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Abstract: The development of smart cities will require the construction of smart buildings. Smart
buildings will demand the incorporation of elements for efficient monitoring and control of electrical
consumption. The development of efficient AI algorithms is needed to generate more accurate electric-
ity consumption predictions; therefore; anomaly detection in electricity consumption predictions has
become an important research topic. This work focuses on the study of the detection of anomalies in
domestic electrical consumption in Mexico. A predictive machine learning model of future electricity
consumption was generated to evaluate various anomaly-detection techniques. Their effectiveness in
identifying outliers was determined, and their performance was documented. A 30-day forecast of
electrical consumption and an anomaly-detection model have been developed using isolation forest.
Isolation forest successfully captured up to 75% of the anomalies. Finally, the Shapley values have
been used to generate an explanation of the results of a model capable of detecting anomalous data
for the Mexican context.

Keywords: energy efficiency; outlier detection; household energy consumption; artificial intelligence;
smart cities; data-driven approach

1. Introduction

The construction of smart cities will require smart buildings [1]. Smart buildings will
demand the incorporation of elements for efficient monitoring and control of electricity
consumption [2]. In developed countries, this may already be a reality; however, in
developing countries, there is still a long way to go to achieve this goal [3]. In Latin
America, the incorporation of the Internet of Things (IoT) in buildings and homes could
be a challenge [4]. In Mexico, the majority of buildings are aging structures that lack the
required infrastructure for the use of IoT or artificial intelligence (AI) technologies [5].

In [6], a platform for monitoring and controlling domestic electricity consumption
using the IoT and AI is proposed for the Mexican context. This platform analyses combined
data to provide temporal information about energy consumption. Another example of IoT-
enabled smart sensors in buildings is presented in [7], where the authors study temporal
and spatial user behaviors in an office. To continue progressing in this direction, the
development of efficient AI algorithms is needed to generate more accurate electricity
consumption predictions.

Electricity consumption is a key indicator of the economic and social development
of a region or country. Monitoring and predicting electricity consumption are essential
to ensure the security of the electricity supply, energy usage planning, cost reduction,
and efficient management of energy resources [8,9]. However, the accuracy of electricity
consumption predictions is affected by many factors, such as weather, the economy, and
consumer behavior, among others [10].
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In this context, anomaly detection in electricity consumption predictions has become
an important research topic [11]. Anomaly detection can help identify outliers in pre-
dictions and improve their accuracy. Furthermore, anomaly detection can also be useful
for identifying unexpected events, such as power grid failures or changes in consumer
behavior [12]. However, there are some important challenges in the anomaly detection
of energy consumption from buildings remaining [10], such as (i) the lack of precise def-
initions of anomalous energy consumption, (ii) the lack of annotated datasets, (iii) the
consensus of the metrics to evaluate existing solutions, (iv) interpretable AI models, and
(v) privacy-preservation issues.

On the other hand, there is an effort by various researchers worldwide to implement
models and algorithms to a greater extent that produce results interpretable by the end-user,
whether or not they have a technical background. This trend, known as “explainable AI”
(XAI), leans towards methodologies known as “white-box” models, where the procedure
for determining a result is known and interpretable. This type of methodology contrasts
with those called “black-box” models, where the procedures for reaching the results are
not known.

1.1. Electric Consumption in Mexico

The use and availability of electric energy are important characteristics that developed
areas of the world must possess. According to data from the National Institute of Statistics
and Geography (INEGI) [13], 99% of inhabited homes in Mexico have electric power. Based
on data collected from the 2022–2026 business plan published by the Federal Electricity
Commission (CFE), this organization produces 54% of the electric power annually in Mexico.
To this figure, it is necessary to add 30.1% of electric power generated by independent
private producers, known by their acronym PIE. This activity consists of generating electric
power and selling it exclusively to the CFE. In this way, the CFE covers more than 80% of
the Mexican market. Likewise, there are up to 71 different participants in the wholesale
electricity market, where Iberdrola of Mexico and Enel Green Power Mexico stand out as
the second- and third-largest generators and distributors of electricity after the CFE.

Rates

The CFE manages different rates for domestic electric power consumption. There
are two types of rates: normal consumption rates and high consumption rates (DAC).
Normal consumption rates are determined by the geographic region in which the home is
located, assuming that the geographic region has a direct relationship with the recorded
temperature. In reality, the factor that determines which type of normal rate a home has
is the minimum average temperature recorded during the summer season. A region is
considered to have reached the minimum average temperature in summer when these
values reach the corresponding limit for three or more years. At the same time, it is
considered that, during a year, the indicated limit is reached when the monthly average
temperature is recorded for two or more consecutive months, according to reports prepared
by the Secretariat of Environment and Natural Resources.

It is important to know the region and rate scheme to which one belongs because each
has an annual consumption limit for which, if exceeded, the Federal Electricity Commission
establishes the rate scheme known as DAC. This rate scheme applies when the average
monthly consumption higher than the established limit for the region is recorded. The
average monthly consumption corresponds to the average consumption over the last twelve
months. Table 1 summarizes the different rates available for domestic consumption, as well
as their respective average monthly limits for the DAC rate.

There is a single DAC rate regardless of the rate where the household is located. There
is an additional division in the DAC rate to determine the amount that will be charged
for consumption. This division is geographical, and the regions are Central, Northwest,
North, Northeast, South, and Peninsular. The DAC rate is somewhat of a penalty for the
consumer for excessive or improper use of electric energy. This is due to the considerable
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jump in charges per kilowatt-hour consumed. Considering a rate 1 and a DAC rate for the
northeast region, the increase in charge per kWh consumed is 61%.

Table 1. CFE rate scheme for domestic consumption. Source: CFE.

Rate Minimum Average Temperature Monthly DAC Limit (High Consumption)

1 >25 °C 250 kWh
1A 25 °C 300 kWh
1B 28 °C 400 kWh
1C 30 °C 850 kWh
1D 31 °C 1000 kWh
1E 32 °C 2000 kWh
1F 33 °C 2500 kWh

By analyzing the rating scheme used by the CFE, the context and relevance of the im-
portance of monitoring and preventing electric consumption in a household is established,
as a series of consumption increases can lead to a rate change that represents an increase in
fixed expenses for consumers.

In this work, an approach for anomaly detection in electricity consumption predictions
is proposed, utilizing data collected within a residential household from a city located in
the northeast of Mexico, using smart sensors.

