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Abstract: The ability to automatically generate code, i.e., program synthesis, is one of the most
important applications of artificial intelligence (AI). Currently, two AI techniques are leading the way:
large language models (LLMs) and genetic programming (GP) methods—each with its strengths
and weaknesses. While LLMs have shown success in program synthesis from a task description,
they often struggle to generate the correct code due to ambiguity in task specifications, complex
programming syntax, and lack of reliability in the generated code. Furthermore, their generative
nature limits their ability to fix erroneous code with iterative LLM prompting. Grammar-guided
genetic programming (G3P, i.e., one of the top GP methods) has been shown capable of evolving
programs that fit a defined Backus–Naur-form (BNF) grammar based on a set of input/output tests
that help guide the search process while ensuring that the generated code does not include calls to
untrustworthy libraries or poorly structured snippets. However, G3P still faces issues generating
code for complex tasks. A recent study attempting to combine both approaches (G3P and LLMs)
by seeding an LLM-generated program into the initial population of the G3P has shown promising
results. However, the approach rapidly loses the seeded information over the evolutionary process,
which hinders its performance. In this work, we propose combining an LLM (specifically ChatGPT)
with a many-objective G3P (MaOG3P) framework in two parts: (i) provide the LLM-generated code
as a seed to the evolutionary process following a grammar-mapping phase that creates an avenue for
program evolution and error correction; and (ii) leverage many-objective similarity measures towards
the LLM-generated code to guide the search process throughout the evolution. The idea behind using
the similarity measures is that the LLM-generated code is likely to be close to the correct fitting code.
Our approach compels any generated program to adhere to the BNF grammar, ultimately mitigating
security risks and improving code quality. Experiments on a well-known and widely used program
synthesis dataset show that our approach successfully improves the synthesis of grammar-fitting
code for several tasks.

Keywords: program synthesis; large language models; grammar-guided genetic programming;
grammar; multi-objective

1. Introduction

Program synthesis is the process that aims to simplify or automate programming
jobs by providing a toolkit of methods that allow for code generation based on a high-
level description of task intents (e.g., a textual task description, input/output examples,
sketches). The fusion of AI and program synthesis holds immense promise: it can reduce
development time, elevate the quality of programs, and reshape the way we build software.

In recent years, numerous algorithms have been proposed to automate programming
in various programming languages and targeting diverse problems, from simple tasks (e.g.,
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symbolic regression [1–7], string manipulation [8–11], and binary transformation [12–14]),
to more complex challenges (e.g., robot path-finding [6,15], algebraic calculations [14,16–21],
and intricate real-world programming problems). Particularly, Saha et al. [22] proposed
an algorithm to generate a machine learning pipeline using a corpus and a human-
written pipeline. Poliansky et al. [23] utilised genetic programming (GP) and context-
oriented behavioural programming (COBP) in the tic-tac-toe game. Beltramelli introduced
pix2code [24], which leverages convolutional neural networks (CNNs) to generate web
development interface code (HTML/CSS) from screenshots of the graphical user interface.
The AlphaCode developer team harnessed large-scale sampling and transformer language
models to address previously unsolved competitive programming challenges [25]. Despite
the wide range of approaches, GP continues to be a competitive method for addressing
program synthesis challenges [26].

GP [27] devises a program using an evolutionary process. It commences with a popu-
lation of unfit programs and gradually develops them into solutions customised for specific
tasks—a process akin to natural genetic evolution. However, GP faces limitations in de-
vising syntactically correct and semantically meaningful code. Grammar-guided genetic
programming (G3P [28]) evolves programs that fit a predefined grammar, thus improving
the synthesis performance by restricting/confining the search space. Furthermore, having
code that obeys a grammar has several positive impacts, as the grammar can limit the
structure of the code as well as the set of callable functions/methods/libraries. Therefore,
having an impact on (i) security, e.g., using malicious functionalities, blacklisted libraries,
vulnerable structures, etc.; (ii) computing environment, e.g., if the hardware is not able to
handle some functions or if some functions are too costly in terms of memory or energy; and
(iii) code quality, improving readability, reducing code smells, and following design pat-
terns. G3P demonstrated its capability to evolve code in various programming languages to
tackle a diverse range of problems. However, the system’s reliance on randomly generated
populations restricts its efficacy in addressing complicated and extensive scenarios.

Lately, large language models (LLMs) have shown to be successful at different soft-
ware engineering tasks [29–33], including generating source code from textual problem
descriptions. Although LLMs have shown success at program synthesis from a task descrip-
tion, they often struggle to generate correct code due to ambiguity in task specifications
and complex programming syntax (e.g., generating known buggy code [34]). Moreover,
there is a legitimate lack of trust in the generated code as it comes with documented risks
(e.g., generating code with known and risky vulnerabilities [35,36]). The potential for LLM-
generated bad code represents a large and growing risk to software and its stakeholders in
general. Furthermore, LLMs’ generative nature limits their ability to fix erroneous code
with iterative prompting [37,38].

Recent research by Tao et al. [18] proposed an approach that combines the strengths
of G3P and LLMs to evolve programs that fit predefined grammar. Specifically, they
seeded the LLM-generated code into G3P’s initial population by mapping the seed to
fit the predefined grammar. Their results show that they successfully improved some
LLM-generated programs to fit a predefined BNF grammar. However, leveraging LLM-
generated code only as seeds for the initial population causes the algorithm to lose the
seeded information quickly during the evolution process.

