
Citation: Mihova, E.I.; Sotskov, Y.N.

Mixed Graph Colouring as

Scheduling a Partially Ordered Set of

Interruptible Multi-Processor Tasks

with Integer Due Dates. Algorithms

2024, 17, 299. https://doi.org/

10.3390/a17070299

Academic Editor: Roberto

Montemanni

Received: 16 May 2024

Revised: 20 June 2024

Accepted: 1 July 2024

Published: 6 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Mixed Graph Colouring as Scheduling a Partially Ordered Set of
Interruptible Multi-Processor Tasks with Integer Due Dates
Evangelina I. Mihova 1 and Yuri N. Sotskov 2,*

1 Mathematical Institute, Faculty of Mathematics, Computer Science and Statistics,
Ludwig-Maximilians-Universitat Munich, Geschwister-Scholl-Platz, 1, 80539 Munich, Germany;
evangelinamihova@gmail.com

2 United Institute of Informatics Problems, National Academy of Sciences, 6 Surganov Street,
220012 Minsk, Belarus

* Correspondence: sotskov48@mail.ru; Tel.: +375-17-249-61-20

Abstract: We investigate relationships between scheduling problems with the bottleneck objective
functions (minimising makespan or maximal lateness) and problems of optimal colourings of the
mixed graphs. The investigated scheduling problems have integer durations of the multi-processor
tasks (operations), integer release dates and integer due dates of the given jobs. In the studied
scheduling problems, it is required to find an optimal schedule for processing the partially ordered
operations, given that operation interruptions are allowed and indicated subsets of the unit-time
operations must be processed simultaneously. First, we show that the input data for any considered
scheduling problem can be completely determined by the corresponding mixed graph. Second, we
prove that solvable scheduling problems can be reduced to problems of finding optimal colourings of
corresponding mixed graphs. Third, finding an optimal colouring of the mixed graph is equivalent to
the considered scheduling problem determined by the same mixed graph. Finally, due to the proven
equivalence of the considered optimisation problems, most of the results that were proven for the
optimal colourings of mixed graphs generate similar results for considered scheduling problems, and
vice versa.

Keywords: scheduling; maximal lateness; makespan; multi-processor task; mixed graph colouring

1. Introduction

For optimal production planning and scheduling, it is required to construct an optimal
schedule for processing a set of tasks (jobs) using existing equipment (processors). Optimi-
sation of a schedule is a key factor in improving efficiency, as it allows a scheduler to reduce
production costs, the time of the execution of incoming customer orders and the timely
supply of production processes with raw materials and other components that are required
for the manufacture of final products. Practical production scheduling (planning) problems
are diverse in terms of conditions, restrictions and the objectives to be achieved by optimal
schedules. To solve a large number of scheduling problems, special models and algorithms
have been developed that take into account the specific conditions and objectives of concrete
production planning. An extension of the application areas of scheduling algorithms can
be based on a generalisation of scheduling models for complicated multi-stage systems in
order to present different problem sets and to develop universal methods for constructing
optimal schedules on the basis of the generalised scheduling models.

It is well known that the construction of the makespan-optimal schedule for fulfilling
operations of equal duration reduces the construction of the optimal colouring of vertices
of the graph. If it is required to consider precedence constraints specified on the operation
set and the impossibility of processing two or more tasks simultaneously on the same
processor, then, to determine the makespan-optimal schedule for fulfilling the unit-time
operations, one can use the optimal colouring of the mixed graph [1,2].

Algorithms 2024, 17, 299. https://doi.org/10.3390/a17070299 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a17070299
https://doi.org/10.3390/a17070299
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-9971-6169
https://doi.org/10.3390/a17070299
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a17070299?type=check_update&version=2

Algorithms 2024, 17, 299 2 of 27

In this paper, we focus on scheduling problems with integer operation durations and
job release dates to minimize the makespan Cmax or maximal lateness Lmax of the given
jobs with integer due dates.

Let G = (V, A, E) be a mixed graph with the set V =
{

v1, v2, . . . , v|V|
}
̸= ∅ of vertices,

the set A of arcs and the set E of edges. Each arc determines an ordered pair of vertices
from the set V. Each edge determines an unordered pair of vertices. The mixed graph G
considered in this paper does not contain loops, multiple arcs and multiple edges. For the
empty set of arcs, we obtain the graph G = (V,∅, E). For the empty set of edges, we obtain
the directed graph G = (V, A,∅) (the digraph for short).

In [3], a colouring of the mixed graph was defined.

Definition 1 ([3]). A function c : V → {1, 2, . . . , t} is called a colouring c(G) of a mixed
graph G = (V, A, E) if the inequalities c(vi) ≤ c(vj) hold for all arcs (vi, vj) ∈ A and the
relations c(vp) ̸= c(vq) hold for all edges [vp, vq] ∈ E. A colouring c(G) is optimal if this colour-
ing uses a minimal number χ(G) of colours c(vi) ∈ {1, 2, . . . , t}. The minimal number χ(G) is
called a chromatic number of the mixed graph G.

If the equality A = ∅ holds, then the colouring c(G) is an ordinary colouring of the
graph G = (V,∅, E). The mixed graph (V, A, E) with the non-empty set of arcs and the
non-empty set of edges may not be colourable [3].

Theorem 1 ([3]). A colouring c(G) of vertices of mixed graph G = (V, A, E) exists if and only if
the directed graph (V, A,∅) has no circuit containing the adjacent vertices in the graph (V,∅, E).

Finding an optimal colouring of the vertices of the mixed graph G = (V, A, E) is an
NP-hard problem, even if A = ∅; see [4]. The NP-hardness of the optimisation problem
means that it is unlikely that there exists a polynomial algorithm for solving this problem,
since there is a polynomial reduction to this problem from a huge number of NP-hard
problems, while there is no polynomial algorithm for each of them yet.

In [1,2], it is proven that a job-shop problem with equal (unit) durations of operations
with the objective of minimising a schedule length (i.e., makespan) reduces to a problem of
finding the optimal colouring of the mixed graph G = (V, A, E).

In this paper, we show that finding the optimal colouring c(G) reduces to the problem
of constructing a schedule that minimizes a maximal lateness for processing multi-processor
tasks with integer durations, integer due dates and allowed operation interruptions. The
converse is also proven. Processing a multi-processor task requires several dedicated
processors; see Chapter 10 of the monograph [5]. Moreover, two types of precedence
constraints can be specified for the multi-processor tasks, and the unit-time operations of
the indicated subset must be processed simultaneously.

The remaining part of this paper is organised as follows. The settings of considered
scheduling problems, preliminary results and notation are given in Section 2. Related
papers are cited, where it has been shown that the problem of finding an optimal colouring
of the mixed graph reduces to finding a makespan-optimal schedule for partially ordered
operations with unit processing times. Scheduling problems are discussed in increasing
order of their complexity. Section 3 demonstrates that the problem of optimal colouring of
the mixed graph reduces to finding a makespan-optimal schedule of the multi-processor
tasks with equal durations. In Section 4, we discuss scheduling problems of minimising
maximal lateness of completing jobs with respect to integer due dates. New results are
proven, demonstrated, and discussed in Sections 4–8. The possibility of interruptions
processing integer-time tasks is studied in Section 5. A theorem is proven on the reduction
of the optimal colouring c(G) to the scheduling problems with a minimisation of the
makespan for the interrupted integer–time tasks with integer release dates of the jobs. An
illustrative example of the studied scheduling problem is solved in Section 6. Section 7
includes a theorem on the equivalence of scheduling problems with a maximal lateness

Algorithms 2024, 17, 299 3 of 27

objective and the problem of finding optimal colourings of the mixed graphs. Due to the
proven equivalence of the problems of constructing optimal schedules and mixed graph
colouring problems, many claims that have been proven for scheduling problems can be
applied to the problems of optimal mixed graph colourings, and vice versa. In Section 8,
we discuss new findings and their potential implications. Section 9 contains concluding
remarks and promising future research directions. The new theorems and most of the
theorems presented in the survey section are demonstrated in the numerical examples in
the main text and in Appendices A and B.

2. Related Works, Definitions, and Preliminaries

In the following, terminology from [5] is used for scheduling problems and termi-
nology from [6,7] is used for graph theory. To classify scheduling problems, a three-field
notation α|β|γ [5] is used, where α determines the processing system, field β determines
the characteristics of the jobs, and field γ an objective function.

2.1. Minimum Length Unit-Time Job-Shop Problems

We begin by examining the unit-time scheduling problem J
∣∣tij = 1

∣∣Cmax of construct-

ing a makespan-optimal schedule for fulfilling the set J =
{

J1, J2, . . . , J|J|
}

of the given

jobs by the dedicated processors M =
{

M1, M2, . . . , M|M|
}

. The execution of the job

Ji ∈ J entails the execution of the ordered set Q(i) =
{

Qi1, Qi2, . . . , Qi,|Q(i) |

}
of operations

with unit (equal) durations tij = 1 in the strict linear order (Qi1, Qi2, . . . , Qi,|Q(i) |) on the

corresponding processors from the set M. The operation Qij ∈ Q(i) is performed by the
processor Mµ(ij) ∈ M.

This processing system is called a job-shop, denoted α = J in the three-field notation
J
∣∣tij = 1

∣∣Cmax used for this problem. The notation Cmax is used to specify the optimality
criterion of minimising the makespan Cmax = max{Ci : Ji ∈ J} (the schedule length) in
the desired optimal schedule, where Ci denotes the completion time of the job Ji ∈ J. All
jobs in the set J =

{
J1, J2, . . . , J|J|

}
are ready for processing from the same release date

r = 0. Interruptions are not allowed during the execution of an operation Qij ∈ Q(i) with

Ji ∈ J. A schedule S for processing the job set J =
{

J1, J2, . . . , J|J|
}

is determined either
by the start times S(Qij) ≥ 0 = t or by the completion times C(Qij) = S(Qij) + tij of

the operations Qij ∈ Q := ∪|J|i=1Q(i). The length (makespan) of the schedule S is equal to
Cmax(S) = max

{
C(Qij) : Qij ∈ Q

}
.

Let the subset Qk of the set Q consist of operations to be fulfilled by the processor
Mk ∈ M. Given that every pair of operations within the set Qk must not be executed
simultaneously, any schedule that exists for a job-shop problem J

∣∣tij = 1
∣∣Cmax determines

|M| strict linear orders of the operations Qk fulfilled by the processors Mk ∈ M. An optimal
schedule for the problem J

∣∣tij = 1
∣∣Cmax.

S = (C(Q1,1), C(Q1,2), . . . , C(Q1,|Q(1) |), C(Q2,1), C(Q2,2), . . . , C(Q2,|Q(2) |), . . . , (1)

C(Q|J|,1), C(Q|J|,2), . . . , C(Q|J|,|Q(|J|) |))

has the minimum length Cmax(S) among all schedules that exist for this problem.
The objective function for each regular criterion is a non-decreasing function of the

arguments Ci := C(Qi,|Q(i) |), where Ji ∈ J. When solving the scheduling problem α|β|γ
with a regular criterion γ, the optimal schedule can be found within the set of semiactive
schedules [5].

Definition 2 ([5]). The schedule S for the problem α|β|γ is semiactive, if the execution of every
operation cannot be processed earlier without violating the operation order in schedule S or another
operation is processed later than in this schedule.

Algorithms 2024, 17, 299 4 of 27

2.2. Optimal Strict Colourings of Mixed Graphs and Equivalent Unit-Time Job-Shop Problems

The paper [3] introducing Definition 1 was published in Russian. In 1997, another
colouring of mixed graph c<(G) was introduced in the paper [8], published in English.

Definition 3 ([8]). The function c< : V → {1, 2, . . . , t} is a strict colouring c<(G) of the mixed
graph G = (V, A, E), if the inequalities c<(vi) < c<(vj) hold for all arcs (vi, vj) ∈ A and the
relations c<(vp) ̸= c<(vq) hold for all edges [vp, vq] ∈ E. The strict colouring c<(G) is optimal,
if this colouring uses a minimum number of colours c<(vi) ∈ {1, 2, . . . , t}.

We can use colouring c(G) instead of strict colouring c<(G) of vertices of the mixed
graph G = (V, A, E) provided that the following implication holds for every arc (vi, vj) ∈ A :

(vi, vj) ∈ A⇒ [vi, vj] ∈ E (2)

If the mixed graph G = (V, A, E) includes the arc (vi, vj) ∈ A and the implication (2)
does not hold, one can add an edge [vi, vj] to the mixed graph G for each such arc (vi, vj) ∈ A.
A strict colouring c<(G) of the mixed graph G can be represented as a colouring c(G) of
the mixed graph obtained by including all such edges to the mixed graph G. Thus, the
following lemma is obtained.

Lemma 1. A strict colouring c<(G) of the mixed graph G = (V, A, E) can be interpreted as a
special case of the colouring c(G), if the inclusion (vi, vj) ∈ A implies the inclusion [vi, vj] ∈ E.

A criterion for the existence of a strict colouring of vertices of the mixed graph
G = (V, A, E) is determined by Corollary 1 of Theorem 1.

Corollary 1 ([1]). A strict colouring c<(G) exists if and only if the digraph (V, A,∅) does not
contain a circuit.

Theorem 2 was proven in [1].

Theorem 2 ([1]). The unit-time scheduling problem J
∣∣tij = 1

∣∣Cmax is equivalent to the problem
of finding the optimal strict colouring of vertices of the mixed graph G = (V, A, E) with V = Q,
provided that two conditions hold as follows:

(a) (Q, A,∅) = ∪|J|i=1(Qi, Ai,∅), where each subgraph (Qi, Ai,∅) is a path passing through
the vertices Qi and equality Qi∩Qj = ∅ holds for indexes i ̸= j;

(b) (Q,∅, E) = ∪|M|k=1(Q
(k),∅, E(k)), where each subgraph (Q(k),∅, E(k)) is a complete graph

on the set Qi and equality Q(k)∩Q(l) = ∅ holds for indexes k ̸= l.

Due to Lemma 1 and Theorem 2, one can obtain the following corollary.

Corollary 2 ([1]). The unit-time scheduling problem J
∣∣tij = 1

∣∣Cmax is equivalent to the problem
of determining the optimal colouring of the mixed graph G = (V, A, E), where the relations{

v1, v2, . . . , v|V|
}
= V = Q =

{
Q1,1, Q1,2, . . . , Q1,|Q1|, Q2,1, Q2,2, . . . , Q2,|Q2|, . . . , Q|J|,1, Q|J|,2, . . . , Q|J,|Q|J| |

}
hold along with the above conditions (2), (a) and (b).

To illustrate Corollary 2, we consider Example 1 of the problem J
∣∣tij = 1

∣∣Cmax , whose
input data are determined by the corresponding mixed graph G.

Remark 1. Since all operations Qij ∈ Qi in the unit-time scheduling problem J
∣∣tij = 1

∣∣Cmax have
unit processing times, we represent each operation as a vertex in the mixed graph G = (V, A, E) with
indexing the vertices in the set V in the lexicographic order of the pairs {i, j} of the indexes

Algorithms 2024, 17, 299 5 of 27

of the corresponding operations Qij ∈ Qi, Ji ∈ J. Thus, we obtain the following set V ={
v1, v2, . . . , v|V|

}
of vertices, where the equality

∣∣∣∣∣V
∣∣∣∣∣= |J|

∑
i=1

∣∣∣Q(i)
∣∣∣ holds.

Example 1. The dedicated processors M = {M1, M2, M3, M4} must process jobs
J = {J1, J2, J3, J4, J5}, where processing the job J1 ∈ J consists of the singleton V(1) = {v1}.
The job J2 ∈ J is represented as a union of the path (v2, v3) in the digraph (V, A,∅) and the
chain (v2, v3) in the graph (V,∅, E). The job J3 ∈ J contains the set V(3) = {v4, v5, v6, v7} of the
ordered operations (v4, v5, v6, v7). The job J3 ∈ J is represented as a union of the path (v4, v5, v6, v7)
in the digraph (V, A,∅) and the chain (v4, v5, v6, v7) in the graph (V,∅, E). The job J4 ∈ J con-
tains the set V(4) = {v8, v9, v10} of the linearly ordered operations (v8, v9, v10). The job J4 ∈ J is
represented as a union of the path (v8, v9, v10) in the directed graph (V, A,∅) and the (v8, v9, v10) in
graph (V,∅, E). The job J5 ∈ J contains the set V(5) = {v11, v12} of the ordered operations (v11, v12).
The job J5 ∈ J is represented as a union of the path (v11, v12) in directed graph (V, A,∅) and the
chain (v11, v12) in graph (V,∅, E).

