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Abstract: Operator precedence grammars (OPG) are context-free grammars (CFG) that are character-
ized by the absence of two adjacent non-terminal symbols in the body of each production (right-hand
side). Operator precedence languages (OPL) are deterministic and context-free. Three possible
precedence relations between pairs of terminal symbols are established for these languages. Many
CFGs are not OPGs because the operator precedence cannot be applied to them as they do not comply
with the basic rule. To solve this problem, we have conducted a thorough redefinition of the Left
and Right sets of terminals that are the basis for calculating the precedence relations, and we have
defined a new Leftmost set. The algorithms for calculating them are also described in detail. Our
work’s most significant contribution is that we establish precedence relationships between terminals
by overcoming the basic rule of not having two consecutive non-terminals using an algorithm that
allows building the operator precedence table for a CFG regardless of whether it is an OPG. The
paper shows the complexities of the proposed algorithms and possible exceptions to the proposed
rules. We present examples by using an OPG and two non-OPGs to illustrate the operation of the
proposed algorithms. With these, the operator precedence table is built, and bottom-up parsing is
carried out correctly.

Keywords: operator precedence language; operator precedence grammar; precedence table;
precedence relations; algorithm

1. Introduction

This paper delves into the operator precedence languages family (OPL), created by
R. Floyd [1], which is used for efficient bottom-up parsing [2,3]. The author’s inspiration
from the structure of arithmetic expressions, where precedence is assigned to multiplicative
operators (∗ and /) over additive operators (+ and −), is a key insight. Through the
process of bottom-up parsing, the left side (non-terminal symbol) completely replaces the
identified right-side production (body) in a context-free grammar (CFG), leaving no room
for ambiguity. Operator precedence was extended to grammars that consist of terminals
on the right side, even if non-terminals separated them. A CFG is generally considered
an operator precedence grammar (OPG) if it does not contain productions with adjacent
non-terminal symbols on its right-hand side.

OPLs have greatly aided in inferring context-free grammars. An example is described
in [4–6], where a method is presented for inferring operator precedence-free grammars
from bracketed samples. The method is based on constructing parse trees and utilizing
functions that produce the grammars. Precedence rules are used to identify the brackets
surrounding the terminal elements of a string in the sample, indicating the order in which
the string should be evaluated.

Research on input-driven formal languages (IDL) [7–9] (later renamed as Visibly
Pushdown Languages (VPL) [10]) has concluded [11] that OP closure properties imply ID
closure properties and that ID languages are a specific type of OP languages characterized
by limited OP relations [12].
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Since the advancements in parallel computing, local parsability properties derived
from OPL have been utilized to generate fast parallel parsers [13].

This paper’s main contribution is its novel approach to building precedence relation-
ships between terminal symbols in non-OPGs. This approach allows the generation of
operator precedence tables and bottom-up parsing on a string derived by the non-OPG
with support from the table obtained. The novelty of the work is a significant aspect that
sets it apart from previous research in the field.

• The sets of Left and Right terminals proposed in previous works [1,11,14] to build
precedence relationships between the terminals of an OPG were redefined.

• A new set of terminals called Leftmost was defined to support solving precedence
relationships when there are two or more adjacent terminals on the right side of
the productions. This set is significant as it systematically handles the precedence
relationships in such complex scenarios, expanding the bottom-up parsing process
with non-OPGs.

• An algorithm was established to build the precedence table with the support of the
three sets of terminals proposed.

• Finally, applying the proposed algorithms makes it possible to obtain from a non-
OPG the relations and operator precedence table previously limited to OPGs only. In
addition, a bottom-up operator-precedence parser could be used to parse any string
generated by a non-OPG, a technique that could only be applied to OPGs.

As demonstrated in this work, the proposed solution to construct the operator prece-
dence table is not just a theoretical concept but a practical tool that can be applied to
OPGs without any restrictions. At the end of the work, the functionality is demonstrated
by applying it to an OPG and two non-OPGs and carrying out the respective bottom-up
parsing. This practical demonstration should instill confidence in the effectiveness of the
proposed solution and ensure its practical applicability.

The paper is organized as follows: Section 2 provides the necessary definitions to
understand this work. Section 3 presents the previous work carried out in the area of
CFG. Section 4 introduces our approach, detailing the problem we aim to solve and the
redefinitions of previous works’ concepts used to develop our algorithms. Section 5
presents examples of applying the proposed algorithm to one OPG and two non-OPGs,
demonstrating the application of bottom-up parsing with the precedence tables to test
their use. Section 6 describes several exceptions where the rules described in the proposed
algorithms do not apply. Finally, Section 7 provides conclusions to our work.

2. Basic Definitions
2.1. Context-Free Grammars and Languages

Within Chomsky’s hierarchy [15], context-free grammars play a significant role in
programming and compilation language applications by addressing the syntactic structure
of programming languages.

A context-free grammar (CFG) G generates a language L(G), commonly called context-
free language (CFL), which is composed of the strings generated by the CFG. The CFG is
defined as a 4-tuple G(S) =< T, N, S, P >, where:

• T represents the set of terminal symbols that create the strings within the CFL gener-
ated by the CFG.

• N represents the set of non-terminal symbols or syntactic variables that determine
strings leading to CFL generation.

• S is the initial non-terminal symbol from which all strings defined by the GFC are
generated.

• P is the set of productions or rules that group terminals and non-terminals to generate
the strings. A production takes the form A −→ α, where A represents a non-terminal
and α is a combination of terminals and non-terminals. The −→ is pronounced
“produce”. Thus, the production is read “A produce alpha”.
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The following notation will be used: lowercase letters from the beginning of the
alphabet represent terminal symbols (a, b, c, . . . ∈ T); uppercase letters from the beginning
of the alphabet represent non-terminal symbols (A, B, C, . . . ∈ N); lowercase letters late
in the alphabet represent terminal strings (u, v, w, x, y, z ∈ T+); lowercase Greek letters
generally represent terminal and/or non-terminal strings (α, β, γ, . . . ∈ (T ∪ N)∗), and the
empty string will be represented by ε (this Greek letter will be the exception to the above
convention).

2.2. Operator Precedence Grammars (Basic Rule)

A CFG is considered an operator grammar if none of the productions in P have
adjacent non-terminal symbols on their right side. In other words, for a production A −→ α
in G, α does not take the form uBCv.