The objective of this work is to establish a framework to determine whether an electric-
ity consumption prediction is anomalous or not, to develop a model capable of predicting
future electricity consumption based on available historical patterns and data, and to iden-
tify anomalous values within this prediction. The proposed prediction model will utilize
historical consumption data and other atmospheric variables to generate a 30-day forecast
of electricity consumption. Once the forecast has been obtained, various anomalies will be
introduced into the time series of the electricity consumption forecast to create a basis for
measuring the performance of different metrics in various anomaly detection techniques.

1.2. Structure of the Manuscript

This paper is organized as follows. Section 2 presents the relevant literature review.
Section 3 describes the materials and methods used in this research, while the experimental
setup is presented in Section 4. The experimental results are presented in Section 5 and
discussed in Section 6. Finally, the most relevant findings and potential future research are
presented in Section 7.

2. Literature Review

No algorithm or technique is efficient in all possible cases or domains of a given
problem. This is known as the “no free lunch theorem” [14]. Therefore, there are multiple
algorithms and techniques for anomaly detection studied and applied in different domains,
contexts, and situations. For the analysis, energy consumption is represented as a time
series. Therefore, due to their nature of sequential features and temporal dependencies,
the current trend is towards the development and implementation of convolutional neu-
ral networks [15] and transformers [16] to forecast and detect anomalies in time series.
In [15,16], the authors make similar observations to the authors of [17], where they agree
on the significant amount of data required to implement these techniques, as well as their
demonstrated capability to extract temporal dependencies from a time series. Moreover,
the authors of [18,19] highlight, as an important challenge, the lack of labeled datasets for
evaluating anomaly-detection tasks. Labeling whether an observation is anomalous or not
poses a challenge, thus explaining the scarcity of such datasets. Existing datasets for this
purpose may have labeled anomalies, but these anomalies often differ widely from the
norm and do not pose a broad challenge for different detection models [20].

This is where the methodology used by different authors to voluntarily modify data
for anomaly generation within their study framework becomes relevant. It is interesting to
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analyze the motivations, justifications, and steps taken to alter the data presented in each
study. The main motivation found is precisely the lack of certainty about which points can
be classified as anomalous [21].

Table 2 presents a summarized literature review with some of the most related works
compared against our approach (in bold at the end of the table). An analysis was made to
identify the most important characteristics of the dataset used in previous studies, such as
the source of the data, their geographical location, the elapsed time of the data, if weather
data are included, and a brief description of the building where the data come from. The
table also classifies the previous works based on the problem they tackled in every proposal.
The problem can be prediction (forecast), outlier detection, or both. The table then explains
the methods and metrics used. Finally, the table specifies if an XAI analysis was conducted.

Table 2. Comparison of literature review. Source: own elaboration.

Work

Dataset Problem Tackled

Methods Metrics XAISource Location Description Time Weather Prediction Outlier
Detection

Lei et al. [22] Collected data Dalian, China 1 experimental
building 1 year Yes X X

PSO optimized
K-medoids +

KNN-DTW-LOF

Precision, recall,
F1-score No

Martin Nascimento
et al. [23] Mendelay Data [24] Grenoble, France

1 building, area:
22,000 m2 2 years Yes X X

Random forest
regressor + Adjusted

boxplot

Precision, recall,
F1-score No

Zhou et al. [25] Collected data Subtropical region
1 government office

building, area:
87,000 m2

2 years Yes X Three clustering
methods Information entropy No

Jurj et al. [26] Collected data Romania 16 different buildings 1 year - X LOF Information entropy No

Gaur et al. [27]

Dataport [28] Texas, US 9 houses 60 days -

X

Statistical approach

and Segmented linear

F1-score, Jaccard index,
AUC, pAUC, Rank power No

HUE [29] Burnaby, British
Columbia, Canada 5 houses Yes

García et al. [30]
UC Irvine Machine

Learning Repository
[31]

Sceaux, France 1 house 2 years Yes X Autoencoder neural
networks F1-score No

Guevara Villegas [32] Collected data Colombia 8 users 24 months Yes X Genetic algorithm +
K-means F1-score No

Our approach Mendelay Data [33] Northeastern
of Mexico 1 house 280 days Yes X X RFR+IF Accuracy, precision,

recall, F1-score Yes

PSO = Particle Swarm Optimization, KNN = k-nearest neighbors, DTW = Dynamic Time Warping,
LOF = Local Outlier Factor, AUC = Area Under the Curve, pAUC = partial AUC, RFR = random forest regressor,
IF = isolation forest.

Currently, almost in any research field, there exists a clear tendency to use deep
learning. Considering the techniques presented in Table 2, it can be observed that there are
a vast number of techniques employed to predict or detect outliers in energy consumption
from buildings. Table 2 also shows that some of the datasets are specific to geographical
areas where the authors had access to the data and others come from public repositories.
The majority of the datasets include variables related to climate conditions. All studies
consider a period of analysis for at most 2 years. Another aspect to consider in this literature
review is the use of outlier detection. There are only two studies that use outlier detection
in their forecast procedure, which showed that improved results were obtained [22,23].
Additionally, we find that there is no consensus on which metrics should be considered
to compare the results obtained by the different techniques, in consumption forecast and
outlier detection. Finally, none of the previous works presented in Table 2 had performed
an XAI analysis, although some authors had established it as a new challenge in this context
and others [34].

In summary, the contribution of this work focuses on the analysis of data relevant
to a northeastern region of Mexico, using a context-based anomaly definition. That is,
establishing which observations will be considered anomalous and which normal. A
hybrid analysis based on prediction and outlier detection problems is proposed, and
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statistical and machine learning techniques are compared for both tasks to highlight the
contrast between them. Finally, an implementation of interpretability or explanation of the
obtained results by an unsupervised learning methodology is proposed.

3. Materials and Methods
3.1. Methodology

The approach followed in this work is displayed in Figure 1, where a public dataset
containing energy consumption data was prepared and explored to understand its behavior
as a time series. Then, various regression models to predict energy consumption were
trained and evaluated. The best regression model was selected to provide accurate energy
consumption predictions and generate artificial anomalies to train and evaluate three
different anomaly-detection models as well. Once the best anomaly-detection model was
obtained, a scenario to detect unknown anomalies and explain them was studied.

Figure 1. Methodology. Source: own elaboration.

3.2. Performance Metrics

It is necessary to carry out evaluations of the values obtained by the regressors to
predict values with the minimum error. The performance metrics considered are the
following [35]:

• Mean Absolute Error (MAE): This is the average of the absolute differences between
the forecast value and the actual value.