Let the set V1 = {v1, v5, v7} be defined as a set of operations processed on the processor
M1. The forbiddance to process the operations of the set V1 simultaneously is determined
by the clique {v1, v5, v7} in the graph (V,∅, E); see Figure 1. Let the processor M2 have
to process the operations V2 = {v2, v4}. The forbiddance to process operations of the
set V2 simultaneously is determined by the edge [v2, v4]. Let the processor M3 have to
process the operations V3 = {v3, v9, v11}. The forbiddance to process operations of the set
V3 simultaneously is determined by the clique {v3, v9, v11}. Let the processor M4 have to
process the operations V3 = {v9, v11, v15}. The forbiddance to process any pair of operations
of the set V3 simultaneously is determined by the clique {v9, v11, v15}. Let the processor
M4 have to process the operations V4 = {v6, v8, v10, v12}. The forbiddance to process any
pair of operations of the set V4 simultaneously is determined by the clique {v6, v8, v10, v12}.

Algorithms 2024, 17, 299 6 of 32

processor 3M have to process the operations 3V = },,{ 1193 vvv . The forbiddance to

process operations of the set 3V simultaneously is determined by the clique },,{ 1193 vvv .

Let the processor 4M have to process the operations 3V = },,{ 15119 vvv . The

forbiddance to process any pair of operations of the set 3V simultaneously is determined

by the clique },,{ 15119 vvv . Let the processor 4M have to process the operations 4V =

},,,{ 121086 vvvv . The forbiddance to process any pair of operations of the set 4V

simultaneously is determined by the clique },,,{ 121086 vvvv .

A specific colour is used for indicating the operations 𝑉௜ ൌ ሼ𝑣௜భ , 𝑣௜మ , . . . , 𝑣௜|ೇ೔|ሽ ⊆ 𝑉

that are processed on the processor 𝑀௜ ∈ 𝑀; see Figure 1. It is clear that the mixed graph

depicted in Figure 1 possesses properties (1), (a) and (b), and the indexing of all vertices

of the set V satisfies Remark 1. The optimal colouring of the mixed graph G is defined
as follows: cሺvଵሻ ൌ 1, cሺvଶሻ ൌ 2, cሺvଷሻ ൌ 3, cሺvସሻ ൌ 1, cሺvହሻ ൌ 2, cሺv଺ሻ ൌ 3, cሺv଻ሻ ൌ 4,
cሺv଼ሻ ൌ 1, cሺvଽሻ ൌ 2, cሺvଵ଴ሻ ൌ 4, cሺvଵଵሻ ൌ 1 and cሺvଵଶሻ ൌ 2 . The optimality of the

colouring cሺGሻ follows from the fact that the graph),,(EV  contains the chain

),,,(7654 vvvv with four vertices and the digraph),,(AV contains the path

),,,(7654 vvvv . So, the chromatic number)(G is not less than four. The optimality of the

colouring cሺGሻ follows also from the clique },,,{ 121086 vvvv .

Figure 1. Mixed graph G that determines input data for Example 1.

Due to Corollary 5, an optimal colouring 𝑐ሺ𝐺ሻ defines the following optimal

semiactive schedule S for Example 1 with the input data shown in Figure 1:

,4)(,3)(,2)(,1)(,3)(,2)(,1)((4,33,32,31,32,21,21,1  QCQCQCQCQQCQCS

2)(,1)(,4)(,2)(,1)(2,51,53,42,41,4  QCQCQCQCQC

Due to Corollary 5, we obtain the chromatic number 𝜒ሺ𝐺ሻ ൌ 4 ൌ 𝐶௠௔௫ሺ𝑆ሻ.

2.3. General Shop Minimum‐Length Unit‐Time Scheduling Problems

The general shop scheduling problem max|1| CtG ijc  is a generalisation of the

job‐shop scheduling problem max|1| CtJ ij  . In the former problem max|1| CtG ijc  , in

addition to the strict order that is determined on the set of operations
)(iQ of the same

Figure 1. Mixed graph G that determines input data for Example 1.

A specific colour is used for indicating the operations Vi =
{

vi1 , vi2 , . . . , vi|Vi |

}
⊆ V

that are processed on the processor Mi ∈ M; see Figure 1. It is clear that the mixed
graph depicted in Figure 1 possesses properties (1), (a) and (b), and the indexing of all
vertices of the set V satisfies Remark 1. The optimal colouring of the mixed graph G
is defined as follows: c(v1) = 1, c(v2) = 2, c(v3) = 3, c(v4) = 1, c(v5) = 2, c(v6) =
3, c(v7) = 4, c(v8) = 1, c(v9) = 2, c(v10) = 4, c(v11) = 1 and c(v12) = 2. The optimality
of the colouring c(G) follows from the fact that the graph (V,∅, E) contains the chain

Algorithms 2024, 17, 299 6 of 27

(v4, v5, v6, v7) with four vertices and the digraph (V, A,∅) contains the path (v4, v5, v6, v7).
So, the chromatic number χ(G) is not less than four. The optimality of the colouring c(G)
follows also from the clique {v6, v8, v10, v12}.

Due to Corollary 2, an optimal colouring c(G) defines the following optimal semiactive
schedule S for Example 1 with the input data shown in Figure 1:

S = (C(Q1,1) = 1, C(Q2,1) = 2, (Q2,2) = 3, C(Q3,1) = 1, C(Q3,2) = 2, C(Q3,3) = 3, C(Q3,4) = 4,
C(Q4,1) = 1, C(Q4,2) = 2, C(Q4,3) = 4, C(Q5,1) = 1, C(Q5,2) = 2

Due to Corollary 2, we obtain the chromatic number χ(G) = 4 = Cmax(S).

2.3. General Shop Minimum-Length Unit-Time Scheduling Problems

The general shop scheduling problem Gc
∣∣tij = 1

∣∣Cmax is a generalisation of the job-
shop scheduling problem J

∣∣tij = 1
∣∣Cmax . In the former problem Gc

∣∣tij = 1
∣∣Cmax , in addi-

tion to the strict order that is determined on the set of operations Q(i) of the same job Ji ∈ J,
precedence constraints can be defined between operations of different jobs. Moreover,
indicated unit-time operations must be processed simultaneously. In [9], completion-
start precedence constraints and start-start precedence constraints between operations of
different jobs were also considered.

The processing job Jk ∈ J consists of the set V(k) of linearly ordered operations. The
duration ti of every operation vi of the set V =∪|J|k=1V(k) equals one; ti = 1. We represent
the job Jk ∈ J as a union of the path (vk1 , vk2 , . . . , vkrk

) in the directed graph (V, A,∅)

and the chain (vk1 , vk2 , . . . , vkrk
) in the graph (V,∅, E), which are subgraphs of the mixed

graph G = (V, A, E) determining input data of the problem Gc
∣∣tij = 1

∣∣Cmax . Thus, we

obtain the vertex set V =∪|J|k=1V(k) of the desired mixed graph G = (V, A, E), the subset

E∗ = ∪|J|k=1

{
[vk1 , vk2], [vk2 , vk3], . . . , [vkrk−1, vkrk

]
}

of edges E ⊇ E∗ and the subset A∗ of arcs
A such that the implication (3) holds:

[vi, vj] ∈ E∗ ⇒ (vi, vj) ∈ A∗ (3)

In the general shop unit-time scheduling problem Gc
∣∣tij = 1

∣∣Cmax , along with a linear
strict order given on the set V(k) of all operations of the job Jk ∈ J, there are given precedence
constraints between operations belonging to different jobs in the set J Let A\A∗ denote a
subset of the set A such that the implication (2) does not hold for each arc (vi, vj) ∈ A\A∗.
In the unit-time scheduling problem Gc

∣∣tij = 1
∣∣Cmax , one processor of the set M is needed

to process an operation vi ∈V =∪|J|k=1V(k). Let the set Vi =
{

vi1 , vi2 , . . . , vi|Vi |

}
⊆ V be a set

of operations, which must be processed on the processor Mi ∈ M. A pair of operations
processed on the processor Mi ∈ M cannot be processed simultaneously. Such a capacity
constraint for processing operations Vi ⊆ V on the processor Mi ∈ M is represented by
the clique

{
vi1 , vi2 , . . . , vi|Vi |

}
in the subgraph (V,∅, E\E∗) of the desired mixed graph

G = (V, A, E).
The general shop unit-time scheduling problem Gc

∣∣tij = 1
∣∣Cmax is to find a schedule S

for processing the set V = ∪|M|i=1Vi = ∪|J|k=1V(k) of partially ordered operations, whose length
Cmax(S) is minimal among the lengths of all semiactive schedules existing for the general
shop scheduling problem Gc

∣∣tij = 1
∣∣Cmax . The input data for the general shop unit-time

scheduling problem Gc
∣∣tij = 1

∣∣Cmax are determined by the mixed graph G = (V, A, E),
where the vertex set V is a set of operations, the arc set A determines precedence constraints
and the edge set E determines capacity constraints.

The union A∗∪E∗ of the arc set A∗ and the edge set E∗ determines |J| subsets V(k)

of the linearly ordered operations of the jobs Jk ∈ J. The subset E\E∗ of the edges deter-
mines |M| cliques

{
vi1 , vi2 , . . . , vi|Vi |

}
in the subgraph (V,∅, E\E∗), where all operations{

vi1 , vi2 , . . . , vi|Vi |

}
must be processed on the same processor Mi ∈ M. The precedence

Algorithms 2024, 17, 299 7 of 27

constraints between operations belonging to different jobs are determined by the directed
subgraph (V, A\A∗,∅) of the mixed graph G = (V, A, E).

If the completion time ckp of the operation vkp , Jk ∈ J, must precede the start time slq
of the operation vlq belonging the job Jl ∈ J with k ̸= l, then the mixed graph G = (V, A, E)
must contain both arc (vkp , vlq) ∈ A and edge [vkp , vlq] ∈ E; see Definition 1. We denote
this completion-start constraint as vkp ⇒ vlq . If the constraint vp ⇒ vq holds for the
unit-time scheduling problem Gc

∣∣tij = 1
∣∣Cmax , then the implication (1) holds for the arc

(vp, vq) ∈ A (the implication (vp, vq) ∈ A⇒ [vp, vq] ∈ E∗ holds for the edges E∗ ⊆ E). If
the start time skp of the operation vkp of the job Jk ∈ J must precede the start time slq of the
operation vlq , Jl ∈ J, where k ̸= l, then the desired mixed graph G = (V, A, E) contains
arc (vkp , vlq) ∈ A. We denote this weak precedence constraint as follows: vkp → vlq . If the
precedence constraint vp → vq holds for the problem Gc

∣∣tij = 1
∣∣Cmax , then the implication

(1) does not hold for the arc (vp, vq) ∈ A .
Due to the use of weak precedence constraints, it is possible to require that a subset

V(k) ⊂ V of the unit-time operations must be processed simultaneously. To represent such
a requirement, it is necessary to construct a circuit containing all vertices of the set V(k). As
shown in [9], the constructed mixed graph G = (V, A, E) completely determines the input
data for a general shop unit-time problem Gc

∣∣tij = 1
∣∣Cmax .

Definition 4. If a mixed graph G = (V, A, E) completely determines the input data for the schedul-
ing problem α|β|γ , then this individual problem α|β|γ is called a scheduling problem α|β|γ on
the mixed graph G.

Theorem 3 was proved in [9].

Theorem 3 ([9]). A general shop unit-time problem Gc
∣∣tij = 1

∣∣Cmax on the mixed graph G =
(V, A, E) reduces to the problem of determining the optimal colouring c(G).

It should be noted that there are problems in finding optimal colourings of the
mixed graph that cannot be represented as a general shop unit-time scheduling prob-
lem Gc

∣∣tij = 1
∣∣Cmax . In Appendix A, we solve Example A1 of the unit-time scheduling

problem Gc
∣∣tij = 1

∣∣Cmax to illustrate Theorem 3.

3. Colouring Vertices of Mixed Graphs and Unit-Time Scheduling Problems

In contrast to shop scheduling problems J
∣∣tij = 1

∣∣Cmax , Gc
∣∣tij = 1

∣∣Cmax and other
scheduling problems [5], where one machine performs each operation (task), in the multi-
stage system, with multi-processor tasks [5,10,11], the task may require one processor or
several dedicated processors during the entire time of processing this task. The tasks that
require a common processor cannot be processed simultaneously.

Chapter 10 of the monograph [5] is devoted to unit-time scheduling problems
GMPT

∣∣tij = 1
∣∣Cmax with multi-processor tasks. In [9], the more general unit-time schedul-

ing problem Gc MPT
∣∣tij = 1

∣∣Cmax was introduced including the unit-time scheduling
problem GMPT

∣∣tij = 1
∣∣Cmax . In the unit-time scheduling problem Gc MPT

∣∣tij = 1
∣∣Cmax ,

two types of the precedence relations vkp → vlq and vkh
⇒ vlg can be given in the input

data. It may also be required that a set V(k) =
{

vk1 , vk2 , . . . , vk|V(k)|

}
⊆ V of multi-processor

tasks has to be performed simultaneously in each schedule. To present this condition, the
circuit (vk1 , vk2 , . . . , vk|V(k)| , vk1) must be included in the digraph (V, A,∅) such that the
following is true:

A′c =
{
(vk1 , vk2), (vk2 , vk3), . . . , (vk|V(k)|−1, vk|V(k)|), (vk|V(k)| , vk1)

}
⊆ A.

We assume that the input data of the considered unit-time scheduling problem
Gc MPT

∣∣tij = 1
∣∣Cmax includes w subsets V(1), V(2), . . . , V(w) of the given set

Algorithms 2024, 17, 299 8 of 27

V = {v1, v2, . . . , vn} such that all tasks of the subset V(k) must be performed simulta-
neously; k ∈ {1, 2, . . . , w}. Since all unit-time tasks of the set V(k) =

{
vk1 , vk2 , . . . , vk|V(k)|

}
must be fulfilled simultaneously, we obtain the following set of arcs:

Ac =
w
∪

k=1

{
(vk1 , vk2), (vk2 , vk3), . . . , (vk|V(k)|−1, vk|V(k)|), (vk|V(k)| , vk1)

}
⊆ A (4)

The example of the unit-time problem Gc MPT
∣∣tij = 1

∣∣Cmax defines the mixed graph
G = (V, A, E) with arc set A ⊇ Ac. Theorems 4 and 5 are proven in [9].

Theorem 4 ([9]). The unit-time problem Gc MPT
∣∣tij = 1

∣∣Cmax on the mixed graph G =
(V, A, E) is solvable if and only if the directed subgraph (V, A,∅) has no circuit containing
adjacent vertices in the subgraph (V,∅, E).

Theorem 5 ([9]). Every solvable unit-time problem Gc MPT
∣∣tij = 1

∣∣Cmax on the mixed graph G =
(V, A, E) is equivalent to the problem of finding an optimal colouring c(G) of the mixed graph G. For
every colourable mixed graph G = (V, A, E) there exists a unit-time problem Gc MPT

∣∣tij = 1
∣∣Cmax

determined by the same mixed graph G, which is equivalent to finding an optimal colouring c(G) of
the mixed graph G.

Theorems 4 and 5 are illustrated by solving Example A2 of the problem
Gc MPT

∣∣tij = 1
∣∣Cmax on the mixed graph G depicted in Figure A2; see Appendix B.

4. Minimising Maximal Lateness and Equivalent Minimising Makespan for Jobs with
Integer Release Dates

The unit-time problem Gc MPT
∣∣[ri], tij = 1

∣∣Cmax with integer release dates ri ≥ 0 of
the jobs Ji ∈ J has been studied in [12]. Since release dates ri are non-negative integers and
operations have unit durations, the input data of the problem Gc MPT

∣∣[ri], tij = 1
∣∣Cmax

can be determined by the mixed graph G; see Sections 2 and 3.

