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Abstract: A new two-step interior point method for solving linear programs is presented. The
technique uses a convex combination of the auxiliary and central points to compute the search
direction. To update the central point, we find the best value for step size such that the feasibility
condition is held. Since we use the information from the previous iteration to find the search direction,
the inverse of the system is evaluated only once every iteration. A detailed empirical evaluation is
performed on NETLIB instances, which compares two variants of the approach to the primal-dual log
barrier interior point method. Results show that the proposed method is faster. The method reduces
the number of iterations and CPU time(s) by 27% and 18%, respectively, on NETLIB instances tested
compared to the classical interior point algorithm.

Keywords: linear programming; interior point method; Newton method

1. Introduction
1.1. Background

The following linear optimization (LO) problem is considered:

(P) min{cTx : Ax = b, x ≥ 0},

and the corresponding dual

(D) max{bTy : ATy + s = c, s ≥ 0},

where A ∈ Rm×n, x, c, s ∈ Rn and y, b ∈ Rm.
LO is an essential tool used widely in theoretical and practical science and engineering

domains. Its applications extend to various fields such as operations research, engineering,
economics and combinatorics. LO finds numerous applications across various fields. For
instance, it is used in L1-regularized support vector machines (SVMs) [1], basis pursuit
(BP) problems [2], sparse inverse covariance matrix estimation (SICE) [3], non-negative
matrix factorization (NMF) [4] and maximum a posteriori (MAP) inference [5].

The Interior-Point Method (IPM) is a powerful optimization technique that has been
widely used in the field of LO. It offers an alternative approach to solving LO problems
compared to traditional simplex methods. Karmarkar [6] described the first efficient
algorithm for the IPM. Nesterov and Nemirovskii [7] introduced a class of self-concordant
barrier functions and extended the algorithm to a more general type of optimization
problems, including convex programming, non-linear complementarity problem (NCP),
semidefinite optimization (SDO) and second-order cone optimization (SOCO) problems.

1.2. Literature Review

IPMs are generally divided into two categories, that is, small-update methods and
large-update methods [8]. In practice, large-update methods are significantly more efficient.
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However, in theory, the best results are associated with small-update methods. From
another perspective, IPMs are divided into feasible and infeasible methods [9]. Feasible
methods start from a point that satisfies the constraints and seek to find the optimal solution
within the feasible region. In contrast, infeasible methods begin with a point that does not
meet the problem’s constraints (infeasible). The algorithm first seeks to find a feasible point,
and once a feasible point is found, it moves towards the optimal solution [9]. The IPM
based on the kernel function is a popular method. The kernel function is used not only to
find the search direction for the algorithm but also to estimate a lower bound for the step
size [10]. In this type of IPM, the complexity bounds of the interior point algorithm are
computed based on the kernel function. Terlaky et al. [10] proposed a new variant of IPMs
for solving linear optimization problems in which the self-regular barrier function replaces
the logarithmic barrier function and they showed that their method has the best-known
complexity bounds. Following this, several different kernel functions with the best-known
complexity bounds have been introduced, including the exponential kernel functions [11],
trigonometric kernel functions [12,13] and hyperbolic kernel functions [14,15].

Predictor-corrector methods for interior point algorithms are an effective approach
for solving both linear and nonlinear optimization problems [16,17]. These methods
incorporate two main steps, i.e., the predictor step and the corrector step. In the predictor
step, an approximate direction is determined by solving a linearized system of the Karush–
Kuhn–Tucker (KKT) conditions [17]. In the subsequent corrector step, this direction is
refined to ensure that the iterates remain within the feasible region and maintain the balance
between the primal and dual variables. This refinement typically involves solving another
system of linear equations that corrects any infeasibilities introduced in the predictor step,
thereby enhancing the convergence properties of the algorithm. Mehrotra’s algorithm [17]
is a popular predictor-corrector algorithm used for solving optimization problems. In recent
years, several new predictor-corrector algorithms have been introduced, further enhancing
the effectiveness and efficiency of IPMs for various optimization problems [18,19].

The Newton method is a popular optimization technique that plays a vital role in
interior-point methods. In the context of IPMs, the Newton method is used to solve the
system of equations that arise from the Karush–Kuhn–Tucker (KKT) optimality conditions,
which include both the primal and dual feasibility conditions, as well as the complementary
slackness conditions. This approach is known for its fast convergence rate, often exhibiting
quadratic convergence. A modification of Newton’s method was proposed by McDougall
and Wotherspoon [20] that can significantly reduce the number of iterations when used to
the root of functions. Their approach has a convergence of the order of 1 +

√
2. To compute

the search direction, their algorithm uses an auxiliary point and computes the gradient of
the objective function only once in each iteration.

McDougall and Wotherspoon [20] applied this method to solve the power flow prob-
lem, which is a multivariate problem. They used the improved method to find the roots of
a system of multivariable equations and demonstrated that it can reduce the number of
iterations compared to Newton’s method. Additionally, Argyros et al. [21] present some
theoretical results related to the convergence of the method. In Example 4 of [21], it is
shown that the method is effective for solving multivariable problems and can converge to
the optimal solution.

1.3. Contribution

Motivated by these ideas, this paper makes the following contributions:

• To solve optimization problems using the IPM, the search direction plays an important
role. We use the idea proposed in [20] for determining the search direction. The
main goal of this paper is to extend the strategy proposed in [20] to IPMs. This paper
introduces a two-step method that calculates the inverse of the matrix only once to
determine the search direction in each iteration.
The next goal of this article is to demonstrate how this method can be integrated with
the feasible interior-point algorithm for linear optimization problems to enhance the
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efficiency of the IPM. We combine the technique described in [20] with the algorithm
presented in [8], resulting in the development of two new algorithms.

• To demonstrate the efficiency of the new method, we implement the algorithms and
solve a collection of NETLIB test problems. The results show that the proposed method
can improve the algorithm’s efficiency by 27% in terms of the number of iterations
and 18% in terms of CPU time.
The implementation on a Graphics Processing Unit (GPU), a specialized processor
designed to accelerate graphics rendering and computational tasks, shows a reduction
in the number of iterations and GPU time compared to the classical algorithm by 39%
and 30%, respectively.

The paper is organized as follows: Section 2 briefly recalls the basics of the IPMs and
the central path for solving linear programs. We explain the two-step algorithm proposed
here next. Section 3 reports the numerical results on a collection of LP instances from
NETLIB for CPU and GPU implementations of the algorithm. We end with concluding
remarks in Section 4.

In this paper, we use the following notational conventions. The Euclidean norm of a
vector is denoted by ∥.∥. The non-negative and positive orthants are represented by Rn

+ and
Rn
++ respectively. The vectors xs and x

s indicate coordinate-wise operations on the vectors
x and s, with components xisi and xi

si
respectively. We also use diagonal matrices X and S

with entries x and s respectively. For any variable v belonging to {x, y, s}, subscripts denote
the nth iteration value. For instance, xn refers to the value of x after n updates. If the current
iteration is n, we use v instead of vn and v+ instead of vn+1 for v ∈ {x, y, s, x̃, ỹ, s̃, x̂, ŷ, ŝ}.
Here, x refers to the current point and x+ refers to the updated value of x.