To restrict the search space and avoid programs that include bad coding practices/code
smells, use unknown/untrustworthy libraries/functionalities, or do not follow a desired
design pattern, we consider the definition of a “safe” grammar and ensure that any gener-
ated program obeys such grammar—ultimately mitigating security risks and improving
code quality.

While the definition of “safe” grammars is a challenge on its own that warrants several
research studies (i.e., to design and prove them for different tasks), in our work, we are
concerned with the capability to generate correct grammar-fitting programs.
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In our work, we make the following contributions:

• We show that while our considered LLM (i.e., ChatGPT) successfully generates correct
programs for most tasks in a well-known program synthesis benchmark, it struggles
to generate programs that obey the predefined grammars.

• We propose an evolutionary approach, i.e., Many-Objective Grammar-Guided Genetic
Programming (MaOG3P), that exploits the LLM-generated program in two parts while
guaranteeing that any evolved programs adhere to the predefined grammar:

– Leveraging many-objective similarity measures towards the LLM-generated code
to guide the search process throughout the evolution.

– Mapping the LLM-generated program to another program that obeys the prede-
fined grammar while maintaining as much information as possible and using it
as a seed in the initial population.

Our MaOG3P algorithm considers four different similarity measures alongside the
input–output error rate to strategically steer the search process towards more plausible
program candidates and guide the evolutionary search towards solutions that exhibit
structural similarities to the well-performing LLM-generated code. The idea behind using
the similarity measures is that the LLM-generated code is likely to be close to the correct
code. While MaOG3P is inspired by [20,21], such approaches only evaluate the ability to
leverage similarity measures towards the correct program (obtained using an oracle) to
guide the evolutionary process—-thus are not applicable in practice. Furthermore, as seed-
ing is beneficial for evolutionary algorithms (both in single [39] and multi-objective [40]
settings) by acting as a search accelerator/catalyser, there are various ways to source “good”
quality seeds. For instance, Wick et al. [41] provide programs that solve tasks different
from the one at hand (which could have previously been generated by a human or an-
other evolutionary process) to the initial population (in addition to programs generated
randomly). In our work, we follow a similar seeding principle (i.e., adding a program to
the initial population). However, our seeded program is generated by an LLM on the same
task, following its grammar mapping (to align with the grammar in the grammar-guided
genetic programming).

Evaluating our approach on the general program synthesis benchmark suite 1 [42]
demonstrates that MaOG3P effectively evolves the correct grammar-fitting programs for
several tasks. Nevertheless, there are still improvements to be made as, in its default
configuration, MaOG3P does not reach the success rate of the LLM when ignoring the
grammar-fitting constraint.

The remainder of the paper is organised as follows: Section 2 summarises the relevant
background and related work. In Section 3, we introduce our novel MaOG3P approach.
Section 4 outlines the details of our experimental setup. The results and discussions from
our experiments are presented in Section 5. Finally, Section 6 concludes this work and
explores avenues for future studies.

2. Background and Related Work

In this section, we present the background and work related to our study in four areas:
GP, G3P, LLMs, and program similarity measures.

2.1. Genetic Programming

GP is an evolutionary algorithm that produces computer programs by iteratively
evaluating their fitness based on specific tasks. GP aims to create improved programs
by evolving a population of individuals. These individuals start as randomly selected
candidates, often not well suited for the intended purpose. GP employs genetic operators
inspired by natural processes, such as crossover, mutation, and selection. Over time,
various GP systems have been proposed, each possessing unique characteristics (e.g.,
GP [27], Cartesian GP [43], and linear GP [44]).
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2.2. Grammar-Guided Genetic Programming

While numerous GP systems exist, G3P demonstrates outstanding efficacy. G3P,
a variant of GP, utilises grammar as its representation. Notably, two well-known variants
within this framework are grammatical evolution [45] and context-free grammar genetic
programming (CFG-GP) by Whigham [46]. What sets G3P apart is its reliance on gram-
mar as a guiding principle throughout program evolution, ensuring syntactically valid
programs at each stage. Grammars offer adaptability and the ability to define search spaces
externally to the GP system. Consequently, they find applications in diverse domains,
including automated programming [47], transport system management [48], and wireless
communications scheduling [49–53]. Forstenlechner et al. [28] proposed a G3P system
featuring a composite and self-adaptive grammar to address synthesis problems. This in-
novation overcomes the limitation of customising or adjusting grammars for each problem.
The approach involves predefined short grammars, each associated with a specific data
type that describes the function or program to be evolved. By reusing these grammars
across diverse problems, G3P reduces the computation costs while excluding data types
that are irrelevant to the problem. Furthermore, subsequent enhancements in [54] extend
the predefined grammar to include data types for characters instead of handling them as
strings. It also added recursions to the grammar, enabling diverse program structures in
the output program.

2.3. Large Language Models

LLMs are AI algorithms utilising deep learning technologies. These models can
process and understand human languages using neural networks with large amounts
of parameters. The concept underlying LLMs involves predicting the subsequent word
in a sequence based on context. The widespread adoption of LLMs gained momentum
around 2018 [55]. Since then, they have demonstrated impressive performance across a
diverse range of tasks [29–33]. LLMs serve as the foundation for chatbots like OpenAI’s
ChatGPT [56] and Google’s Gemini [57].

ChatGPT [56] is an AI-driven natural language processing tool developed by OpenAI.
It can generate a human-like response based on the user prompt. Beyond answering users’
questions, it can complete complex tasks like programming, composing essays, and editing
emails. Due to its extensive training on a diverse text corpus, ChatGPT can generate content
in various styles and formats.

