
Citation: Briones-Baez, M.F.;

Aguilera-Vazquez, L.; Rangel-Valdez,

N.; Zuñiga, C.; Martinez-Salazar, A.L.;

Gomez-Santillan, C. Pitfalls in

Metaheuristics Solving

Stoichiometric-Based Optimization

Models for Metabolic Networks.

Algorithms 2024, 17, 336. https://

doi.org/10.3390/a17080336

Academic Editors: Massimiliano

Caramia and Frank Werner

Received: 30 March 2024

Revised: 1 July 2024

Accepted: 16 July 2024

Published: 1 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Pitfalls in Metaheuristics Solving Stoichiometric-Based
Optimization Models for Metabolic Networks
Mónica Fabiola Briones-Báez 1,* , Luciano Aguilera-Vázquez 1 , Nelson Rangel-Valdez 1 , Cristal Zuñiga 2,* ,
Ana Lidia Martínez-Salazar 1 and Claudia Gomez-Santillan 1

1 División de Estudios de Posgrado e Investigación, Instituto Tecnológico de Ciudad Madero (TECNM),
Los Mangos 89440, Mexico; luciano.av@cdmadero.tecnm.mx (L.A.-V.); nelson.rv@cdmadero.tecnm.mx
(N.R.-V.); ana.ms@cdmadero.tecnm.mx (A.L.M.-S.); claudia.gs@cdmadero.tecnm.mx (C.G.-S.)

2 Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
* Correspondence: d00070469@cdmadero.tecnm.mx (M.F.B.-B.); czuniga2@sdsu.edu (C.Z.)

Abstract: Flux Balance Analysis (FBA) is a constraint-based method that is commonly used to guide
metabolites through restricting pathways that often involve conditions such as anaplerotic cycles like
Calvin, reversible or irreversible reactions, and nodes where metabolic pathways branch. The method
can identify the best conditions for one course but fails when dealing with the pathways of multiple
metabolites of interest. Recent studies on metabolism consider it more natural to optimize several
metabolites simultaneously rather than just one; moreover, they point out the use of metaheuristics
as an attractive alternative that extends FBA to tackle multiple objectives. However, the literature
also warns that the use of such techniques must not be wild. Instead, it must be subject to careful
fine-tuning and selection processes to achieve the desired results. This work analyses the impact
on the quality of the pathways built using the NSGAII and MOEA/D algorithms and several novel
optimization models; it conducts a study on two case studies, the pigment biosynthesis and the
node in glutamate metabolism of the microalgae Chlorella vulgaris, under three culture conditions
(autotrophic, heterotrophic, and mixotrophic) while optimizing for three metabolic intermediaries as
independent objective functions simultaneously. The results show varying performances between
NSGAII and MOEA/D, demonstrating that the selection of an optimization model can greatly affect
predicted phenotypes.

Keywords: cell metabolism; FBA; multi-objective optimization; NSGAII; MOEA/D

1. Introduction

Microalgae are photosynthetic cellular microorganisms that have been known since
the beginning of time. They can be grown either in wastewater or in clean or salty waters;
some strains, such as Dunaliella salina, can be grown in salty waters, and other strains, such
as Chlorella vulgaris, are grown in fresh water and can survive high growing temperatures.
Microalgae need a carbon source to carry out photosynthesis and produce their biomass.
Carbon can be obtained as CO2 from polluting sources, and they transform it into oxygen,
circularly helping to reduce global warming [1].

Microalgae are large producers of biomass; inside there are metabolites such as lipids
that in the future can be used as biofuels, amino acids and pigments that are currently
used in the pharmaceutical and cosmetic industries, and proteins that are used as food
supplements [2,3]. In addition, microalgae present biotechnological applications as biore-
mediation sources of water quality and have been used as alternatives for the removal of
heavy metals due to some strains, such as Chlorella vulgaris and Scenedesmus obliquos, being
able to absorb heavy metals such as Cadmium (Cd) and Lead (Pb) [4,5].

All the characteristics above make the study of the metabolism of microalgae attractive
for metabolic engineering. This discipline focuses on the study of the topography of the
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network, the regulation of a metabolic pathway, the identification of bottlenecks, the deter-
mination of metabolic fluxes, and the elimination of side reactions by gene deletion [6].

In particular, various metabolic engineering techniques have been used to analyze
pathways and optimize fluxes to manipulate metabolism and modify the fluxes towards
a desired product and thus be able to add commercial value. However, metabolic
fluxes cannot be measured in vivo; for this reason, modeling approaches are required
to measure or predict them [7]. Among them are single-objective constraint-based
approaches, such as FBA (Flux Balance Analysis), exact mathematical multi-objective,
and heuristic-based approaches.

FBA is one of the most used techniques for studying cellular metabolism is the single-
objective FBA approach based on constraints. This approach is widely used in the analysis
of the fluxes of metabolic networks since it can be used even if kinetic data are not available,
but it requires information on the stoichiometric data of the reactions present in the network,
growth requirements, and parameter-specific measurement methods of the biological
system, in particular the reconstruction of the metabolic network for the genome scale [8]
that include all known reactions that are present in the studied organisms and the genes
that encode each enzyme [9].

Cellular metabolism in metabolic modeling is described as the set of chemical reactions
present in an organism. This is mathematically represented by a stoichiometric matrix,
S, of size (m × n), where n are the reactions and m are the metabolites involved in each
reaction, assigning a negative coefficient if it represents a reactant and a positive coefficient
if it is a product, and a coefficient of zero means that the metabolite is not present in the
reaction; each reaction will have a lower bound and an upper bound limiting the space of
solutions or the maximum and minimum value of the allowed flux. The FBA seeks the
linear optimization of an objective function; this function represents the linear combination
of the fluxes that generally represents biomass production [10].

FBA max F(v) = vbiomass
Subject to

S · v = 0
LBj ≤ vj ≤ UBj, ∀j ∈ {1, . . . , n}

(1)

Equation (1) defines the associated FBA linear optimization problem [11], where v is
the flux vector across the reactions. The stoichiometric matrix Sm×n represents the metabolic
network, where there exists a metabolite per row and a reaction per column. The value
of the cell Sij is the stoichiometric coefficient of the metabolite i involved in reaction j [9],
and LBj and UBj are the lower and upper bounds for the fluxes allowed in the metabolic
system. The steady-state assumption is established by Sv = 0 [12].

Its versatility has meant that FBA has been widely used in different organisms, in-
cluding microalgae, bacteria, consortia of microorganisms, etc. An example of this is the
prediction of cell growth of the cyanobacteria Synechocystis in [13]; it has also been used in
the degradation of glucose by anaerobic digestion to predict the distribution of metabolites
and reveal the transformation of carbon in order to evaluate the conversion of ethanol,
propionic acid, and butyric acid into acetic acid [14]. FBA has served as a study in medicine,
where flux activities were calculated to study differences in metabolic pathways, comparing
breast cancer subtypes [15].

The FBA methodology has been used to evaluate metabolic fluxes in different strains
of microalgae using three heterotrophic and mixotrophic autotrophic growth conditions.
The first microalgae to use FBA was the microalgae Chlamydomonas reinhardtii [16], with
which the first metabolic map was obtained. Later, the microalga Chlorella vulgaris was
utilized for the study of lipid production [17]; both had biomass production as their sole
objective function.