2. Algorithm

In this paper, without loss of generality, we make the following assumptions:

• A is a full rank matrix, that is rank A = m ≤ n.
• Both problems (P) and (D) satisfy the Interior Point Condition (IPC) [8], i.e., there

exists (x0, s0) > 0 and y0 so that:

Ax0 = b, x0 > 0,

ATy0 + s0 = c, s0 > 0.

An optimal solution for (P) and (D) can be found by solving the following system [10]:

Ax = b, x ≥ 0,

ATy + s = c, s ≥ 0, (1)

xs = 0,

where xs stands for the coordinate-wise (Hadamard) product of the vectors x and s. Note
that the first and second equations in (1) guarantee the feasibility of x and (y, s) for problems
(P) and (D), respectively, and the last equation is satisfied only if the feasible solution is
optimal (complementarity conditions).

The algorithm presented here is a two-step primal-dual IPM; therefore, we summarize
the key idea behind the generic primal-dual IPMs for solving linear programming problems
from the literature, see e.g., [8,10]. The key idea is to replace the complementarity conditions
with parameterized equations xs = µe, where e denotes the all-one vector of length n and µ
is a real positive parameter. With these changes, the system of Equation (1) can be expressed
as [10]:

Ax = b, x ≥ 0,

ATy + s = c, s ≥ 0, (2)

xs = µe.
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The parametric system (2) has a unique solution for any µ > 0 if the IPC holds [10]
(Theorem 1.2.4). For a given µ > 0, denote the unique solution of (2) by (x(µ), y(µ), s(µ)),
where x(µ) is the µ-center of (P) and (y(µ), s(µ)) is called the µ-center of (D). The set of all
µ-centers, for all µ > 0, defines a path the so-called central path for (P) and (D). It has been
shown that, as µ→ 0, then the limit of the central path exists and converges to an analytic
center of the optimal solutions set of (P) and (D) [22,23].

Given a current point (x, y, s), the goal is to find direction (∆x, ∆y, ∆s) such that the
point (x + ∆x, y + ∆y, s + ∆s) lies on the central path at µ. If it did lie exactly on the central
path, then Equation (2) will be satisfied, i.e., [10]:

A(x + ∆x) = b

AT(y + ∆y) + (s + ∆s) = c (3)

(X + ∆x)(S + ∆s) = µe,

where:
X := diag(x), S := diag(s)

Assuming that the point (x, y, s) is feasible for the LO and dropping the non-linear term
∆x∆s [10], we get the following system of equations:

A∆x = 0

AT∆y + ∆s = 0 (4)

S∆x + X∆s = µe− XSe

System (4) has a unique solution, referred to as the search direction for IPMs. Many interior-
point algorithms rely on the Newton method to solve the system (4) and find the search
direction. Therefore, improving the speed of convergence of Newton’s method significantly
impacts the convergence speed and efficiency of IPMs. To calculate the search direction in
Newton’s method, we use the method proposed in [20], which has a convergence speed of
1 +
√

2. Accordingly, we introduce a two-step method for the IPM based on the approach
proposed in [20]. This change can significantly reduce the number of iterations needed to
achieve the optimal solution.To apply the mentioned method, we present the system (4) as
a problem of finding roots, followed by an explanation of the new approach.

2.1. Relationship with Root Finding

Define:

ξ =

x
y
s

 and F(ξ) =

 Ax− b
ATy + s− c
µe− XSe

,

then a solution to the system (2) is ξ∗ such that F(ξ∗) = 0. The root ξ∗ can be computed
using Newton’s method (in the neighbourhood of the root), which, given ξ, finds ∆ξ such
that F(ξ + ∆ξ) = 0 [20]. Using Taylor series approximation (linear approximation) around
ξ, we have [20]:

F(ξ) + F′(ξ)∆ξ ≃ 0

where:

Jacobian F′ =


∂F1
∂ξ1

∂F1
∂ξ2

∂F1
∂ξ3

∂F2
∂ξ1

∂F2
∂ξ2

∂F2
∂ξ3

∂F3
∂ξ1

∂F3
∂ξ2

∂F3
∂ξ3

 =

A 0 0
0 AT I
S 0 X

 and ∆ξ =

∆x
∆y
∆s

.

This is precisely the system that was derived earlier (4). This approximation yields an
iterative algorithm, the Newton–Raphson method, for finding roots. Starting with an initial
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estimate ξ0, the current estimate ξn of the root is updated using the following rule for some
appropriate step size α:

ξn+1 = ξn − α(F′(ξn))
−1F(ξn)

The proposed method generalizes the Newton–Raphson method as follows (assume any
F). In the first step, an auxiliary point ξ̃n is computed using a linear approximation to the
function around the current estimate of the root ξn. The average ξ̂n+1 of the auxiliary point
and the current estimate is computed in the second step. In the third step, the current
estimate is updated using the linear approximation to F around ξn, but instead of using the
Jacobian at point ξn, the Jacobian is evaluated at the average ξ̂n+1. The update rules used
in nth iteration can be summarized as [20]:

ξ̃n+1 = ξn − α(F′(ξ̂n))
−1F(ξn)

ξ̂n+1 =
1
2
(ξ̃n+1 + ξn)

ξn+1 = ξn − α(F′(ξ̂n+1))
−1F(ξn)

This sequence of updates requires two evaluations of the Jacobian, once at point ξ̂n and the
second time at point ξ̂n+1. This requirement doubles the computation burden. In practice,
we use information regarding F′(ξ̂n+1) for the next iteration. Thus only a single evaluation
of the Jacobian is needed in each iteration if we save the result from the previous iteration.

2.2. Two-Step IPMs

Here, we extend the idea presented in Section 2.1 to the interior-point algorithm. The
extension involves two phases:

• Phase 1: We obtain a feasible starting point (x, y, s) using the method presented
in [17]. Then, we create an auxiliary point (x̃, ỹ, s̃), which initially has the same values
as (x, y, s). The parameter µ is updated by a factor of 1− θ, and (x̃, ỹ, s̃) is set to (x, y, s).
After that, we set (x̂, ŷ, ŝ) = 1

2 ((x̃, ỹ, s̃) + (x, y, s)) and solve the following system to
determine the search direction:

A∆x = 0

AT∆y− ∆s = 0 (5)

Ŝ∆x + X̂∆s = µe− XSe

To satisfy the feasibility condition, the algorithm performs a line search to find the
maximum step size. To obtain the new point, the current point is updated in the
following way:

(x, y, s)← (x + α∆x, y + α∆y, s + α∆s)

• Phase 2: In this phase, starting from k ≥ 1, we begin by updating the parameter µ and
constructing the auxiliary point. Then, we utilize it to create the principal point. As
in Phase 1, we solve the following system to determine the search direction for the
auxiliary point:

A∆x = 0

AT∆y− ∆s = 0 (6)

Ŝ∆x + X̂∆s = µe− XSe.

Since the left-hand side of (6) is the same as the left-hand side of (5), so there is no need
to compute the inverse. Next, a line search is performed to determine the maximum
step size, and the auxiliary point is updated as follows:

(x̃, ỹ, s̃)← (x + α∆x, y + α∆y, s + α∆s)
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Next, the middle point is updated as:

(x̂, ŷ, ŝ)← 1
2
((x̃, ỹ, s̃) + (x, y, s))

Finally, the algorithm updates the principal point using the search direction (∆x, ∆y, ∆s)
is obtained by solving the following system:

A∆x = 0

AT∆y− ∆s = 0 (7)

Ŝ∆x + X̂∆s = µe− XSe

As earlier, to ensure that the principal point satisfies the feasibility condition, a line
search is performed to determine the maximum step size. The principal point is then
updated as follows:

(x, y, s)← (x + α∆x, y + α∆y, s + α∆s).

