the model, risking overfitting. In this work, we believe that we followed a more appropriate
training methodology, by using transfer learning and finetuning the models instead of
training from scratch. Additionally, given the detailed features of X-ray images, resizing
the images to a reasonable (384 × 384) resolution ensures that the loss of information is
minimal and that it is in line with the inputs expected by the architectures used. Lastly, to
avoid overfitting, we utilized an early stopping criteria during the training of our models.
The early stopping monitored the model performance on a 10% validation subset of the
training dataset, with a patience of five epochs. Additionally, the architecture included a
dropout layer before the fully connected dense layer, to further assure that the model does
not fit closely to its training data.

Table 3 compares this work and previous approaches tackling the same lung disease
classification problem. A comparison is carried out in terms of the number of classes
used, the F1-Score before quantization, whether quantization has been utilized or not, and
whether the trained model has been deployed and tested on a mobile phone or not.

Table 3. Comparison with previous approaches pre-quantization.

Work # Dataset Classes F1-Score Quantization Deployment

[19], 2019 2 98.39% No Yes
[20], 2023 2 97.39% No No
[16], 2020 3 94.40% Yes Yes
[17], 2022 6 84.66% Yes Yes

Proposed solution 9 98.58% Yes Yes

What is interesting about our obtained results is that the classification performance of
the models optimized using QAT had a moderate impact on the classification accuracy. In
fact, aside from the NASNetMobile model—which was severely degraded—the average
loss in performance across all other models optimized with QAT was 4.1% in terms of the
F1-Score. The EfficientNetV2B2 combined with QAT achieved the best F1-Score, with a
result of 97.51%.

In terms of FP16 quantization, the average loss in classification performance was 5.9%
across all models. However, QAT models seem to have a higher performance to size ratio

Algorithms 2024, 17, 280 10 of 17

across most models, as illustrated in Figure 5. The performance to size ratio provides insight
into the models efficiency. In other words, it shows which model is achieving the highest
classification accuracy performance using minimum memory allocation on the device
used. The margin of error at the 95% confidence intervals for each model are as follows:
ResNet ± 2.750, MobileNet ± 16.523, DenseNet ± 7.023, NasNet ± 2.213, EfficientNetV2 ±
6.397, and EfficientNet ± 6.161. MobileNetV2 model has the best performance to size ratio
when compared to other architectures, which perhaps makes it the most optimal choice for
deployment on highly resource-constrained devices.

Algorithms 2024, 17, x FOR PEER REVIEW 10 of 17

the F1-Score. The EfficientNetV2B2 combined with QAT achieved the best F1-Score, with
a result of 97.51%.

In terms of FP16 quantization, the average loss in classification performance was 5.9%
across all models. However, QAT models seem to have a higher performance to size ratio
across most models, as illustrated in Figure 5. The performance to size ratio provides in-
sight into the models efficiency. In other words, it shows which model is achieving the
highest classification accuracy performance using minimum memory allocation on the de-
vice used. The margin of error at the 95% confidence intervals for each model are as fol-
lows: ResNet ± 2.750, MobileNet ± 16.523, DenseNet ± 7.023, NasNet ± 2.213, Efficient-
NetV2 ± 6.397, and EfficientNet ± 6.161. MobileNetV2 model has the best performance to
size ratio when compared to other architectures, which perhaps makes it the most optimal
choice for deployment on highly resource-constrained devices.

Figure 5. ‘Performance to Size Ratio’ across all models and using different optimization techniques.

Unlike the previous two approaches, integer quantization using representative data
had major impact on the majority of the models in terms of classification performance,
resulting in an average loss of around 13.157%. This excludes the DenseNet121 model,
which resulted in an outlier readings. It is important to highlight that a model such as
EfficientNetV2, which inherently reduces memory consumption [28], maintained a high
performance, with a loss of around 4% only.

Table 4 provides a detailed comparison of the results discussed in this section. The
table lists the classification results of all generated lung disease classification models using
all quantization techniques.

Table 4. Deep learning models’ performance summary.