To improve the programming performance of LLMs, Wang et al. [58] proposed gram-
mar prompting to leverage BNF grammar as external knowledge and domain-specific
constraints. They provided minimally sufficient grammar that can generate solutions for
the input–output examples. For a given new input, LLM first predicts the grammar, and
then, generates an answer according to the predicted grammar. In our work, we would like
to use LLMs to generate code that obeys a predefined grammar instead of using LLMs to
generate a grammar that can be used to generate better programs.

2.4. Approaches for Detecting Program Similarity

The assessment of code similarity serves multiple purposes, including the identifica-
tion of repetitive code, plagiarism detection, and discovering similar bug fixes [59]. This
research has selected the top four similarity metrics identified by Ragkhitwetsagul et al. [60]
to evaluate the fitness in program synthesis within the MaOG3P framework.

2.4.1. FuzzyWuzzy

FuzzyWuzzy [61], an open-source Python library, is designed for string searching
and constructed on top of the difflib library. Within its functionalities, FuzzyWuzzy offers
various similarity functions, including the TokenSortRatio and TokenSetRatio. Interestingly,
researchers discovered that this string-searching algorithm performs well in detecting
code similarity [60]. The TokenSortRatio function tokenises the input string by removing
punctuation, converting capitals to lowercase, and then, sorting the tokens alphabetically.
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The resulting sorted tokens are concatenated to generate the similarity score. In contrast,
the TokenSetRatio function removes common tokens without sorting them.

2.4.2. Cosine

In data science, the cosine similarity calculates the similarity between two vectors.
It can be applied to calculate the similarity between two programs with tokenisation.
The cosine similarity approach for program similarity calculation can be outlined through
the following steps:

• Preprocessing and tokenisation: During this phase, we eliminate extraneous structural
elements and tokenise the source code.

• Construct frequency vector: We compute the token frequencies and store them in a
vector representing term frequencies.

• Similarity score calculation: As shown in Equation (1), we calculate the similarity score
between two source programs by applying the cosine similarity function between two
frequency vectors (denoted as vectors A and B) from the previous step.

cos(A, B) =
A · B
∥A∥∥B∥ =

∑n
i=1 AiBi√

∑n
i=1 (Ai)2

√
∑n

i=1 (Bi)2
(1)

2.4.3. CCFinder

Kamiya et al. [62] proposed CCFinder, a technique that identifies code clones within
source code by leveraging a token-based approach. This approach identifies code clones
using the following main steps: (i) Lexical analysis: this step creates token sequences from
the input source code files by applying language-specific lexical rules. (ii) Transformation:
the system standardises the program’s structure by applying transformation rules to the
token sequences. This standardisation enables the detection of code clones, even in code
that displays diverse expressions. (iii) Clone matching: the suffix-tree matching algorithm
is utilised in this step to determine the code clones. (iv) Formatting: this final step provides
detailed information for each clone pair.

The CCFinder tool, initially intended for large-scale programs, has undergone ad-
justments and simplifications in light of the straightforward code structures used during
our evaluation. The following modifications were made to enhance its suitability for
our context.

• Given our goal of generating a similarity score for two code snippets, we divide the
length of the cloned code by the length of the source code:

Similarity(a, b) =
Len(Clone(a, b))

Max(Len(a), Len(b))
(2)

where Clone(a, b) represents the longest code clone between the code snippets a and
b, while Len(a) denotes the length of the code snippet a in terms of the number
of characters.

• Instead of employing the suffix-tree matching algorithm, we calculate the length of
the common tokens between two code snippets in a matrix form. Each token sequence
corresponds to a dimension in this matrix.

• We also removed the reporting step of code clones. This decision was made because
reporting the line number is no longer essential for our purposes.

2.4.4. SIM

SIM [63], a plagiarism detection tool, specifically caters to assignment plagiarism in
programming courses. It leverages string alignment techniques on the token level to assess
the structural similarity between two C programs. In this way, it identifies plagiarism with
minor local modifications.
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The detection algorithm involves the following essential parts: (i) generating tokens,
and (ii) calculating similarity scores using alignment technology. A token sequence is
extracted from the source program by applying lexical analysis. These tokens represent the
fundamental building blocks of the code, such as keywords, identifiers, literals, and op-
erators. The tokenisation process ensures that the code is broken down into meaningful
units, making it easier to compare and analyse. The alignment starts by dividing the second
token sequence into multiple sections. Each section is aligned with the first token sequence
to get the similarity score. The advantage of such a technique is that it detects plagiarism
by altering function order.

3. Proposed Approach

In this research, we aim to tackle program synthesis problems by generating syntacti-
cally correct programs that fit a BNF grammar, limiting the structure of the code as well as
the set of callable functions/methods/libraries.

Our proposed system (i) prompts an arbitrary LLM (in our case, ChatGPT 3.5) to generate
code based on a task description; (ii) maps the LLM-generated code to another program that
adheres to a predefined BNF grammar; (iii) feeds the mapped program as a seed to our
MaOG3P evolutionary process; then (iv) performs the MaOG3P evolutionary process, which
uses similarity measures towards the LLM-generated code as a secondary objective to guide
the search process. The data and algorithm used in this research, as well as the tools to run
the experiment, are available online (https://github.com/TonBatbaatar/MaOG3P, accessed
on 23 June 2024).

The overview of our proposed approach is shown in Figure 1. Our approach prompts
an LLM (i.e., ChatGPT) to generate code that fulfils the task depicted in the textual descrip-
tion before mapping it into a predefined grammar. Our approach also extends the G3P
system by (i) seeding the resulting grammar-mapped LLM-generated code into the initial
population of the MaOG3P algorithm, and (ii) utilising the error rate (based on a given test
suite) as the primary objective, alongside various code similarity measures as secondary
objectives, to guide the search process.