Although this approach has been widely used, the distribution of metabolites through
the pathways is conditioned by the metabolites present in the objective function equa-
tion and in the experimental parameters; blocking some metabolic pathways results in
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a distribution of fluxes with zero values. Moreover, FBA has been widely used in the search
for maximizing the production of compounds of interest, but cellular metabolism in its nat-
ural state does not guide metabolic pathways toward the production of a particular metabo-
lite. In the search for a better understanding of microalgae metabolism, new optimization
techniques have emerged, such as metaheuristics for multi-objective optimization [18].
These techniques seek a more uniform distribution and are closer to the reality of what
happens at the metabolic level by simultaneously optimizing various functions with con-
flicting objectives.

Multi-objective optimization is generally based on the search for solutions to different
conflicting objectives that must be optimized simultaneously. Multi-objective optimization
is of great importance and has been carried out at a technological and scientific level.
Some examples in the chemical industry have been reported in optimizing operating unit
processes, biorefinery, reaction engineering, prevention and control, etc. [19]. It has also
been utilized in the biology and medicine sector [20], and in metabolic engineering [18].

Multi-objective optimization contrasts with open-access Cobrapy FBA, which only
maximizes or minimizes one objective function and where only one solution is obtained.
In multi-objective optimization, a set of solutions is obtained. The solutions obtained are
called non-dominated because no other solution in the search space is better than the others
when all objectives are considered simultaneously. This set of solutions is known as Pareto
optimal solutions [21].

Between the methods that have been used for multi-objective optimization of mi-
croorganisms are evolutionary algorithms such as NSGAII [18], MOMO, based on the
Bio-objective model, and exact mathematical methods that spend a lot of computational
resources [22].

Metaheuristic algorithms originate from the natural evolution of biological groups;
they are part of artificial intelligence and are born from natural computing and heuristic
methods (partial search algorithms). Compared to mathematical methods that gener-
ate a large computational expense, these methods provide sufficiently good solutions to
an optimization algorithm with an acceptable computational time and space [23].

Multi-Objective Evolutionary Algorithms (MOEAs) are widely recognized in the
scientific community as an approach to solving multi-objective optimization problems.
In particular, the NSGAII (multi-objective EA based on non-dominated classification)
proposed by [24] has been quite effective when handling two or three objectives [25,26].
The MOEA/D evolutionary algorithm based on decomposition is tested because it has the
characteristic that it works correctly when there are more than three objective functions.

Previously, metaheuristic methods had been used to study the metabolism in [18]. The NS-
GAII algorithm was developed to optimize three objective functions, proteins, carbohydrates,
and CO2, in a metabolic network of the microalga Chlamydomonas reinhardtii using the NSGAII
algorithm, a coding scheme based on flux balance analysis (FBA). However, the algorithmic
solution might be different for every optimization problem, a difference that can increase
depending on how well the involved mathematical model explains the phenomena studied.
Metabolic networks might not be exempt from such issues, and these works analyze distinct
algorithms (NSGAII and MOEA/D) and distinct optimization models for metabolic net-
works (four multiobjective optimization approaches) from the perspective of the quality of
solutions that might be achieved by them, and the convenience of the information provided.
The study is carried out on two case studies that involve intricate conditions involving
cycles, bifurcations, and reversible and irreversible reactions. The main contributions of
this work include the development of three new multi-objective optimization models for
metabolic networks, one new algorithmic solution based on decomposition, and an analysis
that guides the proper identification of metaheuristics and models to solve the optimization
process behind metabolisms.

The remainder of the document is structured as follows. Section 2 describes the
metaheuristics used for the purpose of analysis in this research; particularly, it presents the
overall definition and constituents. Section 3 details the novel optimization models for the
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metabolic networks proposed in this work. Section 4 discusses the original features included
in the design of the NSGAII and MOEA/D used to solve the proposed optimization
models. Sections 5 and 6 describes the design of the experiments conducted to test the
proposed optimization models and their metaheuristic solutions; it contains the definitions
of the cases of studies along with the experiments and the results, concluding with a brief
discussion of the observed data.

2. Materials and Methods

This work considers NSGAII and MOEA/D algorithms as the considered metaheuris-
tics to tackle the optimization problem in metabolic networks. The general notion of the
design of such algorithms is provided in the remainder of this section.

2.1. NSGAII Algorithm

NSGAII is a Multi-Objective Evolutionary Algorithm (MOEA) that utilizes non-
dominated sorting and crowding distance to exert selective pressure toward the Pareto
front [24]. The metaheuristic evolves an initial population of P0 parents using common
computable genetic operators such as mutation, crossover, and tournament selection that
create a new offspring, Qt, on each generation. To maintain elitism, the current population,
Pt, is combined with the offspring Qt, and a new population Pt+1 is chosen based on
non-domination ranks and crowding distance to diversify and to break ties when necessary.

The three main components of NSGAII are its fast non-dominated sorting approach,
the fast, crowded distance estimation procedure, and the simple crowded comparison
operator. The general method derived from NSGAII can be depicted as follows:

1. Initialization of population Po of size N using a uniform distribution.
2. Create an offspring population Qt using binary tournament selection based on

crowding-comparison operator, cross-over, and mutation performed on the parent
population (Pt), where subscript “t” denotes the number of generations. The offspring
population and its parent population are combined to produce the entire population
Rt, Rt = Pt + Qt. The population Rt will be of size 2N.

3. Perform a fast nondominated sorting approach on the entire population Rt to identify
different fronts of objective functions. F = f ast − nondominated − sort(Rt), where
F = (F0, F1, F2, . . .) will have in F0 the non-dominated set of solutions of Rt that best
approximates the Pareto frontier.

4. Construct a new parent population (Pt+1) of size N from the obtained fronts (Fi). This
population of size N is now used for selection, cross-over, and mutation to create
a new population (Qt+i) of size N.

5. The process must be repeated until the maximum number of iterations is reached.

2.2. MOEA/D

MOEA/D is a strategy based on decomposing the MOP multiobjective optimization
problem (as defined in [27]) into a certain number of scalar optimization subproblems that
are optimized simultaneously. Each subproblem is optimized using information that comes
exclusively from its neighboring subproblems, achieving less computational complexity in
each generation. There are several approaches to transforming a multi-objective problem
into a scalar number of optimization problems. One of the most popular approaches is the
MOEA/D proposed by [28], where the scalar optimization problems can be formulated
as follows:

gte (y | wi, z) = max{wi | fk(x)− zk |}
Subject to: x ∈ Ω

, (2)

where w = (w1, w2, . . . , wN) is a vector of weights and wi ≥ 0 for all i = 1, . . . , k, and the set
z = {z1, z2, . . . , zk} is the reference point, where zi = max{ fi(x) | × ∈ ω} for i = 1, . . . , m.
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For each Pareto optimal point x∗, there exists a vector of weights w, where x∗ is the optimal
solution of 2.

MOEA/D performs for a certain number of generations, and during each generation
it also exerts selective pressure toward the Pareto front using genetic operators such as
mutation and crossover. The key element in this strategy is that offspring replace parents
based on the scalar function and their closeness at each iteration until a final front is
delivered by the algorithm.

3. Proposed Approaches

This work proposes three novel optimization models for metabolic networks that
extend FBA to a multi-objective optimization problem. The models, called MOFBA2,
MOFBA3, and MOFBA4, represent improvements over the MOFBA1 proposed in [18]
and depicted in Equation (3). MOFBA1 simultaneously optimizes a set of bioproducts
{vb1, . . . vbm} instead of just one, keeps within bounds the reaction fluxes, and satisfies the
steady state condition, i.e., they ensure that Sv = 0 (where the S is the stoichiometric matrix
and v is the fluxes vector).

