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Abstract: Reliability quantification of deep reinforcement learning (DRL)-based control is a significant
challenge for the practical application of artificial intelligence (AI) in safety-critical systems. This
study proposes a method for quantifying the reliability of DRL-based control. First, an existing
method, random network distillation, was applied to the reliability evaluation to clarify the issues to
be solved. Second, a novel method for reliability quantification was proposed to solve these issues.
The reliability is quantified using two neural networks: a reference and an evaluator. They have the
same structure with the same initial parameters. The outputs of the two networks were the same
before training. During training, the evaluator network parameters were updated to maximize the
difference between the reference and evaluator networks for trained data. Thus, the reliability of the
DRL-based control for a state can be evaluated based on the difference in output between the two
networks. The proposed method was applied to DRL-based controls as an example of a simple task,
and its effectiveness was demonstrated. Finally, the proposed method was applied to the problem of
switching trained models depending on the state. Consequently, the performance of the DRL-based
control was improved by switching the trained models according to their reliability.

Keywords: reliability quantification; deep reinforcement learning-based control; safety-critical
systems; deep Q-network; deep deterministic policy gradient; switching of trained models

1. Introduction

Deep reinforcement learning (DRL) has attracted considerable attention as a method
for realizing autonomous control. It achieves high performance even for highly complicated
tasks. However, the black-box problem prevents the practical application of DRL-based
controls in safety-critical systems. Therefore, the reliability and uncertainty of DRL agents
are important challenges. Artificial intelligence (AI) based on deep learning has two types
of uncertainty. One is aleatoric uncertainty, which depends on the uncertainty of the
training data. The other is epistemic uncertainty, which is caused by out-of-distribution
(OoD) data. Since training data are sampled by the agent in DRL, the distribution of
sampled data depends on the agent’s action policy. As a result, epistemic uncertainty is
caused. It is essentially difficult to prevent epistemic uncertainty as long as the training
data are sampled by the agent. Therefore, uncertainty quantification is one of the greatest
challenges of deep learning.

A lot of studies on uncertainty quantification (UQ) in deep learning models have been
reported recently. Ensemble models [1–6] and Bayesian methods [7–12] are two types of
uncertainty quantification methods for deep reinforcement learning. The ensemble models
consist of several models learning the same task. Because the models learn the same task
using the same training data, their outputs for the training observations should be similar.
Thus, uncertainty is evaluated from the variance of the outputs of the ensemble models.
Conversely, Bayesian methods involve neural networks that can express uncertainty. The
Bayesian neural network learns an average and a variance. When well-trained data are
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embedded, the variance of outputs becomes smaller. Consequently, the variance for
untrained data inputs becomes larger than that for well-trained data inputs. These methods
evaluate uncertainty using the differences in variance between trained and untrained data
inputs. However, it is difficult to quantify uncertainty solely based on the variance amount,
despite the correlation between uncertainty and variance. Another approach is to assess
OoD inputs, which cause an increase in uncertainty, using neural networks. ODIN [12]
and generalized ODIN [13] achieve high precision in OoD detection for classification tasks.
However, they cannot be applied to regression tasks. Because neural networks learn as
regression tasks, these methods are not applicable to UQ in DRL.

One of the simplest approaches for assessing whether AI has learned the state well is
to count the data used [14]. Because a state is defined in a continuous multidimensional
space, the number of state patterns is infinite. Therefore, determining the number of counts
necessary for learning in every situation is difficult. Moreover, the concept behind random
network distillation (RND) [15] can be used to evaluate proficiency. As RND induces the
exploration of unknown states through intrinsic rewards, the value of the intrinsic reward
can describe the proficiency of the state. However, the applicability of RND to proficiency
evaluation is unclear.