2.3. Derivations

A string η ∈ (T ∪ N)∗ can be derived in k steps from a non-terminal A ∈ N if
there exists a sequence of strings of the form η1, η2, . . . , ηk. Using the symbol =⇒, meaning
one-step derivation, the sequence of strings is arranged in the form: η1 =⇒ η2 =⇒ . . . =⇒ ηk.

In this sequence, η1 corresponds to A and ηk to η. Each intermediate ηi in the sequence
has the form δBγ, where B ∈ N and there is a production B −→ β, such that by substituting
it on the right side, ηi+1(= δβγ) is obtained. The derivation in one or more steps is denoted
with the operator +

=⇒. In general, it is stated that every string of terminal symbols w ∈
L(G) can be established as S +

=⇒ w or expanding the derivation in one or more steps:
S = η1 =⇒ η2 =⇒ . . . =⇒ ηk = w. For a grammar G, a sentential form η ∈ (T ∪ N)∗ is a
string that S ∗

=⇒ η, meaning that η can be obtained with zero or more derivations from S.
If two grammars generate identical languages, they are considered equivalent.

2.4. Types of Derivations

According to [16], S = η1 =⇒ η2 =⇒ . . . =⇒ ηk = w is a leftmost derivation
of the string w ∈ T∗, when each ηi, 2 ≤ i ≤ k − 1, has the form xi Aiβi with xi ∈ T∗,
Ai ∈ N and βi ∈ (T ∪ N)∗. Furthermore, Ai −→ αi belongs to P, and then, in each ηi, the
symbol Ai is substituted by αi, resulting in the sentential form ηi+1. Each ηi is called the
left-sentential form.

If each ηi, 2 ≤ i ≤ k − 1, takes the form of βi Aixi with xi ∈ T∗, Ai ∈ N, and
βi ∈ (T ∪ N)∗, then a rightmost derivation would be formed. Each ηi is called the
right-sentential form.

2.5. Parse Trees

According to reference [16], a derivation tree for a CFG G(S) =< T, N, S, P > is a
labeled and ordered tree in which each node receives a label corresponding to a symbol
from the set N ∪ T ∪ {ε}. If a non-leaf node is labeled A and its immediate descendants are
labeled X1, X2, . . . , Xn, then A −→ X1X2 . . . Xn is a production in P. A labeled ordered tree
D is a derivation tree for a CFG G(A) =< T, N, A, P > if

1. The root of D is labeled A.
2. If D1, . . . , Dk are the subtrees of the direct descendants of the root and the root of Di is

labeled Xi, then A −→ X1 . . . Xk is in P.
3. Di is a derivation tree for G(Xi) =< T, N, Xi, P > if Xi is in N or Di is a single node

labeled Xi if Xi is in T or Di is a single node labeled ε.

Parse trees can be constructed from any derivation type.
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2.6. Bottom-Up Parsing

The bottom-up parsing syntax analysis [2], also known as shift-reduce parsing, at-
tempts to build a parsing tree for an input string that starts in the leaves (tree bottom) and
moves to the root (tree top). This process is considered as the reduction of the string w to
the initial symbol S of a CFG. At each step of parsing reduction, a particular substring of the
sentential form that matches the right side of a production is replaced by the non-terminal
symbol of the left side of that production. If, at each step, the substring is chosen correctly,
a rightmost derivation is traced out inversely.

2.7. Handle

A handle [2,17] of a right-sentential form γ is a production A −→ β and a position
of γ where the string β could be found and replaced by A to produce the previous right-
sentential form in a rightmost derivation of γ. Generally, if S ∗

=⇒ αAw =⇒ αβw, then
A −→ β if the position next to α is a handle of αβw. If the grammar is ambiguous, more than
one handle will be obtained. If the grammar is unambiguous, then every right-sentential
form has exactly one handle. Usually, the string β is told to be a handle of αβw when the
conditions for doing so are clear.

2.8. Implementation of a Bottom-Up Parsing

The bottom-up parsing by shift and reduction uses a stack to store grammar symbols
and a buffer to handle the input string to be analyzed. The $ symbol is also used to delimit
the bottom of the stack and the right side of the input buffer. The recognition model format
starts with the stack at $ and the string w$ in the input, as shown in Table 1.

Table 1. Bottom-up parsing table.

Stack Input Action

$ w$

· · · · · · Shift/Reduce

· · · · · · Shift/Reduce

$S $ Accept

The bottom-up parsing shifts zero or more input symbols to the stack until a handle is
at the top. The parsing then reduces the handle to the left side of the appropriate production
to obtain the sentential form corresponding to the previous step of the rightmost derivation.
When reducing, the parsing recognizes that the right end of the handle is at the top of the
stack. Therefore, the parsing takes action to find its left end in the stack and determine the
non-terminal that will replace it according to the right side of some production where it
matches the handle. These steps are repeated until an error is detected or until the stack
contains $S and the input is with the symbol $, at which point the parsing ends and the
input string is considered valid for the CFG.

3. Previous Work

According to [1,11,14], for a CFG G, the left terminal sets LG(A) and right terminal
setsRG(A) are defined as follows:

LG(A) =
{

a|A ∗
=⇒ γaα, γ ∈ N ∪ {ε}

}
.

RG(A) =
{

a|A ∗
=⇒ αaγ, γ ∈ N ∪ {ε}

}
.

Precedence relationships arise from the parse tree’s establishment of binary relation-
ships between consecutive terminals or those that become sequential after a bottom-up
process toward the non-terminal symbol S.
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The precedence relationships are established as follows:

1. a .
= b, if and only if ∃A −→ αaγbβ ∈ P, γ ∈ N ∪ {ε}.

2. a ⋖ b, if and only if ∃A −→ αaDβ ∈ P, b ∈ LG(D).
3. a ⋗ b, if and only if ∃A −→ αDbβ ∈ P, a ∈ RG(D).

According to [2], precedence relations are used to delimit a handle in a right-sentential
form. That is, in the sentential form αβw, the substring β is a handle if there is a production
A −→ β in the CFG; therefore, it can be delimited by the precedence relations, obtaining
α ⋖ β ⋗ w. The relation .