Model Metric
Quantization Technique

FP32 FP16 QAT INT-REP

ResNet50

Accuracy 96.59 87.50 95.63 92.54
Specificity 96.81 87.53 95.64 92.76
Sensitivity 96.59 87.50 95.63 92.54
F1-Score 96.60 87.49 95.61 92.60

MobileNetV2 Accuracy 90.63 84.67 82.20 77.61
Specificity 94.27 85.78 83.97 82.96

Figure 5. ‘Performance to Size Ratio’ across all models and using different optimization techniques.

Unlike the previous two approaches, integer quantization using representative data
had major impact on the majority of the models in terms of classification performance,
resulting in an average loss of around 13.157%. This excludes the DenseNet121 model,
which resulted in an outlier readings. It is important to highlight that a model such as
EfficientNetV2, which inherently reduces memory consumption [28], maintained a high
performance, with a loss of around 4% only.

Table 4 provides a detailed comparison of the results discussed in this section. The
table lists the classification results of all generated lung disease classification models using
all quantization techniques.

Table 4. Deep learning models’ performance summary.

Model Metric
Quantization Technique

FP32 FP16 QAT INT-REP

ResNet50

Accuracy 96.59 87.50 95.63 92.54
Specificity 96.81 87.53 95.64 92.76
Sensitivity 96.59 87.50 95.63 92.54
F1-Score 96.60 87.49 95.61 92.60

MobileNetV2

Accuracy 90.63 84.67 82.20 77.61
Specificity 94.27 85.78 83.97 82.96
Sensitivity 90.63 84.38 82.20 77.61
F1-Score 90.63 84.76 81.52 77.09

DenseNet121

Accuracy 87.78 59.38 86.61 19.40
Specificity 88.91 78.47 86.64 29.37
Sensitivity 88.77 59.38 86.61 19.40
F1-Score 87.58 60.38 86.46 16.19

Algorithms 2024, 17, 280 11 of 17

Table 4. Cont.

Model Metric
Quantization Technique

FP32 FP16 QAT INT-REP

NasNetMobile

Accuracy 68.67 93.75 24.62 31.34
Specificity 75.59 95.42 27.90 40.40
Sensitivity 68.67 93.75 24.63 31.34
F1-Score 69.16 93.72 23.56 33.54

EfficienetNetV2B2

Accuracy 98.00 93.75 97.52 94.03
Specificity 98.05 95.42 97.53 95.01
Sensitivity 98.00 93.75 97.52 94.03
F1-Score 97.99 93.72 97.51 94.03

EfficientNetB2

Accuracy 98.59 93.75 96.14 56.72
Specificity 98.60 95.83 96.45 76.71
Sensitivity 98.59 93.75 96.14 56.72
F1-Score 98.58 93.85 96.15 56.97

4.3. Inference Time

In terms of model inference time, the only clear trend revealed based on our experi-
ments is that the quantized models have a faster inference time than the original models
represented with Float 32 bits (See Table 5). However, the impact of different quantization
techniques varied based on the CNN architecture. We note that even though half of the
models achieved their best inference time using QAT, the overall best average inference
time improvement is achieved using integer quantization with representative data. This
technique resulted in an average reduction in inference time of 1.383 s compared to the
original model.

Table 5. Impact of quantization techniques on model inference time (in seconds).

Technique/Model ResNet50 MobileNetV2 DenseNet121 NasNet EfficientNetB2 EfficientNetV2B2 Avg.
Reduction

Original (FP32) 1.230 0.240 1.160 0.520 0.700 0.500 N/A
FP16 1.037 0.102 0.607 0.379 0.687 0.505 0.1723
QAT 1.030 0.140 0.850 0.340 0.410 0.470 0.2017

INT-REP 0.652 0.193 0.512 0.504 0.604 0.519 1.3830

Table 5 provides a more detailed view on the inference time achieved by each model.

4.4. Mobile Device Deployment and Testing

To build our app we designed an Android-based mobile application that is user
friendly and deployment ready. The application comprises a mobile interface and a backend
cloud database, along with an EfficientNetB2V2 classification model quantized using QAT.
The database was developed using Cloud Firestore, which serves as an easy yet secure way
to store and access data throughout the application. The application is named “LungVision”,
as it encapsulates the purpose of the app in a simple and clear manner. As mentioned
previously, a clear description of the app’s functionalities is provided in Appendix A.