In this study, a novel method for reliability quantification of DRL-based controls is
proposed. Reliability is evaluated by determining whether learning has been performed
sufficiently for the given states. First, RND was applied to the reliability evaluation to
clarify the issues to be solved. Second, a reliability quantification method is proposed
to solve these issues. Reliability is quantified using reference and evaluator networks,
which have the same structure and initial parameters. During training, the parameters
of the evaluator network were updated to maximize the difference between the reference
and evaluator networks. Thus, the reliability of the DRL-based control for states can be
evaluated based on the difference in outputs between the two networks. For example,
the method was applied to deep Q-network (DQN)-based and deep deterministic policy
gradient (DDPG)-based controls for a simple task, and its effectiveness was demonstrated.
Finally, the switching of the trained DQN models is demonstrated as an example of the
application of the proposed reliability quantification.

2. Deep Reinforcement Learning
2.1. Reinforcement Learning

Reinforcement learning (RL) consists of an agent and environment. In the learning
process, the agent observes the current state of the environment st. The agent then takes
action according to its policy, π, from an observed state. The environment transits to the
next state, st+1, and returns a reward, rt+1, to the agent. Finally, the agent updates its
policy to maximize the cumulative reward in the future using the received reward. The
cumulative reward Rt is calculated using Equation (1), where γ is a discount rate and
shows an uncertain amount of reward obtained in the future. In general, the value of γ is
set in a range from 0 to 1.

Rt = rt+1 + γrt+1 + γ2rt+2 . . . (1)

Owing to the huge trial-and-error time, the agent obtains the optimal action that can
maximize the cumulative reward.

2.2. Deep Q-Network

DQN [16] is one of the DRL methods based on the Q function Qπ(st, a|θ). The Q
function maps the state and action to the value of the action. The action value is called
the Q value, and the optimal action is one that has the maximum Q value. In DQN, the
neural network approximates the Q function. The parameters of the neural network were
updated to minimize the loss function in Equation (2), which indicates the error between the
predicted Q value and the obtained value. The Q∗π(s, a|θ′) network, called target network, is
a neural network that has the same structure as Qπ(s, a|θ). It is used when predicting future
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rewards and stabilizing training. The parameters of the target network θ′ are updated by
Equation (3), where α is a learning rate.

LossDQN(θ) = E
[(

rt+1 + γmax
a′∈A

Q∗π
(
st+1, a′

∣∣θ′)−Qπ(st, at|θ)
)2
]

(2)

θ′ ←− θ′ + α
(
θ − θ′

)
(3)

2.3. Deep Deterministic Policy Gradient

Deep deterministic policy gradient [17] is one of the DRL methods that can be applied
to a continuous action space. It consists of an actor network, µ(s|θµ), and a critic network,
Qddpg

(
s, a
∣∣θQ). The actor network predicts the optimal action a from state s. The critic

network predicts a cumulative discounted reward, as expressed in Equation (1). The
parameters of the critic network are updated by minimizing the loss function given in
Equation (4). The loss function is a measure of the difference between the predicted reward
and the obtained reward. The parameters of the actor network are updated to maximize
the expected cumulative reward. The cumulative reward according to the agent’s policy µ
is denoted by J. A gradient of J with respect to the parameters of the policy, θµ, is described
in Equation (5). The θµ values are updated using the gradient of J. In DDPG, J is given by
the critic network. When choosing actions and predicting the cumulative reward in the
learning process, other networks with the same structure were used. The parameters of
these networks are updated using Equation (6). θµ′ and θQ′ are parameters of the target
actor network and target critic network.

Lcritic(θ
Q) = E

[(
rt+1 + γQ′ddpg

(
st+1, µ′(st+1)

∣∣θ′)−Qddpg(st, at|θ)
)2
]

(4)

{
∇θµ J ≈ 1

N ∑
i
∇aQ

(
s, a
∣∣θQ)∣∣

s=si ,a=µ(si)
∇θµ µ(s|θµ)|si

θµ ← θµ + α∇θµ J
(5)

{
θµ′ ← (1− τ)θµ′ + τθµ

θQ′ ← (1− τ)θQ′ + τθQ
(6)

3. Learning Environment

In this section, the learning environment for the validation of the existing and proposed
methods is described.

3.1. Learning Task

The task of the agent was to achieve the goal from its initial position. The goal(
xgoal , ygoal

)
is set at (0, 0) and the initial position of the agent, (xinit, yinit), is randomly set

in an area described by Equation (7). The initial velocities
(
vxinit, vyinit

)
are (0, 0). The area

of the learning environment is given by Equation (8).