= between the symbols used when the handle has more than one
consecutive terminal symbol. That is, if β = a1a2 . . . an, then the relation ai

.
= ai+1, ∀i =

1, . . . , n− 1 should be established. Suppose a right-sentential form is A0a1 A1a2 . . . an An,
where each Ai is a non-terminal. In that case, the relations can be established as ai ⋖
Aiai+1, with a maximum of one non-terminal (operator grammar principle) between the
terminals. Non-terminals could be eliminated in the right sentential form, leaving only the
relationships between terminals.

In short, each time a handle is obtained, it can be enclosed between the symbols of ⋖
and ⋗. In addition, two consecutive terminal symbols can be inside a handle (non-terminals
in the middle), and the relationship is to be established .

=. Finally, non-terminal symbols
can be removed from the right-sentential form when a handle is found and locked between
the precedence relations.

According to [2], the concepts discussed in Section 2.8, and the precedence relations,
the precedence parsing Algorithm 1 is constructed as follows:

Algorithm 1 Precedence parsing algorithm

Require: Set of precedence relations.
procedure PrecedenceParsing(w)

stack← [$]
end← f alse
pos← 0
do

a← stack[top]
b← w$[pos]
if a = $ and b = $ then

print(“Action: Accept”)
end← true

else
if a ⋖ b or a .

= b then
pos ++
push(stack, b)
print(“Action: Shift”)

else
if a ⋗ b then

do
e← pull(stack)

while not (stack[top]⋖ e)
print(“Action: Reduce”)

else
print(“Action: Error”)
end← true

end if
end if

end if
while not end

end procedure
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4. Approach

This work proposes a redefinition of the Left and Right terminal sets, corresponding
to LG(A) andRG(A), respectively. Additionally, the definition of the new Leftmost set is
presented. The new rules for determining precedence relations are demonstrated even if
the CFG does not comply with the fundamental rule of operator grammar, meaning that
the CFG can have more than one adjacent non-terminal symbol on the right side of its
productions.

We present the algorithms for constructing the three proposed sets: Left, Leftmost, and
Right. Additionally, we demonstrate the algorithm that incorporates the newly established
precedence rules.

4.1. Definitions

There are the following symbols:

• A string of terminals x ∈ T+.
• A string of non-terminals β ∈ N∗.
• A sentential form γ ∈ (T ∪ N)∗.

The following sets are defined:

• The left, denoted as L(A), is the set of terminal symbols that can appear on the left
side of any sentential form as a product of a rightmost derivation from A.

L(A) = {a ∈ T | A ∗
=⇒ βaγ}.

• The leftmost, denoted as Lm(A), is the set of terminal symbols that can appear at
the end of the left side in any derivation from A, in the absence of other leftmost
grammatical symbols (or that derive to ε in their absence).

Lm(A) = {a ∈ T | A ∗
=⇒ aγ}.

• The right, denoted as R(A), is the set of terminal symbols that can appear at the
right end of the rightmost derivations from A or appear further to the right in any
production of A.

R(A) = {a ∈ T | A ∗
=⇒ γa ∨ A −→ γaβ}.

According to the above, the following precedence rules are defined:

• If C −→ γ1aβBγ2 , b ∈ L(B), then a ⋖ b.
• If C −→ γ1 AβBγ2 , a ∈ R(A) ∧ b ∈ Lm(B) ∧ β

∗
=⇒ ε, then a ⋗ b.

• If C −→ γ1 Aβbγ2 , a ∈ R(A) ∧ β
∗

=⇒ ε, then a ⋗ b.
• If C −→ γ1aβbγ2, then a .

= b.

4.2. Problem Analysis
4.2.1. Absolute Operator Grammar

Given the rightmost derivation series of the form:

S +
=⇒ γ1 Ax1 =⇒ γ1ω1x1, where A −→ ω1 and ω1 = γ2Bγ3. (1)

It is noted that ω1 is a handle according to the previous definition in Section 2.7.
The right-sentential form of (1) can be rewritten as follows:

γ1ω1x1 = γ1γ2Bγ3x1
+

=⇒ γ1γ2Bx2x1 =⇒ γ1γ2ω2x2x1, where B −→ ω2. (2)

From the last sentential form in (2), it follows that ω2 is a handle according to the
definition in Section 2.7.
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Because of the above, the analysis will focus on the productions born of A, which
have at least one non-terminal B on the right, as seen in (1). The productions in A will be
traversed through grammar to find the relations of precedence of non-terminal B located
on the right side.

Within the context of ω1, having to B −→ ω2, and ω2 is a handle, the following forms
can be obtained from its definition in (1):

(a) ω1 = γ4aB, it follows that a ⋖L(B). Here γ2 = γ4a and γ3 = ε.
(b) ω1 = Bbγ5, it follows thatR(B)⋗ b. Here γ2 = ε and γ3 = bγ5.
(c) ω1 = γ4aBbγ5, it follows that a ⋖L(B) andR(B)⋗ b. Here γ2 = γ4a and γ3 = bγ5.

For the non-terminal start symbol, S, an initial dummy production is defined E −→
$S$ and rule (c) is applied.

For a production A −→ γ1aXbγ2, X ∈ N ∪ {ε}, it follows that a .
= b.

4.2.2. General Grammar with Two or More Consecutive Non-Terminal Symbols

Redefinition of Left, Right and definition of Leftmost.
Left(B):

Given the rightmost derivation:

γ1aBx1 =⇒ γ1aω1x1. (3)

It is observed that ω1 is a handle within a bottom-up parsing (inverse rightmost
derivation) since B =⇒ ω1; therefore, from (3), it can be established that γ1a ⋖ ω1 ⋗ x1. In
addition, ω1 can have the following forms:

(a) ω1 = β1bγ2.
(b) ω1 = β1Cγ3.

Continuing with the rightmost derivation in (3) and taking each of the options of ω1,
we obtain that:

(a) γ1aBx1 =⇒ γ1aβ1bγ2x1 since ω1 is a handle, consequently γ1a ⋖ β1bγ2 ⋗ x1; there-
fore, a ⋖ b where B −→ β1bγ2 and b ∈ L(B).