In terms of inference time on the mobile app, which generally varies across different
quantization methods and models as shown in Figure 6, we randomly selected and classified
five images per class from the testing split. The model achieved an F1-Score of 91.31%, with
an accuracy of 88.89%, as well as 99.18% specificity and a 100% sensitivity score. While
the test data on the phone is small, it is nevertheless reasonably good enough to show that
the application is capable of distinguishing different respiratory system diseases. Figure 7
shows the confusion matrix obtained using the mobile phone.

Algorithms 2024, 17, 280 12 of 17

Algorithms 2024, 17, x FOR PEER REVIEW 12 of 17

score. While the test data on the phone is small, it is nevertheless reasonably good enough
to show that the application is capable of distinguishing different respiratory system dis-
eases. Figure 7 shows the confusion matrix obtained using the mobile phone.

Figure 6. The measured inference time across different models.

Figure 7. The confusion matrix of the on-app deployed model, with five images randomly selected
per class. The names of the classes are listed in the figure.

5. Conclusions
In this work, we conducted a comparative study to examine the feasibility of using

mobile phones for on-edge medical diagnosis. We focused on the technical aspect of the

Figure 6. The measured inference time across different models.

Algorithms 2024, 17, x FOR PEER REVIEW 12 of 17

score. While the test data on the phone is small, it is nevertheless reasonably good enough
to show that the application is capable of distinguishing different respiratory system dis-
eases. Figure 7 shows the confusion matrix obtained using the mobile phone.

Figure 6. The measured inference time across different models.

Figure 7. The confusion matrix of the on-app deployed model, with five images randomly selected
per class. The names of the classes are listed in the figure.

5. Conclusions
In this work, we conducted a comparative study to examine the feasibility of using

mobile phones for on-edge medical diagnosis. We focused on the technical aspect of the

Figure 7. The confusion matrix of the on-app deployed model, with five images randomly selected
per class. The names of the classes are listed in the figure.

5. Conclusions

In this work, we conducted a comparative study to examine the feasibility of using
mobile phones for on-edge medical diagnosis. We focused on the technical aspect of the de-
ployment by training different neural networks to classify nine respiratory system diseases
using X-ray imagery. We achieved an F1-Score of around 98.58% using the EfficientNetB2
model, which beats the state-of-the-art in terms of performance and the classes taken
into consideration on the X-ray lung diseases dataset. Later, we analyzed three different
optimization techniques, namely, Floating Point 16 (FP16), Quantization-Aware Training
(QAT), and integer quantization using representative data (INT). The influence of the three
techniques was studied in terms of model size, performance, and inference time. We found

Algorithms 2024, 17, 280 13 of 17

that QAT quantization achieves the highest optimization average, with a 75.59% reduction
in size and a maximum optimization of 77.82%. In terms of performance, we highlight that
MobileNetV2 achieves the highest performance to size ratio using QAT, with an average
loss of as little as 4.1% across all models. Then, we tested the models’ inference time,
and we highlighted that INT quantization rapidly outperforms other techniques, with an
average inference time improvement of 1.3830 s. Finally, we illustrated the functionality
of the proposed approach using a consumer-ready application, developed to match the
constraints of a mobile phone running an Android operating system and in line with
Google Play regulations.

The size of a typical CNN employed in the current approach varies depending on the
specific architecture used. In this study, six different CNN architectures were evaluated:
a custom model (102.4 MB), MobileNetV2 (11.5 MB), NASNetMobile (23.9 MB), Efficient-
NetB2 (38.5 MB), EfficientNetB2V2 (42.4 MB), and DenseNet (33.7 MB). While models
like MobileNetV2 are relatively small and suitable for deployment without further opti-
mization, larger models such as EfficientNetB2 and custom models require size reduction.
Utilizing TensorFlow Lite and quantization methods significantly reduce these model’s size
while maintaining performance, making them more suitable for deployment on standard
smartphones. However, the quantization process, while effective in reducing model size
and improving inference time, can lead to a slight decrease in model performance. This
trade-off between size, speed, and accuracy requires careful consideration, especially in
critical applications such as medical diagnosis. To measure the robustness to low-quality
X-ray images, we conducted experiments by taking photos of existing X-ray images using
the mobile phone camera. We noticed that the detection accuracy is lower in the case of
low-quality/noisy images, which may require relying on image enhancements and noise
cancellation before feeding the image to the model. This represents a future area of study
that we believe is necessary for practical use and industrial deployment.