(xinit, yinit) ∈
{
(x, y)

∣∣∣∣∣
(

200 ≤
√(

xgoal − x
)2

+
(

ygoal − y
)2
≤ 300

)}
(7)

{(x, y)|−400 ≤ x ≤ 400,−400 ≤ y ≤ 400} (8)

The motion of the agent is defined as the motion of a mass point, considering the resis-
tance corresponding to the velocity. The equations of motion are described by Equation (9),
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where m, f , κ are mass and force for each axis, and gain of resistance, respectively. The
values of mass and resistance gain were set to 10 and 2, respectively.{

m d2x
dt2 = fx − κ dx

dt

m d2y
dt2 = fy − κ

dy
dt

(9)

As the action space of the DQN is defined in a discrete space, the actions of the AI are
set as discrete forces, F. The action options are the nine forces described in Equation (10).

F =

(
fx

fy

)
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{(
f sin(θ)
f cos(θ)

)∣∣∣∣( f = 0) ∨
(

f = 10∧ θ ∈
{

0,
π

4
,

π

2
, . . . ,

7π

4

})}
(10)

The schematic view of the learning environment is shown in Figure 1. The number of
steps in one episode was 240, and the time step was set to 1. The agent makes decisions
at each time step. The conditions for ending the episode are as follows: 240 steps are
performed, the distance between the agent and goal becomes less than 10, or the agent exits
the learning environment.
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3.2. Design of Reward

Because the agent determines the goodness of an action using a reward, a reward
appropriate to the task should be designed. To achieve an action to reach a goal from a
randomly given initial position, a reward is given according to the deviation from the goal,
rdev

t . The agent gets a higher reward by being closer to the goal. Furthermore, the reward,
according to the changes in the distance between the agent and the goal, rdec

t , is given if the
distance decreases. The rdec

t is affected by the agent’s action rather than by rdev
t . Therefore,

rdec
t clarifies the goodness of the action. Finally, a large negative reward was provided if

the agent exited the environment. The rewards and total reward were calculated using
Equations (11)–(14), where dt is the distance between the agent and goal.

rdev
t = − dt

400
√

2
− 0.1 (11)

rdec
t = 0.03 + 0.07 ∗

∣∣∣∣∣∣1− arccos

 dt+1 − dt√
v2

x + v2
y

/(π/2)

∣∣∣∣∣∣ (12)
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rdone
t =

{
−10, i f the agent go out

0, else
(13)

rt =

{
rdev

t + rdone
t , dt+1 > dt

rdev
t + rdec

t + rdone
t , dt+1 ≤ dt

(14)

The learning task can also be completed by simply giving a large, positive reward
when the agent reaches the goal. However, such sparse reward settings for agents’ states
destabilizes the learning process. An auxiliary reward indicating the goodness of an agent’s
action is helpful for stable learning. Therefore, the reward depending on an agent’s state,
described in Equation (11), and the reward depending on the agent’s action, described in
Equation (12), were used in tandem.

3.3. Design of Observation

The observation is the input data for the neural network and should include sufficient
data to predict the reward. In this study, the observed state is defined by Equation (15),
where (dx, dy) and

(
vx, vy

)
are the relative positions of the goal and the velocities of the

agent, respectively. These values are scaled from −1 to 1. The input data for the neural
network were the current state and the states in the previous four steps.

st
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[
vx/5, vy/5, dx/800, dy/800

]
(15)