• Mean-Squared Error (MSE): This is the average of the squared differences between the
forecast value and the actual value.

• Mean Absolute Percentage Error (MAPE): This is the absolute average of the differ-
ences between the forecast value and the actual value in percentage terms.

The next metrics were used to evaluate the performance of the anomaly-detection
models [36]:

• Accuracy is the metric that measures the proportion of correct predictions considering
the total predictions made by a model. That is to say, of all the predictions made,
enumerate the correct ones.

• Precision is the proportion of correct positive predictions considering the total positive
or true predictions made by the model. That is to say, of all the positive predictions
made by the model, enumerate the correct ones.

• Recall, or sensitivity, is the metric that measures the proportion of positive instances
that a model can identify considering the total number of positive instances present in
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the dataset, in other words the measurement of how many of the total correct answers
have been identified.

• The F1-score is a measure that combines precision and recall into a single value,
calculated as the harmonic mean of both metrics.

3.3. Regression Techniques
Random Forest (RF)

The random forest technique [37] was employed for regression and forecasting in this
research. RF is a supervised machine learning algorithm that builds a large collection of de-
correlated trees, T1, T2, . . . , TK, and then averages them. RF is a modification of the bagging
method, where the main idea is to average many noisy, but approximately unbiased models.
For the regression task, let D = {(x1, y1), (x2, y2), ..., (xN , yN)} be a training dataset and
f̂ (x) be the prediction for an input x. The bagging procedure averages this prediction over
a collection of bootstrap samples, thereby reducing its variance. For each bootstrap sample
D∗b, b = 1, 2, . . . , B, the regression model is fit, obtaining the prediction f̂ ∗b(x). Finally, the
bagging estimate is defined by

f̂bag(x) =
1
B

B

∑
b=1

f̂ ∗b(x) (1)

In this sense, decision trees are ideal for bagging because they are intrinsically noisy
and can benefit from averaging. The idea in random forests is to improve the variance
reduction of bagging by reducing the correlation between the trees, without increasing the
variance too much. In other words, this approach eliminates the tendency of decision trees
to overfit their training data [23]. Essentially, this method generates multiple independent
decision trees, each representing a decision-making pathway in tree-like graphical form in
a randomized manner during training to form a forest. Each decision tree contributes to
the final prediction. In regression, the result is the average prediction of the outcomes from
each tree in the forest [38]. The RF approach is depicted in Algorithm 1.

Algorithm 1: Random forest for regression.

Input : Training dataset D = {(x1, y1), (x2, y2), ..., (xN , yN)}, n_estimators
Output : Prediction

Step 1:
for b = 1 to B do

(a) Take a bootstrap sample Z∗ of size N from the training data.
(b) Grow a tree Tb to the bootstrapped data, by recursively repeating the

following steps for each terminal node of the tree, until the minimum node
size nmin is reached.

1. Select m variables at random from the p variables.
2. Pick the best variable/split-point among m.
3. Split the node into two daughter nodes.

Step 2: Output the ensemble of trees {Tb}B
1

to predict new x:
f̂ B
r f (x) = 1

B ∑B
b=1 Tb(x)

3.4. Anomaly Detection Techniques
3.4.1. Median Absolute Deviation (MAD)

This is a statistical technique that uses the median (in contrast to many others, which
use the average) generally in situations where the data are unbalanced or are known to
contain outliers because it is less sensitive to extreme values [39].



Algorithms 2024, 17, 322 7 of 26

The first step is to calculate the median of the data. Once the median has been obtained,
as a second step, for each observation in the data, the absolute deviation is calculated, which
is given by the difference between each observation and the median calculated in step 1.
Finally, the MAD value is obtained by obtaining the median of the absolute deviations from
step 2.

The calculation of the MAD is given by Equation (2):

MAD = median(|Xi − median(X)|) (2)

To use the MAD in the anomaly-detection task, it is necessary to set a limit or threshold.
This limit is a multiple of the calculated MAD. To determine whether an observation is an
anomaly, the absolute deviation of the observation is compared with the limit; if it exceeds
it, it will be considered an anomalous observation. The above is shown in Equation (3):

If |Xi − median(X)| > limit

then, Xi is an anomaly.
(3)

3.4.2. Isolation Forest (IF)

From the date of its publication until today, this algorithm has had relevance in differ-
ent areas. The authors announced it as a new approach based on the concept of isolating
anomalies using binary trees [40]. The main idea of this algorithm is that anomalous points
will be isolated into shorter paths in the binary trees within the ensemble or forest of
isolation trees. This technique is efficient for large datasets, as well as medium or small
datasets. This algorithm does not make any assumptions about the distribution of the
data, is effective in high-dimensional spaces, and provides an anomaly score that can be
analyzed in depth to achieve a more detailed interpretation of the analysis.

This technique analyzes each observation within the data and measures how quickly it
can be isolated or separated from the other observations. Observations that are significantly
different are more likely to be quickly isolated. Within the algorithm, different random
trees are created where the data are divided into smaller groups each time. When there is an
anomalous observation, it tends to have a shorter path within the random trees, or in other
words, fewer steps are necessary to separate that anomalous observation from the others.
By analyzing all random trees, the algorithm identifies all observations that consistently
have the shortest paths. These observations will probably be anomalous compared to
the rest.

Some advantages over other methods are as follows:

• Isolation forest allows the building of partial models, i.e., some large parts of the trees
do not need to be constructed.

• IF does not use distance or density measures to detect anomalies, which eliminates
the significant computational cost involved in calculating distances in other density-
or distance-based methods.

• Isolation forest has a linear time complexity with a low constant and a low memory
requirement.

The algorithm calculates an anomaly score by repeating this process; the anomaly is
standardized between zero and one and is given by Equation (4):

s(x, n) = 2−
E[h(x)]

c(n) (4)

where

s(x, n) Anomaly score for observation x;

E[h(x)] Path length to isolate observation x;

c(n) Normalization factor, calculated as follows:

c(n) = 2H(n − 1)− (2(n − 1)/n).
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H(i) is the harmonic number equal to ln(i) + 0.5772 (Euler constant).
To use the technique in the context of anomaly detection, a limit value must be

determined, where if the score is lower than said value, the point in question will be
considered anomalous, as shown in Equation (5).