Author Contributions: Conceptualization, R.A., D.A.A. and T.S.; methodology, R.A., D.A.A. and
T.S.; software, R.A. and D.A.A.; validation, R.A., D.A.A. and T.S.; formal analysis, R.A. and D.A.A.;
investigation, R.A. and D.A.A.; resources, R.A. and D.A.A.; data curation, R.A. and D.A.A.; writing—
original draft preparation, R.A., D.A.A. and T.S.; writing—review and editing, R.A., D.A.A. and T.S.;
supervision, T.S.; project administration, T.S.; All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data used in this research are publicly available and cited where
relevant. Other supporting material is available upon request.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

The mobile application, developed for the implementation of X-ray-based lung disease
classification, consists of three main activities with a total release size of around 100 MB,
which is in line with the constrains highlighted earlier by the Google Play Store. The
application starts up with a splash screen displaying the app name. This screen lasts for 3 s
before it shows the main screen of the application, as seen in Figure A1. The user can then
navigate through the app using the bottom navigation bar, as illustrated in Figure A1.

Additionally, on the home screen of the app, we showcase all the possible classification
classes with additional information, such as keywords displayed as tags, disease definition,
possible symptoms, recommended actions, and our model’s classification confidence, as
seen in Figure A2.

Algorithms 2024, 17, 280 14 of 17

Algorithms 2024, 17, x FOR PEER REVIEW 14 of 17

then navigate through the app using the bottom navigation bar, as illustrated in Figure
A1.

Figure A1. (a) Splash Screen, (b) Main Screen.

Additionally, on the home screen of the app, we showcase all the possible classifica-
tion classes with additional information, such as keywords displayed as tags, disease def-
inition, possible symptoms, recommended actions, and our model’s classification confi-
dence, as seen in Figure A2.

Figure A2. Home Screen.

The main screen of the app is the classification screen, which allows for capturing an
image using the camera or selecting an image from the phone’s gallery. Subsequently, the
app previews the selected image, where it allows for the re-selection of the image or the
continuation of the classification process. Once confirmed, the app uses the proposed Ten-
sorFlow Lite model to perform the classification task. Figure A3 displays a walk-through
of the mentioned classification process. Alongside displaying the classification report, this
screen also utilizes Cloud Firestore for permanent storage of the classification results. This
feature is used for scalability purposes, which allows for the expansion into a multi-user
app in the future should the need arise.

Figure A1. (a) Splash Screen, (b) Main Screen.

Algorithms 2024, 17, x FOR PEER REVIEW 14 of 17

then navigate through the app using the bottom navigation bar, as illustrated in Figure
A1.

Figure A1. (a) Splash Screen, (b) Main Screen.

Additionally, on the home screen of the app, we showcase all the possible classifica-
tion classes with additional information, such as keywords displayed as tags, disease def-
inition, possible symptoms, recommended actions, and our model’s classification confi-
dence, as seen in Figure A2.

Figure A2. Home Screen.

The main screen of the app is the classification screen, which allows for capturing an
image using the camera or selecting an image from the phone’s gallery. Subsequently, the
app previews the selected image, where it allows for the re-selection of the image or the
continuation of the classification process. Once confirmed, the app uses the proposed Ten-
sorFlow Lite model to perform the classification task. Figure A3 displays a walk-through
of the mentioned classification process. Alongside displaying the classification report, this
screen also utilizes Cloud Firestore for permanent storage of the classification results. This
feature is used for scalability purposes, which allows for the expansion into a multi-user
app in the future should the need arise.

Figure A2. Home Screen.

The main screen of the app is the classification screen, which allows for capturing
an image using the camera or selecting an image from the phone’s gallery. Subsequently,
the app previews the selected image, where it allows for the re-selection of the image or
the continuation of the classification process. Once confirmed, the app uses the proposed
TensorFlow Lite model to perform the classification task. Figure A3 displays a walk-through
of the mentioned classification process. Alongside displaying the classification report, this
screen also utilizes Cloud Firestore for permanent storage of the classification results. This
feature is used for scalability purposes, which allows for the expansion into a multi-user
app in the future should the need arise.