4. Reliability Quantification
4.1. Applicability of Random Network Distillation

In RND, an intrinsic reward is provided when an agent experiences an unknown
state, and exploration of the unknown state is encouraged. Thus, the value of the intrinsic
reward was used as the value of inadequacy to the state, and RND was used for reliability
evaluation. A neural network consists of multiple layers, and features are extracted from
each layer. Because the output of each layer may be changed significantly by smaller
changes in the input data it cannot be possible to extract similar features from similar states.
Thus, an uncertainty evaluation for extracted features is more appropriate than one for
the input data. Therefore, the uncertainty of the features extracted before the last hidden
layer was evaluated. The structure of the neural network is defined according to RND, as
shown in Figure 2. The neural network comprises two parts: a DQN network and an RND
network that evaluates the uncertainty of the extracted features. The DQN network consists
of five fully connected layers (FC). The numbers of nodes in these layers are 256, 256, 128,
128, and 9, respectively. The activation functions in the DQN are the ReLU function in the
hidden layers and the linear function in the output layer. The target network and predictor
network consist of five FCs, with their numbers of nodes being 512, 512, 256, 128, and 15,
respectively. The activation functions in the hidden layers of the RND networks and output
layers are a softsign function and linear function. Any DRL method can be applied by
setting up a neural network instead of a DQN.

During training, the parameters of the neural networks that evaluate uncertainty are
updated to minimize the output values. The parameters of the neural network predicting
the Q values were updated to minimize the loss function of the DQN. To ensure that
reliability quantification does not affect the DRLs, these updated processes are independent.
The training hyperparameters are listed in Table 1.

After training until the loss values converged, the trained model was evaluated in
the simulation by varying the initial position within the ranges shown in Equation (16).
To evaluate the action of the agent and the uncertainty of the learning environment, the
ranges were wider than those in the learning environment, and the episode did not end if
the agent exited the learning environment.

(xevalu, yevalu) ∈
{
(x, y)

∣∣∣∣(x ∈ {−700,−630, . . . , 630, 700}
y ∈ {−700,−630, . . . , 630, 700}

)}
(16)
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Table 1. Hyperparameters for training.

Parameter Value

Learning steps 20,000,000 [steps]
Batch size 1024

Learning rate 0.001
Target model update 0.01

Optimizer Adam
L1 regularization 0.0001

The evaluation trajectories are shown in Figure 3. The unfilled and filled red markers
indicate the agent’s initial and last positions, respectively, and the shade of color indicates
the time history. As shown in Figure 3, the agent can reach the goal regardless of where the
initial position is set within the learning environment. If the initial position is set outside
the environment the agent cannot reach the goal.
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Figure 4 shows the distribution of the uncertainty. The figure shows the average
uncertainty values when the agent passed through the points. During the training process,
the agent acted randomly in the early steps and experienced a wide range of states in
the environment. At the end stage of training, the agent moves to the given goal from
its initial point on the shortest course. Thus, the number of states experienced inside the
initial position, inside the learning environment, and outside the learning environment
decreased in that order. According to Figure 4, the value of uncertainty regarding the
extracted features decreases with the distance to the goal. This result is appropriate for the
number of experiences. To compare the uncertainty distribution of the trained model with
that of the untrained model, the uncertainty distribution of the untrained model is shown
in Figure 5. The uncertainty values were lower in some areas of the model distribution
before training. Because the untrained model did not learn any states, the uncertainty value
should be higher. Nevertheless, the maximum value was smaller than that of the trained
model. It is obviously not appropriate for the uncertainty quantification.
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Based on the results shown in Figures 4 and 5, the possibility of applying RND to
uncertainty quantification is shown; however, there are two issues regarding the application
of RND to evaluate uncertainty. First, RND does not ensure that the value of uncertainty is
large in an unknown state, as shown in Figure 5. Second, the uncertainty range depends
on the initial parameters. If the maximum and minimum values differ according to the
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model, it is difficult to set a criterion to determine whether the model is in a well-trained
state. These issues were caused by the value differences in the output of the target network,
and the predictor network depended on the initial parameters. From the perspective of
evaluation, it is important to ensure that the value of uncertainty is small in well-known
states and large in unknown states and that the range of uncertainty is constant. If this is
not ensured, the uncertainty coincidentally decreases for unknown states. Therefore, it is
not preferable to use RND as an evaluation method.

4.2. Reliability Quantification Method

In the previous section, issues related to the application of RND to uncertainty evalu-
ation were addressed. Thus, an improved method suitable for evaluating reliability was
proposed. To evaluate reliability, two networks, a reference network, and an evaluator
network, were used. Reliability was obtained by calculating the absolute error between the
reference and evaluator networks, and a softsign function was applied to the absolute error
to scale a range from 0 to 1. The reliability value was calculated using Equation (17), and
the calculation flow of the reliability is shown in Figure 6.