4.1. Minimising Makespan for Unit-Time Tasks as Optimal Mixed Graph Colouring

In the problem Gc MPT
∣∣[ri], tij = 1

∣∣Cmax , the multi-processor task vi ∈ V is considered
as a job Ji. A job consisting of a single operation is referred to as a simple job in Theorem 6
which follows. Note that the first part of this theorem has been proven in [12] by generating
a mixed graph G′, which determines the problem Gc MPT

∣∣tij = 1
∣∣Cmax to the mixed graph

G = (V, A, E) determining the input data for the problem Gc MPT
∣∣[ri], tij = 1

∣∣Cmax . Due
to the demonstrated correspondence of the terms used in optimal coloring c(G) and those
used in solving a unit-time problem Gc MPT

∣∣[ri], tij = 1
∣∣Cmax , the following first part of

Theorem 6 was proven in [12]: Any solvable unit-time problem Gc MPT
∣∣[ri], tij = 1

∣∣Cmax on
the mixed graph G = (V, A, E) is equivalent to the problem of finding an optimal colouring of the
mixed graph G = (V, A, E).

Theorem 6. Any solvable unit-time problem Gc MPT
∣∣[ri], tij = 1

∣∣Cmax on the mixed graph G is
equivalent to the problem of finding an optimal colouring of the mixed graph G. Conversely, for
any colourable mixed graph G, there exists a unit-time problem Gc MPT

∣∣[ri], tij = 1
∣∣Cmax on the

mixed graph G, which is equivalent to the problem of finding optimal colouring c(G).

Proof of the second part of Theorem 6. We next prove the claim as follows: for any colorable
mixed graph G = (V, A, E), there exists a unit-time problem Gc MPT

∣∣[ri], tij = 1
∣∣Cmax on the

mixed graph G, which is equivalent to the problem of finding optimal colouring c(G). Let set Ω
denote a set of all circuits existing in the digraph (V, A,∅).

We will treat two possible cases, I and II.
Case I. Let set Ω be empty; Ω = ∅.
The unit-time scheduling problem Gc MPT

∣∣[ri], tij = 1
∣∣Cmax on the mixed graph G =

(V, A, E) may be constructed based on Algorithm 1, which follows.

Algorithms 2024, 17, 299 9 of 27

Case II. Let set Ω be not empty; Ω ̸= ∅.
The mixed graph G = (V, A, E) is colourable. So, due to Theorem 1, each circuit

(vk1 , vk2 , . . . , vk|V(k)| , vk1) in set Ω has no vertices that are adjacent in the graph (V,∅, E).

Therefore, all tasks of the set
{

vk1 , vk2 , . . . , vk|V(k)|

}
= V(k) must be processed simultane-

ously in the unit-time problem Gc MPT
∣∣[ri], tij = 1

∣∣Cmax on the mixed graph G = (V, A, E)
with the circuit (vk1 , vk2 , . . . , vk|V(k)| , vk1) existing in the directed subgraph (V, A,∅). As-

sume that Ω =
w
∪

k=1
V(k) =

w
∪

k=1

{
(vk1 , vk2 , vk3 , . . . , vk|V(k)|−1, vk|V(k)| , vk1)

}
. We delete arcs Ac

determined in (4) from the mixed graph G = (V, A, E) and apply Algorithm 1 to the
constructed mixed graph G0 = (V, A\Ac, E). Thus, we construct the unit-time prob-
lem Gc MPT

∣∣[ri], tij = 1
∣∣Cmax on the mixed graph G0 = (V, A\Ac, E), which is equiv-

alent to the problem of finding the optimal coloring c(G0). This unit-time problem
Gc MPT

∣∣[ri], tij = 1
∣∣Cmax on the mixed graph G = (V, A, E) is equivalent to the problem

of finding the optimal colouring c(G) of the mixed graph G. □

Algorithm 1: Determining the unit-time problem Gc MPT
∣∣∣[ri], tij = 1

∣∣∣Cmax , which is equivalent

to the problem of finding an optimal colouring c(G).

Input: A mixed graph G = (V, A, E) with a circuit-free digraph (V, A,∅).

Output: The unit-time problem Gc MPT
∣∣∣[ri], tij = 1

∣∣∣Cmax on the mixed graph G = (V, A, E) that is

equivalent to the problem of finding the optimal colouring c(G).
Step 1: Partition graph (V,∅, E) into maximal number of the connected components: (V,∅, E) =

(V1,∅, E1)∪ . . . ∪Vm,∅, Em) ∪(Vm+1,∅,∅) . . . ∪(Vm+r,∅,∅), where subgraphs
(Vk,∅, Ek) are connected components of the graph (V,∅, E) for k ∈ {1, 2, . . . , m}, |Vk|≥ 2 ,
and each subgraph (Vj,∅,∅) determines an isolated vertex for index

j ∈ {m + 1, m + 2, . . . , m + r}. Denote isolated vertices as follows:
{

vj1

}
= Vj. Set M = ∅,

k = 1, i = 0, and l0 = 0.
Step 2: IF k = m + 1 GOTO step 5 ELSE find all maximum complete vertex-induced subgraphs

(V1
k ,∅, E1

k), . . ., (Vlk
k ,∅, Elk

k) of the graph (Vk,∅, Ek). Set r = 1, i := i + lk−1 + 1.
Step 3: FOR every index i, add the new processor Mi to the already constructed set;

M := M ∪ {Mi}. State that all tasks of the clique Vr
k of the graph (Vk,∅, Ek) will be

processed on the processor Mi; Vr
k = Vi =

{
vi1 , vi2 , . . . , vi|Vi |

}
, where all tasks{

vi1 , vi2 , . . . , vi|Vi |

}
will be processed on the processor Mi. Set i := i + 1.

Step 4: IF i = ∑k
h=0 lh THEN k := k + 1 GOTO step 2 ELSE r := r + 1 GOTO step 3.

Step 5: FOR every index j ∈ {m + 1, . . . , m + r}, add the new processor Mi+j−m to the already

constructed set M; M := M ∪
{

Mi+j−m

}
. State that task vj1 , Vj =

{
vj1

}
, which is isolated

in the graph (V,∅, E), will be processed on processor Mi+j−m. Processor Mi+j will
process only task vj1 . Set M := M ∪ {Mi+1, . . . , Mi+r}.

Step 6: FOR every arc (vp, vq) ∈ A, for which the implication (2) does not hold, determine the
weak precedence constraint vp → vq .

Step 7: FOR every arc (vp, vq) ∈ A, for which the implication (2) holds, determine the precedence
constraint vp ⇒ vq .

Step 8: The unit-time problem Gc MPT
∣∣∣[ri], tij = 1

∣∣∣Cmax on the mixed graph G = (V, A, E) is
constructed, where the precedence constraints on the set V are defined at steps 6 and 7.
The set M of the processors is defined at steps 3 and 5. STOP.

The above Algorithm 1 shows us how to construct the unit-time problem
Gc MPT

∣∣[ri], tij = 1
∣∣Cmax on the mixed graph G = (V, A, E), which is equivalent to the

problem of finding an optimal coloring c(G) of the mixed graph G = (V, A, E), all jobs in
the set J being simple.

To illustrate Theorem 6, we solve Example 2 of the unit-time problem
Gc MPT

∣∣[ri], tij = 1
∣∣Cmax on the mixed graph G = (V, A, E) depicted in Figure 2.

Algorithms 2024, 17, 299 10 of 27

Algorithms 2024, 17, 299 12 of 32

optimal colouring of the mixed graph),,(******** EAVG  depicted in Figure 2: 5)(1 vc

,3)(2 vc ,5)(3 vc ,6)(4 vc ,7)(5 vc ,8)(6 vc ,9)(7 vc ,5)(8 vc ,6)(9 vc

,8)(10 vc 4)(11 vc , 9)(12 vc , 1)(13 vc , 2)(14 vc , 3)(15 vc , 4)(16 vc , 1)(17 vc ,

2)(18 vc , 1)(19 vc , 1)(20 vc , 2)(21 vc , 3)(22 vc .

Figure 2. Mixed graph),,(******** EAVG  determining input data for Example 2.

The colouring)(Gc with 9)(G is optimal for Example 2 since digraph

),,(**** AV contains a path),,,,,,,,(7654811222120 vvvvvvvvv and the graph),,(**** EV 

contains a chain),,,,,,,,(7654811222120 vvvvvvvvv whose lengths are equal to 9. Because of

this path and chain, the inequality 9)(** G holds. Based on Theorem 9, the colouring

)(**Gc defines the following optimal semiactive schedule for Example 2:

,9)(,8)(,7)(,6)(,5)(,3)(,5)((4,33,32,31,32,21,21,1  QCQCQCQCQCQCQCS

)9)(,4)(,8)(,6)(,5)(2,51,53,42,41,4  QCQCQCQCQC

The correspondence between operations Q and vertices V is based on Remark 1.

Due to Theorem 9, the following equalities hold: max
** 9)(CG  .

4.2. Equivalent Scheduling Problems for Minimising either Makespan or Miximal Lateness

In [12], it was proven that the scheduling problem   max|1,| CtrMPTG ijic  reduces

to the scheduling problem   max|,1| LDtMPTG iijc  with the objective of minimising

the maximal lateness }:max{max JJDCL iii  , where the given due dates 0iD are

integers.

Theorem 10 ([12]). Every solvable unit‐time problem   max|1,| CtrMPTG ijic  on the mixed

graph G with integer release dates 0ir reduces to unit‐time problem

  max|,1| LDtMPTG iijc  with non‐negative integer due dates, and vice versa.

Figure 2. Mixed graph G∗∗ = (V∗∗, A∗∗, E∗∗) determining input data for Example 2.

Example 2. This example is similar to Example A2 with the input data shown in Figure A2; see
Appendix B. The only difference is that the input data for Example 2 include the following release
dates for the jobs {J1, J2, . . . , J5} = J: r1 = 4, r2 = 2, r3 = 0, r4 = 1, r5 = 3. We determine
the input data for Example 2 based on a mixed graph G∗∗ = (V∗∗, A∗∗, E∗∗) that includes the
subgraph G = (V, A, E) presented in Figure 2. The release date r1 = 4 of the job J1 ∈ J is
represented by the union of path (v13, v14, v15, v16, v1) in the directed graph (V∗∗, A∗∗,∅) and
chain (v13, v14, v15, v16, v1) in the graph (V∗∗,∅, E∗∗). The release date r2 = 2 of the job J2 ∈
J is represented by the union of path (v17, v18, v2) in the directed graph (V∗∗, A∗∗,∅) and
chain (v17, v18, v2) in the graph (V∗∗,∅, E∗∗). The release date r4 = 1 of the job J4 ∈ J is
represented by the union of arc (v19, v8) in the directed graph (V∗∗, A∗∗,∅) and edge [v19, v8] in
the graph (V∗∗,∅, E∗∗). The release date r5 = 3 of the job J5 ∈ J is represented by the union of
path (v20, v21, v22, v11) in the directed graph (V∗∗, A∗∗,∅) and chain (v20, v21, v22, v11) in the
graph (V∗∗,∅, E∗∗).

The directed subgraph (V∗∗, A∗∗,∅) of the mixed graph G∗∗ = (V∗∗, A∗∗, E∗∗) con-
tains the single circuit (v1, v8, v3, v1). Since this circuit has no vertices that are adjacent
in the subgraph (V∗∗,∅, E∗∗) of the mixed graph G∗∗ = (V∗∗, A∗∗, E∗∗), there exists a
semiactive schedule for Example 2 of the unit-time problem Gc MPT

∣∣[ri], tij = 1
∣∣Cmax on

the mixed graph G∗∗ = (V∗∗, A∗∗, E∗∗); see Theorem 4. One can construct the follow-
ing optimal colouring of the mixed graph G∗∗ = (V∗∗, A∗∗, E∗∗) depicted in Figure 2:
c(v1) = 5 c(v2) = 3, c(v3) = 5, c(v4) = 6, c(v5) = 7, c(v6) = 8, c(v7) = 9, c(v8) =
5, c(v9) = 6, c(v10) = 8, c(v11) = 4, c(v12) = 9, c(v13) = 1, c(v14) = 2, c(v15) = 3,
c(v16) = 4, c(v17) = 1, c(v18) = 2, c(v19) = 1, c(v20) = 1, c(v21) = 2, c(v22) = 3.

The colouring c(G) with χ(G) = 9 is optimal for Example 2 since digraph (V∗∗, A∗∗,∅)
contains a path (v20, v21, v22, v11, v8, v4, v5, v6, v7) and the graph (V∗∗,∅, E∗∗) contains a
chain (v20, v21, v22, v11, v8, v4, v5, v6, v7) whose lengths are equal to 9. Because of this path
and chain, the inequality χ(G∗∗) ≥ 9 holds. Based on Theorem 6, the colouring c(G∗∗)
defines the following optimal semiactive schedule for Example 2:

S = (C(Q1,1) = 5, C(Q2,1) = 3, C(Q2,2) = 5, C(Q3,1) = 6, C(Q3,2) = 7, C(Q3,3) = 8, C(Q3,4) = 9,

C(Q4,1) = 5, C(Q4,2) = 6, C(Q4,3) = 8, C(Q5,1) = 4, C(Q5,2) = 9)

The correspondence between operations Q and vertices V is based on Remark 1. Due
to Theorem 6, the following equalities hold: χ(G∗∗) = 9 = Cmax.

Algorithms 2024, 17, 299 11 of 27

4.2. Equivalent Scheduling Problems for Minimising either Makespan or Miximal Lateness

In [12], it was proven that the scheduling problem Gc MPT
∣∣[ri], tij = 1

∣∣Cmax reduces
to the scheduling problem Gc MPT

∣∣tij = 1, [Di]
∣∣Lmax with the objective of minimising

the maximal lateness Lmax = max{Ci − Di : Ji ∈ J}, where the given due dates Di ≥ 0
are integers.

Theorem 7 ([12]). Every solvable unit-time problem Gc MPT
∣∣[ri], tij = 1

∣∣Cmax on the mixed
graph G with integer release dates ri ≥ 0 reduces to unit-time problem Gc MPT

∣∣tij = 1, [Di]
∣∣Lmax

with non-negative integer due dates, and vice versa.

For illustrating Theorem 7, we solve Example 2 of the unit-time problem
Gc MPT

∣∣[ri], tij = 1
∣∣Cmax on the mixed graph G∗∗ = (V∗∗, A∗∗, E∗∗) shown in Figure 2

and the following Example 3 of the unit-time problem Gc MPT
∣∣tij = 1, [Di]

∣∣Lmax .

Example 3. In Example 3 of the problem Gc MPT
∣∣tij = 1, [Di]

∣∣Lmax on the mixed graph G =
(V, A, E) depicted in Figure 3, the set of jobs J1, J2, J3, J4 and J5 are ready for processing
on the processors M = {M1, M2, . . . , M9} from a release date of zero. Each processor Mk ∈
M must process the same subset of jobs as in Example 2. However, the orders for processing
the same operations are opposite to the linear orders determined in Example 2. If the precedence
constraints vi → vj and vp ⇒ vq are given between operations belonging to different jobs in
Example 2, the inverse precedence constraints vj → vi and vq ⇒ vp must be given in Example 3
of the general shop scheduling problem Gc MPT

∣∣tij = 1, [Di]
∣∣Lmax . For Example 3, the due dates

of the given jobs J1, J2, J3, J4, J5 are defined as follows: D1 = max
{

rj : Jj ∈ J
}
− r1 = 4− 4 =

0, D2 = 4− r2 = 4− 2 = 2, D3 = 4− r3 = 4− 0 = 4, D4 = 4− r4 = 4− 1 = 3, D5 =
4− r5 = 4− 3 = 1.

Algorithms 2024, 17, 299 14 of 32

Figure 3. The colouring)(Gc determining the optimal semiactive schedule for the unit‐time

problem   max|,1| LDtMPTG iijc  .