MOFBA max F(v) = {vb1 , . . . , vbm}
Subject to

S · v = 0
LBj ≤ vj ≤ UBj, ∀j ∈ {1, . . . , n}

(3)

MOFBA1 is the optimization problem resulting from directly implementing the prob-
lem defined in Equation (3). It considers as many objective functions as sets of metabolites
of interest. Likewise, it considers as many decision variables as reaction fluxes are needed
to define the metabolic system. Note that, for an optimization approach, the search space
depends on the decision variables, and based on this definition there is one for each possible
flux, i.e., a metaheuristic must search proper flux values within the provided bounds of n
distinct decision variables.

The conditions described in the previous paragraph characterize a common pitfall
in designing solution strategies for optimization problems. The difficulty appears be-
cause metaheuristics might require larger running times to locate feasible solutions when
the number of decision variables is large. This work considers this situation and pro-
poses three new optimization models for metabolic networks that reduce the search space
(i.e., the number of decision variables that a metaheuristic uses in the search). These models
are integrated into an appropriate experimental design to demonstrate that, for quality
purposes, it matters whose model one chooses to solve certain problems.

While details on the experiments are provided in further sections, the remainder of
this section contains an in-depth description of the three novel MOFBAs proposed in this
work, with a summary of their relevance and impact at the end.

3.1. MOFBA2

In MOFBA2, as in MOFBA1, the objective functions to be optimized are the sets of
metabolites of interest; hence, the number of objectives, m, is the same. On the other
hand, MOFBA2 considers a reduced set of decision variables consisting of only the reaction
fluxes {vb1, . . . vbm} associated with the same metabolites of interest present in the objective
function, and an additional one, v, that indicates which of the metabolites of interest leads
the search. In other words, MOFBA2 has m + 1 decision variables instead of n. Equation (4)
formally defines MOFBA2.

MOFBA max F(v) = {vb1 , . . . , vbm}
Subject to

FBA(vbk, v)is feasible
LBj ≤ vbi ≤ UBj, ∀i ∈ {1, . . . , m}
1 ≤ k ≤ m

(4)
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MOFBA2 describes a bilevel optimization model where the inner model optimizes the
leading metabolite of interest, v, using FBA and delimits the bounds of the metabolites of
interest to the ones defined in the outer model. The bounds of the remaining reactions are
assumed to be known and fixed according to the analyzed metabolic network.

3.2. MOFBA3

MOFBA3 proposes a surrogate model to optimize metabolites of interest. The surrogate
model searches for improving two well-known indicators: the Hypervolume (HV) and the
Generational Distance (GD). These indicators reflect how well a solution converges to the
Pareto front. While the HV must be maximized, the GD must be minimized.

MOFBA3 has m + 1 decision variables, the same ones of MOFBA2, i.e., the reaction
fluxes {vb1, . . . vbm} associated with the same metabolites of interest present in the objective
function, and leading metabolite flux v. On the other hand, the number of objectives
is always 2, no matter how many metabolites of interest are considered. The distinctive
characteristic of this model is its surrogation; instead of directly searching for the proper flux
values on the metabolites of interest, it uses indicators of performance in the multi-objective
context (i.e., the HV and GD indicators). Equation (5) formally defines MOFBA3.

MOFBA min F(v) = −1HV({vb1 , . . . , vbm}, R),DG({vb1 , . . . , vbm}, Zr)
Subject to

FBA(vbk, v)is feasible
LBj ≤ vbi ≤ UBj, ∀i ∈ {1, . . . , m}
1 ≤ k ≤ m

(5)

This optimization problem assumes that there exists a reference point, R, and
a reference set, Zr . Given that the management of FBA was under the COBRApy
package, considering the limits on it, the reference point considered for this work is
R = {1000, 1000, . . . , 1000}. Also, given the availability of an FBA implementation due to
the same package, the reference set Zr is formed by the set of optimal solutions formed
by those obtained when solving FBA to optimality, having each metabolite of interest as
optimized biomass.

3.3. MOFBA4

MOFBA4 is the last proposed optimization problem combining the ideas of MOFBA2
and MOFBA3. That is, it proposes to optimize not only the metabolites of interest but
also the indicators HV and GD. The number of decision variables for this model re-
mains as m + 1, and the number of objectives is m + 3. Equation (6) formally defines
this optimization problem.

MOFBA min F(v) = −1HV({vb1
, . . . , vbm}, R),DG({vb1

, . . . , vbm}, Zr)(vb1, . . . , vbm)
Subject to

FBA(vbk, v)is feasible
LBj ≤ vbi ≤ UBj, ∀i ∈ {1, . . . , m}
1 ≤ k ≤ m

(6)

3.4. Analysis

Table 1 summarizes the most notable features of the optimization models proposed in
this work, and compares them against the MOFBA1 proposed in [18]. The search space is
greatly reduced in the novel models, and some of them use convergence information in
their definition. The unique characteristics demonstrate the richness of the models that can
be designed to solve a specific optimization problem.
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Table 1. Relevant features of MOFBA models for metabolic networks.

Model No. Decision Variables No. Objectives Surrogate

MOFBA1 n m No

MOFBA2 m + 1 m No

MOFBA3 m + 1 2 Yes

MOFBA4 m + 1 m + 2 Yes

The proposed MOFBAs cannot be solved with traditional linear solvers such as FBA.
The alternatives are to use enumerative schemes or approximate approaches that allow
one to obtain solutions belonging to the Pareto optimal frontier. In this sense, this research
analyzed the use of metaheuristics that integrate FBA in their search process as an appro-
priate solution approach since they improve their approximation to the Pareto front in
each iteration.

4. Metaheuristic Designs

This section presents the particular details required in this research for the imple-
mentation of the NSGAII and MOEA/D metaheuristics to solve the four optimization
problems MOFBA1, MOFBA2, MOFBA3, and MOFBA4. These metaheuristics are based on
the NSGAII and MOEA/D frameworks.

The metaheuristics considered require the definition of the following characteristics:
(1) coding schemes; (2) fitness evaluation function; (3) genetic operators; and (4) constraint
management strategy. The population initialization method for both strategies (NSGAII
and MOEA/D) is random. The proposed design for the rest of these components to handle
the novel MOFBAs is detailed in the remainder of this section. The novel adaptations for
the NSGAII and MOEA/D frameworks include the clever computable representation of
solutions associated with the coding schemes.

4.1. Coding Schemes

This work proposes the use of distinctive solution coding sets for each MOFBA (as
defined in Equations (3)–(6). The coding schemes involve the definition of a data structure
that represents a solution of the metabolic network. The script developed for experimenta-
tion is found in this Github repository (https://github.com/multiobjectiveoptimization2
/MOFBAs, accessed on 24 June 2024).