Reliability(s) = softsign(|Re f (s|θr)− Evalu(s|θe)|) (17)
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The scheme is similar to that of RND, but there are some differences. In RND, the
target and predictor networks can have different structures, and their initial parameters
are determined randomly; however, the reference and evaluator networks should have the
same structure and initial parameters. Because the reference and evaluator networks are
the same neural networks before training, their outputs are the same if the same input date
is provided. This ensured that the reliability value reached zero before training. During
the training process, the parameters of the reference network were fixed, and those of
the evaluator network were updated to maximize the reliability value. Thus, the loss
function can be described using Equation (18), where Re f (s|θr), Evalu(s|θe), θr, and θe are
the reference network, the evaluator network, the parameters of the reference network, and
the parameters of the evaluator network, respectively. The shape of the loss function is
shown in Figure 7.

Lossimprove(θe) = E[−softsign(|Re f (s|θr)− Evalu(s|θe)|)] (18)

The gradient of the loss function decreased as reliability increased. Therefore, the
larger the reliability value, the more difficult it is to change. This means that sufficiently
trained experience fades slowly and is similar to human memory.

Furthermore, because the trained model is largely affected by recent training data,
the reliability of past trained situations should decrease step by step. In this regard, the
parameters of the evaluation network were updated to minimize the reliability of irrelevant
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training data, Sirr, and irrelevant data were generated randomly. The loss function that
considers the forgetting experience is described by Equation (19), where sirr is a randomly
generated irrelevant state.

Loss f orget(θe) = E[softsign(|Re f (sirr|θr)− Evalu(sirr|θe)|)] (19)

Finally, the loss function for reliability quantification is described as Equation (20).

Lossreliability(θe) = Lossimprove(θe) + Loss f orget(θe) (20)

The regularization term used to prevent overtraining is defined in Equation (21),
where p and λ are a dimension and a power of regularization, respectively. This restricted
the distance of the parameters between the evaluation and reference networks.

λ
1
p
|θe − θr|p (21)
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4.3. Reliability Quantification for DQN-Based Control

To validate the proposed method, it was evaluated in the same manner as that de-
scribed in Section 4.1. Here, the DQN is applied to train a model. The structure of the
neural network for the proposed reliability quantification is shown in Figure 8. The hyper-
parameters for training are the same as those listed in Table 1.
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The simulation trajectories are shown in Figure 9. As shown in Figure 9, the agent
learns the optimal action within the learning environment. The reliability distribution is
shown in Figure 10. According to Figure 10, the reliability becomes high within the range
of the initial positions. According to the results, the proposed method can evaluate whether
the agent is trained.
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4.4. Reliability Quantification for DDPG-Based Control

The proposed algorithm was validated by applying DDPG to train a model. DDPG is
a representative method of actor–critic DRL. Because DDPG deals with a continuous action
space, an action of the agent was changed from discrete forces, given in Equation (10), to a
direction of force, shown in Equation (22), where θDDPG is an action of the agent on DDPG
and its range is from 0 to 2π.

F =

(
fx

fy

)
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3.2. Design of Reward  
Because the agent determines the goodness of an action using a reward, a reward 

appropriate to the task should be designed. To achieve an action to reach a goal from a 
randomly given initial position, a reward is given according to the deviation from the 
goal, 𝑟௧ௗ௩. The agent gets a higher reward by being closer to the goal. Furthermore, the 
reward, according to the changes in the distance between the agent and the goal, 𝑟௧ௗ, is 
given if the distance decreases. The 𝑟௧ௗ is affected by the agent’s action rather than by 𝑟௧ௗ௩. Therefore, 𝑟௧ௗ clarifies the goodness of the action. Finally, a large negative reward 
was provided if the agent exited the environment. The rewards and total reward were 
calculated using Equations (11)–(14), where 𝑑௧  is the distance between the agent and 
goal. 