The optimal maximum lateness is equal to .549}:max{)( JJrG ii

5. An Optimal Schedule of Interruptible Operations with Integer Processing Times

We investigate the scheduling problem   max|],[,| CpmtntrMPTG ijic with integer

release dates, positive integer operation durations, and allowed operation interruptions.

In the three‐field notation, pmtn indicates allowed preemptions of the operations and

][ijt (][ir , respectively) means that the operation durations (release dates of the jobs) are

positive (non‐negative) integers.

5.1. Partitions of the Interruptible Operations with Integer Duration into Unit‐Time Operations

If interruptions of the operation are allowed, then a set of schedules is usually larger

than a set of schedules of non‐interruptible operations of the set Q . The larger set of

schedules may complicate optimal scheduling [11]. Obviously, allowing interruptions of

the operations from the set Q may decrease an optimal value of the objective function.

Thus, for most scheduling problems, it is desirable to reduce the number of allowed

interruptions of the operations Q without losing an optimal semiactive schedule.

Lemma 11. If the release dates ir of the jobs JJi  are non‐negative integers and the operations

QQij have positive integer durations 0ijt , then there exists an optimal semiactive schedule

such that interruptions in processing operations occur only at the integer times.

Proof. The interruption of the operation QQij  can reduce the value of a regular

objective function in the semiactive schedule without interruptions only if the

interruption is at a completion time of at least one operation QQij  . In fact, due to such

interruption of the operation QQij  processed on the processor MM ji ).( , another

Figure 3. The colouring c(G←) determining the optimal semiactive schedule for the unit-time

problem Gc MPT
∣∣∣tij = 1, [Di]

∣∣∣Lmax .

The input data for Example 3 are given by the mixed graph G← = (V∗∗, A←, E∗∗)
presented in Figure 3. The set V∗∗ of vertices and the set E∗∗ of edges in the mixed graph
G← are the same as those depicted in Figure 3 for the mixed graph G.

Compare the mixed graph depicted in Figure 3 for the problem Gc MPT
∣∣tij = 1, [Di]

∣∣Lmax
and the mixed graph G∗∗ = (V∗∗, A∗∗, E∗∗) depicted in Figure 2 for the problem
Gc MPT

∣∣[ri], tij = 1
∣∣Cmax. By Theorems 6 and 7, for Example 3 of the general shop unit-time

scheduling problem GcMPT|ti = 1, [Di]|Lmax on the mixed graph G← = (V∗∗, A←, E∗∗),

Algorithms 2024, 17, 299 12 of 27

the optimal semiactive schedule S is determined by the optimal colouring of mixed graph
G← = (V∗∗, A←, E∗∗) shown in Figure 3: c(v1) = 5 c(v2) = 7, c(v3) = 5, c(v4) = 4 c(v5) =
3, c(v6) = 2, c(v7) = 1, c(v8) = 5, c(v9) = 4, c(v10) = 2, c(v11) = 6, c(v12) = 1, c(v13) = 9,
c(v14) = 8, c(v15) = 7, c(v16) = 6, c(v17) = 9, c(v18) = 8, c(v19) = 6, c(v20) = 9, c(v21) = 8,
c(v22) = 7.

The colouring c(G←) defines the following optimal schedule for Example 3:

S = (C(Q1,1) = 5, C(Q2,1) = 7, C(Q2,2) = 5, C(Q3,1) = 4, C(Q3,2) = 3, C(Q3,3) = 2, C(Q3,4) = 1,

C(Q4,1) = 5, C(Q4,2) = 4, C(Q4,3) = 2, C(Q5,1) = 6, C(Q5,2) = 1)

The optimal maximum lateness is equal to χ(G←)−max{ri : Ji ∈ J} = 9− 4 = 5.

5. An Optimal Schedule of Interruptible Operations with Integer Processing Times

We investigate the scheduling problem Gc MPT
∣∣[ri], [tij], pmtn

∣∣Cmax with integer re-
lease dates, positive integer operation durations, and allowed operation interruptions. In
the three-field notation, pmtn indicates allowed preemptions of the operations and [tij]
([ri], respectively) means that the operation durations (release dates of the jobs) are positive
(non-negative) integers.

5.1. Partitions of the Interruptible Operations with Integer Duration into Unit-Time Operations

If interruptions of the operation are allowed, then a set of schedules is usually larger
than a set of schedules of non-interruptible operations of the set Q. The larger set of
schedules may complicate optimal scheduling [11]. Obviously, allowing interruptions of
the operations from the set Q may decrease an optimal value of the objective function. Thus,
for most scheduling problems, it is desirable to reduce the number of allowed interruptions
of the operations Q without losing an optimal semiactive schedule.

Lemma 2. If the release dates ri of the jobs Ji ∈ J are non-negative integers and the operations Qij ∈
Q have positive integer durations tij > 0, then there exists an optimal semiactive schedule such that
interruptions in processing operations occur only at the integer times.

Proof. The interruption of the operation Qij ∈ Q can reduce the value of a regular objective
function in the semiactive schedule without interruptions only if the interruption is at a
completion time of at least one operation Qij ∈ Q. In fact, due to such interruption of the
operation Qij ∈ Q processed on the processor Mµ(i.j) ∈ M, another operation Quv ∈ Q with
u ̸= i can start its processing on the same processor Mµ(i.j) = Mµ(u,v), since this processor
becomes free.

Since the release dates ri of the given jobs Ji ∈
{

J1, J2, . . . , J|J|
}

are non-negative
integers and operations have positive integer durations, in any semiactive schedule without
operation interruptions, the realisation of each operation can be completed only at integer
times. Lemma is proven. □

Due to Lemma 2, operations Q1,1 ∈ Q(1) with positive integer durations can be par-
titioned into t1,1 unit-time operations. We denote these unit-time operations as follows:{

v1, v2, . . . , vt1,1

}
. Let

{
vt1,1+1, vt1,1+2, . . . , vt1,1+t1,2

}
be a set of all unit-time operations gen-

erated by similar partitioning the operation Q1,2 ∈ Q(1). Similarly, we partition operations
Q(1)\{Q1,1, Q1,2} into unit-time operations and assign sequential indexes to the generated
unit-time operations.

Continuing the above partitioning procedure of operations from set Q(1) with integer
durations, we generate the following set of unit-time operations:

W1 =
{

v1, v2, . . . , v|W1|

}
, where |W1| =

|Q(1) |

∑
j=1

t1,j. (5)

Algorithms 2024, 17, 299 13 of 27

The generated unit-time operations will be ordered as follows: (v1, v2, . . . , v|W1|) within
any feasible schedule; see Lemma 2.

Remark 2. We represent all unit-time operations generated by the above partition of operations Q as
vertices in the mixed graph G = (V, A, E). Here and elsewhere, the generated unit-time operations
are linearly ordered in the ascending order of their indexes. For each job Ji ∈ J, the unit-time
operations generated by the above partitioning procedure of the integer-time operations Q(i) will be
fulfilled in the ascending order of their indexes in any semiactive schedule.

We continue with the generated unit-time operation v|W1|+1 by sequentially indexing
the generated unit-time operations into which integer-time operations from set Q(2) ={

Q2,1, Q2,2, . . . , Q2,|Q(2) |

}
contained in the job J2 ∈ J are partitioned. Thus, we obtain the

following set of the unit-time operations:

W2 =
{

v|W1|+1, v|W1|+2, . . . , v|W2|

}
,where |W2| = |W1|+

|Q(2) |

∑
j=1

t2,j, (6)

of the linearly ordered unit-time operations generated from integer-time operations of job
J2; see Remark 2. Using the above partitioning technique, we index the unit-time operations
of the jobs in set J\{J1, J2} in the increasing order of job indexes and indexes of all generated
unit-time operations. At the end of this partitioning process, for operations with integer job
durations J|J| ∈ J, the following set is obtained:

W|J| =
{

v|W|J|−1+1, v|W|J|−1+2, , . . . , v|W|J| |
}

, where |W|J|| = |W|J|−1|+
|Q(|J|) |

∑
j=1

t|J|,j, (7)

of the ordered unit-time operations generated by the integer-time operations belonging to
the job J|J|. All jobs from the set J will be processed based on Remark 2 applied to the set

W := ∪|J|i=1Wi of all generated unit-time operations. Furthermore, for each job Ji ∈ J, the
unit-time operations of the set Wi generated by the above partitioning procedure applied to
the integer-time operations of the set Q(i) are fulfilled in increasing order of their indexes
during the realisation of each semiactive schedule.

5.2. Relationships between Scheduling Problems and Optimal Mixed Graph Colourings

We next prove Theorem 8, which generalizes Theorem 5 to the problem
Gc MPT

∣∣[ri], [tij], pmtn
∣∣Cmax of constructing an optimal schedule for fulfilling jobs Ji ∈ J

with integer release dates ri ≥ 0 and positive durations tij > 0 of the operations Qij ∈
Q(i) ⊆ Q with allowed interruptions.

Theorem 8. Every solvable scheduling problem GcMPT
∣∣[ri], [tij], pmtn

∣∣Cmax pseudo-polynomially
reduces to a problem of constructing an optimal colouring of vertices of the mixed graph G =
(V, A, E). For every colourable mixed graph G, there exists a scheduling problem
Gc MPT

∣∣[ri], [tij], pmtn
∣∣Cmax on the mixed graph G, which is equivalent to the problem of finding

the optimal colouring c(G) of vertices of the same mixed graph G.

Proof. We consider arbitrary solvable scheduling problem Gc MPT
∣∣[ri], [tij], pmtn

∣∣Cmax of

constructing a makespan-optimal schedule for fulfilling jobs J =
{

J1, J2, . . . , J|J|
}

by the

available dedicated processors M =
{

J1, J2, . . . , J|M
}

. We show how to construct the mixed
graph G = (V, A, E) such that optimal colouring c(G) defines a solution to the problem
Gc MPT

∣∣[ri], [tij], pmtn
∣∣Cmax.

Algorithms 2024, 17, 299 14 of 27

Due to Lemma 2, there exists an optimal semiactive schedule such that interruptions
in the operations (if any) occur only at the integer time moments. Thus, to construct the
mixed graph G = (V, A, E), we will determine a set of unit-time operations

W =
{

v1, v2, . . . , v|W|
}
= ∪|J|i=1Wi

generated by the above partitioning of the integer-time operations belonging to jobs Ji ∈
J =

{
J1, J2, . . . , J|J|

}
into the unit-time tasks sequentially, as shown in Section 5.1. The

Formula (5) determines the set W1 of the unit-time tasks generated by integer-time tasks
Q(1) belonging to a job J1.

The Formula (6) determines the set W2 of the unit-time tasks generated by the integer-
time tasks Q(2) belonging to the job J2.

Similar formulas for sets Q(3), Q(4), . . . , Q(|J|−1) of the integer-time tasks sequentially
determine sets W3, W4, . . . , W|J|−1, respectively, of the generated unit-time tasks.

Finally, the Formula (7) determines the set W|J| of the unit-time tasks generated by the
integer-time tasks Q(|J|) belonging to the last job J|J| ∈ J.

The above partitioning(see Section 5.1) of the integer-time tasks Q =
|J|
∪

i=1
Q(i) into

the unit-time tasks determines a subgraph (W,∅,∅) with an empty set of arcs and an
empty set of edges in the indicated mixed graph G = (V, A, E), where W ⊂ V. Based
on Remark 2, every job Ji ∈ J consisting of the ordered set of the integer-time tasks Q(i)

is partitioned into the linearly ordered set of the unit-time tasks of the following form:
Wi =

{
v|Wi−1|+1, v|Wi−1|+2, . . . , v|Wi |

}
.

In any semiactive schedule, the unit-time tasks Wi have to be executed in ascending
order of indexes of the unit-time tasks vk ∈ Wi; see Remark 2. By Definition 1, the de-
sired mixed graph G = (V, A, E) must contain the set of arcs Ai = {(v|Wi−1|+1, v|Wi−1|+2),
(v|Wi−1|+2, v|Wi−1|+3), . . . , (v|Wi |−1, v|Wi |)} and the following set of edges:

Ei =
{
[v|Wi−1|+1, v|Wi−1|+2], [v|Wi−1|+2, v|Wi−1|+3], . . . , [v|Wi |−1, v|Wi |]

}
.

The sets of arcs Ai and edges Ei will determine the linear order for the execution of the
unit-time tasks from set Wi when implementing any semiactive schedule for the problem
Gc MPT

∣∣[ri], [tij], pmtn
∣∣Cmax ; see Remark 2.

Thus, we constructed a subgraph (W,∪|J|i=1 Ai,∪
|J|
i=1Ei) of the desired mixed graph

G = (V, A, E) where inclusion W ⊂ V holds. For every processor Mk ∈ M, set Qk of all
integer-time tasks fulfilled by the processor Mk defines set Vk of unit-time tasks fulfilled
by the processor Mk. The cardinality of set Vk is equal to the total processing time of
the integer-time tasks for fulfilling all jobs in the set J(k) =:

{
Jk1 , Jk2 , . . . , J|J(k) |

}
. So, the

following equality holds: ∣∣∣Vk

∣∣∣= ∑Ji∈J(k) tik (8)

Set Vk is partitioned into
∣∣∣J(k)∣∣∣ subsets V j

k of the tasks with unit durations for fulfilling

jobs Jkj
∈ J(k), i.e., the equality Vk = V1

k ∪V2
k ∪ . . . ∪V|J

(k) |
k holds, where V j

k ̸= ∅ and V j
k ∩

Vh
k = ∅ for each indices j ̸= h. As can be easily verified, the forbiddance to simultaneously

execute every pair of the unit-time tasks of the set Vk in a semiactive schedule is determined
by the complete

∣∣∣J(k)∣∣∣-partite subgraph (Vk,∅, Ek) of the mixed graph G = (V, A, E) with

the following set
{

V1
k , V2

k , . . . , V|J
(k) |

k

}
of vertices and the following edge set Ek with the

cardinality determined as follows:

|Ek| =
|J(k) |−1

∑
i=1

∑|J(k) |
j=i+1

{∣∣∣Vi
k

∣∣∣×∣∣∣V j
k

∣∣∣} (9)

Algorithms 2024, 17, 299 15 of 27

Together with the precedence constraints determined above between tasks belonging
to the same job Ji ∈ J, the input data for the problem Gc MPT

∣∣[ri], [tij], pmtn
∣∣Cmax may

include the precedence constraints defined on the set of tasks, which belong to different
jobs of the set J. Let these precedence constraints be determined as follows:

R⇒ =
{

vk1 ⇒ vk2 , vk3 ⇒ vk4 , . . . , vk|k|−1 ⇒ vk|k|

}
(10)

Moreover, the following weak precedence constraints on the set of tasks, which belong
to different jobs of the set J, may also be determined:

R→ =
{

vh1 → vh2 , vh3 → vh4 , . . . , vh|h|−1 → vh|h|

}
(11)

According to Definition 1, we introduce the precedence constraints (10) by adding
the set A|J|+1 =

{
(vk1 , vk2), (vk2 , vk3), . . . , (vk|k|−1, vk|k|)

}
of the arcs and the set E|J|+1 ={

[vk1 , vk2], [vk2 , vk3], . . . , [vk|k|−1, vk|k|]
}

of the edges in the mixed graph G = (V, A, E).
To determine the weak precedence constraints (11), it is sufficient to add the following

set A|J|+2 =
{
(vh1 , vh2), (vh2 , vh3), . . . , (vh|h|−1, vh|h|)

}
of the arcs in the desired mixed graph

G = (V, A, E). Let the input data for the scheduling problem Gc MPT
∣∣[ri], [tij], pmtn

∣∣Cmax
include the subsets V(1), V(2), . . . , V(l) of the unit-time operations from the set Q such
that operations of the subset V(g) =

{
vg1 , vg2 , . . . , vg|V(g)|

}
⊂ Q must be executed simul-

taneously in any schedule, where g ∈ {1, 2, . . . , l}. Therefore, the set of weak precedence
constraints R→ determined in (11) must contain the following subset:

∪l
g=1

{
vg1 → vg2 , vg2 → vg3 , . . . , vg|g|−1 → vg|g| , vg|g| → vg1

}
It is clear that the above constructed set A|J|+2 of the arcs must contain the following

set of the arcs: A|J|+3 = ∪l
g=1

{
(vg1 , vg2) , (vg2 , vg3), . . . , (vg|g|−1, vg|g|), (vg|g| , vg1)

}
; see Def-

inition 1. We have constructed the arc set Ao =
{
∪|J|i=1 Ai

}
∪A|J|+1∪A|J|+2∪A|J|+3

}
, the

edge set Eo =
{
∪|J|i=1Ei

}
∪E|J|+1 and the vertex set W =

{
v1, v2, . . . , v|W|

}
= ∪|J|i=1Wi, where

each vertex determines the unit-time operation (task) generated by the operation from
the set Q with integer durations. Thus, we have constructed the mixed graph (W, Ao, Eo),
which is a subgraph of the desired mixed graph G.