For MOFBA1 the data structure is a real-valued vector, V . The coding scheme con-
sidered a metabolic network, MN , constituted by a set of reactions, V , and two subsets
VM,V b ⊆ V , where VM ∩ V b = ∅, which represent the reactions of the metabolites of
interest to a decision maker. Furthermore, let v = (v1, . . . , vn) be the flux vector for V
and assume that there are initial lower and upper bounds, LBi, UBi, for each vi, 1 ≤ i ≤ n.
Then, the W encoding scheme proposes redefining the boundaries of each vi associated
with a reaction in VM ∪ V b using two values (Ii, ∆i). The new limits are calculated as
LBnew

i = Ii and UBnew
i = (UBi − Ii)∆i + Ii. All remaining fluxes will keep their limits

unchanged. In other words, the solution encodes boundary changes for FBA to solve MN
using a prespecified bioproduct, which in this work is assumed to be vb

1. The resulting
encoding vector W is of size O(n), asymptotical in the number of reactions.

For MOFBA2, MOFBA3, and MOFBA4, a vector of size m + 1 is considered as the
encoding scheme, where m is the number of objective functions. The first m elements
of the vector are real variables whose value represents the upper limit of flux for each
metabolite of interest in the associated reactions. The additional element is a single-objective
optimization selector that takes values between 1 and m, indicating which metabolite is
going to be optimized in turn. When it is a reversible reaction, the value in the indicated
variable will be the same for the lower bound (but negative).

https://github.com/multiobjectiveoptimization2/MOFBAs
https://github.com/multiobjectiveoptimization2/MOFBAs
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4.2. Fitness Evaluation Function

Between all MOFBA optimization problems, the fitness evaluation (or FEA) func-
tions are considered a derived subset of the set composed of the values of the metabolite
fluxes of interest, such as the Hypervolume and Generational Distance metrics. Since the
required information on bioproducts is associated with specific reactions, the suitability
of a solution obtained by metaheuristics on MOFBAs is evaluated considering their flux
values. In MOFBA1 and MOFBA2, the criteria or objective functions to be optimized will
be the reaction fluxes corresponding to the bioproducts of interest chosen in V b and de-
noted as (vb

1, . . . , vb
m). In MOFBA3, the Hypervolume and Generation Distance obtained

from a solution, the reference point R, and the reference set Zr, defined as follows, are
optimized. The R point is the worst possible extreme value of fluxes, which is 1000 for any
metabolite of interest, considering its definition for FBA, in widely used platforms, such as
CobraPy. The set Zr is made up of three points, which include the optimal fluxes obtained
by solving the case in question using the FBA method by individually optimizing each
metabolite of interest; therefore, if there are n objective functions, Zr will have a cardinality
of n. It is worth mentioning that when a leading bioproduct is required in MOFBA2 to
MOFBA4, this is chosen derived from the value of one of the decision variables considered,
as previously described.

4.3. Genetic Operators

These operators create new solutions by dynamically and randomly varying the values
of the decision variables in the existing solutions. This selection was due to its success
in solving problems involving decision variables with real values [29]. The operators
chosen for NSGAII are mutation, crossover, and a simple but reliable random selection,
respectively. The specific values of these parameters were taken from the literature and are
shown in Table 2.

Table 2. NSGAII implementation-specific parameters.

Parameter Value

Polynomial Mutation Probability = 1.0/d, where d is the number of decision variables.
Distribution Index = 20

SBXCrossover Probability = 100%
Distribution Index = 20

Stoppage Criterion until reaching 100,000 evaluations

Population Size 100

The operators chosen for MOEA/D for mutation and crossover were Polynomial
mutation [30], with crossover by differential evolution. The selection strategy is simple
but reliable, and the aggregation function used was the Tshebycheff distance. For a more
extensive reference of operators, see [28]. The specific values of these parameters were
taken from the literature and are shown in Table 3.

Table 3. MOEA/D implementation-specific parameters.

Parameter Values

Polynomial Mutation Probability = 1.0/d, where d is the number of decision variables.
Distribution Index = 20

Differential Evolution
CR = 1
F = 0.5
K = 0.5

Stoppage Criterion Upon completion of 100,000 evaluations

Population Size 100
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4.4. Constraint Management Strategy

This work uses the constraint management method proposed in [31] to generate
selective pressure towards feasible solutions. As generations evolve in both metaheuristics,
the competition between solutions will always prefer the feasible solution despite the non-
domination state. In the long run, such a strategy tends to eradicate infeasible solutions
in the final algorithm report. Multi-objective optimization is used when there are several
objectives to optimize simultaneously. Several multi-objective evolutionary algorithms
(MOEAs) exist, such as NSGAII and MOEA/D. Although they are used for optimizing
multi-objective problems, they are significantly different. NSGAII is a non-dominated
classification algorithm, while the MOEA/D algorithm is based on decomposition.

5. Design of Experiments

This subsection presents the set of experiments performed in order to validate the
application of the proposed optimization models as tools to improve the understanding of
microalgal metabolisms. In the field of research on effective solutions to multi-objective
problems, experiments were conducted on two networks of the microalgae Chlorella vulgaris
to evaluate the performance of different algorithms and the respective MOFBAs. The sub-
sections present the case of studies, the experimental design, and the software details used
in implementation, with the purpose of verifying the following hypotheses.

Hypotheses 0 (H0). It is not relevant to the selection of model and/or solution algorithm to optimize
fluxes in a metabolic network.

5.1. Cases of Study

Compared to a previous investigation [18], two networks, glutamate metabolism and
pigment flux distribution of the microalgae Chlorella vulgaris, were included in the two case
studies; reversible and irreversible reactions were added, the representation of a reversible
reaction using the intervals of lower bound fluxes of −1000 and upper bound 1000, and the
irreversible ones with intervals of lower bound 0 to upper bound 1000. In addition, nodes
were included where the metabolites bifurcate towards different routes, and cycles that are
frequently presented in the metabolism of the cells.

5.1.1. Case of Study 1: Metabolic Network Chlorella vulgaris

The metabolic network of the microalga Chlorella vulgaris [17] was studied using NS-
GAII and MOEA/D algorithms for three different culture conditions: photoautotrophy
(light + components), heterotrophy (component), and mixotrophy (CO2 + light + compo-
nent). Among the compounds that were used as nutrients for cultivation were the addition
of nitrogen sources, such as NO3 and NH4, as well as sulfates, such as SO4, Fe2, and Mag-
nesium. The different crop sources affect the production of metabolites. The following
figure shows the distribution of pigments in the microalga C. vulgaris.

In this case, a part of the pigment distribution network will be studied since the
distribution in microalgae such as C. vulgaris is of great importance in the study of pigment
synthesis. The reactions involved in the metabolism are presented in Appendix A.1, Table
A1. This network includes the complexity of reversible and irreversible (FRDPth, GRDPth)
reactions, nodes, and cycles, and are showed in the Figure 1.
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Figure 1. Flux distribution of pigment byosinthesis pathways [17].

5.1.2. Case of Study 2: Optimization Multiobjective of the Metabolic Network of
Metabolism Glutamate of Microalgae Chlorella vulgaris

Metabolism consists of different metabolic pathways that are intertwined to form
a more complex one. One such pathway is the distribution of fluxes of glutamate metabolism,
which serves different functions, including amino acid synthesis.

This metabolic network represents great complexity due to the number of metabolites
that branch at the central node and the presence of reversible reactions such as ASPATh and
ASPNA1Th. This network was evaluated in three different growth conditions, autotrophy,
heterotrophy, and mixotrophy, using the NSGAII and MOEA/D algorithms with their four
MOFBAs. This metabolism is of great importance because the pathways for producing
different products of interest, amino acids such as tyrosine, valine, leucine, etc., are involved,
which can later be used to produce proteins. The reactions involved in the metabolism
are presented in Appendix A.1, Table A2. Figure 2 represents the distribution of fluxes
associated with glutamate metabolism in the chloroplast and cytoplasm.
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Figure 2. Flux distribution associated with glutamate metabolism in the chloroplast and cytoplasm [17].