In order to determine the maximum value for the step size α in each iteration, we utilize
the method presented by Cai et al. [24]. This method initially calculates an upper bound
based on the positivity constraints of the variables. If (x + α∆x, y + α∆y, s + α∆s) is not
feasible, then α is decreased by a certain multiplicative factor until the point is feasible.
This approach is more efficient than determining the optimal value for α, as it avoids an
additional computational step. Algorithm 1 outlines the steps of this new approach.

Algorithm 1 A two-step feasible IPM algorithm for LOs
Input: x0, y0, s0, µ, θ, ϵ
(x, y, s)← (x0, y0, s0)
(x̃, ỹ, s̃)← (x, y, s)
(x̂, ŷ, ŝ)← 1

2 ((x̃, ỹ, s̃) + (x, y, s))
µ← (1− θ)µ
Find search direction (∆x, ∆y, ∆s) by solving (5).
Find the maximum value for the step size α.
Set (x, y, s)← (x + α∆x, y + α∆y, s + α∆s)
while stopping criteria is not met do

µ← µ(1− θ)
Solve (6) to find the search direction.
Find the maximum value for the step size.
Set (x̃, ỹ, s̃)← (x + α∆x, y + ∆y, s + ∆s).
Set (x̂, ŷ, ŝ)← 1

2 ((x̃, ỹ, s̃) + (x, y, s))
Find search direction (∆x, ∆y, ∆s) by solving (7).
Find the maximum value for the step size α.
Set (x, y, s)← (x + α∆x, y + α∆y, s + α∆s)

end

The method used in Algorithm 1 stands out from existing interior point algorithms.
It utilizes a two-step Newton method to determine the search direction, resulting in a
higher convergence rate of 1 +

√
2 compared to traditional methods. This improved

rate leads to a significant reduction in the number of iterations needed by the algorithm.
Additionally, unlike interior-point predictor-corrector methods that require computing the
matrix’s inverse twice per iteration, Algorithm 1 only needs to compute it once per iteration.
Specifically, it uses the previous iteration’s matrix inverse to calculate the search direction
for the auxiliary point. This computational characteristic aligns Algorithm 1 with one-step
methods but requires fewer iterations to converge.
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Incorporating the idea proposed by Wang et al. [25], we will now implement Algorithm 2.
To begin, they introduced a fresh variable v, defined below:

v :=
√

xs
µ

(8)

Next, they introduced a kernel function as ψ(t) = (t−1)2

2 . Based on this kernel function and
the fact that (x, s) > 0, they showed that [25]:

v = e⇔ v2 = e⇔ xs
µ

=

√
xs
µ

Now, we use this idea and rewrite the (6) and (7) as [25]:

A∆x = 0

AT∆y− ∆s = 0 (9)

Ŝ∆x + X̂∆s = µe−√µ
√

XSe

and

A∆x = 0

AT∆y− ∆s = 0 (10)

Ŝ∆x + X̂∆s = µe−√µ
√

XSe

The resulting changes lead to Algorithm 2 which is described next:

Algorithm 2 A two-step feasible IPM algorithm for the algorithm proposed in [25]
Input: x0, y0, s0, µ, θ, ϵ
(x, y, s)← (x0, y0, s0)
(x̃, ỹ, s̃)← (x, y, s)
(x̂, ŷ, ŝ)← 1

2 ((x̃, ỹ, s̃) + (x, y, s))
µ← (1− θ)µ
Find search direction (∆x, ∆y, ∆s) by solving (10).
Find the maximum value for the step size α.
Set (x, y, s)← (x + α∆x, y + α∆y, s + α∆s)
while stopping criteria is not met do

µ← µ(1− θ)
Solve (9) to find the search direction.
Find the maximum value for the step size.
Set (x̃, ỹ, s̃)← (x + α∆x, y + ∆y, s + ∆s).
Set (x̂, ŷ, ŝ)← 1

2 ((x̃, ỹ, s̃) + (x, y, s))
Find search direction (∆x, ∆y, ∆s) by solving (10).
Find the maximum value for the step size α.
Set (x, y, s)← (x + α∆x, y + α∆y, s + α∆s)

end

2.3. Discussion

The idea in the Algorithm is also used in [20] for finding roots of a univariate function
f using a modification to the Newton–Raphson method. The method requires two steps a
predictor step and a corrector step. The predictor step computes the point x̃+ based on a
linear approximation of the function around the current point x. In the corrector step, the
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new point is calculated using the derivative at a point which is the average of the current
point and the predictor. This can be expressed as [20]:

x̃+ = x− f (x)
f ′( x+x̃

2 )

If we call 1/2(x + x̃+) as x̂ and use the derivative at x̂ instead at x in the predictor step,
then we have the following scheme:

x̂ =
x + x̃+

2

x+ = x− f (x)
f ′(x̂)

In particular applications f ′(x̂) is a good estimate of f ′(x). Therefore this reduces
the number of derivate evaluations. If the predictor-corrector scheme was not used, then
the new point is x̃, and the function value would be f (x̃) = f (x − f (x)/ f ′(x̂)). Since
a corrector is used, the value of f at the new point is f (x − f (x)/ f ′(x̂+)). If there is a
favourable relationship between the derivatives of the predictor and the corrector points,
then (assuming a minimization problem) we have:

f (x− f (x)/ f ′(x̂)) > f (x− f (x)/ f ′(x̂+)) (11)

Suppose this inequality is valid in many iterative steps. In that case, there will be
a reduction in the number of iterations compared to the Newton–Raphson method. The
decrease in iterations required can be credited to the new approach’s ability to attain the
optimal point of the Newton method at a rate of 1 +

√
2. This higher convergence rate

means that the new method needs fewer iterations than the traditional approach.
In general, if the function is multivariate denoted F, then the updates can be written as:

x̃+ = x− α(∇F(x̂))−1F(x)

x̂+ = 1/2(x + x̃+)

x+ = x− α(∇F(x̂+))−1F(x)

The algorithm presented in this paper is fundamentally distinct from the predictor-corrector
method proposed by Mehrotra [17]. Notably, one of the main differences lies in the approach
to calculating the search direction. While both algorithms leverage the two-stage search
direction concept, Algorithm 1 computes the search direction by utilizing an auxiliary point
and taking the average of this auxiliary point and the main point. Another significant
contrast arises in the computation of the matrix inverse. Algorithm 1 requires calculating
the matrix inverse only once per iteration. Consequently, it falls into the category of one-
step methods in terms of time consumption, while achieving efficiency akin to two-step
algorithms. These distinctions set Algorithm 1 apart from the predictor-corrector method
of [17], highlighting its unique and promising characteristics in solving optimization
problems. Moreover, the method in [17] requires tuning many parameters in each iteration,
which can be expensive and complex for some problems to find their optimal values. In
contrast, our proposed method involves far fewer parameters to tune, simplifying the
process and potentially reducing the computational burden.