The input data for the considered solvable problem Gc MPT
∣∣[ri], [tij], pmtn

∣∣Cmax in-
clude also the non-negative integer release dates r1, r2, . . . , r|J| of the jobs J1, J2, . . . , J|J|,

respectively. Therefore, for every job Ji ∈ J, the set W(ri) =

{
vi01

, vi02
, . . . , vi0ri−1

}
of the

vertices and the path (vi01
, vi02

, . . . , vi0ri−1
), whose length is equal to ri ≥ 0, are determined.

We add all these vertices and arcs of the following paths: (vi01
, vi02

, . . . , vi0ri−1
) to subgraph

(W, Ao,∅) of mixed graph (W, Ao, Eo).
We also add the edges of the following chains (vi01

, vi02
, . . . , vi0ri−1

) to subgraph (W,∅, Eo)

of mixed graph (W, Ao, Eo). Let G = {V, A, E) be a mixed graph generated by the mixed

graph (W, Ao, Eo) after adding all the vertices
|J|
∪

i=1
W(ri), all the arcs of paths (vi01

, vi02
, . . . , vi0ri−1

)

and all the edges of chains (vi01
, vi02

, . . . , vi0ri−1
).

Thus, we have constructed the desired mixed graph G = (V, A, E). For the con-

structed mixed graph, the following equality V = W +
|J|
∪

i=1
W(ri) holds. Due to the above

construction of the mixed graph, the precedence constraints defined on the set of tasks
for the problem Gc MPT

∣∣[ri], [tij], pmtn
∣∣Cmax are determined by graph (W, Ao, Eo). The

prohibition of simultaneously fulfilling every pair of unit-time tasks of the set V(k) in any

Algorithms 2024, 17, 299 16 of 27

semiactive schedule is determined by the complete
∣∣∣J(k)∣∣∣-partite graph (V(k),∅, E(k)) with

the vertex set
{

V1
k , V2

k , . . . , V|J
(k) |

k

}
. The given release dates r1, r2, . . . , r|J| of the given jobs

J1, J2, . . . , J|J| are defined by a subgraph (
|J|
∪

i=1
W(ri), A\Ao, E\Eo) of the constructed mixed

graph G = (V, A, E).
As can be easily verified, the constructed mixed graph G = (V, A, E) completely

defines the input data of the considered scheduling problem Gc MPT
∣∣[ri], [tij], pmtn

∣∣Cmax .
Hence, for the solvable general scheduling problem Gc MPT

∣∣[ri], [tij], pmtn
∣∣Cmax deter-

mined on mixed graph G = (V, A, E), there exists a semiactive schedule

S = (C(v1), C(v2), . . . , C(Q|W|) (12)

which defines the colouring c(G) of the constructed mixed graph G = (V, A, E) as follows:
the equality c(vi) = C(vi) holds for every vertex vi ∈ V. It is clear that the optimal semiac-
tive schedule S that exists for the solvable scheduling problem Gc MPT

∣∣[ri], [tij], pmtn
∣∣Cmax

on the mixed graph G = (V, A, E) defines the optimal colouring c(G) of the constructed
mixed graph G = (V, A, E).

Compare the form (1) of semiactive schedules existing for unit-time problems and
the form (12) of semiactive schedules existing for problem Gc MPT

∣∣[ri], [tij], pmtn
∣∣Cmax

with the aim to construct a makespan-optimal schedule for fulfilling jobs Ji ∈ J with the
positive integer processing times tij > 0 of the operations Qij ∈ Q, provided that operation
interruptions are allowed. Along with the completion times of the given operations Qij ∈
Q(i) ⊆ Q, with integer processing times, the latter semiactive schedule must define the
completion times of the unit-time operations generated by the above partitioning procedure
of the operations Qij ∈ Q(i) with integer processing times. Due to the equalities (8) and (9),
the described reduction of the general scheduling problem Gc MPT

∣∣[ri], [tij], pmtn
∣∣Cmax

to the problem of finding the optimal colouring c(G) of the constructed mixed graph
G = (V, A, E) is pseudo-polynomial.

The proof of the first part of Theorem 8 is completed.
It should be noted that an optimal semiactive schedule existing for the problem

Gc MPT
∣∣[ri], [tij], pmtn

∣∣Cmax with positive integer durations of all given operations, integer
non-negative release dates of the given jobs, and allowed operation interruptions can be ob-
tained from the optimal semiactive schedule existing for the unit-time scheduling problem
Gc MPT

∣∣[ri], tij = 1
∣∣Cmax , and vice versa. Indeed, if the integer-time operations Qij ∈ Q

are partitioned into the unit-time operations W based on the above partitioning procedure
described in Section 5.1 (see Lemma 2 and Remark 2), the operation interruptions of the set
W cannot reduce the value Cmax for the optimal semiactive schedule. Thus, the possibilities
of interrupting the operations in the scheduling problem Gc MPT

∣∣[ri], [tij], pmtn
∣∣Cmax can

be ignored when constructing a makespan-optimal semiactive schedule that exists for the
considered scheduling problem.

Hence, the problem Gc MPT
∣∣[ri], [tij], pmtn

∣∣Cmax can be solved as a special case of
the unit-time scheduling problem Gc MPT

∣∣[ri], tij = 1
∣∣Cmax ; see Section 4.1. Therefore, the

proof of the second part of Theorem 8 follows directly from the second part of Theorem 6.
Theorem 8 is proved. □

6. Example 4 of General Scheduling Problem with Interruptible Operations

To illustrate Theorem 8, we describe Example 4 of solvable scheduling problem
Gc MPT

∣∣[ri], [tij], pmtn
∣∣Cmax with a set of jobs J = {J1, J2, J3, J4}, seven dedicated pro-

cessors M = {M1, M2, . . . , M7}, integer release dates ri ≥ 0, integer processing times
tij > 0 of the multi-processor tasks, two types of the precedence constraints between
operations, and allowed interruptions of the integer-time operations.

Algorithms 2024, 17, 299 17 of 27

Example 4. The main part of the input data for Example 4 is presented in Table 1. Other input
data for Example 4 will be determined after constructing a mixed graph with a set W of the vertices
corresponding to unit-time operations generated by partitioning the integer-time operations Qij ∈
Q based on Remark 2.

Table 1. A main part of the input data for Example 4.

Operations Q1,j of the job J1 Q1,1 Q1,2 - -

Processors Mµ(1,j) M1, M2 M7 - -
Duration t1,j of operation Q1,j 2 1 - -

Operations Q2,j of the job J2 Q2,1 Q2,2 Q2,3 -

Processors Mµ(2,j) M3, M7 M1 M2,M6 -
Duration t2,j of operation Q2,j 2 1 3 -

Operations Q3,j of the job J3 Q3,1 Q3,2 Q3,3 Q3,4

Processors Mµ(2,j) M3 M1 M4 M5,M6
Duration t3,j of operation Q3,j 1 1 2 2

Operations Q4,j of the job J4 Q4,1 Q4,2 - -

Processors Mµ(4,j) M1, M3 M4,M5 - -
Duration t4,j of operation Q4,j 1 3 - -

Using the constructive proof of the first part of Theorem 8, we next show how to
construct the mixed graph determining the input data of Example 4. Based on Lemma 2,
we first partition the integer-time operations Q1,j ∈ Q(1) into operations W1 = {v1, v2, v3}
with unit durations. Similarly, we partition the integer-time operations Q2,j ∈ Q(2) into
operations W2 = {v4, v5, v6, v7, v8, v9} with unit durations. Then, we partition the integer-
time operations Q3,j ∈ Q(3) into operations W3 = {v10, v11, v12, v13, v14, v15} with unit
durations. Finally, we partition the operations Q4,j ∈ Q(4) of the last job into the operations
W4 = {v16, v17, v18, v19} with unit durations. As a result, we construct the following set
of operations: W = {v1, v2, . . . , v19} = ∪4

i=1Wi with unit durations generated from the
integer-time operations of four given jobs J = {J1, J2, J3, J4}.

Due to Remark 2 and Definition 1, the mixed graph G = (V, A, E) contains a set of
arcs Ai and a set of edges Ei that determine the linear order of the operations of the set
Wi in the semiactive schedule that exists for Example 4. The set of arcs Ai and the set of
edges Ei must be constructed for each job Ji ∈ {J1, J2, J3, J4}. Thus, we have constructed
a subgraph (W,∪|J|i=1 Ai,∪

|J|
i=1Ei) of mixed graph G = (V, A, E) with inclusion W ⊂ V; see

Figure 4, where the desired mixed graph G is depicted.

Algorithms 2024, 17, 299 21 of 32

||)(kJ ‐partite subgraph),,(kk EV  with vertex set },...,,{ ||21)(kJ
kkk VVV as ||)(kJ parts

in the ||)(kJ ‐partite subgraph),,(kk EV  and edge set kE , }7,...,2,1{k .

Based on the Formula (9), we calculate the cardinalities },4,3,2,1{|,| kEk as

follows:

}|}||{|{||
1||

1

||
1 111

)1(
)1(





  

J

i

J
ij

ji VVE = 9}}11{{}}11{}11{{}}12{}12{}12{{  ,

,632}|}||{|{||
1||

1

||
1 112

)2(
)2(

 



 

J

i

J
ij

ji VVE ,5}11{}}12{}12{{}|}||{|{||
1||

1

||
1 113

)3(
)3(

 



 

J

i

J
ij

ji VVE

,632|||||||| 2654  EEEE .221|| 7 E

It is clear that, due to the 4‐partite graph),,(11 EV  , it is forbidden to simultaneously

fulfill a pair of the operations of set 1V on the processor 1M . Due to the tripartite graph

),,(33 EV  , it is forbidden to simultaneously fulfill a pair of operations from the 3V on

the processor 3M . Due to the bipartite graph),,(22 EV  , it is forbidden to

simultaneously fulfill a pair of the operations of set 2V on the processor 2M . Due to the

bipartite graph),,(44 EV  , it is forbidden to simultaneously fulfill a pair of the operations

of set 4V on the processor 4M . Due to the bipartite graph),,(55 EV  , it is forbidden to

simultaneously fulfill a pair of the operations of set 5V on the processor 5M . Due to the

bipartite graph),,(66 EV  , it is forbidden to simultaneously fulfill a pair of the operations

of set 6V on the processor 6M . Due to the bipartite graph),,(77 EV  , it is forbidden to

simultaneously fulfill a pair of the operations of set 7V on the processor 7M .

Figure 4. The mixed graph defining input data for Example 4 of the problem

  max|],[,| CpmtntrMPTG ijic .

Let precedence constraints determined on a set of operations belonging to different jobs in

Example 4 be given as follows: ,{ 14 vvR  },, 161339 vvvv  . Let the weak precedence

constraints in Example 4 be given as follows: ,{ 131 vvR  }, 15513 vvvv  .

To include the precedence constraints R in the input data of Example 4, we add

the set of arcs)},(),,(),,{(161339141|| vvvvvvAJ  and the edge set

]},[],,{),,{[161393411|| vvvvvvEJ  to the mixed graph),,(EAVG  . To include weak

precedence constraints R in the input data of Example 4, we add the arc set

Figure 4. The mixed graph defining input data for Example 4 of the problem

Gc MPT
∣∣∣[ri], [tij], pmtn

∣∣∣Cmax .

Algorithms 2024, 17, 299 18 of 27

For each processor Mk ∈ M, the operation set Qk defines the set Vk of operations with
unit durations to be executed on that processor Mk. The cardinality |Vk| of set Vk is equal
to the total processing time of the integer-time operations for fulfilling a set of the jobs
J(k) =

{
Jk1 , Jk2 , . . . , J|J(k) |

}
, k ∈ {1, 2, . . . , 7}. Based on the Formula (8), we calculate these

cardinalities as follows:

|V1| = ∑Ji∈J(1) ti,1 = 2 + 1 + 1 + 1 = 5, |V2| = ∑Ji∈J(2) ti,2 = 2 + 3 = 5,
|V3| = ∑Ji∈J(3) ti,3 = 2 + 1 + 1 = 4, |V4| = ∑Ji∈J(4) ti,4 = 2 + 3 = 5,
|V5| = ∑Ji∈J(5) ti,5 = 2 + 3 = 5, |V6| = ∑Ji∈J(6) ti,6 = 3 + 2 = 5,

|V7| = ∑Ji∈J(7) ti,7 = 1 + 2 = 3.

The prohibition of simultaneously executing each pair of unit-time operations of set Vk

on the processor Mk in any semiactive schedule is determined by the complete
∣∣∣J(k)∣∣∣-partite

subgraph (Vk,∅, Ek) with vertex set
{

V1
k , V2

k , . . . , V|J
(k) |

k

}
as

∣∣∣J(k)∣∣∣ parts in the
∣∣∣J(k)∣∣∣-partite

subgraph (Vk,∅, Ek) and edge set Ek, k ∈ {1, 2, . . . , 7}.
Based on the Formula (9), we calculate the cardinalities |Ek|, k ∈ {1, 2, 3, 4}, as follows:

|E1| =
|J(1) |−1

∑
i=1

{∑|J
(1) |

j=i+1

{∣∣∣Vi
1

∣∣∣×∣∣∣V j
1

∣∣∣}}= {{2× 1}+ {2× 1}+ {2× 1}}+ {{1× 1}+ {1× 1}}+ {{1× 1}} = 9,

|E2| =
|J(2) |−1

∑
i=1

{∑|J
(2) |

j=i+1

{∣∣∣Vi
1

∣∣∣×∣∣∣V j
1

∣∣∣}} = 2× 3 = 6, |E3| =
|J(3) |−1

∑
i=1

{∑|J
(3) |

j=i+1 {
∣∣∣Vi

1

∣∣∣×∣∣∣V j
1

∣∣∣} } = {{2× 1}+ {2× 1}}+ {1× 1} = 5,

|E4| =|E5|=|E6|=|E2|= 2× 3 = 6, |E7|= 1× 2 = 2.

It is clear that, due to the 4-partite graph (V1,∅, E1), it is forbidden to simultaneously
fulfill a pair of the operations of set V1 on the processor M1. Due to the tripartite graph
(V3,∅, E3), it is forbidden to simultaneously fulfill a pair of operations from the V3 on the
processor M3. Due to the bipartite graph (V2,∅, E2), it is forbidden to simultaneously fulfill
a pair of the operations of set V2 on the processor M2. Due to the bipartite graph (V4,∅, E4),
it is forbidden to simultaneously fulfill a pair of the operations of set V4 on the processor
M4. Due to the bipartite graph (V5,∅, E5), it is forbidden to simultaneously fulfill a pair of
the operations of set V5 on the processor M5. Due to the bipartite graph (V6,∅, E6), it is
forbidden to simultaneously fulfill a pair of the operations of set V6 on the processor M6.
Due to the bipartite graph (V7,∅, E7), it is forbidden to simultaneously fulfill a pair of the
operations of set V7 on the processor M7.

Let precedence constraints determined on a set of operations belonging to different jobs in
Example 4 be given as follows: R⇒ = {v4 ⇒ v1, v9 ⇒ v3, v13 ⇒ v16, }. Let the weak precedence
constraints in Example 4 be given as follows: R→ = {v1 → v13, v13 → v5, v5 → v1}.