5.2. Experiments Definition

Defining a methodology based on metaheuristics that improve the metabolic network
flux information provided by the FBA method by redefining Flux Balance Analysis as
a Multi-objective Optimization Problem is possible; four experiments were proposed,
summarized in the following Table 4.

Table 4. Design of experiments to demonstrate metaheuristic support for understanding metabolism
in microalgae.

Experiment Objective Variables Involved

Experiment1
Using different optimization models produces
different results.

C. vulgaris, NSGAII, MOFA1,
MOFBA2, MOFBA3, MOFBA4.

Experiment2

Demonstrate that the use of metaheuristics
supports the understanding of
microalgae metabolism.

C. vulgaris, FBA, NSGAII,
MOFBA4

Experiment3
There are optimization algorithms more
suitable for solving specific problems

C. vulgaris, NSGAII, MOEA/D,
MOFBA4.

Experiment4 Validate that a random selection is not enough. C. vulgaris, NSGAII, FBA,
random.
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Experiment 1 demonstrated that different multi-objective optimization models offer
different results. The algorithm was set to NSGAII, the microalgae was modified to
demonstrate the approach’s versatility, and finally, the four proposed optimization models
were analyzed. For the cases studied, it was observed that the consistently best model was
MOFBA4, which was used in the subsequent experiments.

In Experiment 2, the algorithm, the microalgae, and the single-objective FBA model
were compared against the multi-objective model defined by MOFBA4. It was observed
that the metabolism of a microalgae can be described with different fluxes, not one, and
these can be controlled to obtain information on different metabolites of interest. This
confirms the ease of adaptation of the proposed methods to different types of metabolic
networks, considering different configurations.

Experiment 3 evaluated the performance of the NSGAII and MOEA/D algorithms on
the same optimization problem. It was observed that, for the three objectives (i.e., three
metabolites of interest) considered, NSGAII was the best. This result is consistent with the
literature, given that for two or three objectives, NSGAII shows better performance than
MOEA/D. This leaves open the question of whether MOEA/D will improve for a larger
number of objectives, which is an open line of investigation for its application in the study
of microalgal metabolic networks.

Experiment 4 shows that simple random sampling is not sufficient to obtain a better
distribution of solutions, which is possible through the use of metaheuristics.

The metaheuristics NSGAII and MOEA/D were implemented with the aid of the
jMetalPy framework [32]. The optimization models were developed in Python and used
as part of the FBA implementation provided by the package COBRApy [33]. Graphics
were recreated using the interface pyplot of matplotlib [34]. The computer used to run the
experiments has a 64 bit 2.6 GHz processor with 32 RAM memory.

6. Results

This section summarizes the data obtained as a result of the implementation of
the experiments described in Section 3.2. At the end, it provides a discussion over the
achieved goals in the research. To visualize the results in Figures 3–6, the matplotlib library
was imported.

6.1. Experiment 1

En [18] showed that NSGAII presents better quality solutions than the classic FBA
for three objective functions. Figure 3 shows the results of the experiment where the four
variants described above, MOFBA1, MOFBA2, MOFBA3, and MOFBA4, for the NSGAII
algorithm are tested, with the optimization of three objective functions of the pigment
flux distribution of the microalgae Chlorella vulgaris. It can be observed that the different
MOFBAs offer different behaviors to each other; MOFBA1, MOFBA3, and MOFBA4 im-
prove FBA. However, the best solution behavior was MOFBA4 in Figure 3d as it provides
more non-dominated solutions and maintains a good population diversity for the same
population size environment.

Figure 3 shows the pigment flux distribution in the microalgae C. vulgaris; it can
be seen that each variant of MOFBA offers different behaviors and all improve the FBA
in Figure 3a–c, but the best behavior in the solutions can be observed in the variant of
MOFBA4 in Figure 3d.



Algorithms 2024, 17, 336 13 of 22

Figure 3. Comparison between the NSGAII algorithm and the variants (a) MOFBA1, (b) MOFBA2,
(c) MOFBA3, and (d) MOFBA4 in the distribution of pigment fluxes.

6.2. Experiment 2

When comparing the performance of the NSGAII algorithm with the MOFBA4 vari-
ant, Figure 4a and the classic single-objective optimization FBA in Figure 4b, it can be
observed that the NSGAII-MOFBA4 algorithm presents superiority by demonstrating
that the information provided is improved by providing more solutions and, importantly,
a significantly improved distribution. This enhanced distribution is particularly evident
in Figures 3d and 4a with two different metabolic networks studied, such as glutamate
metabolism and the distribution of pigment fluxes in the microalgae C. vulgaris.

Figure 4. Comparison between (a) NSGAII-MOFBA4 and (b) FBA in the distribution of fluxes
associated with the glutamate metabolism of the microalgae Chlorella vulgaris.

6.3. Experiment 3

Figure 5 presents the evaluation between the NSGAII, Figure 5a,c, and MOEA/D,
Figure 5b,d, algorithms in the distribution of fluxes associated with glutamate metabolism
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and the distribution network and pigment fluxes with NSGAII, Figure 5c, and MOEA/D,
Figure 5d, from the microalgae C. vulgaris with the variant of the MOFBA4 algorithm. It
was shown that the NSGAII algorithm has more solutions and better population diversity
compared to MOEA/D. Metaheuristics are important; in this case, NSGAII is the best, which
is consistent with the literature [35], because this algorithm works well with 2 and 3 objectives.

Figure 5. Comparison between the (a,c) NSGAII and (b,d) MOEA/D algorithms in the pigment
distribution network and in the distribution of fluxes associated with glutamate metabolism of the
microalgae Chlorella vulgaris.

6.4. Experiment 4

In addition to testing the different case studies with the FBA, NSGAII, and MOEA/D
approaches, an experiment was carried out using a rapid random approach, which we
call random, in the distribution of pigment flux in the microalgae C. vulgaris. Figure 6
shows the comparison between FBA, Figure 6a, random, Figure 6c, and NSGAII, Figure 6b.
The random method, despite being fast, could not offer better results, Figure 6b, compared
to what is presented in Figure 6c, NSGAII.

Figure 6. Comparison between the variants (a) FBA, (b) random, and (c) NSGAII in the microalgae
C. vulgaris.
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6.5. Statistic Analysis

Tables 5 and 6 shows that the proposed methods obtain feasible solutions; it is shown that
they satisfy the conditions identified in [17] and FBA, thereby demonstrating the correlation of
the solutions in silico and its ability to emulate results in different culture conditions. In Table 6
can be seen a comparison between the fluxes in mmol h−1 obtained with FBA and NSGAII-
MOFBA4 and the Euclidean distance presented between them. Table 5 demonstrates that
NSGAII presents great versatility to limit the parameters in the growing conditions through
the lower bound and upper bound values, in addition to being able to simulate cycles and
bifurcations between metabolic networks. Likewise, some feasible solutions corresponding to
NSGAII with the MOFBA4 variant and solutions obtained from the classic FBA are presented.

Table 5. Distribution of fluxes in mmol h−1 obtained by NSGA II, associated with the synthesis of
pigments in the metabolism of the microalgae C. vulgaris.