3. Experimental Evaluation

We use linear programming instances from NETLIB [26]. There are a total of 138 linear
programming problems with varying sizes. The smallest one has 22 non-zeros and the
largest one has 1,408,073 non-zeros in the coefficient matrix. There are 30 instances that are
infeasible. Thirty nine of the instances are not full rank. Further, four test problems have
b = 0. If b = 0, the initialization scheme [27] not produce an initial feasible solution. We do
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not use these 73 instances in our experimentation. We define the absolute and relative gap
as follows:

absolute gap: |cTx− bTy|

relative gap:
|cTx− bTy|

1 + |cTx|+ |bTy| .

For all experiments, we use a relative-gap of at most 10−6, at most 700 iterations as the
stopping criteria. Although the absolute gap is generally more stringent than the relative-
gap, achieving the absolute gap for problems with large objective function values may
require many iterations. In IPMs, significant reductions occur during the initial iterations,
but only small reductions happen in the final iterations. Therefore, in this article, we use
the relative-gap in our experiments.

3.1. Experiments on CPU

We demonstrate the effectiveness of the new approach by executing Algorithm 1 and
comparing the results to the classical interior-point algorithm (the primal-dual logarithmic
barrier method Chapter 7) [8]. Note that instead of calculating the search direction using
Newton’s method mentioned in the classical algorithm [8], Algorithm 1 finds the search
direction using the modified Newton approach. This is the primary difference between
Algorithm 1 and the classical algorithm. Specifically, in each iteration, Algorithm 1 first
updates the auxiliary point. It then uses the auxiliary point, along with the primary
principle, to find the search direction. In contrast, the classical algorithm relies solely
on the information from the principal point to determine the search direction. In this
regard, we coded the three algorithms (Algorithm 1, Algorithm 2 and Classical approach)
in Python 3.10 using BLAS routines for the equation-solving step in all the algorithms. Of
the remaining 65 instances the three algorithms solved 50 instances within a total time
limit of 24 h on alliance canada cluster CEDAR, 2 × Intel E5-2683 v4 Broadwell CPU with
125 G RAM 2.1 GHz (https://alliancecan.ca/en, accessed on 27 August 2023) [28]. The
remaining fifteen instances large-sized instances were not completed due to the time limit
for at least one of the algorithms tested.

To demonstrate the efficacy of the new method, we applied Algorithms 1 and 2 to a
test problem. For each step of the two-step method, we computed the objective function.
Figure 1 illustrates the difference in the objective function between the two points, x̃+
(auxiliary point) and x+ (principal point), during each iteration. The plot shows that
the objective function value in the second stage is consistently lower than in the first
stage, indicated by positive values of cT x̃+ − cTx+. This validates the proposed method,
demonstrating its potential to reduce the number of iterations required. Additionally, it
indicates that the auxiliary point effectively guides the algorithm in correcting its search
direction, leading to more efficient convergence.

Next, we want to see for the same instance lp_scsd8, (i) the rate at which the absolute
gap decreases, (ii) the decrease in the relative gap between primal and dual solution values
as a function of the iterations. Figure 2 shows the two plots. Algorithms 1 and 2 achieve a
faster reduction in the relative gap and the absolute gap compared to the classical approach,
i.e., a lesser number of iterations are needed overall. Also note a sharp reduction in the
latter set of iterations for Algorithms 1 and 2 (this phenomenon is not universal though,
sometimes there is a sharp reduction in the initial iteration for some instances).

To demonstrate the effectiveness of the two-step method we observe two quantities,
(i) the speedup and (ii) the relative reduction in the number of iterations achieved by
Algorithms 1 and 2 compared to the classical algorithm. If Algorithm i takes time t(Ai, j) on
instance j, classical algorithm C takes time t(C, j) on the same instance j then the speedup
of Algorithm i is defined as t(C, j)/t(Ai, j). Similarly, we define the relative reduction in
the number of iterations. If Algorithm i takes n(Ai, j) iterations on instance j, classical

https://alliancecan.ca/en
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algorithm C takes n(C, j) iterations on the same instance j then the relative reduction of
Algorithm i is defined as n(C, j)/n(Ai, j).

Figure 1. cT x̃+ − cT x+ for Algorithms 1 and 2 on instance lp_scsd8.

Figure 2. (Left) Relative gap, (Right) absolute gap vs. the iteration number.

Figures 3 and 4 show the relative reduction and the speedup in the number of iterations
as a function of the number of instances. The instances are ordered according to the size
in array. The average value of speedup, relative reduction if computed for each suffix of
the array. If the x-coordinate is n then the y-coordinate is the average speedup, relative
reduction for 50− n largest instances. The average speedup over all 50 instances is between
1.3 and 1.4 for both Algorithms 1 and 2. The average relative reduction is between 1.20
and 1.25 for both Algorithms 1 and 2. If we focus only on 5 of the largest instances then
the speedup and relative reduction are comparably higher. This indicates that the method
scales well. Algorithm 1 has a greater relative reduction but it does not translate into a
greater speedup. Algorithm 2 has a better speedup. The instances indexed 40–45 in the plots
show anomalous behaviour, it appears that these are specific types of instances (staircase
instances) and the performance of Algorithms 1 and 2 seems to be different (compared
to the average) on these instances. One of the prominent features of the new proposed
algorithm is its ability to find an appropriate search direction compared to traditional
interior-point algorithms. As demonstrated in [20], the new modified Newton method
exhibits a faster convergence rate, approximately 1 +

√
2. Therefore, the new algorithm

leverages this property, allowing it to reach the optimal solution in fewer iterations—a
particularly valuable advantage when dealing with high-dimensional test problems. In
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scenarios where matrix multiplication and inversion can be computationally intensive, the
reduced number of iterations provided by the new algorithm significantly decreases the
execution time and enhances overall performance.
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Figure 3. Relative reduction.
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Figure 4. Speedup vs. number of instances.

In Table 1, the average number of iterations and CPU time (measured in seconds)
for three different methods—Classical Algorithm, Algorithms 1 and 2—are presented.
The Classical Algorithm required an average of 97.82 iterations and 166.71 s of CPU
time. In contrast, Algorithm 1 demonstrated improved efficiency with an average of
71.34 iterations and 136.29 s of CPU time. Similarly, Algorithm 2 also exhibited promising
results with 72.52 iterations and 135.46 s of CPU time. These findings indicate that both
Algorithms 1 and 2 are more effective than the Classical Algorithm in reducing the number
of iterations and CPU time. Notably, Algorithm 1 achieved the lowest number of iterations,
while Algorithm 2 achieved the lowest CPU time. Moreover, the fourth column presents
the standard deviation for the number of iterations for the three algorithms, indicating
that Algorithm 1 has the lowest variability, followed by Algorithm 2, with the Classical
Algorithm having the highest variability.

The details of the problem instances can be found in [29]. The raw data used to build
these figures is in the Appendix A and is self-explanatory. The data in Appendix B is
divided into blocks of three rows each. The first row in each block is data for the classical
algorithm and the other two rows are the data for Algorithms 1 and 2. Table A2 lists the
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relative gap and the norms and shows the convergence of the three algorithms to an optimal
solution on several instances from NETLIB.

Table 1. The average number of iterations, CPU time (s) and standard deviation.

Methods Aver. Iter. Aver. CPU (s) Std-Iter.