(b) γ1aBx1 =⇒ γ1aβ1Cγ3x1
∗

=⇒ γ1aβ1Cx2x1
∗

=⇒ γ1aβ1β2Dx3x2x1 =⇒ γ1aβ1β2β3bγ4

x3x2x1. It is observed that C +
=⇒ β2Dx3 and D −→ β3bγ4; therefore, β3bγ4 is a

handle, and consequently γ1aβ1β2 ⋖ β3bγ4 ⋗ x3x2x1 and a ⋖ b.
In short, γ1aBx1

+
=⇒ γ1aβ1β2β3bγ4x3x2x1; taking β = β1β2β3 and γ5 = γ4x3x2,

we obtain the summary derivation γ1aBx1
+

=⇒ γ1aβbγ5x1, where B +
=⇒ βbγ5 and

b ∈ L(B).

Right(B):
Given the rightmost derivation:

γ1Bax1 =⇒ γ1ω1ax1. (4)

It is observed that ω1 is a handle within a bottom-up parsing (inverse rightmost
derivation), since B =⇒ ω1; therefore, from (4), it can be established that γ1 ⋖ ω1 ⋗ ax1. In
addition, ω1 can have the following forms:

(a) ω1 = γ2bβ.
(b) ω1 = γ3Cβ1, β1

∗
=⇒ ε.

Continuing with the rightmost derivation in (4) and taking each of the options of ω1,
we obtain that:

(a) γ1Bax1 =⇒ γ1γ2bβax1 since ω1 is a handle, consequently γ1 ⋖γ2bβ⋗ ax1; therefore,
b ⋗ a where B −→ γ2bβ and b ∈ R(B).

(b) γ1Bax1 =⇒ γ1γ3Cβ1ax1
∗

=⇒ γ1γ3γ4Dax1 =⇒ γ1γ3γ4γ5bβ2ax1. It is noted that

C +
=⇒ γ4D and D −→ γ5bβ2; therefore, γ5bβ2 is a handle, and consequently,
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γ1γ3γ4 ⋖ γ5bβ2 ⋗ ax1 and b ⋗ a.
In short, γ1Bax1

+
=⇒ γ1γ3γ4γ5bβ2ax1; taking γ6 = γ3γ4γ5, we obtain the summary

derivation γ1Bax1
+

=⇒ γ1γ6bβ2ax1, where B +
=⇒ γ6bβ2 and b ∈ R(B).

Leftmost(B):
Given the production with two non-terminal symbols on the right (body):

S −→ AB (5)

A −→ γ1b1β1 (6)

Rightmost derivation from S in (5) is:

S =⇒ AB +
=⇒ Aaγ

+
=⇒ Aax1 =⇒ γ1b1β1ax1 = γ2Cax1

+
=⇒ γ2γ3γ4b2β2ax1.

(i) (ii) (iii) (iv) (v) (vi) (vii)

In summary:

• In (v), the relationship ⋖γ1b1β1 ⋗ ax1 can be established since the right part of the
production (6) is a handle. Therefore, b1 ⋗ a and b1 ∈ R(A).

• In (vi), it is known that β1 = C0C1 . . . CnC, where each Ci ∈ N and C is the non-
terminal, first derived from the right. It is noted that γ2 = γ1b1C0 . . . Cn.

• In (vii), C +
=⇒ γ3γ4b2β2 being γ4b2β2 the result of the last rightmost derivation

performed and, in turn, a handle; therefore, the relationship γ2γ3 ⋖ γ4b2β2 ⋗ ax1 is
established, since γ4b2β2 is a handle, therefore, b2 ⋗ a.

• From (iv), Aax1
+

=⇒ γ2γ3γ4b2β2ax1. Establishing γ5 = γ2γ3γ4, then A +
=⇒ γ5b2β2,

therefore, b2 ∈ R(A).
• From (ii), B +

=⇒ aγ is established, from which we define the new Leftmost set of B as

Lm(B) = {a ∈ T | B +
=⇒ aγ}.

4.2.3. An Intuitive Way to Observe the Elements of Each Set

Vision of Left(·):
Given the CFG:
A −→ CDE
E −→ eh
D −→ d
C −→ cF
F −→ f

The rightmost derivation of the string c f deh carries the following way of creating the
Le f t(A) or L(A).

A =⇒ CDE =⇒ CDeh =⇒ Cdeh =⇒ cFdeh =⇒ cfdeh.
⋖ e d c

The terminal symbols e, d, and c are viewed from the left and recorded in L(A). The
symbol e is the first one seen from the left and is recorded in L(A), and the symbol h is
blocked by e since both appear when E is substituted. Then, D is replaced by d, which is
observed and recorded in L(A). When cF replaces C, we observe and record c in L(A).
Finally, when the substitution of F by f is carried out, it can no longer be observed (blocked
by c) and cannot be registered. Consequently:

L(A) = {e, d, c}.

Vision of Right(·):
Given the CFG:
A −→ abBC
B −→ eF
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C −→ cD
D −→ d
F −→ f

The rightmost derivation of the string abe f cd carries the following way of creating the
Right(A) orR(A).

A =⇒ abBC =⇒ abBcD =⇒ abBcd =⇒ abeFcd =⇒ abefcd.
b c d ⋗

The terminal symbols b, c, and d are viewed from the right and recorded in R(A).
The symbol b is the first one observed and recorded in R(A). The symbol a is blocked
by b, since both appear when A is derived. C is then replaced by cD and c is observed
and recorded in R(A). When D is substituted for d, we observe and record d in R(A).
Then B is derived by eF but e cannot be recorded since the previous inclusion of c and d
inR(A) makes it invisible or blocks it from being observed from the right. Finally, when
substituting F for f , it cannot be observed from the right either (blocked by c and d) and
cannot be recorded. Consequently:

R(A) = {b, c, d}.

Vision of Leftmost(·):
Given the CFG:
S −→ dAB
A −→ f a
B −→ Cb
C −→ c

The rightmost derivation of the string d f acb carries the following way of creating the
Le f tmost(B) or Lm(B), as shown in Figure 1.

Figure 1. Derivation of d f acb chain and Le f tmost(B) set creation sequence.

It can be seen that L(B) = {b, c}. When B derivates Cb, we observe that Lm(B) = {b}
because no more terminal symbols are seen up to that point. In the following derivation,
C is replaced by c; therefore, c is located further to the left of the substring cb, leaving
Lm(B) = {c}.
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4.2.4. Summary of Relations between Grammatical Symbols from Productions and Sets

Table 2 shows the relationships between the grammatical symbols of the productions
and the sets of terminals.