Reaction LB UB S1 S2 S3 S4

NADPH 0.000487 0.000487 0.000487 0.000487 0.000487 0.000487

IDS2 0 0.000487 7.42 × 10³ 4.72 8 2.58 × 10−5 4.33 × 10−7

FPPSh 0 0.000487 7.42 × 10−5 4.72 × 10−5 2.58 × 10−5 4.33 × 10−7

GPPSh 0 0.000487 7.42 × 10−5 4.72 × 10−5 2.58 × 10−5 4.33 × 10−7

FRDPth 0 0 0 0 0 0

FPPS 0 0 0 0 0 0

GRDPth 0 0 0 0 0 0

GRDPH 0 0 0 0 0 0

GGPPS 0 0.000487 7.42 × 10−5 4.72 × 10−5 2.58 × 10−5 4.33 × 10−7

v1 0 0.000402078 0 0 0 0

GGDPtu −0.0000849 0.0000849 7.42 × 10−5 4.72 × 10−5 2.58 × 10−5 4.33 × 10−7

CHLASG 0 0.0000742 7.42 × 10−5 4.72 × 10−5 2.58 × 10−5 4.33 × 10−7

GGCHLDAR 0 0.0000742 7.42 × 10−5 4.72 × 10−5 2.58 × 10−5 4.33 × 10−7

CHLAU 0 0.0000742 7.42 × 10−5 4.72 × 10−5 2.58 × 10−5 4.33 × 10−7

PSY 0 2.24 × 10−8 0 0 0 0

PDS1 −2.24 × 10−8 2.24 × 10−8 0 0 0 0

PDS2 −2.24 × 10−8 2.24 × 10−8 0 0 0 0

ZDS −2.24 × 10−8 2.24 × 10−8 1.59 × 10−8 1.54 × 10−8 1.06 × 10−8 3.58 × 10−9

NOR −2.24 × 10−8 2.24 × 10−8 1.59 × 10−8 1.54 × 10−8 1.06 × 10−8 3.58 × 10−9

v2 0.00 8.00 × 10−11 0 0 0 0

LCYG −1.59 × 10−8 1.59 × 10−8 1.59 × 10−8 1.54 × 10−8 1.06 × 10−8 3.58 × 10−9

GCAROtu −1.59 × 10−8 1.59 × 10−8 1.59 × 10−8 1.54 × 10−8 1.06 × 10−8 3.58 × 10−9

LCYB −1.59 × 10−8 1.59 × 10−8 1.59 × 10−8 1.54 × 10−8 1.06 × 10−8 3.58 × 10−9

v3 0.00 1.24 × 10−8 1.24 × 10−8 1.20 × 10−8 7.10 × 10−9 1.00 × 10−10

BCAROH −3.48 × 10−9 3.48 × 10−9 3.48 × 10−9 3.48 × 10−9 3.48 × 10−9 3.48 × 10−9

BCRPTXANH −3.48 × 10−9 3.48 × 10−9 3.48 × 10−9 3.48 × 10−9 3.48 × 10−9 3.48 × 10−9

v4 0.00 6.16 × 10−9 6.16 × 10−9 6.16 × 10−9 6.16 × 10−9 6.16 × 10−9

ANXANAS −2.68 × 10−9 2.68 × 10−9 −2.68 × 10−9 −2.68 × 10−9 −2.68 × 10−9 −2.68 × 10−9

v5 0.00 3.88 × 10−9 3.88 × 10−9 3.88 × 10−9 3.88 × 10−9 3.88 × 10−9

VIOXANOR −2.41 × 10−9 2.41 × 10−9 −2.41 × 10−9 −2.41 × 10−9 −2.41 × 10−9 −2.41 × 10−9

v6 0.00 2.70 × 10−10 2.70 × 10−10 2.70 × 10−10 2.70 × 10−10 2.70 × 10−10

NEOXANS −1.47 × 10−9 1.47 × 10−9 1.47 × 10−9 1.47 × 10−9 1.47 × 10−9 1.47 × 10−9

NEOXANU 0 1.47 × 10−9 1.47 × 10−9 1.47 × 10−9 1.47 × 10−9 1.47 × 10−9

LCYD −6.42 × 10−9 6.42 × 10−9 0 0 0 0

LCYA −6.42 × 10−9 6.42 × 10−9 0 0 0 0
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Table 5. Cont.

Reaction LB UB S1 S2 S3 S4

v7 0.00 1.33 × 10−9 0 0 0 0

ACAROtu −5.09 × 10−9 5.09 × 10−9 0 0 0 0

CHYA1 0 0 0 0 0 0

ZHY 0 0 0 0 0 0

CHYA2 0 5.09 × 10−9 0 0 0 0

CXHY 0 5.09 × 10−9 0 0 0 0

v8 0 3.35 × 10−9 −1.74 × 10−9 −1.74 × 10−9 −1.74 × 10−9 −1.74 × 10−9

LUTH −1.74 × 10−9 1.74 × 10−9 1.74 × 10−9 1.74 × 10−9 1.74 × 10−9 1.74 × 10−9

LOROXANU 0 1.74 × 10−9 1.74 × 10−9 1.74 × 10−9 1.74 × 10−9 1.74 × 10−9

FRDPth 0 1 0 0 0 0

Table 6. Distribution of fluxes in mmol h−1 obtained through FBA and the NSGAII-MOFBA4 algorithm.

Euclidean Distance between FBA and NSGAII-MOFBA4

Reaction. FBA MOFBA4 MOFBA4 MOFBA4

ACAROtu’ 5.09 × 10−9 0 0 0

ANXANASCOR’ −2.68 × 10−9 −2.68 × 10−9 −2.68 × 10−9 −2.68 × 10−9

BCAROH’ 3.48 × 10−9 3.48 × 10−9 3.48 × 10−9 3.48 × 10−9

BCRPTXANH’ 3.48 × 10−9 3.48 × 10−9 3.48 × 10−9 3.48 × 10−9

CHLASG’ 0 1.36106 × 10−9 2.35109 × 10−5 0.0000742

CHYA1’ 0 0 0 0

CHYA2’ 5.09 × 10−9 0 0 0

CXHY’ 5.09 × 10−9 0 0 0

FPPS’ 0 0 0 0

FRDPth’ 0 0 0 0

GCAROtu’ 1.59 × 10−8 7.94367 × 10−9 1.35944 × 10−8 1.59 × 10−8

GGCHLDAR’ 0 1.36106 × 10−9 2.35109 × 10−5 0.0000742

GGDPtu’ 0.000148102 1.36106 × 10−9 2.35109 × 10−5 0.0000742

GGPS’ 0.000486596 1.36106 × 10−9 2.35109 × 10−5 0.0000742

GRDPth’ 0 0 0 0

IDS1’ 0.001459788 1.36106 × 10−9 2.35109 × 10−5 0.0000742

LCYA’ 6.42 × 10−9 0 0 0

LCYB’ 1.59 × 10−8 7.94367 × 10−9 1.35944 × 10−8 1.59 × 10−8

LCYD’ 6.42 × 10−9 0 0 0

LCYG’ 1.59 × 10−8 7.94367 × 10−9 1.35944 × 10−8 1.59 × 10−8

LUTH’ 1.74 × 10−9 1.74 × 10−9 1.74 × 10−9 1.74 × 10−9

NEOXANS’ 1.47 × 10−9 1.47 × 10−9 1.47 × 10−9 1.47 × 10−9

NOR’ 2.24 × 10−8 7.94367 × 10−9 1.35944 × 10−8 1.59 × 10−8

PDS1’ 2.24 × 10−8 0 0 0

PDS2’ 2.24 × 10−8 0 0 0

PSY’ 2.24 × 10−8 0 0 0

VIOXANOR’ −2.41 × 10−9 −2.41 × 10−9 −2.41 × 10−9 −2.41 × 10−9

ZDS’ 2.24 × 10−8 7.94367 × 10−9 1.35944 × 10−8 1.59 × 10−8

ZHY’ 0 0 0 0

Euclidean distance 0.001545861 0.001514586 0.001451344
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This section statistically validates that there is a difference when using different
optimization problems or algorithms in order to show that the choice is relevant. To do
this, it summarizes the results by comparing by Hypervolume (the proximity indicator to
the Pareto Optimal front) to see whether or not there is a significant difference between the
optimization models MOFBA3 and MOFBA4 and the NSGAII and MOEA/D algorithms.