If s(x, n) < limit,

then x is an anomaly.
(5)

3.4.3. Local Outlier Factor (LOF)

Introduced at the beginning of the 21st Century, this anomaly-detection technique
measures the difference of an observation based on its neighbors [41]. The central idea is
that, to identify anomalous observations, we examine how isolated they are compared to
their nearby neighborhood. The calculation of the LOF is given by Equation (6).

LOFk(A) =
1
k ∑

B∈Nk(A)

LRDk(B)
LRDk(A)

(6)

where

LOFk(A) LOF value for observation A;

Nk(A) set of k-nearest neighbors of observation A;

LRDk(B) local range density of neighbor B;

LRDk(A) local range density of neighbor A.

The technique makes use of Local Reachability Density (LRD), which is given by
Equation (7), and it is a measure used to evaluate the abnormality of a specific point
considering its neighbors.

LRD(p) =
1

∑o∈N(RD(o,p))
|N|

(7)

where

LRD(p) : Local Reachability Density of point p;

N : set of local neighbors p;

RD(o, p) : relative range density between points o and p.

The relative range density is defined as the maximum of the k-distance of the neighbor
point and the distance between two points. In simpler words, it is the distance needed to
travel from a specific point to its neighbor point [42].

3.4.4. Backtesting

The cross-validation process carried out in time series is known as backtesting, where
the main and fundamental characteristic is that the temporal order of the data in the
time series is maintained, instead of the classic scope of cross-validation, where random
distributions of observations are made in the data.

The temporal order of the data in the time series is maintained by introducing an
incremental scope from the past to the future. In this approach, data are enabled for model
training or testing as it progresses through the time series. This process is performed using
a selected feed or window parameter, which determines the amount of data considered in
each iteration of the model.

Within these practices, there is the combination of sliding windows and retraining.
That is, the backtesting process consists of advancing towards the future n number of steps
determined by the value of the sliding window, training the model with the available
data in each of the advances and evaluating it with the corresponding section of the test
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data, within the panorama selected for this instance of backtesting, as shown in Figure 2.
The process is repeated the determined number of times or until the available data are
exhausted. In each evaluation of the model, the different metrics of interest are collected to
draw conclusions once the process is completed.

Figure 2. The window size causes the time series to be traversed by training and evaluating the
model over time. Source: own elaboration.

3.5. Explainable Artificial Intelligence (XAI)

In recent years, there has been an intense discussion in the scientific community about
what explainable artificial intelligence is, what it encompasses, what studies there should
be, or what it should be [43]. Explainable artificial intelligence or explainable AI (XAI)
seeks to ensure that developments and models of artificial intelligence, machine learning,
or statistics are interpretable to human beings. That is, the developments can be transparent
about how it works so that humans can understand and interpret the results provided
by the model or development in question. Explainable artificial intelligence solves the
challenge of explaining how and why artificial intelligence models make certain decisions,
especially in the case of possible predictions or recommendations of significant impact on
the people and organizations involved.

Within the context of this work, when using time series data, it is essential to under-
stand how the characteristics of the data are used and how they affect the prediction or the
task at hand. Data science and artificial intelligence models, algorithms, and methods can
capture complex patterns in time series data. However, its “black-box” nature makes it
difficult to explain these decisions.

3.6. Data

The data used in this work correspond to a residential household dataset [33]. The
data consist of readings collected every minute within a date range from 5 November 2022
to 12 August 2023, in a residential household in a city in northeastern Mexico. The dataset
is a time series containing 402,359 observations and 19 variables, and 17 of the numerical
variables were considered. Table 3 shows a brief sample of the original dataset.
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Table 3. Original data sample of 17 numerical variables taken from [33]. Source: own elaboration.

Date Active_Power Current Voltage Reactive_Power Apparent_Power Power_Factor Temp Feels_Like

5 November
2022 14:05 265.10 2.53 122.20 159.09 309.17 0.8575 24.19 23.68

5 November
2022 14:06 265.10 2.53 122.20 159.09 309.17 0.8575 24.19 23.68

5 November
2022 14:07 265.10 2.53 122.20 159.09 309.17 0.8575 24.19 23.68

5 November
2022 14:08 640.00 5.45 120.70 152.08 657.82 0.9729 24.19 23.68

5 November
2022 14:09 257.60 2.47 122.40 158.26 302.33 0.8520 24.19 23.68

...

11 August
2023 23:56 172.60 1.50 123.60 67.69 185.40 0.9310 24.81 24.70

11 August
2023 23:57 172.60 1.50 123.60 67.69 185.40 0.9310 25.36 25.26

11 August
2023 23:58 172.60 1.50 123.60 67.69 185.40 0.9310 25.36 25.26

11 August
2023 23:59 172.60 1.50 123.60 67.69 185.40 0.9310 25.36 25.26

12 August
2023 0:00 172.60 1.50 123.60 67.69 185.40 0.9310 25.36 25.26

temp_min temp_max pressure humidity speed deg temp_t+1 feels_like_t+1

23.44 27.50 1013.00 39.00 3.0351 325.49 29.63 27.97
23.44 27.50 1013.00 39.00 2.9776 319.23 29.63 27.97
23.44 27.50 1013.00 39.00 2.9202 312.98 29.63 27.97
23.44 27.50 1013.00 39.00 2.8628 306.72 29.63 27.97
23.44 27.50 1013.00 39.00 2.8053 300.47 29.63 27.97

...

24.81 24.81 1007.00 52.00 1.73 129.00 25.43 25.31
25.36 25.36 1007.00 50.00 1.73 129.00 25.39 25.27
25.36 25.36 1007.00 50.00 1.73 129.00 25.35 25.23
25.36 25.36 1007.00 50.00 1.73 129.00 25.31 25.20
25.36 25.36 1007.00 50.00 1.73 129.00 25.27 25.16

3.7. Data Preparation

The data were transformed by grouping them into daily intervals, as they were
originally in minutes. This was performed to condense the database and enable training
and forecasting by day, instead of by minute. Similarly, data corresponding to incomplete
days collected in the dataset at the beginning and end of it were discarded.

Seventeen numerical variables from the original dataset were selected based on their
relevance to the problem at hand. These variables were chosen because they are the most
relevant to the research objective. The variables for electric consumption, current, and
voltage are essential for understanding the current situation of the electrical grid, while the
variables for temperature, pressure, and humidity help contextualize the environment and
surroundings where the readings are being taken. A reduced number of variables simplifies
the model and can facilitate the interpretation of the results. The selected variables are
listed below:

• active_power: This is the amount of electric consumption measured in watts per minute
in the sensor reading over the specified time period.