Table 2. General productions and precedence relationships obtained.

Producing Relationship

A −→ aβb a .
= b

A −→ Cβb, β
∗

=⇒ ε R(C)⋗ b

A −→ aβC a ⋖L(C)

A −→ BβC, β
∗

=⇒ ε R(B)⋗Lm(C)

4.3. Algorithms

The following algorithms were developed based on the definitions presented in
Section 4.1.

Algorithm 2 receives a non-terminal A whose productions are known; for each of
these, it is verified whether they correspond to the form βBγ; if so, Algorithm 2 is executed
again, sending the non-terminal B as a parameter (provided that B ̸= A), and its response
is included in the set L(A).

Subsequently, it is verified whether the production corresponds to the form βaγ, and
if so, the terminal a is added to the set L(A).

Once the verification of all productions of A is completed, the set L(A) is returned as
the output of Algorithm 2.

Algorithm 2 Left algorithm of a non-terminal A
function Left(A)
L(A)← ∅
for each production of A do

if A −→ βBγ then
L(A) ⊇ Left(B) // L(A) contains a Left(B)

end if
if A −→ βaγ then

a ∈ L(A) // a is in L(A)
end if

end for
return L(A)

end function

Algorithm 3 receives a non-terminal A whose productions are known; for each of
these, it is verified if they correspond to the form βBγ and β

∗
=⇒ ε; if so, Algorithm 3 is

executed again, sending the non-terminal B as a parameter (provided that B ̸= A), and its
response is included in the set Lm(A).

Subsequently, it is verified if the production corresponds to the form βaγ and β
∗

=⇒ ε.
If so, the terminal a is added to the set Lm(A).

Once the verification of all productions of A is completed, the set Lm(A) is returned
as the output of Algorithm 3.
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Algorithm 3 Leftmost algorithm of a non-terminal A
function Leftmost(A)
Lm(A)← ∅
for each production of A do

if A −→ βBγ and β
∗

=⇒ ε then
Lm(A) ⊇ Leftmost(B)

end if
if A −→ βaγ and β

∗
=⇒ ε then

a ∈ Lm(A)
end if

end for
return Lm(A)

end function

Algorithm 4 receives a non-terminal A whose productions are known; for each of
these, it is verified if they correspond to the form γBβ and β

∗
=⇒ ε; if so, Algorithm 4 is

executed again, sending the non-terminal B as a parameter (provided that B ̸= A) and its
response is included in the setR(A).

Subsequently, it is verified whether the production corresponds to the form γaβ, and
if so, the terminal a is added to the setR(A).

Once all productions of A have been verified, the setR(A) is returned as the output
of Algorithm 4.

Algorithm 4 Right algorithm of a non-terminal A
function Right(A)
R(A)← ∅
for each production of A do

if A −→ γBβ and β
∗

=⇒ ε then
R(A) ⊇ Right(B)

end if
if A −→ γaβ then

a ∈ R(A)
end if

end for
returnR(A)

end function

Algorithm 5 receives a grammar G(S) =< T, N, S, P > and Algorithms 2–4. Initially,
precedence relations are added between the delimiting symbol $ and the Left and Right
sets of the non-terminal symbol of start S, according to rules (A.1) and (A.2), respectively.

Algorithm 5 operates in an iterative manner. It traverses all the productions of the
set P, and for each iteration, it initializes two temporary variables, u and l, to null and an
empty list, respectively. It then performs a series of processes for each pair of contiguous
grammatical symbols X and Y in a production.

1. The algorithm checks if XY has the form ab; if so, it adds the corresponding precedence
relationship between a and b, following rule (B).

2. The algorithm checks if XY has the form aB; if so, it assigns u the value of a and
adds the corresponding precedence relations between a and terminals in Left(B),
following rule (C).

3. The algorithm checks if XY has the form Ab; if so, it adds the corresponding prece-
dence relations between b and terminals in Right(A), following rule (D.1). Then,
check if u ̸= null, and if so, add the corresponding precedence relationship between
u and b, following rule (D.2), and reset u to null. Finally, checks if list l has elements,
and if so, adds the corresponding precedence relations between b and terminals in
Right(B), following rule (D.3), and resets list l to empty.
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4. The algorithm checks if XY has the form AB; if so, it adds the corresponding prece-
dence relations between terminals in Right(A) and terminals in Leftmost(B), fol-
lowing rule (E.1). Then, it checks if u ̸= null, and if so, adds the corresponding
precedence relation between u and terminals in Left(B), following rule (E.2). Fi-
nally, it checks if the list l has elements and if so, adds the corresponding precedence
relations between terminals in Right(C), with C ∈ l and terminals in Leftmost(B),
following rule (E.3), and resets the list l if necessary.

Algorithm 5 Algorithm to obtain the operator precedence table of a G grammar

Require: G(S) =< T, N, S, P >
procedure Table(G, Left(·), Right(·), Leftmost(·))

compute Left(A), Right(A), Leftmost(A), ∀A ∈ N
add $ ⋖ a, ∀a ∈ Left(S) (A.1)
add a ⋗ $, ∀a ∈ Right(S) (A.2)
for each A −→ γ in P do

u← null
l ← [ ] // empty list
for each XY contiguous in γ do

if XY = ab then
add a .

= b (B)
end if
if XY = aB then

u← a
add a ⋖ b, ∀b ∈ Left(B) (C)

end if
if XY = Ab then

add a ⋗ b, ∀a ∈ Right(A) (D.1)
if u ̸= null then

add u .
= b (D.2)

u← null
end if
if l ̸= [ ] then

for B ∈ l do
add a ⋗ b, ∀a ∈ Right(B) (D.3)

end for
l ← [ ]

end if
end if
if XY = AB then

add a ⋗ b, ∀a ∈ Right(A) ∧ ∀b ∈ Leftmost(B) (E.1)
if u ̸= null then

add u ⋖ b, ∀b ∈ Left(B) (E.2)
end if
if l ̸= [ ] then

for C ∈ l do
add c ⋗ b, ∀c ∈ Right(C) ∧ ∀b ∈ Leftmost(B) (E.3)

end for
end if
if B ∗

=⇒ ε then
add A to l

else
l ← [ ]

end if
end if

end for
end for

end procedure
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4.4. Complexity Analysis

The following variables will be established for the computation of the complexity of
the four proposed algorithms:

• t : Cardinality of the set of terminal symbols.
• p : Cardinality of the set of productions.
• g : Number of grammatical symbols in the productions.
• n : Cardinality of the set of non-terminal symbols.