Algorithms 2024, 17, x FOR PEER REVIEW 15 of 17

Figure A3. Classification process walk-through.

The app also allows the user to display the history of all previous classification re-
ports. This is accomplished by fetching all records from the Cloud Firestore and display-
ing them based on the most recent classification result. This activity also allows for the
deletion of all records, the deletion of a specific record, and reviewing the full report.

Figure A4. (a) History Screen with no reports, (b) History Screen with summary results.

Clicking on a record will display the full classification report. Downloading the re-
port is achieved by clicking on the menu found in the top right corner of the screen and
clicking the download option. The report will be saved as an image in the phone’s gallery.
Figure A5 showcases the process of viewing and downloading a report.

Figure A5. The process of viewing and downloading a report.

Figure A3. Classification process walk-through.

Algorithms 2024, 17, 280 15 of 17

The app also allows the user to display the history of all previous classification reports.
This is accomplished by fetching all records from the Cloud Firestore and displaying them
based on the most recent classification result. This activity also allows for the deletion of all
records, the deletion of a specific record, and reviewing the full report.

Algorithms 2024, 17, x FOR PEER REVIEW 15 of 17

Figure A3. Classification process walk-through.

The app also allows the user to display the history of all previous classification re-
ports. This is accomplished by fetching all records from the Cloud Firestore and display-
ing them based on the most recent classification result. This activity also allows for the
deletion of all records, the deletion of a specific record, and reviewing the full report.

Figure A4. (a) History Screen with no reports, (b) History Screen with summary results.

Clicking on a record will display the full classification report. Downloading the re-
port is achieved by clicking on the menu found in the top right corner of the screen and
clicking the download option. The report will be saved as an image in the phone’s gallery.
Figure A5 showcases the process of viewing and downloading a report.

Figure A5. The process of viewing and downloading a report.

Figure A4. (a) History Screen with no reports, (b) History Screen with summary results.

Clicking on a record will display the full classification report. Downloading the report
is achieved by clicking on the menu found in the top right corner of the screen and clicking
the download option. The report will be saved as an image in the phone’s gallery. Figure A5
showcases the process of viewing and downloading a report.

Algorithms 2024, 17, x FOR PEER REVIEW 15 of 17

Figure A3. Classification process walk-through.

The app also allows the user to display the history of all previous classification re-
ports. This is accomplished by fetching all records from the Cloud Firestore and display-
ing them based on the most recent classification result. This activity also allows for the
deletion of all records, the deletion of a specific record, and reviewing the full report.

Figure A4. (a) History Screen with no reports, (b) History Screen with summary results.

Clicking on a record will display the full classification report. Downloading the re-
port is achieved by clicking on the menu found in the top right corner of the screen and
clicking the download option. The report will be saved as an image in the phone’s gallery.
Figure A5 showcases the process of viewing and downloading a report.

Figure A5. The process of viewing and downloading a report. Figure A5. The process of viewing and downloading a report.

To delete a single report, the user can simply swipe the desired record from right to
left. This action will prompt a deletion confirmation dialog, where it either confirms the
deletion and deletes the record, or cancels the action. Figure A6 illustrates a single record
deletion process.

In the case of mass deletion of all reports, the user can click on the menu placed at the
top right corner of the app screen. Clicking the menu will display a deletion option that
once clicked shows a deletion confirmation dialog. If deletion is confirmed, all records will
be deleted, otherwise nothing will happen. Figure A7 displays the mentioned steps.

Algorithms 2024, 17, 280 16 of 17

Algorithms 2024, 17, x FOR PEER REVIEW 16 of 17

To delete a single report, the user can simply swipe the desired record from right to
left. This action will prompt a deletion confirmation dialog, where it either confirms the
deletion and deletes the record, or cancels the action. Figure A6 illustrates a single record
deletion process.

Figure A6. Single report deletion process.

In the case of mass deletion of all reports, the user can click on the menu placed at
the top right corner of the app screen. Clicking the menu will display a deletion option
that once clicked shows a deletion confirmation dialog. If deletion is confirmed, all records
will be deleted, otherwise nothing will happen. Figure A7 displays the mentioned steps.

Figure A7. The process of deleting all reports.