• current: This is the amount of current measured in amperes in the sensor reading over
the specified time period.
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• voltage: This is the amount of voltage measured in volts in the sensor reading over the
specified time period.

• temp: This is the temperature measured in degrees Celsius in the sensor reading over
the specified time period.

• pressure: This is the amount of atmospheric pressure measured in hectopascals in the
sensor reading over the specified time period.

• humidity: This is the amount of absolute air humidity in the sensor reading over the
specified time period.

For the grouping or aggregation of the data, that is from minutes to days and based
on the nature of the variables, sum or average operations were performed, as shown in
Table 4.

Table 4. Operations performed for data grouping. Source: own elaboration.

Variable Operation

active_power Sum
current Sum
voltage Average
temp Average

pressure Average
humidity Average

The variable named active_power records the value of electric consumption in units
of watts per minute. The daily consumption is computed by adding all the minute data
registered during each day. The data were transformed into kilowatt-per-hour units, the
unit used to measure electric consumption in Mexico. Thus, the variable formerly known
as active_power after this transformation has been designated as kWh.

kWh =
active_power

1000 ∗ 60
(8)

The result was a dataset of 279 observations and six variables, where each observation
corresponds to the value recorded over one day, covering a period from 6 November 2022
to 11 August 2023. Table 5 shows an example of the data after the transformations described
in this section.

Table 5. Transformed data sample. Source: own elaboration.

Date kWh Current Voltage Temp Pressure Humidity

6 November 2022 7.36 4004.94 124.03 20.65 1012.70 30.34
7 November 2022 7.13 3914.56 123.03 19.48 1015.37 44.95
8 November 2022 6.95 3840.22 123.67 18.58 1018.25 60.72

...
9 August 2023 8.86 4781.84 121.09 28.05 1009.57 37.37
10 August 2023 9.07 4873.58 120.91 28.49 1008.54 35.75
11 August 2023 9.16 4881.39 120.60 27.30 1010.51 39.64

4. Experimental Setup
4.1. Regression Prediction Models

Through the analysis of the partial autocorrelation plot (see Figure 3), the number of
lags to use during the training and testing of the regression models was determined [44].

The Python library, Skforecast [45], was used to forecast the dependent multiple time
series. It is important to specify which regressor will be used to forecast the time series and
define the regressor hyperparameters. The library can use any regressor included in the
sklearn library [46].
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Figure 3. Partial autocorrelation plot of the electricity consumption variable kWh in a domestic
electricity consumption time series. Source: own elaboration.

The regressors tested were Ridge [47], Lasso [48], random forest regressor [49], XG-
Boost Regressor [50], and AdaBoost Regressor [51]. An optimization of the main hyperpa-
rameter, displayed in Table 6, was conducted to improve the results of each regressor.

Table 6. Summary of the hyperparameters for the predictive regressors. Source: own elaboration.

Regressor Hyperparameter Set of Values Metrics Number
of Lags

Window
Size

Ridge alpha 0.01, 0.1, 0.5, 1.5

MSE,
MAE,
MAPE

1,
4,
25

60

Lasso alpha 0.01, 0.1, 0.5, 1.5
AdaBoost
Regressor n_estimators 5, 100, 200, 500, 700

Random Forest n_estimators 20, 50, 100, 200, 300
XGB Regressor n_estimators 5, 10, 20, 50, 100, 200, 500

By combining the scopes of grid search [52] and backtesting [53], the predictive models
were analyzed using nested cross-validation [54]. This approach not only seeks the best
combination of hyperparameters for one or several regressors, but also evaluates the
model’s performance across different epochs or periods in the time series.

4.2. Anomaly Definition

Defining an anomaly interval or an atypical region is an important aspect of any work
related to outlier detection. The definition of this interval will determine which observations
will be considered anomalous. Based on information collected and consulted from various
sources [55,56], it has been determined that the anomaly interval consists of increases or
decreases in electricity consumption in three different categories. Overall, anomalies in
households can be caused by different factors, such as failures of appliances and sensors,
bugs in the electrical system, blackouts, holidays, vacations, etc. These three categories refer
to the different scenarios that can occur in real life when monitoring electricity consumption.
The categories can be found in Table 7, and they consist of the following cases:

1. Increasing consumption (A): Anomalies include consumption predictions that are 15%
above the consumption recorded on the same day, for example when more people are
visiting the household because of a celebration or party.

2. Decreasing consumption (B): Anomalies include consumption that decreases up to
85% below the original value, for instance people who are not at home and on a
vacation.

3. Anomalies generated by electrical noise (C): Another type of anomaly is included,
which is generated by introducing a signal of electrical noise, in this case white noise.
Examples include problems with an appliance or shortcuts.
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Table 7. Three categories used to generate anomalies. Source: own elaboration.

Category Anomaly Factor ( f ) Frequency Real Scenario

A Weekends and holidays Increase in consumption Random between
1.01 and 1.15

3 Visits, celebrations, and
parties

B Random dates Decrease in consumption Random between
0.85 and 0.99

2 Vacations

C Random dates Electrical noise White noise signal 1 Problems with appliances

Each of the categories included in Table 7 simulates real-life anomalies in the context
of household electricity consumption. Category A refers to increases (factor f upwards) in
electricity consumption caused by the inhabitants staying home longer due to the absence
of school or work responsibilities, as well as potential visits. These events occur on holidays
or weekends and, therefore, are very frequent. Category B focuses on the assumption
that, during winter and summer seasons, electricity consumption remains consistently
high and similar; the anomaly involves generating decreases (factor f downwards) in
electricity consumption. This also symbolizes an absence or a noticeable lack of activity
within the household, for instance during vacations. This category occurs with lower
frequency than the events in category A. Category C simulates a white or Gaussian noise
signal, representing a type of electrical noise that these kinds of electrical signals commonly
encounter [57].

Regarding white noise, it is important to mention the adaptations made. The values
of the white noise signal were subjected to the absolute value to avoid negative electricity
consumption when modifying the forecast value. Additionally, the signal values were
limited to a minimum and maximum of 0.78 and 1.18, respectively. These values are slightly
lower and higher than the limits of categories A and B. By limiting these values, we ensure
obtaining modified consumptions that remain within the possible electricity consumption
range for domestic use.