Figure 1. Overview of our MaOG3P system.

https://github.com/TonBatbaatar/MaOG3P
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3.1. LLM Code Generation

LLMs exhibit remarkable capabilities in code generation based on prompts, which are
user-provided inputs. In our initial research phase, we employed ChatGPT 3.5 to create
code snippets by supplying textual task descriptions. We observed a high success rate in
generating code for the considered benchmark problems and decided to query the LLM
once for each problem with default temperature.

A recent study emphasises the significant influence of input prompt quality on the
effectiveness of LLMs [64,65]. To ensure the quality of the output code, we structure the
task description as a prompt template, as illustrated below.

Prompt Template

Main task: Generate a Python function to solve the task described below.
Task description: {input_task_description}
Output program format: Function parameter name has to be in0, in1 . . . (depends
on how many parameters it needs), and return variable name has to be res0, res1. . .
(depends on how many parameters it needs).

In Main task, we outline the general goal of the query. Subsequently, in the Task
description, we provide a detailed description of each task, and in Output program format, we
add additional structural information to format the output program for our experiment.

3.2. Grammar-Mapping of LLM-Generated Code

In G3P, all programs in the population must adhere to the same grammar rules for
genetic operators, such as crossover, mutation, and selection. Hence, without fitting it to
the predefined grammar, we cannot seed the LLM-generated code into the G3P system.

Initially, we attempted to augment the prompt template with additional grammar
information (as shown below), aiming to guide LLMs into generating code that adheres to
the same grammar as the randomly generated population.

Main task: <Generate a Python function...>
The function should obey the provided BNF grammar.

Task description: {input_task_description}
Output program format: <Function parameter ...>
Output program grammar: {input_task_BNFgrammar}

Unfortunately, specifying the grammar in the LLM prompt decreased the success rate
of generating correct programs (the LLM tends to generate code that does not address the
problem description) and often includes code snippets outside the defined grammar. In re-
sponse, we developed a grammar-mapping algorithm to transform programs into a format
that adheres to a predefined grammar file. In our evolution, we used the automatic grammar
file selection approach proposed in the previous work by Forstenlechner et al. [28,54].

In the context of the mapping algorithm, LLMs generated code conflicts with the
predefined grammar, primarily in three different aspects. First, certain functions used in
the source code lacked support within the BNF grammar, or their function parameters
did not align with those specified by the grammar. For example, in most programming
languages, functions have multiple optional parameters with default values, while in G3P,
the predefined grammar only keeps core parameters (that can be evolved with the genetic
algorithm) for certain functions. Second, while the available variable names are fixed in
the grammar file, the naming scheme for variables in the source code is more flexible.
Third, the structural composition of the source code did not conform to the patterns
established by the target grammar. For example, there were often short expressions for
certain complex programming structures, while the BNF grammar in G3P does not support
these short expressions.

The grammar-mapping strategy is described in Algorithm 1. Specifically, we generate
an abstract syntax tree (AST) T of the provided program p. An AST, as described by
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Baxter [66], is a tree-like data structure to represent the hierarchical structure of a program
or code snippet. This representation can reconstruct code functionally equivalent to the
original, regardless of the target language. We map the AST T of our provided program by
having its root node R iterate through its child nodes and constructing the output program
q recursively using Node_Iterator.

Algorithm 1: Grammar Mapping Algorithm.
Data: Program p from arbitrary source, Grammar G
Result: Grammar-mapped program q
Build Abstract Syntax Tree T from p;
R← Get Root of the T
q← Node_Iterator(R, G)
return q

A general structure of an AST is shown in Figure 2 using an example Python program
“a = 1; b = a + 2”. It contains a root node “Module”, indicating the entry of a program, and a
series of non-terminal and terminal nodes. For example, the “Assign” node represents an
assign expression in Python with its attributes describing its structure, whereas the “Name”
node represents a variable. Non-terminal nodes (node “Assign” in the example) also have
child nodes, each with a sub-tree representing its sub-elements.

Figure 2. AST of an example program “a = 1; b = a + 2”.

Algorithm 2 details the recursion process. We begin by iterating through each child
node n of the given node R. For each child node n, the behaviour changes depending on
whether it is a terminal or a non-terminal node.

We examine whether the value and parameters conflict with the grammar G for non-
terminal nodes. A grammar conflict normally occurs when a certain function in the given
program is not supported in G or does not have the specified number/type of parameters.
When there is no grammar conflict, we construct the output program q using the value of n
in a top-down manner and continue with recursively calling Node_Iterator on node n. We
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build q with a dummy expression if there is a grammar conflict. Specifically, we replace
the whole expression with an assign expression that assigns a variable to itself, which can be
further improved by the genetic programming process during evolution.

Algorithm 2: Node_Iterator.
Data: Abstract Syntax Tree node R, Grammar G
Result: Grammar-mapped program q
for node n ∈ Children(R) do

if n is non-terminal node then
Check value and parameters of non-terminal node n for grammar conflict
in G

if no grammar conflict then
Construct q with the value of non-terminal node n
Node_Iterator(n, G)

else
Build q with a dummy expression

end
else

if n is a variable then
Map variable name in G

else if n is a constant then
Map constant to closest constant in G

else
Map operator name in G

end
end

end
return q

For terminal nodes, we construct q based on the node type. When the node is a variable
“name”, we check if it has previously been mapped, in which case, we map it to the same
one. If the variable “name” has not been previously mapped, we map it in G using the first
unused variable name with the same data type. For the “constant” type, we map it to the
closest constant in G. For the remaining types (i.e., “operators”), we map the operator in G.