4.4.1. Complexity of Algorithm 2 (Left)

The Left function checks in which productions the symbol A appears on the left side.
In the first if-block, a recursive call of Left is observed, which implies that all non-terminal
symbols of G could be traversed at the end of the execution in the search for Left(A).
Therefore, all worst-case productions would be traversed, yielding a computational time of
O(p). The second if-block has a computational time of O(1), which does not contribute to
the overall computational time O(p).

4.4.2. Complexity of Algorithm 3 (Leftmost)

The Leftmost function has a similar structure to the previous one; therefore, the
computational execution time is O(p).

4.4.3. Complexity of Algorithm 4 (Right)

The Right function has a similar structure to Left; therefore, the computational
execution time is O(p).

4.4.4. Complexity of Algorithm 5 (Table)

According to the first for-cycle, the number of times it would be executed will be p.
Immediately following the previous one, the inner for-cycle is executed in the worst-case g
times, assuming that the total number of grammatical symbols appear in each production.
Therefore, the computational cost of the two cycles is O(p× g).

The computational costs for the construction of Left(A), Right(A), and Leftmost(A),
∀A ∈ N, are already computed. In computing the complexity of Table, the length of each
generated set will be considered, which in the worst case is t.

The analysis of the four if-blocks inside the second for-cycle is as follows:

• In the first if-block, after checking, the executed instruction is carried out in constant
time and is denoted O(1).

• In the second if-block, after checking, the first instruction is executed in a constant
time O(1), and the second is executed in a computational time O(t); therefore, the
computational time of the if-block is O(t).

• In the third if-block, after checking, three sub-blocks are distinguished; the first one
corresponds to the travel of Right(A), executed in a computational time O(t). After
checking u ̸= null, the second sub-block presents two instructions executed in a
constant time O(1). The third sub-block, after the checking of l ̸= [ ], presents a
computational cost O(n× t), determined by the for-cycle executed, in the worst case,
O(n) times, corresponding to the number of non-terminal symbols in G and the travel
it makes from Right(B) with a cost O(t). In summary, the computational cost of the
third if-block is O(n× t), corresponding to the worst case.

• In the fourth if-block, after checking, four sub-blocks are distinguished. The first
corresponds to the combinations formed from traversing Right(A) and Leftmost(B)
to obtain the precedence relations a ⋗ b. Since the maximum size of each set is t,
the computational cost of these combinations is O(t2). After checking u ̸= null, the
second sub-block presents an instruction where Left(B) is traversed; therefore, the
computational cost is O(t). In the third sub-block, after the checking of l ̸= [ ], it
presents a for-cycle that executes at most n times the combinations formed from
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traversing Right(C) and Leftmost(B) to obtain the precedence relations c ⋗ b. These
combinations are traversed maximally in O(t2) computational time because t is the
size of both sets and, consequently, the computational cost of the third sub-block is
O(n× t2). The last sub-block will have a cost ofO(1). In summary, the computational
cost of the fourth block is O(n× t2), corresponding to the worst case.

In summary, the computational cost of the four if-blocks within the second for-cycle
of Algorithm 5 is O(n× t2), this being the worst case; therefore, the computational cost of
the main body of Algorithm 5 formed by the two nested for-cycles and the four if-blocks
is O(p × g × n × t2) which is greater than the cost of computing any of the three sets
of terminal symbols Left(A), Right(A), and Leftmost(A), ∀A ∈ N, when starting the
algorithm, and corresponding to O(p).

5. Examples
5.1. Example 1
5.1.1. Grammar

Given the following OPG:
E −→ E + T | T
T −→ T ∗ F | F
F −→ (E) | id
The sets are built step by step following the algorithms.

5.1.2. Left

The Left sets are calculated as detailed in Table 3.

Table 3. Left Sets calculation for the CFG in Example 1.

Left(E)

For E −→ E + T

1. Evaluating the first
conditional of Algorithm 2.

A = E

2. Evaluating the second
conditional of Algorithm 2.

A = E
β = ε β = E
B = E a = +
γ = +T γ = T
L(E) ⊇ L(E) L(E) ⊇ {+}

For E −→ T

3. Evaluating the first
conditional of Algorithm 2.

A = E
β = ε
B = T
γ = ε
L(E) = {+} ∪ L(T)

Left(T)

For T −→ T ∗ F

1. Evaluating the first
conditional of Algorithm 2.

A = T

2. Evaluating the second
conditional of Algorithm 2.

A = T
β = ε β = T
B = T a = ∗
γ = ∗F γ = F
L(T) ⊇ L(T) L(T) ⊇ {∗}

For T −→ F

3. Evaluating the first
conditional of Algorithm 2.

A = T
β = ε

B = F
γ = ε

L(T) = {∗} ∪ L(F)
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Table 3. Cont.

Left(F)

For F −→ (E) For F −→ id

1. Evaluating the second
conditional of Algorithm 2.

A = F

2. Evaluating the second
conditional of Algorithm 2.

A = F
β = ε β = ε
a = ( a = id
γ = E) γ = ε
L(F) ⊇ {(} L(F) = {(, id}

Summary of Left sets of non-terminals:

• Left(E) = {+} ∪ L(T).
• Left(T) = {∗} ∪ L(F).
• Left(F) = {(, id}.
Substituting the sets:

• Left(E) = {+, ∗, (, id}.
• Left(T) = {∗, (, id}.
• Left(F) = {(, id}.

5.1.3. Right

The Right sets are calculated as detailed in Table 4.

Table 4. Right Sets calculation for the CFG in Example 1.