References
1. Kufel, J.; Bargieł, K.; Koźlik, M.; Czogalik, Ł.; Dudek, P.; Jaworski, A.; Magiera, M.; Bartnikowska, W.; Cebula, M.; Nawrat, Z.;

et al. Usability of mobile solutions intended for diagnostic images—A systematic review. Healthcare 2022, 10, 2040.
2. Flaherty, J.L. Digital diagnosis: Privacy and the regulation of mobile phone health applications. Am. J. Law Med. 2014, 40, 416.
3. Hirschorn, D.S.; Choudhri, A.F.; Shih, G.; Kim, W. Use of mobile devices for medical imaging. J. Am. Coll. Radiol. 2014, 11, 1277–

1285.
4. Venson, J.E.; Bevilacqua, F.; Berni, J.; Onuki, F.; Maciel, A. Diagnostic concordance between mobile interfaces and conventional

workstations for emergency imaging assessment. Int. J. Med. Inform. 2018, 113, 1–8.
5. Tovino, S.A. Privacy and security issues with mobile health research applications. J. Law Med. Ethics 2020, 48, 154–158.
6. Benjumea, J.; Ropero, J.; Rivera-Romero, O.; Dorronzoro-Zubiete, E.; Carrasco, A.; others Privacy assessment in mobile health

apps: Scoping review. JMIR mHealth uHealth 2020, 8, e18868.
7. Sahin, V.H.; Oztel, I.; Yolcu Oztel, G. Human monkeypox classification from skin lesion images with deep pre-trained network

using mobile application. J. Med. Syst. 2022, 46, 79.
8. Badiauzzaman, I.S.M. Assessment of the usage of mobile applications (APPS) in medical imaging among medical imaging stu-

dents. Int. J. Allied Health Sci. 2018, 2, 347–356.

Figure A6. Single report deletion process.

Algorithms 2024, 17, x FOR PEER REVIEW 16 of 17

To delete a single report, the user can simply swipe the desired record from right to
left. This action will prompt a deletion confirmation dialog, where it either confirms the
deletion and deletes the record, or cancels the action. Figure A6 illustrates a single record
deletion process.

Figure A6. Single report deletion process.

In the case of mass deletion of all reports, the user can click on the menu placed at
the top right corner of the app screen. Clicking the menu will display a deletion option
that once clicked shows a deletion confirmation dialog. If deletion is confirmed, all records
will be deleted, otherwise nothing will happen. Figure A7 displays the mentioned steps.

Figure A7. The process of deleting all reports.

References
1. Kufel, J.; Bargieł, K.; Koźlik, M.; Czogalik, Ł.; Dudek, P.; Jaworski, A.; Magiera, M.; Bartnikowska, W.; Cebula, M.; Nawrat, Z.;

et al. Usability of mobile solutions intended for diagnostic images—A systematic review. Healthcare 2022, 10, 2040.
2. Flaherty, J.L. Digital diagnosis: Privacy and the regulation of mobile phone health applications. Am. J. Law Med. 2014, 40, 416.
3. Hirschorn, D.S.; Choudhri, A.F.; Shih, G.; Kim, W. Use of mobile devices for medical imaging. J. Am. Coll. Radiol. 2014, 11, 1277–

1285.
4. Venson, J.E.; Bevilacqua, F.; Berni, J.; Onuki, F.; Maciel, A. Diagnostic concordance between mobile interfaces and conventional

workstations for emergency imaging assessment. Int. J. Med. Inform. 2018, 113, 1–8.
5. Tovino, S.A. Privacy and security issues with mobile health research applications. J. Law Med. Ethics 2020, 48, 154–158.
6. Benjumea, J.; Ropero, J.; Rivera-Romero, O.; Dorronzoro-Zubiete, E.; Carrasco, A.; others Privacy assessment in mobile health

apps: Scoping review. JMIR mHealth uHealth 2020, 8, e18868.
7. Sahin, V.H.; Oztel, I.; Yolcu Oztel, G. Human monkeypox classification from skin lesion images with deep pre-trained network

using mobile application. J. Med. Syst. 2022, 46, 79.
8. Badiauzzaman, I.S.M. Assessment of the usage of mobile applications (APPS) in medical imaging among medical imaging stu-

dents. Int. J. Allied Health Sci. 2018, 2, 347–356.