(
f sin(θDDPG)

f cos(θDDPG)

)
(22)

DDPG learns an optimal action using an actor network and a critic network. The
structures of the actor and critic networks incorporating reliability quantification are shown
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in Figure 11. The reliabilities of the actor and critic networks are evaluated by quantifying
the reliability of features extracted before their final layers. The AI was trained in the same
training environment described in Section 4.3.

Algorithms 2024, 17, x FOR PEER REVIEW 12 of 20 
 

 
Figure 11. Structure of actor and critic networks for reliability quantification. 

The simulation trajectories of the trained DDPG model are shown in Figure 12. The 
agent learns the optimal action within the learning environment. The reliability distribu-
tions of the actor and critic networks are shown in Figure 13. The reliability within the 
range of the initial position in the learning environment is high, as shown in Figure 13. 
Subsequently, the agent moves smoothly to the goal when its initial position is within that 
range, as shown in Figure 12. These results show similar trends to those for the DQN-
based control presented in Figure 10. However, the range of high reliability is different 
from that of DQN-based control. First, the area of high reliability for DQN-based control 
almost matches the area of the initial position in the learning environment, while that of 
the critic network becomes wider. This indicates that the critic network can extract similar 
futures even if the state changes slightly. Second, the edge of the area with high reliability 
for the actor network is unclear compared to that for DQN-based control. This is caused 
by the difference in the learning objectives. Although both the critic network and the DQN 
learn the Q value, the actor network maximizes the output of the critic network, and, 
hence, the stability of learning of the critic network becomes worse compared to that of 
DQN. Although some differences can be found, as mentioned, the high reliability areas of 
the actor and critic networks clearly correspond to the area of the initial position in the 
learning environment. Therefore, it can be concluded that the proposed method for relia-
bility quantification is applicable to representative DRL-based controls. 

 

Figure 11. Structure of actor and critic networks for reliability quantification.

The simulation trajectories of the trained DDPG model are shown in Figure 12. The
agent learns the optimal action within the learning environment. The reliability distribu-
tions of the actor and critic networks are shown in Figure 13. The reliability within the
range of the initial position in the learning environment is high, as shown in Figure 13.
Subsequently, the agent moves smoothly to the goal when its initial position is within that
range, as shown in Figure 12. These results show similar trends to those for the DQN-based
control presented in Figure 10. However, the range of high reliability is different from that
of DQN-based control. First, the area of high reliability for DQN-based control almost
matches the area of the initial position in the learning environment, while that of the critic
network becomes wider. This indicates that the critic network can extract similar futures
even if the state changes slightly. Second, the edge of the area with high reliability for
the actor network is unclear compared to that for DQN-based control. This is caused by
the difference in the learning objectives. Although both the critic network and the DQN
learn the Q value, the actor network maximizes the output of the critic network, and,
hence, the stability of learning of the critic network becomes worse compared to that of
DQN. Although some differences can be found, as mentioned, the high reliability areas
of the actor and critic networks clearly correspond to the area of the initial position in
the learning environment. Therefore, it can be concluded that the proposed method for
reliability quantification is applicable to representative DRL-based controls.
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5. Discussion
5.1. Comparison with Random Network Distillation

The proposed method was compared with uncertainty quantification using RND.
The distributions of the trained and untrained models are presented in Figures 14 and 15,
respectively. Because reliability and uncertainty are opposite evaluation indexes, the value
size has the opposite meaning.

According to the comparison results, the distribution clearly classifies the high-
reliability and low-reliability areas rather than the uncertainty of RND. The range of the
uncertainty distribution depends on the model parameters and structure in RND, whereas
the range of the reliability distribution is fixed at 0–1 in the proposed method. Furthermore,
as shown in Figure 15, the reliability of the untrained model was 0 for all the states. These
two aspects are important for their use as evaluation methods.
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5.2. Relationships between Reliability of AI and Feasibility on Task

The agent should reach the goal if an initial position is within the high-reliability area.
The initial positions where the agent could not reach the goal are examined and shown by
markers in Figure 16.
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According to the result, the markers do not exist inside the high-reliability area.
It indicates that the agent can achieve the task when the agent is initialized in a high-
reliability state. Therefore, the proposed method is useful to quantify the reliability of
DRL-based control.