3.3. Many-Objective G3P with Seeding

As the likelihood of having a correct program as a result of the mapping phase is low,
we devised a many-objective G3P approach (i.e., MaOG3P) to evolve the grammar-mapped
program while maintaining its similarity with the LLM-generated code.

Figure 3 shows the overview of MaOG3P. We seed the grammar-mapped program into
MaOG3P’s initial population (generated using the selected grammar associated with the
relevant data type for the given problem). The seeding process can initialise the evolution
with a starting point that is closer to the solution of the task, potentially enhancing the
algorithm’s search process. Furthermore, expanding on the input–output error rate fitness
evaluation, our approach incorporates an additional layer of sophistication by integrating
code similarity measures towards the (unmapped) LLM-generated code as secondary
objectives to guide the evolution process.

We considered four different similarity measures, described in Section 2, for our system.
However, our innovation extends beyond mere correctness evaluation. By introducing
code similarity measures as secondary objectives, our aim is not solely to identify the
correct solution but, more importantly, to strategically steer the search process towards
more plausible program candidates.
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Figure 3. Overview of the MaOG3P.

While MaOG3P employs various objectives to evolve the population programs during
the evolution process, we consider that an individual in the population solved the task only
based on the primary objective. In other words, it must accurately pass all test cases for the
given task.

In our study, we modified the tournament selector to accommodate multiple objectives,
enabling the algorithm to evolve programs with different criteria. When selecting the
parents for the next generation, we perform the same as the standard G3P algorithm for
half of the individuals (select parents using input/output error rate). For the other half of
the population, we select one with the primary objective (error rate) and the other with
a secondary objective (code similarity). Considering we have four different similarity
measures as secondary objectives, we iterate with four measures evenly for selecting
the parents.

Determining which individuals can survive in evolution is a critical step for our
algorithm. Similarly to the mechanism for selecting parents, we consider all objectives in
this step. In this scenario, the primary objective decides which individual can survive for
half of the population, while four similarity measures decide the remaining half.

4. Experiment Setup
4.1. Research Questions

We evaluate the performance of our approach by attempting to answer the following
research questions (RQs):

• RQ1: How effective is ChatGPT at program synthesis?
• RQ2: Could we fit ChatGPT-generated code to predefined grammars?
• RQ3: Could we improve the performance of ChatGPT at synthesising programs that

fit predefined grammars using MaOG3P?

4.2. Benchmark Dataset

In our experiment, we use a well-known and widely used benchmark dataset for
program synthesis created by Helmuth and Spector [42,67]. This benchmark suite contains
29 problems selected from introductory-level programming courses. Each problem in the
benchmark comes with a detailed natural language problem description as well as train-
ing/testing input/output test sets. Table 1 shows four problems with their respective task
descriptions. Table 2 indicates the number of train and test cases for each problem. In our
experiments, we evaluated our model and ChatGPT with 28 problems. We have excluded
the problem “String Differences” from our experiment as in previous work by Forsten-
lechner [28]. The original benchmark program tested with PushGP often prints the result,
whereas in G3P, the results are return values. Consequently, the “String Differences” prob-
lem is excluded because it requires multiple return values with different data types that our
grammar cannot accommodate. In our experiment, we use the same grammar as the one
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defined by Forstenlechner et al. [28] (available at: https://github.com/t-h-e/HeuristicLab.
CFGGP/tree/master/HeuristicLab.Problems.Instances.CFG/GrammarConstruction, ac-
cessed on 23 June 2024).

Note that, as we are using LLMs, there is a risk that our benchmark dataset has already
leaked to the ChatGPT training data. However, this is not an issue in our case as, even if the
problems and their respective code have been leaked, the used grammars are unlikely to be
leaked—particularly since we notice in our experiments that most of the LLM-generated
codes do not fit the predefined grammars. Therefore, while the generated code is often
interesting, it is not correct from a grammar point of view.

Table 1. Description of four example problems in the dataset.

Problem Name Description

Even Squares Given an integer n, print all of the positive even perfect squares less than n
on separate lines.

Last Index of Zero Given a vector of integers, at least one of which is 0, return the index of the
last occurrence of 0 in the vector.

Scrabble Score
Given a string of visible ASCII characters, return the Scrabble score for that
string. Each letter has a corresponding value according to normal Scrabble
rules, and non-letter characters are worth zero.

Wallis Pi

John Wallis gave the following infinite product that converges to π/4: (2/3)
* (4/3) * (4/5) * (6/5) * (6/7) * (8/7) * (8/9) * (10/9) * . . . Given an integer
input n, compute an approximation of this product out to n terms. Results
are rounded to 5 decimal places.

Table 2. Number of train and test cases for each problem in the dataset.