Right(E)

For E −→ E + T

1. Evaluating the first
conditional of Algorithm 4.

A = E

2. Evaluating the second
conditional of Algorithm 4.

A = E
γ = E+ γ = E
B = T a = +
β = ε β = T
R(E) ⊇ R(T) R(E) ⊇ R(T) ∪ {+}

For E −→ T

3. Evaluating the first
conditional of Algorithm 4.

A = E
γ = ε
B = T
β = ε
R(E) = R(T) ∪ {+}

Right(T)

For T −→ T ∗ F

1. Evaluating the first
conditional of Algorithm 4.

A = T

2. Evaluating the second
conditional of Algorithm 4.

A = T
γ = T∗ γ = T
B = F a = ∗
β = ε β = F
R(T) ⊇ R(F) R(T) ⊇ R(F) ∪ {∗}

For T −→ F

3. Evaluating the first
conditional of Algorithm 4.

A = T
γ = ε

B = F
β = ε

R(T) = R(F) ∪ {∗}
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Table 4. Cont.

Right(F)

For F −→ (E) For F −→ id

1. Evaluating the second
conditional of Algorithm 2.

A = F

2. Evaluating the second
conditional of Algorithm 2.

A = F
γ = (E γ = ε
a =) a = id
β = ε β = ε
R(F) ⊇ {)} R(F) = {), id}

Summary of Right sets of non-terminals:

• Right(E) = R(T) ∪ {+}.
• Right(T) = R(F) ∪ {∗}.
• Right(F) = {), id}.
Substituting the sets:

• Right(E) = {), id, ∗,+}.
• Right(T) = {), id, ∗}.
• Right(F) = {), id}.

5.1.4. Leftmost

The Leftmost are calculated as detailed in Table 5.

Table 5. Leftmost Sets calculation for the CFG in Example 1.

Leftmost(E)

For E −→ E + T For E −→ T

1. Evaluating the first
conditional of Algorithm 3.

A = E

2. Evaluating the first
conditional of Algorithm 3.

A = E
β = ε β = ε
B = E B = T
γ = +T γ = ε
Lm(E) ⊇ Lm(E) Lm(E) = Lm(T)

Leftmost(T)

For T −→ T ∗ F For T −→ F

1. Evaluating the first
conditional of Algorithm 3.

A = T

2. Evaluating the first
conditional of Algorithm 3.

A = T
β = ε β = ε

B = T B = F
γ = ∗F γ = ε

Lm(T) ⊇ Lm(T) Lm(T) = Lm(F)

Leftmost(F)

For F −→ (E) For F −→ id

1. Evaluating the second
conditional of Algorithm 3.

A = F

2. Evaluating the second
conditional of Algorithm 3.

A = F
β = ε β = ε

a = ( a = id
γ = E) γ = ε

Lm(F) ⊇ {(} Lm(F) = {(, id}

Summary of Leftmost sets of non-terminals:

• Leftmost(E) = Lm(T).
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• Leftmost(T) = Lm(F).
• Leftmost(F) = {(, id}.
Substituting the sets:

• Leftmost(E) = {(, id}.
• Leftmost(T) = {(, id}.
• Leftmost(F) = {(, id}.

5.1.5. Case Studies

For Algorithm 5, the application of some precedence relations is exhibited.

1. For the delimiter symbol $:

(a) $ ⋖L(E) −→ Rule (A.1).

• $ ⋖+
• $ ⋖ ∗
• $ ⋖ (
• $ ⋖ id

(b) R(E)⋗ $ −→ Rule (A.2).

• )⋗ $
• id ⋗ $
• ∗⋗ $
• +⋗ $

2. For E −→ E + T

(a) X = E, Y = + −→ Rule (D.1).
R(E) ⋗ +

• ) ⋗ +
• id ⋗ +
• ∗ ⋗ +
• + ⋗ +

u = null, l = [ ]
(b) X = +, Y = T −→ Rule (C).

+ ⋖ L(T)
• + ⋖ ∗
• + ⋖ (
• + ⋖ id

u = +, l = [ ]

3. For F −→ (E)

(a) X = (, Y = E −→ Rule (C).
( ⋖ L(E)

• ( ⋖ +
• ( ⋖ ∗
• ( ⋖ (
• ( ⋖ id

u = (, l = [ ]
(b) X = E, Y = ) −→ Rule (D.1).

R(E) ⋗ )

• ) ⋗ )
• id ⋗ )
• ∗ ⋗ )
• + ⋗ )

u ̸= null −→ u .
= b −→ (

.
= ) −→ Rule (D.2).

u = null, l = [ ]
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4. In the following cases, the form XY is not fulfilled in the right side part of the produc-
tion; therefore, no rule can be applied:

(a) E −→ T
(b) T −→ F
(c) F −→ id

The remaining precedence relations are derived using the same method as the previ-
ously demonstrated cases.

5.1.6. Operator Precedence Table

At the end of the algorithm execution, operator precedence Table 6 is obtained.

Table 6. Precedence Table of Example 1.

+ ∗ ( ) id $
+ ⋗ ⋖ ⋖ ⋗ ⋖ ⋗
∗ ⋗ ⋗ ⋖ ⋗ ⋖ ⋗
( ⋖ ⋖ ⋖ .

= ⋖
) ⋗ ⋗ ⋗ ⋗
id ⋗ ⋗ ⋗ ⋗
$ ⋖ ⋖ ⋖ ⋖

5.1.7. Bottom-Up Parsing

Let id + ((id + id) ∗ (id)) ∗ id be a string obtained by rightmost derivation, then apply-
ing Algorithm 1 results in the bottom-up parsing detailed in Table 7.

Table 7. Bottom-up Parsing of Example 1.

Stack Input Action

$ id + ((id + id) ∗ (id)) ∗ id$ Shift

$id +((id + id) ∗ (id)) ∗ id$ Reduce

$ +((id + id) ∗ (id)) ∗ id$ Shift

$+ ((id + id) ∗ (id)) ∗ id$ Shift

$ + ( (id + id) ∗ (id)) ∗ id$ Shift

$ + (( id + id) ∗ (id)) ∗ id$ Shift

$ + ((id +id) ∗ (id)) ∗ id$ Reduce

$ + (( +id) ∗ (id)) ∗ id$ Shift

$ + ((+ id) ∗ (id)) ∗ id$ Shift

$ + ((+id ) ∗ (id)) ∗ id$ Reduce

$ + ((+ ) ∗ (id)) ∗ id$ Reduce

$ + (( ) ∗ (id)) ∗ id$ Shift

$ + (() ∗(id)) ∗ id$ Reduce

$ + ( ∗(id)) ∗ id$ Shift

$ + (∗ (id)) ∗ id$ Shift

$ + (∗( id)) ∗ id$ Shift

$ + (∗(id )) ∗ id$ Reduce

$ + (∗( )) ∗ id$ Shift
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Table 7. Cont.