4.3. Anomaly Detection Models

Once the best-performing prediction model has been obtained from the procedures
explained in Section 4.1; we proposed to alter the forecast produced by this model to
generate anomalies within our dataset and, thus, labeled each observation as anomalous
or normal. The period corresponding to the forecast used for alteration and anomaly
generation is from 13 July 2023 to 11 August 2023, which represents the last 30 days of the
dataset. The following criteria were used to alter the observations within the electricity
consumption forecast time series:

• The forecast was made for 30 days.
• Three different categories of anomalies (see Table 7) were established.
• Twenty percent of the observations (i.e., six days) were randomly altered (based on

the frequency of Table 7, three days for category A, two days for category B, and one
day for category C).

• Each randomly selected date was multiplied by a factor f based on the values shown
in Table 7.

• The randomly selected dates do not repeat. There are always six different dates.

The outlier detection methods tested in this work were: Median Absolute Deviation
(MAD), isolation forest (IF), and the Local Outlier Factor (LOF). These methods were
compared using accuracy, precision, recall, and the F1-score as metrics. A methodology has
been designed to subject each anomaly detection method to a robust evaluation process
according to the following criteria:

1. The data corresponding to n (n = 6) random dates were modified following the
previously mentioned criteria to generate an anomaly.
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2. The method was trained using the altered data (anomaly inclusion process) from the
forecast generated by the prediction model.

3. The metrics of accuracy, precision, recall, and the F1-score were calculated by evaluating
the method with the modified anomalous forecast.

4. The process was iterated 30 times, and the metrics of interest were collected in each
iteration.

5. An average of the metrics of interest was calculated as the final result.
6. Once the 30 iterations were completed, the process began again with a different

criterion or hyperparameter, depending on the method.
7. After completing the 30 iterations for each criterion or hyperparameter to be evaluated,

the final result was the average obtained over the 30 iterations for each criterion or
hyperparameter.

Each method contains different criteria or hyperparameters, which can be fine-tuned
according to the needs of the problem or application (see Table 8). All hyperparameters
tuned in this work were chosen based on their relevance and impact on the performance of
each respective technique. For instance, the nestimators hyperparameter in the isolation
forest method defines the number of estimators used, and by increasing its value, the
model’s ability to identify outliers increases as well [58]. Therefore, the evaluation method-
ology includes the process of selecting different values to achieve a grid search similar
to the approach used during the selection of the regressor for generating the electricity
consumption forecast. Additionally, cross-validation was performed by evaluating the
chosen value at different points in the time series during each iteration.

Table 8. Summary of the hyperparameters for the anomaly detection methods. Source: own elabora-
tion.

Method Hyperparameter Set of Values

Median Absolute Deviation threshold 0.01, 0.1, 0.5, 1.5
Isolation Forest n_estimators 5, 100, 200, 500, 700

Local Outlier Factor n_neighbors 20, 50, 100, 200, 300

5. Results
5.1. Exploratory Analysis

The exploratory data analysis began with a visualization of the time series data.
Figure 4 shows the behavior of variable kWh over time with its patterns, peaks, valleys, and
trends.

Figure 4. Electricity consumption in kWh per day. Source: own elaboration.
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5.1.1. Stationarity Test

Similarly, the Augmented Dickey–Fuller test (ADF) [59] allows us to determine
whether a time series is stationary or not. A stationary time series has the characteris-
tic that its statistical properties remain constant over time. In the stationarity analysis using
the ADF test, with an alpha value of 95% as the confidence interval, the results are shown in
Table 9.

Table 9. Results of the ADF test. Source: own elaboration.

Variable p-Value Result

kWh 0.13 Non-stationary
current 0.11 Non-stationary
voltage 0.48 Non-stationary
temp 0.23 Non-stationary

pressure 0.09 Non-stationary
humidity 0.00 Stationary

With the results obtained, it can be observed that the variable of interest, kWh, is
non-stationary, indicating that the statistical properties of the data, such as the variance
and mean, change over time. This result is expected due to the nature of electricity
consumption data, where consumption trends or patterns are present given the same or
similar consumers. It is also important to note that the observed increase or decrease
can occur during certain seasons of the year. While there are techniques to transform
data to achieve stationarity, they will not be applied, considering this characteristic to be
important within the data. The results from the stationarity test guided us to delineate the
methodologies and algorithms to be used in the development of the regressor models and
outlier techniques.

5.1.2. Correlation Matrix

The correlation between the variables of our preprocessed dataset is calculated with
Kendall’s correlation, which is a reliable and robust non-parametric statistic [60]. The value
of the correlation is between +1 and −1, where +1 and −1 indicate a high correlation, pos-
itive or negative, respectively. Zero means no correlation between the variables compared.
Figure 5 displays the Kendall correlation matrix obtained for the dataset. The analysis of the
results of the correlation matrix revealed that only the variable current has a strong linear
relationship with the target prediction variable, which corresponds to the variable kWh.

5.1.3. Time Series Decomposition

Time series decomposition analysis allows for the identification of seasonal patterns,
trends, variability, and cycles present in the data. This information greatly aids in a deep
understanding of the data to be used. The decomposition of the time series of the variable
kWh into its components of trend, seasonality, cycle, and randomness is shown in Figure 6.
In the resulting plots, a clear seasonal effect and recurrent patterns can be observed in the
time series corresponding to the variable kWh. Similarly, there is an upward trend, likely
due to increased electricity consumption in the summer season, which has implications for
the residual component as values begin to deviate from zero during periods of increased
consumption, indicating a change in behavior or patterns.

5.2. Comparison of Regression Models

Table 10 presents the top five results for the electricity consumption variable according
to the mean absolute percentage error (MAPE) metric.

The five positions with the best performance are occupied by the regressor random
forest regressor; in position number six in performance according to the MAPE metric is the
regressor of AdaBoost with a value of 0.184275693. The five random forest positions have in
common the number of lags used, but they differ in the hyperparameter of n_estimators.
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While locations one and five do not differ much in their MAPE metric, due to the smaller
number of estimators used by location five, a shorter execution time would be expected,
representing a choice as to whether performance, execution time, or resource usage needs
to be prioritized (e.g., minimal improvement).

Figure 5. Kendall’s correlation heatmap. Source: own elaboration.

Figure 6. Time series decomposition of the variable kWh. Source: own elaboration.
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Table 10. Top 5 best predictive model results. Source: own elaboration.

Regressor Lags n_Estimators MAPE MAE MSE

Random Forest 25 100 0.17 1.43 4.63
Random Forest 25 300 0.17 1.43 4.61
Random Forest 25 200 0.18 1.43 4.64
Random Forest 25 50 0.18 1.44 4.68
Random Forest 25 20 0.18 1.45 4.64

To visualize the performance of the best regressor evaluated, the 30-day forecast was
made in the date period from 13 July 2023 to 11 August 2023. The forecast in this period
of thirty dates is the one that will be used for its alteration and subsequent detection
of anomalies. Figure 7 shows the graph corresponding to the forecast and the actual
consumption data.