Name Train Test Name Train Test

Number IO 25 1000 Count Odds 200 2000
Small Or Large 100 1000 Mirror Image 100 1000
For Loop Index 100 1000 Super Anagrams 200 2000
Compare String Lengths 100 1000 Sum of Squares 50 50
Double Letters 100 1000 Vectors Summed 150 1500
Collatz Numbers 200 2000 X-Word Lines 150 2000
Replace Space with Newline 100 1000 Pig Latin 200 1000
Even Squares 100 1000 Negative To Zero 200 2000
Wallis Pi 150 50 Scrabble Score 200 1000
String Lengths Backwards 100 1000 Word Stats File 100 1000
Last Index of Zero 150 1000 Checksum 100 1000
Vector Average 100 1000 Digits 100 1000
Grade 200 2000 Median 100 1000
Smallest 100 1000 Syllables 100 1000

4.3. Generating Programs Using ChatGPT

The fitness value of each program is computed by transforming it into a Python
function. This function is then executed with all test inputs, and the resulting output
values are compared to the expected outputs. However, the generated code from ChatGPT
tends to be snippets (rather than complete functions) when we provide original problem
descriptions as prompts. It includes print statements instead of reporting the result as
a return value of a function. To address this challenge, we replaced the keyword “print”
with “return” in the task descriptions. Specifically, we requested ChatGPT to devise a
function instead of a code snippet, ensuring that we can seamlessly evaluate the code with
the function’s return value.

https://github.com/t-h-e/HeuristicLab.CFGGP/tree/master/HeuristicLab.Problems.Instances.CFG/GrammarConstruction
https://github.com/t-h-e/HeuristicLab.CFGGP/tree/master/HeuristicLab.Problems.Instances.CFG/GrammarConstruction
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4.4. Parameter Settings

We use ChatGPT 3.5 with the default temperature and use the standard G3P param-
eter settings as used in previous studies [28]. We ran the evolution for each program
synthesis task 30 times. The benchmark suite suggested using 300 generations for most
tasks, while for straightforward synthesis tasks (“Median”, “Number IO”, and “Smallest”),
200 generations are enough. Other settings for our MaOG3P systems are indicated in
Table 3.

Table 3. Experiment parameter settings.

Parameter Setting

Runs 30
Generation 300 a

Population size 1000
Tournament size 7
Crossover probability 0.9
Mutation probability 0.05
Node limit 250
Variable per type 3
Max execution time (s) 1

a Using 200 generations for “Median”, “Number IO”, and “Smallest” as in [42].

5. Results
5.1. Effectiveness of ChatGPT at Program Synthesis (RQ1)

In this subsection, we contrast the performance of ChatGPT against G3P with tourna-
ment selection. Table 4 compares the program generation capabilities between ChatGPT
and G3P in our benchmark problems. For G3P, we denote the problem with a checkmark
(Ë) when the evolution process successfully solves the task at least once across a hundred
runs. In contrast, we use a symbol cross (é) where the evolution fails to solve the task across
a hundred runs. For ChatGPT, the checkmark (Ë) indicates a correct program generated
using the predefined grammar, the circle checkmark () notes the problem was solved
violating the predefined grammar, while a cross symbol (é) means it failed to generate a
correct program.

ChatGPT exhibited impressive capabilities in tackling program synthesis tasks, finding
solutions for 26 out of the 28 considered problems. For the two failed tasks, it produced
programs that closely approached the solution of the task. In particular, for one of the
unsuccessful tasks, namely, “Wallis Pi”, ChatGPT failed to understand the natural language
prompt fully. The task requested the result for π

4 , but ChatGPT provided a solution for
calculating the value of π

2 . For another problem, named “Digits”, the task asked for a
program to split the digits of a given number. ChatGPT encountered problems when
handling negative numbers. However, we do not know if the problems in our dataset have
already leaked into the ChatGPT training data. Considering that most generated programs
do not obey the defined grammar, we can say that the grammar has not leaked. Therefore,
while the generated code is often interesting, it is not correct from a grammar point of
view. Detailed programs obtained by our prompting of ChatGPT are available online (avail-
able at: https://github.com/TonBatbaatar/MaOG3P/tree/main/HeuristicLab.Algorithms.
CFG.MultiObjective/PSB1_Solution/json/ChatGPT, accessed on 23 June 2024).

https://github.com/TonBatbaatar/MaOG3P/tree/main/HeuristicLab.Algorithms.CFG.MultiObjective/PSB1_Solution/json/ChatGPT
https://github.com/TonBatbaatar/MaOG3P/tree/main/HeuristicLab.Algorithms.CFG.MultiObjective/PSB1_Solution/json/ChatGPT
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Table 4. Comparison of ChatGPT and G3P on benchmark problems.

Benchmark Problem G3P ChatGPT
Number IO Ë Ë

Small Or Large Ë

For Loop Index é

Compare String Lengths é

Double Letters é

Collatz Numbers é

Replace Space with Newline Ë

Even Squares é

Wallis Pi é é

String Lengths Backwards Ë

Last Index of Zero Ë

Vector Average é

Count Odds Ë Ë

Mirror Image Ë

Super Anagrams é

Sum of Squares é

Vectors Summed é

X-Word Lines é

Pig Latin é

Negative To Zero Ë

Scrabble Score é

Word Stats é

Checksum é

Digits é é

Grade Ë

Median Ë

Smallest Ë

Syllables Ë

Number of Problems Solved 12 2 a

a Total of 24 problems solved with violating the predefined grammar.

5.2. Fitting ChatGPT-Generated Code to Predefined Grammars (RQ2)

Our proposed grammar-mapping algorithm successfully mapped all the code snippets
produced by ChatGPT into programs conforming to the MaOG3P grammar. However,
in certain cases, some structural details were ignored in the mapped program due to signif-
icant grammar conflicts. Based on the amount of information we successfully mapped, we
categorised the mapping status into three distinct levels, as shown in Table 5. When the al-
gorithm can map LLM-generated code without grammar conflict, we note it as “completely
mapped” (denoted as Ë). We consider the mapping status as “partially mapped” (denoted
as ) when most information is successfully mapped in a code that fits the predefined
grammar. Otherwise, we note the mapping status as “poorly mapped” (denoted as é),
which indicates the grammar-mapped code contains minimal information from the source
code. For 13 problems, the LLM-generated code was successfully mapped to programs
that adhere to the BNF grammar without any loss of information (i.e., completely mapped).
The LLM-generated code was mapped to nearly solved programs in four cases, demon-
strating close alignment with the desired solutions (i.e., partially mapped). Unfortunately,
for 10 problems, large grammar conflicts prevented successful mapping. These cases are
categorised as poorly mapped.
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Table 5. Status of the grammar-mapping process for LLM-generated code.