Figure A7. The process of deleting all reports.

References
1. Kufel, J.; Bargieł, K.; Koźlik, M.; Czogalik, Ł.; Dudek, P.; Jaworski, A.; Magiera, M.; Bartnikowska, W.; Cebula, M.; Nawrat, Z.;

et al. Usability of mobile solutions intended for diagnostic images—A systematic review. Healthcare 2022, 10, 2040. [CrossRef]
[PubMed]

2. Flaherty, J.L. Digital diagnosis: Privacy and the regulation of mobile phone health applications. Am. J. Law Med. 2014, 40, 416.
[PubMed]

3. Hirschorn, D.S.; Choudhri, A.F.; Shih, G.; Kim, W. Use of mobile devices for medical imaging. J. Am. Coll. Radiol. 2014, 11,
1277–1285. [CrossRef] [PubMed]

4. Venson, J.E.; Bevilacqua, F.; Berni, J.; Onuki, F.; Maciel, A. Diagnostic concordance between mobile interfaces and conventional
workstations for emergency imaging assessment. Int. J. Med. Inform. 2018, 113, 1–8. [CrossRef] [PubMed]

5. Tovino, S.A. Privacy and security issues with mobile health research applications. J. Law Med. Ethics 2020, 48, 154–158. [CrossRef]
[PubMed]

6. Benjumea, J.; Ropero, J.; Rivera-Romero, O.; Dorronzoro-Zubiete, E.; Carrasco, A. Privacy assessment in mobile health apps:
Scoping review. JMIR mHealth uHealth 2020, 8, e18868. [CrossRef] [PubMed]

7. Sahin, V.H.; Oztel, I.; Yolcu Oztel, G. Human monkeypox classification from skin lesion images with deep pre-trained network
using mobile application. J. Med. Syst. 2022, 46, 79. [CrossRef] [PubMed]

8. Badiauzzaman, I.S.M. Assessment of the usage of mobile applications (APPS) in medical imaging among medical imaging
students. Int. J. Allied Health Sci. 2018, 2, 347–356.

9. Google. About Android App Bundles|Android Developers—Developer.android.com. 2024. Available online: https://developer.
android.com/guide/app-bundle#size_restrictions (accessed on 9 April 2024).

10. Apple. Maximum Build File Sizes-Reference-App Store Connect-Help-Apple Developer—developer.apple.com. 2024. Available
online: https://developer.apple.com/help/app-store-connect/reference/maximum-build-file-sizes/ (accessed on 9 April 2024).

11. Suri, B.; Taneja, S.; Bhanot, I.; Sharma, H.; Raj, A. Cross-Platform Empirical Analysis of Mobile Application Development
Frameworks: Kotlin, React Native and Flutter. In Proceedings of the 4th International Conference on Information Management &
Machine Intelligence, Jaipur, India, 23–24 December 2022; pp. 1–6.

12. Seckler, H.; Metzler, R. Bayesian deep learning for error estimation in the analysis of anomalous diffusion. Nat. Commun. 2022, 13,
6717. [CrossRef]

https://doi.org/10.3390/healthcare10102040
https://www.ncbi.nlm.nih.gov/pubmed/36292487
https://www.ncbi.nlm.nih.gov/pubmed/27530051
https://doi.org/10.1016/j.jacr.2014.09.015
https://www.ncbi.nlm.nih.gov/pubmed/25467905
https://doi.org/10.1016/j.ijmedinf.2018.01.019
https://www.ncbi.nlm.nih.gov/pubmed/29602428
https://doi.org/10.1177/1073110520917041
https://www.ncbi.nlm.nih.gov/pubmed/32342741
https://doi.org/10.2196/18868
https://www.ncbi.nlm.nih.gov/pubmed/32459640
https://doi.org/10.1007/s10916-022-01863-7
https://www.ncbi.nlm.nih.gov/pubmed/36210365
https://developer.android.com/guide/app-bundle#size_restrictions
https://developer.android.com/guide/app-bundle#size_restrictions
https://developer.apple.com/help/app-store-connect/reference/maximum-build-file-sizes/
https://doi.org/10.1038/s41467-022-34305-6

Algorithms 2024, 17, 280 17 of 17

13. Eshratifar, A.E.; Pedram, M. Energy and performance efficient computation offloading for deep neural networks in a mobile
cloud computing environment. In Proceedings of the 2018 on Great Lakes Symposium on VLSI, Chicago, IL, USA, 23–25 May
2018; pp. 111–116.