Figure 7. Comparison of real data and predicting data with best-performing regressor. Source: own
elaboration.

Although a completely different regressor and hyperparameters can be chosen to
provide better results in metrics for this particular date period, the combination used of
regressor, lags, and hyperparameters is the one that achieved a better high metric value
when evaluated on all the data. Table 11 displays the metrics associated with the prediction
shown in Figure 7.

Table 11. Best metrics for random forest regressor. Source: own elaboration.

Metric Result

MAE 2.78
MSE 13.19

MAPE 21.04%

5.3. Comparison of Anomaly Detection Models

The first results are presented using the MAD statistical technique. This technique
requires a limit to determine if an observation is anomalous. To address the decision
of which limit to use for this case study, within each iterative process of the thirty total
iterations, a different limit value was used. That is, instead of performing thirty iterations
with one limit value x and reporting those results, the thirty iterations were performed for
different limit values x.

To analyze the results (Figure 8a), the F1-score metric is examined. The metric shown
in these results corresponds to the average of the metric over the 30 iterations using the
corresponding threshold value. The best result was obtained using a cutoff value of 1.1.
Similar to the analysis of the predictor model, analyzing the F1-score metric, which is the
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harmonic between precision and recall, only provides some insight. In addition to this metric,
the accuracy, precision, and recall have been calculated as shown in Figure 8b.

This is where the analysis of the different metrics becomes relevant. While the F1-
score metric provides some understanding of the performance of a certain technique, it
is necessary to know the other metrics to gain a complete understanding of the behavior
of the technique. For the MAD technique, an increasing trend is observed in the accuracy,
but a decreasing trend in the recall, while the precision remains practically stable, slightly
above 20%.

The results obtained in the isolation forest technique are shown in Figure 8c. The best
result has been obtained by training the model with 100 n_estimators. Unlike the previous
technique, the performance of the technique varies in a range of 30% to 40% in the F1-score
metric across the different values of n_estimators.

(a) (b)

(c) (d)

(e) (f)

Figure 8. Behavior of F1-score, accuracy, precision, and recall for anomaly-detection models: MAD,
IF, and LOF. Source: own elaboration.
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Results for additional metrics are found in Figure 8d. Unlike the MAD technique, it
can be seen how the accuracy remains relatively high throughout the evaluations, exceeding
70%, and where the precision and recall metrics remain at ranges between 30% and 40%,
obtaining the best combination of results in the use of one hundred estimators in the
training period.

In the LOF, the neighbor values or neighbors were selected to be used in the grid search
and to find an ideal value that would result in higher performance. Figure 8e shows
the results obtained from the F1-scores across the different neighbor values used during
training. Using a range from 1 to 60 neighbors, the result is an increasing performance until
reaching the number of ten neighbors. Once this number is increased, the F1-score metric
decreases until it reaches a value of 20% when using 30 neighbors. The maximum score
obtained by using ten neighbors is slightly greater than 40%.

To better understand the full picture of the performance of this technique, Figure 8f
shows the results of metrics in addition to the F1-score. The results obtained are similar to
those analyzed in the isolation forest technique, where a relatively high value of the accuracy
is obtained constantly slightly below or exceeding 70%, with lower precision and recall
values, but still higher than those obtained in the previous technique, in a range of 20% to
40%. The best combination of results has been obtained by using ten estimators.

5.4. Metrics Analysis

In a deeper analysis of the metrics obtained previously, you can focus on a particular
metric to achieve a certain objective. There is a common example where it is explained
that, in the medical and health field, a false positive (precision), although it would cause an
avalanche of emotions, does not have as serious repercussions as a false negative (recall).
Following this analogy, in this work, the recall metric is of greater importance, that is the
measurement of the number of anomalies that have been detected.

By focusing on a particular metric, this causes a change in development as well. It
is possible to determine the boundary that will be used by the technique for anomaly
detection employing the isolation forest technique. The number of iterations was increased
to 100 to collect all the scores that the technique assigns to the generated anomalies, and
the distribution over all the iterations is shown in Figure 9.

Figure 9. Score distribution assigned by isolation forest to the generated anomalies. Source: own
elaboration.
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With this information, an adequate limit that captures the majority of the anomalies
generated can be determined. Using a cutoff of 0.015, the results for all 30 iterations can be
analyzed in Figure 10. It can be seen how the value of the recall can reach a value of up to
almost 80%, while the accuracy and precision remain in a range of 40% and 20%, respectively.
In this way, focus can be given and action can be taken in development to achieve certain
results depending on the objective or need of the task. Within the context of this work, the
recall metric is prioritized to detect as many anomalies as possible.

Figure 10. Final metrics to prioritize recall. Source: own elaboration.

5.5. Explain Models

We used the Shapley Additive exPlanations (SHAP) technique [61] to analyze which
variables are playing an important role in determining the decisions of the isolation forest
technique. The isolation forest has been chosen because it obtained the highest results in
terms of the F1-score, which is why it would be expected to be used for the detection of
anomalous data in production outside of a study area.

The main objective of the results shown below is to visualize the challenge in deter-
mining anomalous data by lacking certainty as to which instances in the time series are
anomalous, as well as to provide some understanding or explanation of why an instance is
detected as anomalous.

Figure 11 shows the real data for the 30-day period that has been handled previously.
In this part, we are no longer working with the forecast generated by a model, but with the
real data captured in the dataset (i.e., unaltered data). Instances in red color were identified
as anomalous by the isolation forest technique. Visually, a judgment can be made about
whether a certain point in the time series differs significantly from the rest and would,
therefore, be an anomaly. However, this approach is unreliable since there is no certainty
as to which of these 30-day points of electrical consumption are actually anomalies. The
detection of these anomalous data by the technique remains uncertain without any way of
being able to discern them.

By using a technique like SHAP, you can gain insight into the understanding of what
the isolation forest model has considered for classifying anomalous data. By being able to
analyze which variables have a greater or lesser weight in determining atypical data, the
analysis can be deepened within the context of electricity consumption to determine if any
observation is, in fact, anomalous.