Classical Algorithm 97.82 166.71 70.96

Algorithm 1 71.34 136.29 55.64

Algorithm 2 72.52 135.46 57.55
Note: Bold numbers indicate the lowest values in each column.

3.2. Experiments on GPU

A study by Świrydowicz et al. [30] investigated the use of GPU-accelerated linear
solvers for optimizing large-scale power grid problems. Motivated by their study, we
evaluate the performance of the algorithms on massively parallel hardware (GPU with
tensor cores) using library routines to perform factoring.

We utilized the Pytorch library to develop a GPU-enabled version of our program. The
library assumes that all tensors are located on the same device. During our experiments,
we utilized the NVIDIA V100 Volta (on the GRAHAM Compute Canada cluster), which
has a maximum size limitation due to its 16GB HBM2 memory. This card features tensor
cores that perform certain tensor operations very efficiently in hardware. GPU arithmetic is
typically conducted in low precision, ranging from 8 to 32 bits which account for the speed.
Unfortunately, the algorithms failed to converge to an optimal solution when we employed
low-precision arithmetic on V100. As a result, we opted to use double precision at 64 bits,
even though this substantially increased the run time.

To utilize GPU acceleration, we convert all vectors and matrices into tensors, leverag-
ing the PyTorch library instead of Numpy for computations. In contrast, when running on a
CPU, we represent these structures as regular vectors and matrices. By performing essential
operations like matrix multiplication, inverse calculation and step size computation in
tensor mode. This approach enhances the efficiency of calculations and enables faster
reaching the optimal point.

The computationally expensive steps in the algorithm proposed here (as in any
IPM) are (i) the determination of α and (ii) the computation of the inverse of the Jaco-
bian to determine the step direction. The first expensive step has quadratic complexity
(O((n + m)2) when implemented naturally). The second step is computationally more
costly O((n + m)3). In the approach here, gains are realized asymptotically in the second
step. Therefore, we focus on the time the GPU takes to perform matrix inversions. The raw
data is shown in Appendix C. The second and third columns are the iterations needed by
the classical and the algorithm proposed here. The last two columns in the table are the
times (in seconds) needed by the GPU to perform the matrix inversions.

Results for GPU

Table A3 presents the results for Classical Algorithm and Algorithm 1 on GPU. We
report the number of iterations and GPU times for 41 test problems. Note that, Classical
algorithm could not reach the optimal solution for 5 test problems and Algorithm 1 could
not find the optimal solution for 1 test problem based on the stopping conditions. We
remove the results for these 6 test problems and calculate the relative reduction and speed-
up. Figure 5 presents the relative reduction and speed-up for 35 test problems. Moreover,
we denote the average of the number of iterations and GPU time for these 35 test problems
in Table 2. Based on this Table, we can conclude that the new proposed method reduced
the number of iterations and GPU by 39% and 30% respectively. Moreover, the standard
deviation for the number of iterations indicates that Algorithm 1 has the lowest variability
at 60.19.
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Figure 5. (Left) Relative reduction. (Right) Speedup vs. the number of instances.

Table 2. The average number of iterations, GPU time and standard deviation for the number of iterations.

Methods Aver. Iter. Aver. GPU (s) Std-Iter.

Classical Algorithm 101.77 39.81 113.71

Algorithm 1 61.68 27.83 60.19
Note: Bold numbers indicate the lowest values in each column.

3.3. Discussion

Although it has not been theoretically proven that the convergence rate of the modified
Newton method is exactly 1 +

√
2, numerical results show that this rate is achievable. This

rate may vary slightly depending on the structure of the problem (see example in [20]).
As shown in [20], the modified Newton method can reduce the number of iterations
and computational time for solving a system of equations by a factor of 1.22, calculated
as (1 +

√
2)/2, where 2 is the convergence rate of the Newton method and 1 +

√
2 is

the convergence rate of the modified Newton method. However, the average results in
Tables 1 and 2 demonstrate that when we apply the modified Newton method to find the
search direction in IPMs, the convergence rate of the proposed method remains close to
1 +
√

2.

4. Conclusions

This paper presents a two-step method for optimizing linear programming problems
using the interior point method. Building on a previous idea to solve the Karush–Kuhn–
Tucker (KKT) conditions, we extend this approach to IPMs. Our method re-examines
and enhances the classical algorithm proposed by [8] by incorporating a two-step process.
In this method, the search direction is calculated using a modified Newton method that
employs an auxiliary point. Like the standard Newton method, the modified Newton
method computes the matrix inverse only once. We incorporate this approach into IPM
and demonstrate its efficiency through implementations on both CPU and GPU, as well as
by solving NETLIB test problems. The results show that the proposed method can improve
efficiency by 27% in terms of iterations and 18% in terms of CPU time. These results confirm
that the convergence rate of the modified Newton method is equal to 1 +

√
2. This work

is pioneering in integrating the modified Newton method into IPM. This approach has
the potential to be applied to other interior point algorithms, enhancing their performance
as well.

One of the key areas for future work is proving the complexity bounds of the algorithm,
which could enhance the overall complexity bounds of IPMs. Additionally, demonstrating
the effectiveness of the algorithm on real-world problems modeled as linear optimization
problems is another important avenue for exploration. Another focus will be evaluating the
algorithm’s efficiency on large datasets, which is particularly relevant given the increasing
dimensions of real-world problems. Further, we plan to optimize the implementation on
GPUs, which includes developing parallel implementations of the algorithm and leveraging
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parallel processing to calculate the inverse of the Jacobian matrix. This work can yield
significant performance improvements and provide valuable insights into the practical
applications of the algorithm.
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Appendix A. Raw Tables—CPU Data

Table A1. Iteration number and CPU times.

Iteration CPU
Time (s)

Name Classical Algo 1 Algo 2 Classical Algo 1 Algo 2

adlittle 54 35 33 0.09 0.07 0.06
afiro 16 17 18 0.46 0.49 0.24
agg 91 66 66 6.20 4.64 4.63

agg2 95 60 58 7.99 5.24 5.03
agg3 124 60 66 10.51 5.31 5.85

bandm 105 69 71 3.97 2.67 2.74
beaconfd 105 48 46 1.39 0.76 0.64

blend 50 26 24 0.07 0.05 0.04
bnl2 203 183 153 1089.95 1000.31 827.93
capri 85 74 55 3.11 2.84 2.06

chemcom 58 45 45 3.69 2.97 2.94
czprob 186 137 146 434.42 313.03 342.57

e226 130 72 120 3.76 2.20 3.66
fffff800 118 121 112 22.88 24.03 22.13

fit1p 80 38 42 43.91 21.15 23.39
forest6 43 22 22 0.07 0.05 0.04
ganges 50 43 42 49.60 42.40 42.73

https://sparse.tamu.edu/LPnetlib
https://alliancecan.ca
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Table A1. Cont.