To include the precedence constraints R⇒ in the input data of Example 4,
we add the set of arcs A|J|+1 = {(v4, v1), (v9, v3), (v13, v16)} and the edge set
E|J|+1 = {[v1, v4), {v3, v9], [v13, v16]} to the mixed graph G = (V, A, E). To include
weak precedence constraints R→ in the input data of Example 4, we add the arc set
A|J|+2 = {(v1, v13), (v13, v5), (v5, v1)} to the mixed graph G = (V, A, E). We see that set
of arcs A|J|+2 determines circuit (v1, v13, v5, v1) in the directed graph (V, A,∅). Therefore,
unit-time operations of set {v1, v13, v5} have to be simultaneously fulfilled.

Let the following release dates of the jobs J = {J1, J2, J3, J4} be given as a part of the input
data of Example 4: r1 = 4,r2 = 3, r3 = 1, r4 = 3.

Release date r1 = 4 of the job J1 ∈ J is determined by the union of path (v20, v21, v22, v23, v1)
in the directed graph (V, A,∅) and chain (v20, v21, v22, v23, v1) in the subgraph (V,∅, E)
of the mixed graph G = (V, A, E). Release date r2 = 3 is presented by the union of
path (v24, v25, v26, v4) in the directed graph (V, A,∅) and chain (v24, v25, v26, v4) in the
subgraph (V,∅, E) of the desired mixed graph G = (V, A, E). Release date r3 = 1 of the job
J3 ∈ J is presented by the union of arc (v27, v10) in the directed graph (V, A,∅) and edge
[v27, v10] in the subgraph (V,∅, E) of the desired mixed graph G = (V, A, E). Release date
r4 = 3 of the job J4 ∈ J is presented by the union of path (v28, v29, v30, v16) in the directed

Algorithms 2024, 17, 299 19 of 27

graph (V, A,∅) and chain (v28, v29, v30, v16) in the subgraph (V,∅, E) of the desired mixed
graph G = (V, A, E). Now, the desired mixed graph G is constructed. Figure 4 presents
the constructed mixed graph G determining the whole input data for Example 4 of the
problem Gc MPT

∣∣[ri], [tij], pmtn
∣∣Cmax with four jobs J = {J1, J2, J3, J4} and seven dedicated

processors M = {M1, M2, . . . , M7}.
Due to Theorem 8, a solvable problem Gc MPT

∣∣[ri], [tij], pmtn
∣∣Cmax (like Example 4)

reduces to determining optimal colouring c(G). An existing semiactive schedule for the
scheduling problem with possible interruptions of the operations is determined by set
(12) of completion times of the unit-time operations of set W. The semiactive schedule is
determined by the colouring c(G) of the mixed graph G, in which the equality c(vi) = C(vi)
holds for the vertices vi ∈ W. The makespan-optimal semiactive schedule that exists for
Example 4 is determined by the optimal colouring c(G), where c(v1) = 5, c(v2) = 10,
c(v3) = 11, c(v4) = 4, c(v5) = 5, c(v6) = 6, c(v7) = 7, c(v8) = 8, c(v9) = 9, c(v10) = 2,
c(v11) = 3, c(v12) = 4, c(v13) = 5, c(v14) = 6, c(v15) = 7, c(v16) = 7, c(v17) = 8, c(v18) = 9,
c(v19) = 10. To show that the colouring c(G) is optimal, we next prove the inequality
χ(G) ≥ 11.

In the mixed graph G depicted in Figure 4, there is a path (v24, v25, v26, v4, v5, v6, v7, v8, v9, v3)
in the directed subgraph (V, A,∅) and a chain (v24, v25, v26, v4, v5, v6, v7, v8, v9, v3) in the
subgraph (V,∅, E). Therefore, a minimal colour of the vertex v9 is not less than 9, c(v9) ≥ 9
and the minimal colour of the vertex v3 is not less than 10; c(v3) ≥ 10. In mixed graph
G = (V, A, E), there is a path (v20, v21, v22, v23, v1, v2, v3) in the directed subgraph (V, A,∅)
and a chain (v20, v21, v22, v23, v1, v2, v3) in the subgraph (V,∅, E). Therefore, a minimal
colour of the vertex v2 is not less than 6; c(v2) ≥ 6. However, we see that the min-
imal colour of the vertex v2 cannot be equal to 6, 7, 8 and 9, because the following
four inclusions hold: [v2, v6] ∈ E, [v2, v7] ∈ E, [v2, v8] ∈ E, [v2, v9] ∈ E. There is a
path (v24, v25, v26, v4, v5, v6, v7, v8, v9, v3) in the directed subgraph (V, A,∅) and a chain
(v24, v25, v26, v4, v5, v6, v7, v8, v9, v3) in the subgraph (V,∅, E). Thus, a minimal possible
colour of the vertex v2 is not less than 10, i.e., the inequality c(v2) ≥ 10 holds. Hence,
the minimal possible colour of the vertex v3 is not less than 11 because of the inclusions
[v2, v3] ∈ E and (v2, v3) ∈ A. The inequality χ(G) ≥ 11 holds, so the constructed colouring
c(G) is optimal. We obtain the optimal semiactive schedule S = (C(v1, C(v2, . . . , C(v|W|)
such that equality c(vi) = C(vi) holds for each vertex vi ∈W.

7. Minimising the Schedule Length for Interruptible Integer-Time Operations with
Integer Release Dates and Equivalent Minimisation of the Maximal Lateness

We next show that finding a makespan-optimal schedule for the general schedul-
ing problem Gc MPT

∣∣[ri], [tij], pmtn
∣∣Cmax with integer release dates and interruptible

integer-time operations Qij is similar to finding the optimal schedule for the problem
Gc MPT

∣∣[tij], pmtn, [Di]
∣∣Lmax with integer due dates Di ≥ 0, Ji ∈ J, and interruptible

integer-time operations Qij.

Theorem 9. Every solvable scheduling problem Gc MPT
∣∣[ri], [tij], pmtn

∣∣Cmax with integer release
dates ri ≥ 0, Ji ∈ J, and interruptible integer-time operations Qij, Ji ∈ J, is equivalent to the
solvable scheduling problem Gc MPT

∣∣[tij], pmtn, [Di]
∣∣Lmax with integer due dates Di ≥ 0, Ji ∈ J,

and interruptible integer-time operations Qij, Ji ∈ J.

Proof. The problem Gc MPT
∣∣[ri], [tij], pmtn

∣∣Cmax was considered in Theorem 8. The proof
of Theorem 8 showed how to construct a mixed graph G that completely determines
the input data for a solvable scheduling problem Gc MPT

∣∣[ri], [tij], pmtn
∣∣Cmax . Since the

considered scheduling problem Gc MPT
∣∣[ri], [tij], pmtn

∣∣Cmax is solvable, this mixed graph
G must be colourable according to Theorem 4 and Theorem 8. From Theorem 1 it follows
that the directed graph (V, A,∅) does not have a circuit containing adjacent vertices in the
graph (V,∅, E).

For the given scheduling problem Gc MPT
∣∣[ri], [tij], pmtn

∣∣Cmax on the above mixed
graph G = (V, A, E), we will show how to construct the corresponding problem

Algorithms 2024, 17, 299 20 of 27

Gc MPT
∣∣[tij], pmtn, [Di]

∣∣Lmax , where due dates Di ≥ 0 are integer for all jobs Ji ∈ J,
operations Qij have integer durations for all jobs Ji ∈ J, and interruptions are allowed for
all operations.

In the corresponding problem Gc MPT
∣∣[tij], pmtn, [Di]

∣∣Lmax , jobs J =
{

J1, J2, . . . , J|J|
}

have a release date of zero ri = 0, Ji ∈ J. Jobs J =
{

J1, J2, . . . , J|J|
}

have to be processed by

the same set M =
{

M1, M2, . . . , M|M|
}

of the dedicated processors. We assume that in the

general scheduling problem Gc MPT
∣∣[tij], pmtn, [Di]

∣∣Lmax , each processor Mi ∈ M must

process the same set Vi =
{

vi1 , vi2 , . . . , vi|Vi
|

}
⊆ V of the jobs as in the general problem

Gc MPT
∣∣[ri], [tij], pmtn

∣∣Cmax considered in Sections 5 and 6.
In the corresponding problem Gc MPT

∣∣[tij], pmtn, [Di]
∣∣Lmax , integer due date Di ≥ 0

is given for every job Ji ∈ J as follows: Di = max
{

rj : Jj ∈ J
}
− ri.

Let us define a strict order (vk
|V(k) |

, vk
|V(k) |−1

, . . . , vk2 , vk1) for processing the operations

V(k) =

{
vk1 , vk2 , . . . , vk

|V(k) |

}
. It is clear that this strict order (vk

|V(k) |
, vk

|V(k) |−1
, . . . , vk2 , vk1) is

opposite to the strict order (vk1 , vk2 , . . . , vk
|V(k) |

) determined for the corresponding problem

Gc MPT
∣∣[ri], [tij], pmtn

∣∣Cmax for processing integer-time operations V(k).
If the precedence constraints vi ⇒ vj and the weak precedence constraints vp → vq

are defined on the set of operations belonging to different jobs in the corresponding
problem Gc MPT

∣∣[ri], [tij], pmtn
∣∣Cmax , then the inverse precedence constraint vj ⇒ vi

and the inverse weak precedence constraints vq → vp have to be given for the problem
Gc MPT

∣∣[tij], pmtn, [Di]
∣∣Lmax .

It follows from Theorem 8 that the optimal semiactive schedule for the roblem
Gc MPT

∣∣[ri], [tij], pmtn
∣∣Cmax determined by the mixed graph G = (V, A, E) can be de-

fined by the optimal colouring c(G). This colouring c(G) also defines an optimal semiactive
schedule for the problem Gc MPT

∣∣[tij], pmtn, [Di]
∣∣Lmax . It is clear that the optimal maximal

lateness may be determined as follows: Lmax = χ(G)−max{ri : Ji ∈ J}. Thus, we proved
the following claim.

Every solvable scheduling problem Gc MPT
∣∣[ri], [tij], pmtn

∣∣Cmax with given integer re-
lease dates ri ≥ 0, Ji ∈ J, and integer durations of interruptible operations Qij is equiva-
lent to the scheduling problem Gc MPT

∣∣[tij], pmtn, [Di]
∣∣Lmax with integer due dates Di =

max
{

rj : Jj ∈ J
}
− ri, Ji ∈ J, and integer durations of the interruptible operations Qij, Ji ∈ J.

Obviously, the above arguments are reversible. This allows us to prove the following
claim in a similar way.

Every solvable scheduling problem Gc MPT
∣∣[tij], pmtn, [Di]

∣∣Lmax with given integer due
dates Di ≥ 0, Ji ∈ J, and integer durations of the interruptible operations Qij, is equivalent
to the scheduling problem Gc MPT

∣∣[ri], [tij], pmtn
∣∣Cmax with given integer release dates ri =

max
{

Dj : Jj ∈ J
}
− Di and integer durations of the interruptible operations Qij, Ji ∈ J.

Theorem 9 is proved. □

The following corollary follows directly from Theorem 8 and Theorem 9.

Corollary 3. If the job due dates and durations of operations Qij, Ji ∈ J, are integers for the solvable
scheduling problem Gc MPT

∣∣[tij], pmtn, [Di]
∣∣Lmax , then an semiactive optimal schedule for this

problem is presentable as an optimal colouring of vertices of the mixed graph G that determines the
input data of this scheduling problem.

To illustrate Theorem 9 and Corollary 3, we solve Example 5 of the problem
Gc MPT

∣∣[tij], pmtn, [Di]
∣∣Lmax with four jobs J = {J1, J2, J3, J4}, seven dedicated proces-

sors M = {M1, M2, . . . , M7}, integer due dates Di ≥ 0, integer processing times tij > 0 of
the multi-processor operations, precedence constraints between operations of different and
the same jobs, and allowed interruptions of the integer-time operations.

Algorithms 2024, 17, 299 21 of 27

Example 5. In Example 5 of the scheduling problem Gc MPT
∣∣[tij], pmtn, [Di]

∣∣Lmax on the
mixed graph G = (V, A, E) depicted in Figure 5, the set of jobs J1, J2, J3 and J4 are ready for
processing on set M = {M1, M2, . . . , M9} of the dedicated processors from time zero t = 0. Each
processor Mk ∈ M must process the same subset of the jobs as in Example 4. However, the orders
for fulfilling the same set of operations are opposite to the linear orders determined in Example 4.

Algorithms 2024, 17, 299 25 of 32

},,,{ 4321 JJJJJJi  are defined as follows: ,044}:max{ 11  rJJrD ij

,1344 22  rD ,3144 33  rD .1344 44  rD

The input data for Example 5 are determined by the mixed graph),,(EAVG  

depicted in Figure 5. Set V of the vertices and set E of the edges in the mixed graph
G are the same as those in the mixed graph G presented in Figure 4.

Compare mixed graph G depicted in Figure 5 for scheduling problem

  max|,],[| LDpmtntMPTG iijc with mixed graph G for scheduling problem

  max|],[,| CpmtntrMPTG ijic depicted in Figure 4. According to Theorem 13 and Corollary

14, for Example 5 of the scheduling problem   max|,],[| LDpmtntMPTG iijc on the mixed

graph),,(EAVG   , the optimal semiactive schedule S is determined by the

following optimal colouring)(Gc : 7)(1 vc , ,2)(2 vc ,1)(3 vc 8)(4 vc , ,7)(5 vc

,6)(6 vc ,5)(7 vc ,4)(8 vc ,3)(9 vc ,10)(10 vc 9)(11 vc , 8)(12 vc , 7)(13 vc ,

6)(14 vc , 5)(15 vc , ,5)(16 vc 4)(17 vc , 3)(18 vc , .2)(19 vc

Figure 5. Mixed graph),,(EAVG   determining Example 5 of the problem

  max|,],[| LDpmtntMPTG iijc .

The colouring)(Gc determines the optimal semiactive schedule:

,6)()(,5)()(,7)()(,1)()(62,271,212,131,1  vcQCvcQCvcQCvcQC

,8)()(43,2  vcQC ,6)()(141,3  vcQC ,8)()(122,3  vcQC ,9)()(113,3  vcQC

,4)()(171,4  vcQC .5)()(162,4  vcQC

We compute the optimal objective value as follows:

.7411}:max{)(max   JJrGL ii

8. Discussion

This research is a continuation of the works [1,2,10–22], where graph colouring

models and algorithms were developed for solving various scheduling problems. The

developed method is based on graph‐theoretic models for scheduling problems. We have

studied relationships between optimal colourings of the mixed graphs and general

scheduling problems   max|,],[| LDpmtntMPTG iijc and   max|],[,| CpmtntrMPTG ijic . In

Figure 5. Mixed graph G← = (V, A←, E) determining Example 5 of the problem

Gc MPT
∣∣∣[tij], pmtn, [Di]

∣∣∣Lmax .

While the precedence constraints vi → vj and vp ⇒ vq are determined between oper-
ations different jobs in Example 4, the inverse precedence constraints vj → vi and vq ⇒ vp
are determined in Example 5 of the scheduling problem Gc MPT

∣∣[tij], pmtn, [Di]
∣∣Lmax .

Thus, in Example 5, the due dates of the given set of jobs Ji ∈ J = {J1, J2, J3, J4} are defined
as follows: D1 = max

{
rj : Ji ∈ J

}
− r1 = 4− 4 = 0, D2 = 4− r2 = 4− 3 = 1, D3 =

4− r3 = 4− 1 = 3, D4 = 4− r4 = 4− 3 = 1.
The input data for Example 5 are determined by the mixed graph G← = (V, A←, E)

depicted in Figure 5. Set V of the vertices and set E of the edges in the mixed graph G← are
the same as those in the mixed graph G presented in Figure 4.

Compare mixed graph G← depicted in Figure 5 for scheduling problem
Gc MPT

∣∣[tij], pmtn, [Di]
∣∣Lmax with mixed graph G for scheduling problem

Gc MPT
∣∣[ri], [tij], pmtn

∣∣Cmax depicted in Figure 4. According to Theorem 9 and Corol-
lary 3, for Example 5 of the scheduling problem Gc MPT

∣∣[tij], pmtn, [Di]
∣∣Lmax on the

mixed graph G← = (V, A←, E), the optimal semiactive schedule S is determined by
the following optimal colouring c(G←): c(v1) = 7, c(v2) = 2, c(v3) = 1, c(v4) = 8,
c(v5) = 7, c(v6) = 6, c(v7) = 5, c(v8) = 4, c(v9) = 3, c(v10) = 10, c(v11) = 9, c(v12) = 8,
c(v13) = 7, c(v14) = 6, c(v15) = 5, c(v16) = 5, c(v17) = 4, c(v18) = 3, c(v19) = 2.