The first analysis considers the models MOFBA3 and MOFBA4, sets the solution
algorithm to NSGAII, and evaluates all networks. For the analysis, the Hypervolume was
obtained from each of the 30 runs of the algorithm per problem. Using the non-parametric
Wilcoxon signed rank test, with a confidence level of 95%, the H0 was validated, which
specifies that it is impossible to define a methodology based on metaheuristics that improves
the information of metabolic network fluxes provided by the FBA method by redefining
the Flux Balance Analysis as a Multi-objective Optimization Problem. Table 7 summarizes
the results, showing the Hypervolume value on logarithmic scale per run for each network
and the acceptance status of the H0 in the last row. It can be seen that the hypothesis is
rejected in almost all the metabolic networks analyzed. Except for /textitChlorella, it can
be commented that the best optimization model is MOFBA4.

Table 7. Data were statistically analyzed to validate the differences between MOFBA3 and MOFBA4.
The null hypothesis, H0, was accepted when the p-value obtained was less than 0.05.

Glutamate Metabolism in C. vulgaris Pigment Network in C. vulgaris

MOFBA4 MOFBA3 MOFBA4 MOFBA3

34.539 20.723 20.65 20.647

34.539 20.723 20.65 20.648

34.539 20.723 20.65 20.649

34.539 20.723 20.65 20.649

34.539 20.723 20.65 20.651

34.539 20.723 20.65 20.651

34.539 20.723 20.65 20.651

34.539 20.723 20.65 20.651

34.539 20.723 20.65 20.652

34.539 20.723 20.65 20.648

34.539 20.723 20.65 20.650

34.539 20.723 20.65 20.651

34.539 20.723 20.65 20.648

34.539 20.723 20.65 20.653

34.539 20.723 20.65 20.654

34.539 20.723 20.65 20.652

34.539 20.723 20.65 20.651

34.539 20.723 20.65 20.649

34.539 20.723 20.65 20.651

34.539 20.723 20.65 20.651

34.539 20.723 20.65 20.650

34.539 20.723 20.65 20.650

34.539 20.723 20.65 20.651

34.539 20.723 20.65 20.650

34.539 20.723 20.65 20.650

34.539 20.723 20.65 20.647

34.539 20.723 20.65 20.651

34.539 20.723 20.65 20.651

34.539 20.723 20.65 20.652

34.539 20.723 20.66 20.655

H0 ACCEPTED H0 REJECTED



Algorithms 2024, 17, 336 18 of 22

The second analysis considers the NSGAII and MOEA/D algorithms, sets the optimiza-
tion model to MOFBA4, and evaluates all networks. For the analysis, the Hypervolume was
obtained from each of the 30 executions of each algorithm on the solved problem. Using
the non-parametric Wilcoxon signed rank test, with a confidence level of 95%, the H0 was
validated, which specifies that the difference in means between the samples is the same.
Table 8 summarizes the results and shows each network’s Hypervolume value per run at
the logarithmic scale and the acceptance status of H0 in the last row. It can be seen that
the hypothesis is rejected in all the metabolic networks analyzed. These results from both
analyses confirm what was expected, that it is relevant to consider which optimization model
to use, and which algorithm, because their performances when obtaining sets of solutions can
be different.

Table 8. Data were statistically analyzed to establish differences between the use of NSGAII and
MOEA/D. The null hypothesis, H0, was accepted when the p-value obtained was less than 0.05.

Glutamate Metabolism in C. vulgaris Pigment Network in C. vulgaris

NSGAII MOEA/D NSGAII MOEA/D

20.723 20.723 20.647 20.723

20.723 20.723 20.648 20.723

20.723 20.723 20.649 20.723

20.723 20.723 20.649 20.723

20.723 20.723 20.651 20.723

20.723 20.723 20.651 20.723

20.723 20.723 20.651 20.723

20.723 20.723 20.651 20.723

20.723 20.723 20.652 20.723

20.723 20.723 20.648 20.723

20.723 20.723 20.650 20.723

20.723 20.723 20.651 20.723

20.723 20.723 20.648 20.723

20.723 20.723 20.653 20.723

20.723 20.723 20.654 20.723

20.723 20.723 20.652 20.723

20.723 20.723 20.651 20.723

20.723 20.723 20.649 20.723

20.723 20.723 20.651 20.723

20.723 20.723 20.651 20.723

20.723 20.723 20.650 20.723

20.723 20.723 20.650 20.723

20.723 20.723 20.651 20.723

20.723 20.723 20.650 20.723

20.723 20.723 20.650 20.723

20.723 20.723 20.647 20.723

20.723 20.723 20.651 20.723

20.723 20.723 20.651 20.723

20.723 20.723 20.652 20.723

20.723 20.723 20.655 20.723

H0 REJECTED H0 REJECTED

Through the graphical results observed, mainly due to the volume and dispersion of
the solutions obtained in all the algal metabolic networks considered, it is demonstrated
that the proposed method based on multi-objective optimization resolved through meta-
heuristics offers better support for the analysis. On the other hand, the statistical analysis
presented in this section demonstrates that it is relevant to consider the optimization
model and the algorithm since these can contribute to different types of improvements.
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The statistical analyses presented here demonstrate that there can be a significant differ-
ence between optimization models and between metaheuristic algorithms.

6.6. Discussion

Almost no experiment has been done previously with the metabolism of microalgae,
except for [18]. Although there are exact methodologies, evolutionary approaches require
fewer computational resources in the field of multiple objectives; for example, it gives the
advantage of using less time and memory. Approaches such as NSGAII and MOEA/D
allow greater power of choice in the decision-making process due to the variety and
number of solutions and the possibility of easier recognition of the most important fluxes
in a network and their influence and impact, instead of not having a methodology.

Some additional insights emerge from the above results. Experiment 2 demonstrates
the versatility of NSGAII to adapt to different circumstances and its ability to improve the
analysis of the metabolic network given the greater number of solutions it produces for
each of them. As demonstrated in Experiments 1 to 4, the analysis capacity of a metabolic
network is improved by introducing the NSGAII algorithm.

The multi-objective optimization problems present in the literature currently consider
different solution metrics. Experiment 1 compares the use of the NSGAII algorithm with
the four variants of optimization problems, with the MOFBA4 optimization problem being
the most promising, by introducing different optimization strategies, such as optimizing
not only the metabolites of interest but also Hypervolume and Generational Distance.
Compared to MOFBA3, which minimizes Hypervolume, in MOFBA2 the decision variables
are only the fluxes of the reactions of interest.

Although, in the case studies, NSGAII had a better graphically observable performance
than MOEA/D, as occurred in Experiment 3, because the case studies had three objective
functions and, according to the literature, NSGAII is better than MOEA/D when there
are three functions objective, the possibility opens up of being able to use MOEA/D in
networks where more than three objective functions need to be optimized. It can also
be observed, through Experiment 4, that simply using a random sample solution is not
enough to obtain a good set of solutions like using metaheuristics. However, special
considerations must be taken to allow respect for restrictions or information of control
desired by an interested individual.