Iteration CPU
Time (s)

Name Classical Algo 1 Algo 2 Classical Algo 1 Algo 2

gfrd−pnc 118 74 74 28.88 18.68 18.56
israel 150 100 102 1.31 0.98 0.97
lotfi 74 61 56 1.28 1.16 1.04

maros−r7 75 6 65 47.15 41.12 41.72
pilot87 329 186 190 842.15 575.14 589.04

pilot 168 135 133 472.34 371.98 342.67
pilot−we 357 325 371 612.35 558.41 632.02

sc50a 28 20 22 0.03 0.03 0.02
sc50b 29 20 22 0.03 0.03 0.02
sc105 24 24 23 0.06 0.16 0.13
sc205 42 24 24 0.308 0.30 0.27

scagr25 43 42 42 3.75 3.62 3.55
scfxm1 83 53 54 4.45 4.33 3.17
scfxm2 80 68 66 20.06 17.84 17.34
scfxm3 86 77 77 49.00 44.49 44.68
scrs8 149 108 106 85.76 63.90 61.95

scagr7 30 22 23 0.11 0.21 0.11
scsd1 26 27 28 1.94 2.08 2.12
scsd6 24 25 27 5.91 6.24 6.77
scsd8 40 25 24 42.27 25.68 24.58
sctap1 71 56 63 3.79 3.16 3.50
sctap2 82 56 58 99.29 68.78 71.00
sctap3 99 60 62 232.41 144.41 149.83

share1b 127 86 89 0.85 0.71 0.71
share2b 41 31 30 1.65 1.06 1.21

stair 102 97 97 4.82 4.81 4.71
standata 105 83 82 28.15 22.48 23.12

standmps 211 129 142 58.05 36.08 39.97
stocfor1 91 51 52 0.27 0.32 0.25
stocfor2 230 176 191 848.32 651.89 668.12

truss 70 59 58 2917.26 2517.39 2560.80
lp-vtp-base 64 42 39 0.89 0.59 0.57

woodw 50 43 46 239.01 198.67 201.92

Appendix B. Relative Gap and the Norm—CPU Data

Table A2. Relative gap and the norm.

Name Regap ∥Ax − b∥ ∥c − s − AT y∥
adlittle 8.69× 10−7 5.62× 10−14 1.29× 10−10

adlittle 8.82× 10−7 3.32× 10−12 1.29× 10−10

adlittle 1.27× 10−7 1.31× 10−13 1.83× 10−5

afiro 8.37× 10−7 4.70× 10−17 1.61× 10−4

afiro 7.18× 10−7 2.13× 10−9 1.61× 10−4

afiro 9.54× 10−7 1.64× 10−9 3.69× 10−4

agg 1.41× 10−7 2.38× 10−12 1.78× 10−5

agg 7.57× 10−7 2.02× 10−11 1.78× 10−5

agg 7.57× 10−7 2.02× 10−11 1.78× 10−5
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Table A2. Cont.

Name Regap ∥Ax − b∥ ∥c − s − AT y∥
agg2 3.23× 10−8 9.15× 10−12 3.34× 10−6

agg2 7.21× 10−7 5.27× 10−13 3.34× 10−6

agg2 2.03× 10−9 3.29× 10−14 3.37× 10−6

agg3 5.27× 10−7 1.13× 10−10 2.82× 10−6

agg3 5.77× 10−7 4.40× 10−11 2.82× 10−6

agg3 2.62× 10−7 1.01× 10−11 3.24× 10−6

bandm 8.64× 10−7 7.02× 10−13 1.76× 10−3

bandm 1.50× 10−7 4.43× 10−15 1.76× 10−7

bandm 7.66× 10−7 2.86× 10−13 8.31× 10−9

beaconfd 6.09× 10−9 7.13× 10−5 3.75× 10−8

beaconfd 4.26× 10−8 1.25× 10−8 3.75× 10−8

beaconfd 2.405× 10−8 6.97× 10−9 1.52× 10−8

blend 5.83× 10−7 2.87× 10−16 2.78× 10−6

blend 5.25× 10−7 6.43× 10−10 2.78× 10−6

blend 9.32× 10−7 7.54× 10−14 7.10× 10−5

bnl2 9.79× 10−7 1.65× 10−16 3.37× 10−3

bnl2 8.55× 10−7 2.27× 10−16 3.37× 10−3

bnl2 6.19× 10−7 1.97× 10−16 2.66× 10−2

capri 2.34× 10−9 2.57× 10−16 2.41× 10−7

capri 1.57× 10−7 1.45× 10−10 2.41× 10−7

capri 4.77× 10−7 6.37× 10−10 7.62× 10−6

chemcom 3.88× 10−9 1.48× 10−16 6.08× 10−9

chemcom 1.52× 10−7 1.66× 10−12 6.08× 10−9

chemcom 1.98× 10−7 1.72× 10−12 6.11× 10−8

czprob 9.42× 10−7 1.01× 10−12 1.59× 10−3

czprob 8.18× 10−7 8.94× 10−13 1.59× 10−3

czprob 7.07× 10−9 2.98× 10−13 3.81× 10−5

e226 2.03× 10−7 3.85× 10−15 5.40× 10−4

e226 2.95× 10−7 2.60× 10−14 5.40× 10−4

e226 7.65× 10−7 3.31× 10−16 4.22× 10−3

fffff800 9.51× 10−7 1.16× 10−10 3.45× 10−7

fffff800 3.96× 10−7 8.72× 10−11 3.45× 10−7

fffff800 1.31× 10−8 1.65× 10−10 6.25× 10−7

fit1p 8.80× 10−7 1.48× 10−16 1.02× 10−5

fit1p 1.25× 10−7 1.39× 10−11 1.02× 10−5

fit1p 1.01× 10−7 1.26× 10−11 7.49× 10−10

forest6 6.54× 10−8 6.95× 10−16 1.71× 10−6

forest6 8.14× 10−7 5.54× 10−12 1.71× 10−6

forest6 8.59× 10−7 5.57× 10−12 3.51× 10−5

ganges 7.87× 10−7 1.48× 10−16 2.40× 10−7

ganges 5.00× 10−7 6.77× 10−12 2.40× 10−7

ganges 4.25× 10−7 4.97× 10−12 3.41× 10−8

gfrd_pnc 1.88× 10−8 9.77× 10−17 1.24× 10−6

gfrd_pnc 2.99× 10−7 1.69× 10−16 1.24× 10−6

gfrd_pnc 2.11× 10−7 1.57× 10−16 3.98× 10−6

israel 8.63× 10−7 3.42× 10−16 4.00× 10−6

israel 2.37× 10−7 7.63× 10−14 4.00× 10−6

israel 2.33× 10−7 7.32× 10−14 3.99× 10−6
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Table A2. Cont.