6. Switching of Trained Model

It was demonstrated that the proposed method could evaluate the reliability of the
trained model described in the previous section. The reliability value becomes 0 in the
untrained state and 1 in the well-trained state. In RND, because the range of uncertainty
depends on the model, a comparison of the uncertainty between models is not possible. The
proposed method ensured that the reliability ranges were identical, enabling the reliability
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of the models to be compared. Therefore, the effectiveness of switching trained models
was demonstrated as an application method. The quality of the sampled training data is a
major issue in DRL. However, it is difficult to solve this problem completely. One solution
is to switch between the trained models. Using several trained models, the untrained states
of each model can cover each other. However, it is difficult to set criteria for switching
models. As a solution, the reliability value can be used as a criterion for the switching
model. Therefore, the effectiveness of switching models is discussed in this section.

Before demonstrating the switching models, four models with biased experiences
were developed. The ranges of the initial positions were different for these models. The
initial positions of the i-th model were determined randomly within the range expressed
in Equation (23). The i-th model trained the states of the i-th quadrant. The reward and
observations were the same as those described in the previous sections.(

xi
init, yi

init

)
∈
{
(d·cos(θ), d·sin(θ))

∣∣∣∣( 200 ≤ d ≤ 300
(π

2)(i− 1) ≤ θ < (π
2)i

)}
(i = 1, 2, 3, 4) (23)

After training, all models were evaluated. The trajectories and distribution of the
reliability are shown in Figures 17 and 18, respectively. The gray area in Figure 17 indicates
the range of the initial states. According to the results, the trained models achieved their
goals and exhibited high reliability within their trained quadrants.
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The trained models were then switched. In the simulation, the optimal actions and
reliability values of all models were calculated at every time step. Then, the action of the
agent with the maximum reliability was used as an action in the simulation. The results of
the trajectories and reliability are shown in Figure 19. According to the evaluation results,
the agent achieved the goal from all initial positions and exhibited high reliability over a
wider area in the learning environment.
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In addition, the effectiveness of the model switching was validated by applying it to
a DDPG-based control. The trajectories and reliability distributions of the DDPG-trained
model using biased experience are shown in Figures 20 and 21. Then, the trajectories and
reliability distribution of the switching models are shown in Figure 22. According to the
evaluation results, the agent reached the goal from all initial positions and exhibited high
reliability over a wider area.

Through the validation of trained model switching applied to DQN-based and DDPG-
based controls, it can be concluded that the performance of DRL-based controls is improved
by adopting the switching model technique according to the proposed reliability quantifi-
cation method.

Algorithms 2024, 17, x FOR PEER REVIEW 17 of 20 
 

improved by adopting the switching model technique according to the proposed reliabil-
ity quantification method. 

 
Figure 20. Trajectories of DDPG models trained using biased experiences. 

 
Figure 21. Reliability distributions of actor and critic networks trained using biased experiences. 

Figure 20. Trajectories of DDPG models trained using biased experiences.



Algorithms 2024, 17, 314 16 of 18

Algorithms 2024, 17, x FOR PEER REVIEW 17 of 20 
 

improved by adopting the switching model technique according to the proposed reliabil-
ity quantification method. 

 
Figure 20. Trajectories of DDPG models trained using biased experiences. 

 
Figure 21. Reliability distributions of actor and critic networks trained using biased experiences. 

Figure 21. Reliability distributions of actor and critic networks trained using biased experiences.

Algorithms 2024, 17, x FOR PEER REVIEW 18 of 20 
 

 
Figure 22. Trajectories and reliability of results of switching DDPG models. 

7. Conclusions 
A major challenge of DRL is reliability quantification. It is necessary to evaluate the 

reliability in real time for the actual application of DRL-based control in safety-critical 
systems. In this study, the following was conducted to propose a novel method for relia-
bility quantification of DRL-based control. 