Overall, the variables that contribute the most and the least to the model to determine
whether an observation is atypical are shown in Figure 12. In this case, the user or group of
interested users could delve deeper and carry out an analysis of the atmospheric conditions
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of humidity and temperature that occurred during the 30 days that this period of electrical
consumption covers, as well as the voltage and current readings, as these are the variables
with the most impact on the execution of the model.

As a proof of concept, we analyzed an individual instance identified by the model (IF)
as anomalous; the values of each of the variables can be examined as seen in Figure 13. In a
similar way, but in a more specialized case, the analysis can be carried out on a particular
instance detected as atypical. The current variable is the one that has had the most weight in
obtaining this result. A high current reading may mean a short circuit within the electrical
installation or an electrical device used during the day under observation.

Figure 11. Detection of anomalies with real data. Source: own elaboration.

Figure 12. SHAP values for the isolation forest model. Source: own elaboration.

Figure 13. Individual contribution of variables for a specific instance. Source: own elaboration.



Algorithms 2024, 17, 322 22 of 26

6. Discussion

For cities, the generation of an electricity consumption prediction model is relevant.
In this work, we model energy consumption data using a time series format and generate a
prediction of future electricity consumption. The partial autocorrelation graph has been
validated based on the results in the different metrics, especially the MAPE.

The optimal number of estimators used by the regressors is close to 100 estimators. In
this, it is possible to avoid the use of too few estimators that could cause overfitting of the
model, and at the same time, the excessive use of them that would result in a high bias and
would not achieve good training of the data. The omission to graphically present the results
of the regressors Lasso and Ridge is derived from the fact that these regressors failed to
adequately fit the data. These regressors assume and expect a linear relationship between
the variables. This relationship is absent or very weak in the data used. Both regressors
produced a forecast similar to a horizontal line, where, if the analysis is not deepened, it
can be incorrectly chosen as an acceptable result, since they produced relatively low metrics
compared to the other regressors.

It is of interest to mention that some other regressors were subjected to experimentation
such as the LightGMB or Catboost regressor. However, these results were omitted because
they show the inability of the regressors to be trained satisfactorily to generate a forecast.
This fact matches with previous research [62] which mentioned the abundant amount of
data necessary for these two methods and their correct training. Within the context of this
work, and many others where the case studies have a limited amount of data, an open
challenge remains because the relations between time and space in time series are dynamic,
therefore the analysis performed is valid only for a short-term period.

Remembering that the main objective of this work is the study and detection of
anomalies within domestic electricity consumption data, the previous results become
relevant by providing us with the forecast that will be used in the detection of anomalies.
However, despite the importance of generating a forecast that is as close to the test data as
possible (see Figure 7), the available resources have not been fully allocated to achieve this
goal and minimize the error. The results obtained in the generation of the electric energy
consumption forecast can be improved, but they represent a good basis to continue with
the methodology.

The methodology for altering the forecast tries to emulate in the best possible way
different scenarios that can occur on a day-to-day basis in domestic electricity consumption.
The main interest of this work is the increases and decreases in electrical consumption
that have been determined as anomalous. Within this methodology, it is always ensured
that a certain percentage of different dates are chosen randomly for data modification, as
this allows for fair comparisons. Omitting them can cause the same date to be chosen
twice and produce misleading results in the iteration. Likewise, the certainty of generating
alteration factors that remain within the expected real context of electrical consumption is
implemented. This means that the modified forecast always remains within the range of a
home’s actual electrical consumption, without presenting extremely large, small or even
negative values.

The analysis of the results obtained in the prediction and anomaly detection process
share a special characteristic: depending on the main objective being worked on, there is
a metric that best describes that objective. A broad set of metrics has been transparently
presented to provide a complete picture to achieve a deep understanding of the results.
Additionally, after SHAP analysis over one instance identified by the outlier prediction
model as abnormal, enables a deeper understanding of why variables’ values make that
instance abnormal.

7. Conclusions

An electricity consumption prediction model has been developed using exogenous
and endogenous variables during training with a mean absolute percentage error amount
of less than 18% using a random forest regressor. The quality of the model has been ensured



Algorithms 2024, 17, 322 23 of 26

by performing cross-validation through the backtesting procedure respecting the time-
dependent nature of the time series. At the same time, the appropriate hyperparameter has
been chosen for training, seeking to maximize performance metrics.

Using the results of this regression model, a 30-day forecast of electrical consumption,
an anomaly-detection model has been developed using isolation forest, where, based on
the corresponding analysis of the choice of appropriate limit, it has been possible to capture
up to 75% of the artificially generated anomalies over 30 different iterations with randomly
selected abnormal days. It has been decided to focus on the identification of the greatest
possible number of anomalies as an objective metric because these anomalies can indicate
critical problems such as failures in equipment or facilities that require immediate attention
and care. The existence of false negatives, that is anomalies that have not been detected,
can have serious consequences that can harm domestic inhabitants or the electrical network
in general. Also, this approach allows a proactive and preventive attitude in the face of
possible failures or occurrences not foreseen in the present.

The main contribution of this research is the use of Shapley values to explain the results
of a model capable of detecting anomalous data, in this case isolation forest. The motivation
is to try to “close the circle” and visualize the situation where anomaly detection is carried
out without the certainty of which ones exist within the timeline. Lacking this certainty,
being able to generate knowledge of which variables lead the model to generate said result
is valuable information to eventually determine the veracity of the results. Another contri-
bution is the transformation, use, and analysis of domestic electricity consumption data in
Mexico, for the development of regression and anomaly-detection models. Additionally,
this work contributes to establishing a methodology for the generation of anomalies within
this context and the use of an explainable AI technique to generate an understanding of the
results of the anomaly-detection model.

This hybrid approach is a new proposal to identify outliers considering the prediction
of energy consumption and to understand the cause of them by using XAI. All these can
guide the design of other applications to understand users or environmental abnormal
behaviors for other purposes. For instance, the medical or healthcare abnormal behavior
(increase or decrease) of energy consumption can be correlated with the fall of an elderly
person living alone. We considered relevant the definition of anomaly proposed in this
work, and this can help future researchers establish a basis for the Mexican context to
work on.

As future work, the expansion of the dataset becomes a desirable activity to be able to
experiment with different techniques that can benefit from the increased amount of data. At
the same time, the creation or adaptation of the dataset by labeling real anomalous events
to obtain certainty about the atypical events that occurred in the data can be achieved. The
exploration of the extended isolation forest technique for anomaly detection is an interesting
point to consider as it is an evolution of isolation forest, as well as experimentation when
using some assembly methods and combining two techniques to study their results.
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