The algorithms were tested on different microalgae strains, as seen in [18] with
C. reinhardti, and in this research using C. vulgaris, in complex metabolic networks that
contain cycles, bifurcations, and reversible reactions, it checks their viability in different
metabolic networks, confirming that they can not only be used in a single microalgae. This
leaves open the possibility of it being used in other types of species where there is a need
to optimize more than one objective function.

7. Conclusions

The present research work carried out a study of metabolic fluxes in green microalgae.
The objective was focused on verifying the suitability of in silico methods as support
strategies for improving the analysis of metabolism in microalgae. Through the experiments
developed, evidence was obtained that supports the following conclusions:

The study of metabolic fluxes in microalgae is improved through increasing the
number of solutions that satisfy the conditions of a microalgae so that it can live. This
is observable because, unlike traditional methods such as FBA that only offer a solution,
which is expanded in a limited way through sensitivity analysis, it is greatly favored by
integrating it into a methodology based on metaheuristics and multi-objective optimization
problems; it increases both the number of fluxes that satisfy the conditions sought in the
metabolic network, also simultaneously allowing the optimization of several metabolites
of interest.

There is more than one alternative to analyzing a metabolic network by optimizing
several metabolites of interest, with the FBA method as the core of the optimization process.
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The present work proposed four optimization models demonstrating this result, each
offering analysis angles different from those that FBA offers.

It is possible to solve the optimization problems supporting the metabolic study by
considering different evolutionary metaheuristics, and by obtaining significant results for
the analysis. This is demonstrated using NSGAII and MOEA/D to solve the proposed opti-
mization problems. In this study, NSGAII showed the best performance in general, which
is consistent with the literature, by exclusively addressing the simultaneous optimization
of three objectives. This shows that, for future work, the analysis of the best metaheuristic
must be carried out before the study.

Solution search parameters can be controlled during the analysis of a metabolic net-
work by adjusting the reaction boundaries. This contributes to further improving the study
of microalgae since the definition of controlled environments is possible. This is observed
in the validation process, where the parameters to generate solutions were limited to the
values found in the work on in vivo specimens.

Selecting one algorithm or model to optimize a specific metabolic network can be
troublesome and requires fine-tuning to identify the configuration that best fits the research
interests of the metabolic engineering carried out. This is evident given the variation in the
performance between algorithms and optimization models, or the different combinations
tested in this research work.

A decision maker, e.g., a researcher in metabolic engineering, improves his decision-
making capacity by visualizing a set of metabolic fluxes that satisfy the conditions specified
for the metabolic network they study.
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Appendix A

Appendix A.1

As previously mentioned, a metabolic network is the set of reactions present in the
microorganism. The following list of reactions represents the metabolic network for the
synthesis of pigments in the Chlorella vulgaris microalgae.
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Table A1. Reactions derived from the synthesis of pigments in the metabolism of the microalgae
C. vulgaris [17].

Name Formula

FRDPth frdp[h] ⇄ frdp[c]
GRDPth grdp[h] ⇄ grdp[c]
ACAROtu acaro[h] → acaro[u]
GCAROtu gcaro[h] → gcaro[u]
GGDPtu ggdp[h] → ggdp[u]
FPPS grdp[c] + ipdp[c]→ frdp[c] + ppi[c]
FPPSh grdp[h] + ipdp[h]→ frdp[h] + h[h] + ppi[h]
GGPS frdp[h] + ipdp[h]→ ggdp[h] + h[h] + ppi[h]
GPPSh dmpp[h] + ipdp[h]→ grdp[h] + h[h] + ppi[h]
IDS2 h[h] + h2mb4p[h] + nadph[h]→ dmpp[h] + h2o[h] + nadp[h]
ANXANASCOR anxan[u] + ascb-L[u] → dhdascb[u] + h2o[u] + zaxan[u]
BCAROH caro[u] + h[u] + nadph[u] + o2[u] → bcrptxan[u] + h2o[u] + nadp[u]
BCRPTXANH bcrptxan[u] + h[u] + nadph[u] + o2[u] → h2o[u] + nadp[u] + zaxan[u]
CHYA1 acaro[u] + h[u] + nadph[u] + o2[u]→ h2o[u] + nadp[u] + zxan[u]
CHYA2 acaro[u] + h[u] + nadph[u] + o2[u]→ crpxan[u] + h2o[u] + nadp[u]
CXHY crpxan[u] + h[u] + nadph[u] + o2[u]→ h2o[u] + lut[u] + nadp[u]
LCYB gcaro[u] → caro[u]
LCYA lyc[h] → dcaro[h]
LCYG lyc[h] → gcaro[h]
NEOXANS vioxan[u] → neoxan[u]
NOR norsp[h] + o2[h] + pqh2[h] → 2 h2o[h] + lyc[h] + pq[h]
PDS1 phyto[h] + pq[h] → phytfl[h] + pqh2[h]
PDS2 phytfl[h] + pq[h] → pqh2[h] + zcaro[h]
PSY 2 ggdp[h]→ 2 h[h] + phyto[h] + 2 ppi[h]
VIOXANOR ascb-L[u] + vioxan[u] → anxan[u] + dhdascb[u] + h2o[u]
ZDS o2[h] + pqh2[h] + zcaro[h] → 2 h2o[h] + norsp[h] + pq[h]
ZHY h[u] + nadph[u] + o2[u] + zxan[u]→ h2o[u] + lut[u] + nadp[u]
CHLASG chlda[u] + ggdp[u]→ ggchlda[u] + h[u] + ppi[u]
GGCHLDAR ggchlda[u] + 3 h[u] + 3 nadph[u]→ chla[u] + 3 nadp[u]
GGDR ggdp[h] + 3 h[h] + 3 nadph[h] → 3 nadp[h] + pdp[h]
CHLBSG chldb[u] + ggdp[u]→ ggchldb[u] + h[u] + ppi[u]

Table A2. Reactions derived from the flux distribution associated to glutamate metabolism [17].

Name Formula

GLNth gln-L[c] + h[c] ⇄ gln-L[h] + h[h]
GALh atp[h] + glu-L[h] + nh4[h] → adp[h] + gln-L[h] + h[h] + pi[h]
GLUS glu-L[h] + h2o[h] + nad[h] → akg[h] + h[h] + nadh[h] + nh4[h]
GLUTRS atp[h] + glu-L[h] + trnaglu[h] → amp[h] + glutrna[h] + h[h] + ppi[h]
GLUS(nadph) akg[h] + gln-L[h] + h[h] + nadph[h] → 2 glu-L[h] + nadp[h]
ASPATh akg[h] + asp-L[h] ⇄ glu-L[h] + oaa[h]
ASPNA1th asp-L[c] + na1[c] ⇄ asp-L[h] + na1[h]
VALth h[c] + val-L[c] ⇄ h[h] + val-L[h]
BCTA(val)h akg[h] + val-L[h] → 3mob[h] + glu-L[h]
TYRTAh 34hpp[h] + glu-L[h] ⇄ akg[h] + tyr-L[h]
TYRth h[c] + tyr-L[c] ⇄ h[h] + tyr-L[h]
BCTAh 3mop[h] + glu-L[h] ⇄ akg[h] + ile-L[h]
ILEth h[c] + ile-L[c] ⇄ h[h] + ile-L[h]
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