Problem Grammar
Mapping Status

Problem Grammar
Mapping Status

NumberIO Ë Last Index of Zero

Small Or Large Ë Vector Average é

For Loop Index Ë Count Odds Ë

Compare String
Lengths Ë Mirror Image Ë

Double Letters Ë Super Anagrams é

Collatz Numbers Ë Sum of Squares é

Replace Space with
Newline  Vectors Summed é

Even Squares  X-Word Lines é

Wallis Pi Ë Pig Latin é

String Lengths
Backwards é Negative To Zero é

Digits  Scrabble Score é

Grade Ë Word Stats é

Median Ë Checksum é

Smallest Ë Syllables Ë

5.2.1. Partially Mapped Code Analysis

In this subsection, we analyse the four grammar-mapped programs categorised as
“partially mapped” from Table 5 (i.e., “Replace Space with Newline”, “Even Squares”, “Last
Index of Zero”, and “Digits”). Our analysis examines the portions of code that could not be
accurately mapped.

• Replace Space with Newline: This task involves counting the number of newline char-
acters in a given string. LLM-generated code counts the number of newlines by
using an advanced Python grammar “List Comprehension”. However, this particu-
lar grammar rule is not included in the predefined BNF grammar. Consequently,
the grammar-mapping algorithm replaced it with a dummy expression.

• Even Squares: In this task, ChatGPT used a range function with three parameters to
iterate through the loop. However, in our grammar, the range function contains only
two parameters. Therefore, when mapping the range function, the algorithm ignored
the extra parameter (i.e., the step parameter). Another grammar conflict occurred
when mapping the is_integer function because the predefined grammar does not
support such a function. This type of grammar conflict is replaced with a dummy
expression for further evolutionary improvements.

• Last Index of Zero: The same parameter conflict for mapping the range function oc-
curred in this task. In addition to this similar conflict, ChatGPT used the break
statement to terminate the loop while the break statement is not defined in the
BNF grammar.

• Digits: ChatGPT solved this task using multiple return statements with different
outputs, while the MaOG3P grammar only allows the program to use the return
statement once to return the output variable. The mapping algorithm handled this
conflict by replacing the extra return statements with dummy expressions.

5.2.2. Poorly Mapped Programs Analysis

In this subsection, we analysed ten “poorly mapped” problems in four categories
based on the type of grammar conflicts.

• “String Lengths Backwards”, "Sum of Squares”, Vectors Summed”, and “Negative To Zero”:
ChatGPT solved these problems with one line “list comprehension” functions while
such expressions are not defined in our grammar.
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• “Checksum”, Vector Average”: When mapping the program for these tasks, significant
grammatical conflicts adversely affected the mapping performance.

• “X-Word Lines”, Pig Latin”, Word Stats”: ChatGPT used the split function to solve
these string manipulation tasks. However, our BNF grammar defined a split function
integrated with a loop that cannot be used separately. This raised a grammar conflict
that the mapping algorithm could not address. ChatGPT also builds the output string
for the task by using the join function, which is not defined in our grammar.

• “Super Anagrams”, Scrabble Score”: The choice of data structure is limited in our BNF
grammar. ChatGPT used a dict to solve these problems while the dict data structure
is not defined in the grammar.

5.3. Performance of Our Proposed Approach (RQ3)

We evaluated our proposed approach by comparing the performance of its components
when taken separately. We particularly compare our approach against ChatGPT, G3P, G3P
with a seeded grammar-mapped ChatGPT-generated code, and MaOG3P using ChatGPT-
generated code as the target code for similarity calculations. In our experiments, each
system underwent 30 runs on every problem. We report the number of successful runs in
Table 6. A run was considered successful if it found at least one correct solution that passed
all training and test cases.

Table 6. Performance of ChatGPT, G3P, seeded G3P, MaOG3P without seeding, and MaOG3P with
seeding, measured by number of times out of 30 runs a correct program is found. For ChatGPT, we
consider it solved the problem if it generated the correct solution by obeying the predefined grammar.
When ChatGPT found the solution but violated the grammar, we noted it as partially solved ().
When It generated an incorrect solution, we noted it as failed (é).

Benchmark
Problem ChatGPT G3P G3P

ChatGPT
Seeding

MaOG3P
No Seeding

MaOG3P
ChatGPT
Seeding

NumberIO Ë 17 30 20 30
Small Or Large  0 30 0 30
For Loop Index  0 30 0 30
Compare String Lengths  0 30 0 30
Double Letters  0 30 0 30
Collatz Numbers  0 30 0 30
Replace Space with Newline  1 10 1 12
Even Squares  0 0 0 0
Wallis Pi é 0 0 0 0
String Lengths Backwards  3 1 2 4
Last Index of Zero  6 30 5 30
Vector Average  0 0 0 0
Count Odds Ë 0 30 0 30
Mirror Image  20 30 21 30
Super Anagrams  0 0 0 0
Sum of Squares  0 0 0 0
Vectors Summed  0 0 0 0
X-Word Lines  0 0 0 0
Pig Latin  0 0 0 0
Negative To Zero  1 2 0 3
Scrabble Score  0 0 0 0
Word Stats  0 0 0 0
Checksum  0 0 0 0
Digits é 0 0 0 0
Grade  0 30 0 30
Median  12 30 14 30
Smallest  28 30 30 30
Syllables  0 30 0 30

Number of Problems Solved 2 8 16 7 16
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Overall, our proposed approach outperformed all the compared approaches. Specif-
ically, our MaOG3P system outperformed ChatGPT, the G3P system, and the MaOG3P
system using ChatGPT-generated code as a target code for similarity calculation in terms
of the number of solved tasks using the predefined grammar in the benchmark suite.
Moreover, our approach significantly improved the success rate of solved problems. Com-
pared to G3P with seeded grammar-mapped programs, our proposed MaOG3P algorithm
demonstrated better success rates across all problems.