First, the applicability of an existing method, RND, for uncertainty evaluation was 
investigated. Uncertainty is defined as the opposite evaluation index of reliability. It was 
confirmed that the range of the uncertainty value depends on the initial parameters. 
Hence, it cannot be ensured that the uncertainty value increases in an unknown state. 
Because the range of uncertainty is not fixed and the uncertainty value often becomes 
small for untrained states, RND is difficult to use for uncertainty quantification. Second, 
a reliability quantification method was proposed to solve those problems. Reliability was 
evaluated by the difference between the reference and evaluator networks, which had the 
same structure and initial parameters. The parameters of the reference network were 
fixed, whereas those of the evaluator network were updated to maximize the difference 
in output between the two networks for the trained data and minimize the difference in 
output between them for the irrelevant data. The proposed method was validated for 
DQN-based and DDPG-based controls of a simple task. Consequently, it was confirmed 
that the proposed method can evaluate reliability and identify a well-trained domain in 
the learning environment. Finally, an example application was presented. To address the 
lack of experience in a trained model, switching the trained models according to their 
reliability was investigated. Using four models trained with biased experiences, it was 
demonstrated that a given task could be completed in any situation by switching models 
according to their reliability. 

The advantages of the proposed method are that the range of values is fixed and that 
the value of reliability becomes zero in untrained situations and one in well-trained situ-
ations. These advantages are beneficial for evaluating reliability and creating a criterion 
easily. The proposed method can therefore be used in various applications, such as the 
switching of trained models. By switching some trained models using the reliability, the 
best trained model can be chosen in any situation. If an untrained situation is inputted to 
one of them, another one with a higher reliability can choose the optimal action instead. 
Hence, this method contributes to the resolution of the issue of biased experience in DRL 
models. In addition, this can improve the performance and robustness of DRL-based con-
trol. Another application example involves identifying operational design domains 

Figure 22. Trajectories and reliability of results of switching DDPG models.

7. Conclusions

A major challenge of DRL is reliability quantification. It is necessary to evaluate
the reliability in real time for the actual application of DRL-based control in safety-critical
systems. In this study, the following was conducted to propose a novel method for reliability
quantification of DRL-based control.

First, the applicability of an existing method, RND, for uncertainty evaluation was
investigated. Uncertainty is defined as the opposite evaluation index of reliability. It was
confirmed that the range of the uncertainty value depends on the initial parameters. Hence,
it cannot be ensured that the uncertainty value increases in an unknown state. Because
the range of uncertainty is not fixed and the uncertainty value often becomes small for
untrained states, RND is difficult to use for uncertainty quantification. Second, a reliability
quantification method was proposed to solve those problems. Reliability was evaluated by
the difference between the reference and evaluator networks, which had the same structure
and initial parameters. The parameters of the reference network were fixed, whereas those
of the evaluator network were updated to maximize the difference in output between the
two networks for the trained data and minimize the difference in output between them for
the irrelevant data. The proposed method was validated for DQN-based and DDPG-based
controls of a simple task. Consequently, it was confirmed that the proposed method can
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evaluate reliability and identify a well-trained domain in the learning environment. Finally,
an example application was presented. To address the lack of experience in a trained model,
switching the trained models according to their reliability was investigated. Using four
models trained with biased experiences, it was demonstrated that a given task could be
completed in any situation by switching models according to their reliability.

The advantages of the proposed method are that the range of values is fixed and
that the value of reliability becomes zero in untrained situations and one in well-trained
situations. These advantages are beneficial for evaluating reliability and creating a criterion
easily. The proposed method can therefore be used in various applications, such as the
switching of trained models. By switching some trained models using the reliability, the
best trained model can be chosen in any situation. If an untrained situation is inputted to
one of them, another one with a higher reliability can choose the optimal action instead.
Hence, this method contributes to the resolution of the issue of biased experience in DRL
models. In addition, this can improve the performance and robustness of DRL-based
control. Another application example involves identifying operational design domains
(ODDs) of the control. Additionally, the proposed method can calculate the intrinsic reward
as opposed to RND.

In future studies, its applicability to an actual environment should be validated. In
actual environments, the input state is affected by data noise. Its effects are not clear
at this moment but are important for practical use. The proposed method assumes that
the loss value converges, although it does not ensure that the loss value in all states
converges to zero. Therefore, the convergence of the loss of the training process in reliability
quantification should be considered.
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