14. Gholami, A.; Kim, S.; Dong, Z.; Yao, Z.; Mahoney, M.W.; Keutzer, K. A survey of quantization methods for efficient neural
network inference. In Low-Power Computer Vision; Chapman and Hall/CRC: London, UK, 2022; pp. 291–326.

15. Feltrin, F. X-ray Lung Diseases Images (9 Classes). Kaggle. February 2023. Available online: https://www.kaggle.com/datasets/
fernando2rad/x-ray-lung-diseases-images-9-classes (accessed on 6 April 2024).

16. Cococi, A.; Felea, I.; Armanda, D.; Dogaru, R. Pneumonia detection on chest X-ray images using convolutional neural net-
works designed for resource constrained environments. In Proceedings of the 2020 International Conference on e-Health and
Bioengineering (EHB), Iasi, Romania, 29–30 October 2020; pp. 1–4.

17. Muneeb, M.; Feng, S.F.; Henschel, A. Deep learning pipeline for image classification on mobile phones. arXiv 2022, arXiv:2206.00105.
18. Guan, Q.; Huang, Y. Multi-label chest X-ray image classification via category-wise residual attention learning. Pattern Recognit.

Lett. 2020, 130, 259–266. [CrossRef]
19. Hendrick, H.; Wang, Z.-H.; Chen, H.-I.; Chang, P.-L.; Jong, G.-J. IOS Mobile APP for Tuberculosis Detection Based on Chest X-Ray

Image. In Proceedings of the 2019 2nd International Conference on Applied Information Technology and Innovation (ICAITI),
Denpasar, Indonesia, 21–22 September 2019; pp. 122–125.

20. Naskinova, I. Transfer learning with NASNet-Mobile for Pneumonia X-ray classification. Asian-Eur. J. Math. 2023, 16, 2250240.
[CrossRef]

21. Weiss, K.; Khoshgoftaar, T.M.; Wang, D. A survey of transfer learning. J. Big Data 2016, 3, 1–40. [CrossRef]
22. Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of

the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255.
23. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778.
24. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.-C. Mobilenetv2: Inverted residuals and linear bottlenecks. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018;
pp. 4510–4520.

25. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.

26. Zoph, B.; Vasudevan, V.; Shlens, J.; Le, Q.V. Learning transferable architectures for scalable image recognition. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 8697–8710.

27. Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International
Conference on Machine Learning (PMLR), Long Beach, CA, USA, 9–15 June 2019; pp. 6105–6114.

28. Tan, M.; Le, Q. Efficientnetv2: Smaller models and faster training. arXiv 2021, arXiv:2104.00298.
29. Elthakeb, A.T.; Pilligundla, P.; Mireshghallah, F.; Cloninger, A.; Esmaeilzadeh, H. Divide and conquer: Leveraging intermediate

feature representations for quantized training of neural networks. In Proceedings of the International Conference on Machine
Learning (PMLR), Virtual, 13–18 July 2020; pp. 2880–2891.

30. Park, E.; Yoo, S.; Vajda, P. Value-aware quantization for training and inference of neural networks. In Proceedings of the European
Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 580–595.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.kaggle.com/datasets/fernando2rad/x-ray-lung-diseases-images-9-classes
https://www.kaggle.com/datasets/fernando2rad/x-ray-lung-diseases-images-9-classes
https://doi.org/10.1016/j.patrec.2018.10.027
https://doi.org/10.1142/S1793557122502400
https://doi.org/10.1186/s40537-016-0043-6

	Introduction
	Literature Review
	Materials and Methods
	Dataset and Pre-Processing
	Neural Network Architectures
	Model Quantization
	Floating Point Quantization
	Integer Quantization with Representative Data
	Quantization-Aware Training

	Mobile App Deployment
	Evaluation Metrics

	Experimental Results and Discussion
	Model Size
	Classification Model Performance
	Inference Time
	Mobile Device Deployment and Testing

	Conclusions
	Appendix A
	References