While our approach may not surpass ChatGPT in generating correct code for unspec-
ified grammars, it excels in refining LLM-generated programs to adhere to predefined
grammars, having fixed a total of 14 programs that were violating the predefined gram-
mar. However, it failed to address two unsolved problems with ChatGPT in its default
configuration. By seeding a program resembling the solution code, our proposed approach
doubled the number of problems solved compared to the G3P algorithm. This highlights
the significant enhancement in the search process facilitated by the seeding approach.
Furthermore, employing multi-objective optimisation with MaOG3P improved the success
rate compared to G3P with seeding, demonstrating the efficacy of similarity measures in
guiding the search process towards the correct solution.

We measure if there is a significant improvement in performance by calculating the
p-value of the Wilcoxon rank-sum test on the best test fitness value (error-rated fitness value
for MaOG3P) of each run from G3P and the proposed approach comparison experiment.
The results are shown in Table 7. We use 0.05 as the significance level and highlight the
value in bold for significant improvements. Overall, our proposed approach significantly
improved the performance regarding the best fitness value of each run for 15 problems.
We significantly improved all problems that were seeded with “completely mapped” code,
except for the problem “Smallest” as G3P performed well in solving this easy problem.
For problems seeded with “partially mapped” code, we achieved significantly better fitness
values for all problems. Interestingly, we achieved significantly better fitness values for the
problems “Even Squares” and “Digits”, even though we did not evolve the correct solution.
We did not achieve significantly better fitness value for any of the problems seeded with
“poorly mapped” programs. Therefore, a large effort needs to be made in the future to
devise advanced and more effective grammar-mapping techniques.

Table 7. The p-value for the Wilcoxon rank-sum test using best fitness of each run comparing G3P
and proposed MaOG3P.

Problem p-Value Problem p-Value
NumberIO 0.034843 Last Index of Zero 0.000751
Small Or Large 0.000062 Vector Average 0.143140
For Loop Index 0.000064 Count Odds 0.000064
Compare String Lengths 0.000033 Mirror Image 0.077872
Double Letters 0.000055 Super Anagrams 0.377587
Collatz Numbers 0.000063 Sum of Squares 0.739364
Replace Space with Newline 0.001609 Vectors Summed 0.393048
Even Squares 0.040793 X-Word Lines 0.795936
Wallis Pi 0.357296 Pig Latin 0.325468
String Lengths Backwards 0.037062 Negative To Zero 0.265681
Digits 0.000064 Scrabble Score 0.421242
Grade 0.000064 Word Stats 0.279861
Median 0.005943 Checksum 0.545199
Smallest 0.168078 Syllables 0.000064

A significant different is highlighted in bold.
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Next, we examine the ability of the proposed approach to improve incomplete seeded
codes. In two specific tasks, namely, “Replace Space with Newline” and “Last Index of
Zero”, where partially mapped code was initially seeded to the MaOG3P system, our
approach successfully rectified the code and demonstrated an enhanced success rate.
Nevertheless, for the rest of the problems in the “partially mapped” category (i.e., “Even
Square” and “Digits”), MaOG3P struggled to rectify incomplete code despite its proximity
to the correct solution. Still, our approach successfully fixed the code for problems “String
Lengths Backwards” and “Negative To Zero”, where the seeded grammar-mapped code
contained minimal information from the original ChatGPT-generated code.

6. Conclusions and Future Work

In this paper, we proposed combining LLMs (specifically ChatGPT) with MaOG3P to
tackle program synthesis tasks by generating programs that are not only correct but fit a pre-
defined grammar with a limited code structure and callable functions/methods/libraries,
with a large potential to reduce security threats and improve code quality.

We utilise the programs generated by ChatGPT as seeds in MaOG3P’s initial popula-
tion following a grammar-mapping process. Furthermore, ChatGPT-generated programs
are also used in MaOG3P’s calculation of secondary objectives by serving as a target code
for code similarity assessments.

We conducted an in-depth experimental evaluation using a program synthesis bench-
mark. The experimental analysis showed that our approach enhanced the program syn-
thesis ability of G3P for several problems, while alleviating the shortcomings and risks
associated with LLM-generated code. Our approach facilitates the integration of diverse
system strengths with evolutionary methods, allowing adaptation to a broader spectrum of
problems across various programming languages and grammatical structures.

In our future research, we intend to enhance the grammar-mapping algorithm to
accommodate a broader range of data structures, thereby maximising the utilisation of
grammar-mapped code within the evolutionary process. We also endeavour to study
the quality of the code generated by our approach in future work. Moreover, we plan to
investigate the effect of using LLMs with different accuracy levels on the efficiency of our
MaOG3P, particularly open-source LLMs that have been fine-tuned for code generation
tasks, as well as investigating the performance of different multiple-objective optimisation
algorithms as part of MaOG3P.
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