Name Regap ∥Ax − b∥ ∥c − s − AT y∥
lotfi 1.07× 10−8 2.34× 10−14 1.89× 10−8

lotfi 4.72× 10−7 4.05× 10−12 1.89× 10−8

lotfi 2.23× 10−7 1.84× 10−12 5.32× 10−7

maros_r7 2.36× 10−10 2.94× 10−16 7.53× 10−9

maros_r7 6.67× 10−8 2.92× 10−12 7.53× 10−9

maros_r7 5.15× 10−8 2.059× 10−12 1.82× 10−9

pilot87 2.10× 10−5 7.50× 10−12 3.58× 10−7

pilot87 3.86× 10−5 2.46× 10−12 3.58× 10−7

pilot87 1.35× 10−5 2.76× 10−12 2.85× 10−7

pilot 2.26× 10−7 7.30× 10−13 5.62× 10−7

pilot 1.62× 10−6 1.00× 10−13 5.62× 10−7

pilot 1.53× 10−6 7.56× 10−14 1.55× 10−6

pilot_we 9.70× 10−7 6.77× 10−15 9.06× 10−4

pilot_we 2.87× 10−7 4.01× 10−15 9.06× 10−4

pilot_we 8.19× 10−7 6.18× 10−15 1.27× 10−3

sc50a 9.73× 10−7 7.74× 10−17 7.90× 10−3

sc50a 6.08× 10−7 1.39× 10−12 7.901× 10−3

sc50a 7.08× 10−7 7.57× 10−16 3.92× 10−2

sc50b 9.94× 10−7 1.36× 10−16 5.45× 10−3

sc50b 6.46× 10−7 3.58× 10−14 5.45× 10−3

sc50b 4.58× 10−7 1.90× 10−16 2.71× 10−3

sc105 1.02× 10−7 1.02× 10−16 1.20× 10−2

sc105 4.64× 10−7 8.09× 10−13 1.20× 10−2

sc105 6.63× 10−7 2.12× 10−16 9.76× 10−3

sc205 5.80× 10−9 1.12× 10−16 3.80× 10−6

sc205 3.35× 10−7 9.02× 10−13 3.80× 10−6

sc205 5.83× 10−7 1.69× 10−16 9.60× 10−3

scagr25 6.25× 10−7 1.32× 10−16 2.79× 10−6

scagr25 2.11× 10−7 5.24× 10−12 2.79× 10−6

scagr25 2.80× 10−7 8.46× 10−11 6.52× 10−5

scfxm1 9.01× 10−7 1.82× 10−10 4.43× 10−6

scfxm1 1.74× 10−7 9.71× 10−10 4.43× 10−6

scfxm1 9.94× 10−7 1.45× 10−9 7.66× 10−6

scfxm2 7.87× 10−7 5.19× 10−10 1.62× 10−6

scfxm2 4.25× 10−7 1.41× 10−10 1.62× 10−6

scfxm2 9.46× 10−7 1.25× 10−10 3.06× 10−6

scfxm3 9.61× 10−7 8.06× 10−9 7.08× 10−7

scfxm3 1.57× 10−7 3.51× 10−10 7.08× 10−7

scfxm3 1.60× 10−7 3.86× 10−10 6.77× 10−7

scrs8 8.13× 10−7 5.25× 10−13 4.79× 10−8

scrs8 7.91× 10−7 1.84× 10−13 4.79× 10−8

scrs8 2.03× 10−7 1.82× 10−14 2.15× 10−8

scagr7 9.96× 10−7 1.33× 10−16 1.01× 10−6

scagr7 7.30× 10−7 1.71× 10−16 1.01× 10−6

scagr7 3.32× 10−7 4.26× 10−14 6.08× 10−6

scsd1 6.18× 10−7 1.18× 10−16 1.18× 10−7

scsd1 6.90× 10−7 1.04× 10−16 1.18× 10−7

scsd1 7.51× 10−7 8.19× 10−17 1.08× 10−5



Algorithms 2024, 17, 303 18 of 20

Table A2. Cont.

Name Regap ∥Ax − b∥ ∥c − s − AT y∥
scsd6 7.89× 10−7 1.56× 10−16 3.14× 10−5

scsd6 8.16× 10−7 2.03× 10−16 3.14× 10−5

scsd6 6.87× 10−7 1.83× 10−16 3.64× 10−5

scsd8 2.94× 10−8 2.52× 10−16 2.64× 10−5

scsd8 3.12× 10−7 2.76× 10−16 2.64× 10−5

scsd8 5.75× 10−7 2.41× 10−16 5.35× 10−6

sctap1 5.77× 10−9 2.84× 10−16 4.66× 10−6

sctap1 4.76× 10−7 1.28× 10−9 4.66× 10−6

sctap1 2.18× 10−9 4.64× 10−12 3.66× 10−8

sctap2 6.17× 10−9 5.70× 10−11 1.33× 10−7

sctap2 1.49× 10−7 4.38× 10−12 1.33× 10−7

sctap2 1.79× 10−7 1.94× 10−11 2.16× 10−6

sctap3 1.96× 10−8 8.318× 10−11 2.61× 10−6

sctap3 5.08× 10−7 2.86× 10−10 2.61× 10−6

sctap3 2.63× 10−7 1.41× 10−10 2.41× 10−6

share1b 9.68× 10−7 1.27× 10−16 1.40× 10−4

share1b 9.29× 10−8 3.31× 10−15 1.40× 10−4

share1b 8.53× 10−8 2.59× 10−15 1.38× 10−5

share2b 9.60× 10−7 6.11× 10−15 4.34× 10−6

share2b 8.65× 10−7 1.23× 10−9 4.34× 10−6

share2b 1.14× 10−7 3.10× 10−10 1.41× 10−5

stair 9.30× 10−7 1.90× 10−11 1.48× 10−5

stair 6.96× 10−7 2.04× 10−10 1.48× 10−5

stair 2.84× 10−7 1.22× 10−10 2.15× 10−5

standata 7.12× 10−7 2.66× 10−12 3.02× 10−12

standata 3.87× 10−7 1.22× 10−13 3.02× 10−12

standata 9.88× 10−7 2.35× 10−15 4.45× 10−11

standmps 9.68× 10−7 8.69× 10−9 5.74× 10−7

standmps 1.75× 10−7 1.10× 10−9 5.74× 10−7

standmps 3.92× 10−8 6.92× 10−11 4.53× 10−7

stocfor1 1.20× 10−8 2.06× 10−16 5.68× 10−6

stocfor1 1.30× 10−7 2.69× 10−14 5.68× 10−6

stocfor1 1.96× 10−7 1.98× 10−15 1.28× 10−5

stocfor2 1.39× 10−10 2.15× 10−16 6.40× 10−7

stocfor2 5.61× 10−10 6.68× 10−16 6.40× 10−7

stocfor2 2.08× 10−8 6.16× 10−15 5.51× 10−6

truss 5.72× 10−11 1.40× 10−15 6.37× 10−7

truss 2.12× 10−9 6.87× 10−16 6.37× 10−7

truss 1.99× 10−9 6.67× 10−16 1.22× 10−5

lp-vtp-base 9.02× 10−9 2.12× 10−9 3.55× 10−6

lp-vtp-base 3.82× 10−7 4.49× 10−9 3.55× 10−6

lp-vtp-base 5.09× 10−7 2.42× 10−8 4.26× 10−6

woodw 3.85× 10−5 2.01× 10−4 4.05× 10−4

woodw 4.29× 10−5 1.51× 10−5 4.05× 10−4

woodw 1.33× 10−4 7.42× 10−6 2.09× 10−4
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Appendix C. Data Tables for GPU

Table A3. Results for GPU.