The colouring c(G←) determines the optimal semiactive schedule:

C(Q1,1) = c(v3) = 1, C(Q1,2) = c(v1) = 7, C(Q2,1) = c(v7) = 5, C(Q2,2) = c(v6) = 6,
C(Q2,3) = c(v4) = 8, C(Q3,1) = c(v14) = 6, C(Q3,2) = c(v12) = 8, C(Q3,3) = c(v11) = 9,

C(Q4,1) = c(v17) = 4, C(Q4,2) = c(v16) = 5.

We compute the optimal objective value as follows:

Lmax = χ(G←)−max{ri : Ji ∈ J} = 11− 4 = 7.

8. Discussion

This research is a continuation of the works [1,2,10–22], where graph colouring models
and algorithms were developed for solving various scheduling problems. The developed
method is based on graph-theoretic models for scheduling problems. We have studied
relationships between optimal colourings of the mixed graphs and general scheduling prob-
lems Gc MPT

∣∣[tij], pmtn, [Di]
∣∣Lmax and Gc MPT

∣∣[ri], [tij], pmtn
∣∣Cmax . In both investigated

Algorithms 2024, 17, 299 22 of 27

scheduling problems, it is necessary to construct optimal schedules for fulfilling partially
ordered sets of integer-time multi-processor tasks with allowed operation interruptions.
Precedence constraints of the two types of completion–start and start–start can be given on
the set of integer-time operations. Furthermore, specified subsets of the operations with
unit durations must be executed simultaneously.

The propositions proved in Sections 4–7 can be used to construct mixed graphs for
representing the entire input data of the numerous scheduling problems with interruptible
integer-time operations. It is proven that to construct an optimal semiactive schedule for any
studied scheduling problem, it is sufficient to determine the optimal colouring of the vertices
of the mixed graph representing all input data of the considered scheduling problem.

It is also shown that notions of graph theory are quite sufficient for the formulation of
the problems Gc MPT

∣∣[tij], pmtn, [Di]
∣∣Lmax and Gc MPT

∣∣[ri], [tij], pmtn
∣∣Cmax , and a huge

number of their special cases. To illustrate the obvious benefits of using graph theory
terminology instead of terminology of scheduling theory, we list the scheduling terms
used in Sections 1–7: processing system (multi-stage); production planning (scheduling); job-shop,
general shop; equipment, machine, processor; schedule (semiactive, feasible, optimal); schedule
optimality criterion (makespan, maximal lateness,; production cost); manufacture; raw material;
final product; job (simple, first, second, last) task; release date (equal, integer); input data; plan-
ning horizon; schedule length; operation (multi-processor, interruptible); (allowed) interruption,
preemption; machine route, (first, last) operation; operation duration (unit, integer), operation
order (linear, strict); operation assignment to machine; simultaneous execution of operations; fulfill;
process; ready for processing; (operation, job, task) start; (operation, job, task) completion; (operation,
task) interruption, schedule (makespan, length); three-field notation; capacity constraint; (week)
precedence constraints (completion-start, start-start), unit-time operation (task), integer-time (oper-
ation, job, task) operation (task) processing time (duration), production conditions (efficiency), due
date (integer).

To obtain and present the same results in notions of mixed graphs, only fewer terms
were used, namely: vertex (incidental, adjacent); arc, edge (multiple); graph (finite, directed,
mixed, k-partite, bipartite, tripartite, complete, colourable); digraph; (vertex-induced) subgraph,
clique, connected component (graph); colouring (strict, optimal); vertex colour, chromatic number;
loop; path, passing; chain (length); circuit.

In Sections 5 and 7, we proved that every solvable problem of constructing an opti-
mal colouring of the mixed graph reduces to problems Gc MPT

∣∣[ri], [tij], pmtn
∣∣Cmax and

Gc MPT
∣∣[tij], pmtn, [Di]

∣∣Lmax . Thus, for many of the statements proved so far for these
scheduling problems and their various special cases, there are similar statements for the
problems of defining optimal colourings of the vertices of the mixed graphs.

It is shown that each solvable problem Gc MPT
∣∣[ri], [tij], pmtn

∣∣Cmax (as well as the
solvable problem Gc MPT

∣∣[tij], pmtn, [Di]
∣∣Lmax) pseudo-polynomially reduces to finding

the optimal colouring of a mixed graph. It is worth noting that the pseudo-polynomiality
of this reduction is based on the fact that all input data for both scheduling problems
are determined by mixed graphs to be coloured for solving these scheduling problems.
Therefore, it is unclear and probably impossible to find a polynomial reduction of these
scheduling problems to mixed graph colouring problems.

The statements proved for finding optimal colourings of the mixed graphs [6,7,15,17,23–32]
could be used for finding a solution of the NP-hard scheduling problems
Gc MPT

∣∣[ri], [tij], pmtn
∣∣Cmax and Gc MPT

∣∣[tij], pmtn, [Di]
∣∣Lmax . To apply the developed

mixed graph colouring models, methods, and algorithms, solvable scheduling problems
must have positive integer processing times of the multi-processor tasks, non-negative inte-
ger release dates of all jobs for the schedule length minimisation (and non-negative integer
due dates for the minimisation of the maximal lateness). It should be noted that there is
no restriction on the mixed graphs for using the scheduling algorithms for constructing
optimal colourings of vertices of the mixed graph.

The results presented and proved in this article can be considered as a substantiation
of graph-theoretic methods for solving scheduling problems by reducing them to finding

Algorithms 2024, 17, 299 23 of 27

optimal colouring of mixed graphs, which determine the input data of scheduling problems.
Conditions and limitations of an individual scheduling problem are determined by the
corresponding mixed graph. For the individual scheduling problem, such a mixed graph is
defined uniquely.

It should be noted that different scheduling problems Gc MPT
∣∣[ri], [tij], pmtn

∣∣Cmax
and Gc MPT

∣∣[tij], pmtn, [Di]
∣∣Lmax can be defined by the same mixed graph. Thus, the

results proven for colourings of the particular mixed graph G = (V, A, E) are applicable, as
a rule, for a whole set of the scheduling problems Gc MPT

∣∣[ri], [tij], pmtn
∣∣Cmax or problems

Gc MPT
∣∣[tij], pmtn, [Di]

∣∣Lmax . In particular, most results presented and proven in this pa-
per can be used for studying colourings of the specified classes of mixed graphs, which are
generated by the scheduling problems Gc MPT

∣∣[ri], [tij], pmtn
∣∣Cmax and

Gc MPT
∣∣[tij], pmtn, [Di]

∣∣Lmax . This can help attract graph theorists to solve the multistage
scheduling problems and their numerous special cases.

9. Conclusions

This paper presents efficient reformulations of a huge number of scheduling problems
into mixed graph colouring ones. Sections 1–3 provide an overview of the preliminary re-
sults used in the proofs of the new results presented in Sections 4–8. We studied the optimal
scheduling of a partially ordered set of multi-processor tasks with allowed interruptions
as optimal colourings of the vertices of the corresponding mixed graphs. We proved that
the problem of optimal colouring of vertices of an arbitrary mixed graph reduces to the
problem of constructing schedules that minimise a maximal lateness for processing partially
ordered sets of multi-processor tasks with integer durations, integer due dates and allowed
interruptions. We also proved the inverse statements that problems of constructing sched-
ules minimising a maximal lateness for fulfilling partially ordered sets of multi-processor
tasks pseudo-polynomially reduce to problems of optimally coloring the vertices of the
mixed graphs, which determines all input data of the considered scheduling problems.

The established relationship between the generalisations of scheduling problems and
problems of finding an optimal colouring of the vertices of mixed graphs presented in
the article makes it possible to solve any solvable problems Gc MPT

∣∣[ri], [tij], pmtn
∣∣Cmax

and Gc MPT
∣∣[tij], pmtn, [Di]

∣∣Lmax , as well as numerous special cases of these problems
in terms of graph theory, and not to use the special terms of schedule theory, which are
related to the practical production planning problems. It turned out that the terms of
graph theory are quite enough to formulate any problem Gc MPT

∣∣[ri], [tij], pmtn
∣∣Cmax or

Gc MPT
∣∣[tij], pmtn, [Di]

∣∣Lmax , and for the development of algorithms for solving problems
of schedule theory as a result of the search for optimal coloring of the mixed graphs that
determine the input data of scheduling problems.

The presented and generalised theorems and results (Sections 1–3) and new results
proved in Sections 4–7 allow making scheduling theory more abstract due to the possibility
to use abstract models, effective methods and algorithms for optimal colouring the vertices
of the mixed graphs for solving most scheduling problems with bottleneck objectives. Such
investigations of the relationships between optimisation problems of scheduling theory
and those of graph theory may be continued further.

Future research directions may be oriented towards developing mixed graph colour-
ing models and algorithms suitable for solving scheduling problems with other regular
optimality criteria. In particular, non-bottleneck criteria are widely used in scheduling
theory [5,6,9,22–26]. It should be noted that both criteria considered in this paper are
bottleneck criteria. We plan to study other scheduling problems that are reducible or equiv-
alent to colouring the vertices of the corresponding mixed graphs. A promising research
may be aimed to usage of the mixed graph models for developing efficient algorithms
for scheduling the cloud computations. One could assume that durations of all tasks are
integer and operation preemptions are allowed. Both studied objectives (schedule length
and maximal lateness) may be considered for cloud computations.

Algorithms 2024, 17, 299 24 of 27

We plan to study other classes of the multistage scheduling problems that are equiv-
alent to problems of optimal colorings of vertices of the mixed graphs. We plan also to
consider polynomially solvable multistage scheduling problems, which will allow us to
discover polynomially solvable cases of the problem of finding optimal colourings c(G) of
the specific mixed graphs G = (V, A, E).

Author Contributions: Conceptualisation, Y.N.S.; methodology, Y.N.S.; validation, E.I.M.; formal
analysis, E.I.M.; investigation, E.I.M. and Y.N.S.; data curation, E.I.M.; writing—original draft, Y.N.S.;
writing—review and editing, Y.N.S.; visualisation, E.I.M. All authors have read and agreed to the
published version of the manuscript.

Funding: The research of Y.S. was funded by Belarusian Republican Foundation for Fundamental
Research, grant number Φ23PHΦ-017.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

Example A1. The individual problem Gc
∣∣tij = 1

∣∣Cmax determined by mixed graph G∗ =
(V, A∗, E∗) is analogous to Example 1 of a job-shop unit-time problem J

∣∣tij = 1
∣∣Cmax , with

the exception that there are given start-start constraints and completion-start constraints on
the set of operations of different jobs of set J. All the additional constraints are determined as
follows: v1 ⇒ v4 ; v4 ⇒ v3 ; v3 → v1 ; v8 → v4 and v12 → v9 . Thus, the appropriate mixed
graph G∗ = (V, A∗, E∗) has to contain an additional subset of arcs and subset set of edges defined
as follows:

A∗ = A∪{(v1, v4), (v4, v3), (v3, v1), (v8, v4), (v12, v9)} ; E∗ = E∪{[v8, v4], [v12, v9]}.

Note that the operations v1, v3 and v4 have to be fulfilled simultaneously in ever sched-
ule since circuit (v1, v4, v3, v1) exists in digraph (V,∅, E∗), which is a subgraph of the mixed
graph G∗ = (V, A∗, E∗) dipicted in Figure A1. At the right side of Figure A1, the colors of
coloring c(G∗) are presented instead of the natural numbers: c(v1) = 2, c(v2) = 1, c(v3) =
2, c(v4) = 2, c(v5) = 3, c(v6) = 4, c(v7) = 5, c(v8) = 1, c(v9) = 3, c(v10) = 5, c(v11) = 1,
c(v12) = 2. The colouring c(G∗) is optimal, χ(G∗) = 5, since directed graph (V, A∗,∅) con-
tains path (v8, v4, v5, v6, v7) and graph (V,∅, E∗) contains chain (v8, v4, v5, v6, v7), whose
lengths are equal to 5.

Algorithms 2024, 17, 299 29 of 32

Figure A1. Mixed graph),,(*** EAVG  that determines Example 2 of the scheduling problem

max| 1|c ijG t C .

Due to these path and chain, the following inequality holds: 5)(* G . From

Theorem 6, it follows that the optimal colouring)(*Gc defines the following schedule

S that is optimal for Example A1 of the unit‐time problem max|1| CtG ijc  , where the

input data are determined by mixed graph *G depicted in Figure A1.

,5)(,4)(,3)(,2)(,2)(,1)(,2)((4,33,32,31,32,21,21,1  QCQCQCQCQQCQCS

)2)(,1)(,5)(,3)(,1)(2,51,53,42,41,4  QCQCQCQCQC

The correspondence of the operations QQij and the vertices Vvk  is

determined based on Remark 1. The equalities max
* 5)(CG  hold due to Theorem 6.

Appendix B

Example A2. In Example A2, the set },,,,{ 54321 JJJJJJ  of jobs is the same as in Example 1

and Example A1. The set of processors is increased from four processors in Examples 1 and

Example A1 to nine processors in Example A2: }.,...,,{ 921 MMMM 

The processor 1M processes the operations 1V = },{ 71 vv . In Figure A2, the

forbiddance to process the operations from the set 1V simultaneously on the processor

1M is determined by the edge],[71 vv in the graph),,(EV  . The processor 2M

processes the operations 2V = },{ 42 vv . The forbiddance to process the operations

from the set 2V simultaneously on the processor 2M is determined by the edge

],[42 vv .

Similarly, the forbiddance to process operations from the set 3V = },{ 93 vv

simultaneously on the processor 3M is determined by the edge],[93 vv . The

forbiddance to process this pair of operations from the set 4V = },{ 126 vv

simultaneously on the processor 4M is determined by the edge],[126 vv in the graph

Figure A1. Mixed graph G∗ = (V, A∗, E∗) that determines Example A1 of the scheduling problem

Gc

∣∣∣tij = 1
∣∣∣Cmax .

Algorithms 2024, 17, 299 25 of 27

Due to these path and chain, the following inequality holds: χ(G∗) ≥ 5. From
Theorem 3, it follows that the optimal colouring c(G∗) defines the following schedule S
that is optimal for Example A1 of the unit-time problem Gc

∣∣tij = 1
∣∣Cmax , where the input

data are determined by mixed graph G∗ depicted in Figure A1.

S = (C(Q1,1) = 2, C(Q2,1) = 1, (Q2,2) = 2, C(Q3,1) = 2, C(Q3,2) = 3, C(Q3,3) = 4, C(Q3,4) = 5,
C(Q4,1) = 1, C(Q4,2) = 3, C(Q4,3) = 5, C(Q5,1) = 1, C(Q5,2) = 2)

The correspondence of the operations Qij ∈ Q and the vertices vk ∈ V is determined
based on Remark 1. The equalities χ(G∗) = 5 = Cmax hold due to Theorem 3.

Appendix B

Example A2. In Example A2, the set J = {J1, J2, J3, J4, J5} of jobs is the same as in Example 1
and Example A1. The set of processors is increased from four processors in Examples 1 and Example
A1 to nine processors in Example A2: M = {M1, M2, . . . , M9}.

The processor M1 processes the operations V1 = {v1, v7}. In Figure A2, the forbiddance
to process the operations from the set V1 simultaneously on the processor M1 is determined
by the edge [v1, v7] in the graph (V,∅, E). The processor M2 processes the operations
V2 = {v2, v4}. The forbiddance to process the operations from the set V2 simultaneously on
the processor M2 is determined by the edge [v2, v4].