Iteration Iteration GPU Time (s) GPU Time (s)

Name Classical Algorithm 1 Classical Algorithm 1

adlittle 49 31 0.151 0.099
afiro 19 17 0.028 0.027
agg 74 60 1.635 1.339

agg2 84 47 2.108 1.181
agg3 81 54 2.108 1.378

bandm 700 105 10.05 1.529
beaconfd 700 50 5.318 0.392

blend 53 26 0.148 0.073
bnl2 222 236 182.065 192.634
capri 67 51 0.963 0.733

chemcom 76 47 1.719 1.075
d2q06c 306 166 467.293 252.344

fit1p 41 35 3.137 2.670
forest6 42 22 0.125 0.071
ganges 700 41 71.770 4.190
israel 157 128 1.311 1.109
lotfi 68 54 0.642 0.522

pilot87 246 181 462.709 339.440
pilot 128 92 105.27 75.457

pilot−we 399 269 84.727 56.946
sc50a 46 20 0.089 0.042
sc50b 28 20 0.052 0.039
sc105 21 21 0.085 0.082
sc205 45 23 0.397 0.207

scagr25 47 37 1.133 0.890
scfxm1 75 51 1.399 0.960
scfxm2 72 53 3.480 2.551
scfxm3 76 56 7.496 5.498
scagr7 32 26 0.141 0.117
scsd1 26 27 0.526 0.551
scsd6 24 25 1.071 1.110
scsd8 37 22 6.320 3.732
sctap1 60 52 1.229 1.073
3sctap2 90 47 16.300 8.485
sctap3 105 61 36.785 21.257

share1b 700 69 4.096 0.417
share2b 38 27 0.144 0.104

stair 700 82 13.832 1.640
standmps 183 700 8.892 34.161
stocfor1 67 38 0.255 0.151

lp-vtp-base 558 37 0.521 0.354

References
1. Zhu, J.; Rosset, S.; Tibshirani, R.; Hastie, T. 1-norm support vector machines. Adv. Neural Inf. Process. Syst. 2003, 16, 49–56.
2. Yang, J.; Zhang, Y. Alternating direction algorithms for ℓ1-problems in compressive sensing. SIAM J. Sci. Comput. 2011, 33,

250–278. [CrossRef]
3. Yuan, M. High dimensional inverse covariance matrix estimation via linear programming. J. Mach. Learn. Res. 2010, 11, 2261–2286.
4. Recht, B.; Re, C.; Tropp, J.; Bittorf, V. Factoring nonnegative matrices with linear programs. Adv. Neural Inf. Process. Syst. 2012, 25,

1214–1222.
5. Meshi, O.; Globerson, A. An alternating direction method for dual MAP LP relaxation. In Proceedings of the Machine Learning

and Knowledge Discovery in Databases: European Conference, ECML PKDD 2011, Athens, Greece, 5–9 September 2011;
Proceedings, Part II; Springer: Berlin/Heidelberg, Germany, 2011; Volume 22, pp. 470–483.

http://doi.org/10.1137/090777761


Algorithms 2024, 17, 303 20 of 20

6. Karmarkar, N. A new polynomial-time algorithm for linear programming. In Proceedings of the Sixteenth Annual ACM
Symposium on Theory of Computing, Washington, DC, USA, 30 April–2 May 1984; pp. 302–311.

7. Nesterov, Y.; Nemirovskii, A. Interior-Point Polynomial Algorithms in Convex Programming; SIAM: Philadelphia, PA, USA, 1994.
8. Roos, C.; Terlaky, T.; Vial, J.-P. Theory and Algorithms for Linear Optimization: An Interior Point Approach; Wiley: Chichester, UK, 1997.
9. Roos, C. A full-Newton step O(n) infeasible interior-point algorithm for linear optimization. SIAM J. Optim. 2006, 16, 1110–1136.

[CrossRef]
10. Terlaky, T.; Roos, C.; Peng, J. Self-Regularity: A New Paradigm for Primal-Dual Interior-Point Algorithms; Princeton University Press:

Princeton, NJ, USA, 2002.
11. Li, M.M.; Zhang, M.W.; Huang, Z.W. A primal-dual interior-point method for linear optimization based on a new parameterized

kernel function. J. Nonlinear Funct. Anal. 2019, 38, 1–20.
12. Fathi-Hafshejani, S.; Peyghami, R.M. An interior point algorithm for solving linear optimization problems using a new trigono-

metric kernel function. Filomat 2020, 34, 1471–1486. [CrossRef]
13. Kheirfam, B.; Haghighi, M. A wide neighborhood interior-point algorithm based on the trigonometric kernel function. J. Appl.

Math. Comput. 2020, 64, 119–135. [CrossRef]
14. Touil, I.; Chikouche, W. Polynomial-time algorithm for linear programming based on a kernel function with hyperbolic-

logarithmic barrier term. Palest. J. Math. 2022, 11, 127–135.
15. Touil, I.; Chikouche, W. Novel kernel function with a hyperbolic barrier term to primal-dual interior point algorithm for SDP

problems. Acta Math. Appl. Sin. Engl. Ser. 2022, 38, 44–67. [CrossRef]
16. Dexter, G.; Chowdhury, A.; Avron, H.; Drineas, P. On the convergence of inexact predictor-corrector methods for linear

programming. In Proceedings of the International Conference on Machine Learning, Baltimore, MD, USA, 17–23 July 2022;
pp. 5007–5038.

17. Mehrotra, S. On the implementation of a primal-dual interior point method. SIAM J. Optim. 1992, 2, 575–601. [CrossRef]
18. Darvay, Z.; Illés, T.; Kheirfam, B.; Rigó, P.R. A corrector–predictor interior-point method with new search direction for linear

optimization. Cent. Eur. J. Oper. Res. 2020, 28, 1123–1140. [CrossRef]
19. Yang, X.; Yin, H. A Mizuno-Todd-Ye Predictor-Corrector Infeasible-Interior-Point Method with the l1-Norm Wide Neighborhood

for Linear Programming. Appl. Math. Sci. 2022, 16, 511–528. [CrossRef]
20. McDougall, T.J.; Wotherspoon, S.J. A simple modification of Newton’s method to achieve convergence of order 1 +

√
2. Appl.

Math. Lett. 2014, 29, 20–25. [CrossRef]
21. Argyros, I.K.; Deep, G.; Regmi, S. Extended Newton-like midpoint method for solving equations in Banach space. Foundations

2023, 3, 82–98. [CrossRef]
22. Monteiro, R.D.; Adler, I. Interior path following primal-dual algorithms. Part I: Linear programming. Math. Program. 1989, 44,

27–41. [CrossRef]
23. Sonnevend, G. An “analytical centre” for polyhedrons and new classes of global algorithms for linear (smooth, convex) program-

ming. In System Modelling and Optimization: Proceedings of 12th IFIP Conference, Budapest, Hungary, 2–6 September 1985; Springer:
Berlin/Heidelberg, Germany, 2006; pp. 866–875.

24. Cai, X.; Wang, G.; Zhang, Z. Complexity analysis and numerical implementation of primal-dual interior-point methods for convex
quadratic optimization based on a finite barrier. Numer. Algorithms 2013, 62, 289–306. [CrossRef]

25. Wang, W.; Bi, H.; Liu, H. A full-newton step interior-point algorithm for linear optimization based on a finite barrier. Oper. Res.
Lett. 2016, 44, 750–753. [CrossRef]

26. Gay, D.M. Electronic mail distribution of linear programming test problems. Math. Program. Soc. Coal Newsl. 1985, 13, 10–12.
27. Andersen, E.D.; Roos, C.; Terlaky, T. On implementing a primal-dual interior-point method for conic quadratic optimization.

Math. Program. 2003, 95, 249–277. [CrossRef]
28. Baldwin, S. Compute Canada: Advancing computational research. J. Phys. Conf. Ser. 2012, 341, 012001. [CrossRef]
29. Koch, T. The Final NETLIB-LP Results. Oper. Res. Lett. 2003, 32, 138–142. [CrossRef]
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