Similarly, the forbiddance to process operations from the set V3 = {v3, v9} simultane-
ously on the processor M3 is determined by the edge [v3, v9]. The forbiddance to process
this pair of operations from the set V4 = {v6, v12} simultaneously on the processor M4
is determined by the edge [v6, v12] in the graph (V,∅, E). The forbiddance to process
operations from the set V5 = {v5, v11} simultaneously on the processor M5 is determined
by the edge [v5, v11]. The forbiddance to process the operations from the set V6 = {v8, v12}
simultaneously on the processor M6 is determined by the edge [v8, v12]. The forbiddance
to process the operations from the set V7 = {v7, v10} simultaneously on the processor M7 is
determined by the edge [v7, v10]. The forbiddance to process the operations from the set V8
= {v9, v11} simultaneously is determined by the edge [v9, v11]. The forbiddance to process
the operations from the set V9 = {v3, v4} simultaneously on processor M9 is determined
by the edge [v3, v4]. The processors, which are used to process the operation vi ∈ V, are
presented near the vertex vi in Figure A2. The precedence constraints established between
operations of different jobs are given as follows: v1 ⇒ v4 ; v1 ⇒ v8 ; v3 ⇒ v1 ; v8 ⇒ v3 ;
v6 ⇒ v10 ; v10 ⇒ v12 ; v8 → v4 ; v11 → v8 . These precedence constraints are represented by
seven arcs {(v1, v4), (v1, v8), (v3, v1), (v8, v3), (v6, v10), (v10, v12), (v8, v4)} ⊂ A and two
edges {[v4, v8], [v8, v11]} ⊂ E.

The digraph (V, A,∅) has one circuit (v1, v8, v3, v1) and this circuit has no adjacent
vertices in the graph (V,∅, E). Since the digraph (V, A,∅) has no circuit with adjacent
vertices in the graph (V,∅, E), there exists a schedule for Example A2 of the general unit-
time problem Gc MPT|ti = 1|Cmax that is completely determined by the mixed graph G; see
Theorem 4. We construct the following colouring c(G) of the mixed graph G = (V, A, E):
c(v1) = 2, c(v2) = 1, c(v3) = 2, c(v4) = 3, c(v5) = 4, c(v6) = 5, c(v7) = 6, c(v8) =
2, c(v9) = 3, c(v10) = 5, c(v11) = 1, c(v12) = 6. The colouring c(G) is optimal, χ(G) = 6,
since the directed graph (V, A,∅) contains the path (v11, v8, v4, v5, v6, v7) and the subgraph
(V,∅, E) of the mixed graph G contains the chain (v11, v8, v4, v5, v6, v7), whose lengths are
equal to 6. Because of this path and chain, the inequality χ(G) ≥ 6 holds. By Theorem 5, the
optimal colouring c(G) defines the optimal semiactive schedule (1) for Example A2 of the
unit-time problem Gc

∣∣tij = 1
∣∣Cmax , whose input data is determined by the mixed graph G

depicted in Figure A2. Based on Remark 1 about the correspondence of operations Qij ∈ Q
and vertices vk ∈ V, we obtain the following makespan-optimal semiactive schedule:

S = (C(Q1,1) = 2, C(Q2,1) = 1, (Q2,2) = 2, C(Q3,1) = 3, C(Q3,2) = 4, C(Q3,3) = 5, C(Q3,4) = 6,

C(Q4,1) = 2, C(Q4,2) = 3, C(Q4,3) = 5, C(Q5,1) = 1, C(Q5,2) = 6)

Algorithms 2024, 17, 299 26 of 27

Algorithms 2024, 17, 299 30 of 32

),,(EV  . The forbiddance to process operations from the set 5V = },{ 115 vv

simultaneously on the processor 5M is determined by the edge],[115 vv . The

forbiddance to process the operations from the set 6V = },{ 128 vv simultaneously on

the processor 6M is determined by the edge],[128 vv . The forbiddance to process the

operations from the set 7V = },{ 107 vv simultaneously on the processor 7M is

determined by the edge],[107 vv . The forbiddance to process the operations from the set

8V = },{ 119 vv simultaneously is determined by the edge],[119 vv . The forbiddance to

process the operations from the set 9V = },{ 43 vv simultaneously on processor 9M

is determined by the edge],[43 vv . The processors, which are used to process the

operation Vvi  , are presented near the vertex iv in Figure A2. The precedence

constraints established between operations of different jobs are given as follows:

41 vv  ; 81 vv  ; 13 vv  ; 38 vv  ; 106 vv  ; 1210 vv  ; 48 vv  ; 811 vv  . These

precedence constraints are represented by seven arcs),,{(41 vv),,(81 vv),,(13 vv

),,(),,(10638 vvvv Avvvv )},(),,(481210 and two edges Evvvv ]},[],,{[11884 .

The digraph),,(AV has one circuit),,,(1381 vvvv and this circuit has no adjacent

vertices in the graph),,(EV  . Since the digraph),,(AV has no circuit with

adjacent vertices in the graph),,(EV  , there exists a schedule for Example A2 of the

general unit‐time problem max|1| CtMPTG ic  that is completely determined by the

mixed graph G ; see Theorem 7. We construct the following colouring)(Gc of the

mixed graph),,(EAVG  : ,2)(1 vc ,1)(2 vc ,2)(3 vc ,3)(4 vc ,4)(5 vc

,5)(6 vc ,6)(7 vc ,2)(8 vc ,3)(9 vc ,5)(10 vc 1)(11 vc , 6)(12 vc . The

colouring)(Gc is optimal, 6)(G , since the directed graph),,(AV contains the

path),,,,,(7654811 vvvvvv and the subgraph),,(EV  of the mixed graph G contains

the chain),,,,,(7654811 vvvvvv , whose lengths are equal to 6. Because of this path and

chain, the inequality 6)(G holds. By Theorem 8, the optimal colouring)(Gc

defines the optimal semiactive schedule (1) for Example A2 of the unit‐time problem

max|1| CtG ijc  , whose input data is determined by the mixed graph G depicted in

Figure A2. Based on Remark 1 about the correspondence of operations QQij and

vertices Vvk  , we obtain the following makespan‐optimal semiactive schedule:

,6)(,5)(,4)(,3)(,2)(,1)(,2)((4,33,32,31,32,21,21,1  QCQCQCQCQQCQCS

)6)(,1)(,5)(,3)(,2)(2,51,53,42,41,4  QCQCQCQCQC

Figure A2. Mixed graph),,(EAVG  that defines the input data for Example A2. Figure A2. Mixed graph G = (V, A, E) that defines the input data for Example A2.

By Theorem 5, the equality χ(G) = 6 = Cmax(S) must hold.
Note that Theorem 5 is only valid for colourable mixed graphs. For example, if the

precedence constraint v12 ⇒ v9 is added to the input data of Example A2, we obtain the
following mixed graph: G+ = (V, A∪{(v12, v9)}, E). The obtained mixed graph becomes
un-colourable due to the existence of a circuit (v12, v9, v10, v12) such that the vertices v9
and v10 are adjacent in the graph (V,∅, E), which is a subgraph of the mixed graph
G+ = (V, A∪{(v12, v9)}, E); see Theorem 1. Therefore, the modified Example A2 (with the
additional precedence constraint v12 ⇒ v9) has no feasible schedule due to Theorem 4.

References
1. Sotskov, Y.N.; Dolgui, A.; Werner, F. Mixed graph coloring for unit-time job-shop scheduling. Int. J. Math. Algorithms 2001, 2,

289–323.
2. Sotskov, Y.N.; Tanaev, V.S.; Werner, F. Scheduling problems and mixed graph colorings. Optimization 2002, 51, 597–624.
3. Sotskov, Y.N.; Tanaev, V.S. A chromatic polynomial of a mixed graph. Vestsi Akad. Navuk BSSR Ser. Fiz. Mat. Navuk 1976, 6, 20–23.

(In Russian)
4. Karp, R.M. Reducibility among combinatorial problems. In Complexity of Computer Computations; Miller, R.E., Thatcher, J.W., Eds.;

Plenum Press: New York, NY, USA, 1972; pp. 85–103.
5. Brucker, P. Scheduling Algorithms; Springer: Berlin, Germany, 1995.
6. Harary, F. Graph Theory; Reading; Addison-Wesley: Boston, MA, USA, 1969.
7. Thulasiraman, K.; Swamy, M.N.S. Graphs: Theory and Algorithms; John Wiley & Sons, Inc.: Toronto, ON, Canada, 1992.
8. Hansen, P.; Kuplinsky, J.; de Werra, D. Mixed graph colorings. Math. Methods Oper. Res. 1997, 45, 145–160. [CrossRef]
9. Sotskov, Y.N. Mixed graph colouring as scheduling multi-processor tasks with equal processing times. J. Belarusian State Univ.

Math. Inform. 2021, 2, 67–81. [CrossRef]
10. Giaro, K.; Kubale, M.; Obszarski, P. A graph coloring approach to scheduling of multiprocessor tasks on dedicated machines with

availability constraints. Discret. Appl. Math. 2009, 157, 3625–3630. [CrossRef]
11. Hoogeveen, J.A.; Lenstra, J.K.; Veltman, B. Preemptive scheduling in a two-stage multiprocessor flow shop is NP-hard. Eur. J.

Oper. Res. 1996, 89, 172–175. [CrossRef]
12. Sotskov, Y.N.; Mihova, E.I. Scheduling multiprocessor tasks with equal processing times as a mixed graph coloring problem.

Algorithms 2021, 14, 246. [CrossRef]
13. De Werra, D. Restricted coloring models for timetabling. Discret. Math. 1997, 165/166, 161–170. [CrossRef]
14. De Werra, D. On a multiconstrained model for chromatic scheduling. Discret. Appl. Math. 1999, 94, 171–180. [CrossRef]
15. Damaschke, P. Parameterized mixed graph coloring. J. Comb. Optim. 2019, 38, 326–374. [CrossRef]
16. Kouider, A.; Ait Haddadne, H.; Ourari, S.; Oulamara, A. Mixed graph coloring for unit-time scheduling. Int. J. Prod. Res. 2017, 55,

1720–1729. [CrossRef]
17. Kouider, A.; Ait Haddadene, H.; Oulamara, A. On minimization of memory usage in branch-and-bound algorithm for the mixed

graph coloring: Application to the unit-time job shop scheduling. Comput. Oper. Res. 2019, 4967, 1001–1008.
18. Kouider, A.; Ait Haddadne, H. A bi-objective branch-and-bound algorithm for the unit-time job shop scheduling: A mixed graph

coloring approach. Comput. Oper. Res. 2021, 132, 105319. [CrossRef]

https://doi.org/10.1007/BF01194253
https://doi.org/10.33581/2520-6508-2021-2-67-81
https://doi.org/10.1016/j.dam.2009.02.024
https://doi.org/10.1016/0377-2217(94)00235-5
https://doi.org/10.3390/a14080246
https://doi.org/10.1016/S0012-365X(96)00208-7
https://doi.org/10.1016/S0166-218X(99)00019-0
https://doi.org/10.1007/s10878-019-00388-z
https://doi.org/10.1080/00207543.2016.1224950
https://doi.org/10.1016/j.cor.2021.105319

Algorithms 2024, 17, 299 27 of 27

19. Baaziz, A.; Haddadene, H.A.; Oulamara, A.; Kouider, A. Scheduling preemptive jobs on parallel machines with a conflict graph:
A graph multi-colouring approach. Int. J. Math. Oper. Res. 2023, 25, 47–67. [CrossRef]

20. Beck, M.; Blado, D.; Crawford, J.; Jean-Louis, T.; Young, M. On weak chromatic polynomials of mixed graphs. Graphs Comb. 2015,
31, 91–98. [CrossRef]

21. Niu, D.; Liu, B.; Zhang, H.; Yin, M. Improving local search for the weighted sum coloring problem using the branch-and-bound
algorithm. Knowl. Based Syst. 2022, 246, 108703. [CrossRef]

22. Jacqueline, O.; Alden, M.; Golshan, M.; Seyedamirabbas, M. Graph-based modeling in shop scheduling problems: Review and
extensions. Appl. Sci. 2021, 11, 4741. [CrossRef]

23. Liang, P.; Fu, Y.; Gao, K. Multi-product disassembly line balancing optimization method for high disassembly profit and low
energy consumption with noise pollution constraints. Eng. Appl. Artif. Intell. 2024, 130, 107721. [CrossRef]

24. Fu, Y.; Zhou, M.; Guo, X.; Qi, L.; Gao, K.; Albeshri, A. A multiobjective scheduling of energy-efficient stochastic hybrid open shop
with brain storm optimization and simulation evaluation. IEEE Trans. Syst. Man Cybern. Syst. 2024, 54, 4260–4272. [CrossRef]

25. Fu, Y.; Ma, X.; Gao, K.; Li, Z.; Dong, Y. Multi-objective home health care routing and scheduling with sharing service via a
problem-specific knowledge-based artificial bee colony algorithm. IEEE Trans. Intell. Transp. Syst. 2024, 25, 1706–1719. [CrossRef]

26. Ma, X.; Fu, Y.; Gao, K.; Zhu, L.; Sadollah, A. A multi-objective scheduling and routing problem for home health care services via
brain storm optimization. Complex Syst. Model. Simul. 2023, 3, 32–46. [CrossRef]

27. Andrade, E.; Bonifácio, A.E.; Robbiano, M.; Rodríguez, J.; Tapia, K. Some families of integral mixed graphs. Linear Algebra Appl.
2022, 641, 48–66. [CrossRef]

28. Mostafaie, T.; Modarres Khiyabani, F.; Navimipour, N.J. A systematic study on meta-heuristic approaches for solving the graph
coloring problem. Comput. Oper. Res. 2020, 120, 104850. [CrossRef]

29. Balakrishnan, S.; Suresh, T.; Marappan, R.; Venkatesan, R.; Sabri, A. New hybrid decentralized evolutionary approach for
DIMACS challenge graph coloring & wireless network instances. Int. J. Cogn. Comput. Eng. 2023, 4, 259–265.

30. Astuti, W.; Adiwijaya. Graph coloring based on evolutionary algorithms to support data hiding scheme on medical images.
Procedia Comput. Sci. 2015, 74, 173–177. [CrossRef]

31. Agrawal, J.; Agrawal, S. Acceleration based particle swarm optimization for graph coloring problem. Procedia Comput. Sci. 2015,
60, 714–721. [CrossRef]

32. Assi, M.; Halawi, B.; Haraty, R.A. Genetic algorithm analysis using the graph coloring method for solving the university timetable
problem. Procedia Comput. Sci. 2018, 126, 899–906. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1504/IJMOR.2023.131397
https://doi.org/10.1007/s00373-013-1381-1
https://doi.org/10.1016/j.knosys.2022.108703
https://doi.org/10.3390/app11114741
https://doi.org/10.1016/j.engappai.2023.107721
https://doi.org/10.1109/TSMC.2024.3376292
https://doi.org/10.1109/TITS.2023.3315785
https://doi.org/10.23919/CSMS.2022.0025
https://doi.org/10.1016/j.laa.2022.01.022
https://doi.org/10.1016/j.cor.2019.104850
https://doi.org/10.1016/j.procs.2015.12.095
https://doi.org/10.1016/j.procs.2015.08.223
https://doi.org/10.1016/j.procs.2018.08.024

	Introduction
	Related Works, Definitions, and Preliminaries
	Minimum Length Unit-Time Job-Shop Problems
	Optimal Strict Colourings of Mixed Graphs and Equivalent Unit-Time Job-Shop Problems
	General Shop Minimum-Length Unit-Time Scheduling Problems

	Colouring Vertices of Mixed Graphs and Unit-Time Scheduling Problems
	Minimising Maximal Lateness and Equivalent Minimising Makespan for Jobs with Integer Release Dates
	Minimising Makespan for Unit-Time Tasks as Optimal Mixed Graph Colouring
	Equivalent Scheduling Problems for Minimising either Makespan or Miximal Lateness

	An Optimal Schedule of Interruptible Operations with Integer Processing Times
	Partitions of the Interruptible Operations with Integer Duration into Unit-Time Operations
	Relationships between Scheduling Problems and Optimal Mixed Graph Colourings

	Example 4 of General Scheduling Problem with Interruptible Operations
	Minimising the Schedule Length for Interruptible Integer-Time Operations with Integer Release Dates and Equivalent Minimisation of the Maximal Lateness
	Discussion
	Conclusions
	Appendix A
	Appendix B
	References