Stack Input Action

$ + (∗() ) ∗ id$ Reduce

$ + (∗ ) ∗ id$ Reduce

$ + ( ) ∗ id$ Shift

$ + () ∗id$ Reduce

$+ ∗id$ Shift

$ + ∗ id$ Shift

$ + ∗id $ Reduce

$ + ∗ $ Reduce

$+ $ Reduce

$ $ Accept

5.2. Example 2
5.2.1. Grammar

Given the following non-OPG:
S −→ SD; | D;
D −→ Tid(L)
T −→ T ∗ | int
L −→ I | ε
I −→ T | T, I
The sets are built step by step following the algorithms.

5.2.2. Left

The Left sets are calculated as detailed in Table 8.

Table 8. Left Sets calculation for the CFG in Example 2.

Left(S)

For S −→ SD;

1. Evaluating the first
conditional of Algorithm 2.

A = S

2. Evaluating the first
conditional of Algorithm 2.

A = S
β = ε β = S
B = S B = D
γ = D; γ =;
L(S) ⊇ L(S) L(S) ⊇ L(D)

3. Evaluating the second
conditional of Algorithm 2.

A = S
β = SD
a =;
γ = ε
L(S) ⊇ L(D) ∪ {; }

For S −→ D;

4. Evaluating the first
conditional of Algorithm 2.

A = S

5. Evaluating the second
conditional of Algorithm 2.

A = S
β = ε β = D
B = D a =;
γ =; γ = ε
L(S) ⊇ L(D) ∪ {; } ∪ L(D) L(S) = L(D) ∪ {; }
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Table 8. Cont.

Left(D)

For D −→ Tid(L)

1. Evaluating the first
conditional of Algorithm 2.

A = D

2. Evaluating the second
conditional of Algorithm 2.

A = D
β = ε β = T
B = T a = id
γ = id(L) γ = (L)
L(D) ⊇ L(T) L(D) = L(T) ∪ {id}

Left(T)

For T −→ T∗

1. Evaluating the first
conditional of Algorithm 2.

A = T

2. Evaluating the second
conditional of Algorithm 2.

A = T
β = ε β = T
B = T a = ∗
γ = ∗ γ = ε
L(T) ⊇ L(T) L(T) ⊇ {∗}

For T −→ int

3. Evaluating the second
conditional of Algorithm 2.

A = T
β = ε
a = int
γ = ε
L(T) = {∗, int}

Left(L)

For L −→ I

1. Evaluating the first
conditional of Algorithm 2.

A = L
β = ε
B = I
γ = ε
L(L) = L(I)

Left(I)

For I −→ T

1. Evaluating the first
conditional of Algorithm 2.

A = I
β = ε
B = T
γ = ε
L(I) ⊇ L(T)

For I −→ T, I

2. Evaluating the first
conditional of Algorithm 2.

A = I

3. Evaluating the second
conditional of Algorithm 2.

A = I
β = ε β = T
B = T a =,
γ =, I γ = I
L(I) ⊇ L(T) L(I) = L(T) ∪ {, }

Summary of Left sets of non-terminals:

• Left(S) = L(D) ∪ {; }.
• Left(D) = L(T) ∪ {id}.
• Left(T) = {∗, int}.
• Left(L) = L(I).
• Left(I) = L(T) ∪ {, }.
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Substituting the sets:

• Left(S) = {; , id, ∗, int}.
• Left(D) = {id, ∗, int}.
• Left(T) = {∗, int}.
• Left(L) = {, , ∗, int}.
• Left(I) = {, , ∗, int}.

5.2.3. Right

The Right sets are calculated as detailed in Table 9.

Table 9. Right Sets calculation for the CFG in Example 2.

Right(S)

For S −→ SD; For S −→ D;

1. Evaluating the second
conditional of Algorithm 4.

A = S

2. Evaluating the second
conditional of Algorithm 4.

A = S
γ = SD γ = D
a =; a =;
β = ε β = ε
R(S) ⊇ {; } R(S) = {; }

Right(D)

For D −→ Tid(L)

1. Evaluating the second
conditional of Algorithm 4.

A = D
γ = Tid(L
a =)
β = ε

R(D) = {)}

Right(T)

For T −→ T∗ For T −→ int

1. Evaluating the second
conditional of Algorithm 4.

A = T

2. Evaluating the second
conditional of Algorithm 4.

A = T
γ = T γ = ε

a = ∗ a = int
β = ε β = ε

R(T) ⊇ {∗} R(T) = {∗, int}

Right(L)

For L −→ I

1. Evaluating the first
conditional of Algorithm 4.

A = L
γ = ε

B = I
β = ε

R(L) = R(I)
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Table 9. Cont.

Right(I)

For I −→ T

1. Evaluating the first
conditional of Algorithm 4.

A = I
γ = ε
B = T
β = ε
R(I) ⊇ R(T)

For I −→ T, I

2. Evaluating the first
conditional of Algorithm 4.

A = I

3. Evaluating the second
conditional of Algorithm 4.

A = I
γ = T, γ = T
B = I a =,
β = ε β = I
R(I) ⊇ R(T) ∪R(I) R(I) = R(T) ∪ {, }

Summary of Right sets of non-terminals:

• Right(S) = {; }.
• Right(D) = {)}.
• Right(T) = {∗, int}.
• Right(L) = R(I).
• Right(I) = R(T) ∪ {, }.
Substituting the sets:

• Right(S) = {; }.
• Right(D) = {)}.
• Right(T) = {∗, int}.
• Right(L) = {, , ∗, int}.
• Right(I) = {, , ∗, int}.

5.2.4. Leftmost

The Leftmost sets are calculated as detailed in Table 10.

Table 10. Leftmost Sets calculation for the CFG in Example 2.

Leftmost(S)

For S −→ SD; For S −→ D;

1. Evaluating the first
conditional of Algorithm 3.

A = S

2. Evaluating the first
conditional of Algorithm 3.

A = S
β = ε β = ε
B = S B = D
γ = D; γ =;
Lm(S) ⊇ Lm(S) Lm(S) = Lm(D)

Leftmost(D)

For D −→ Tid(L)

1. Evaluating the first
conditional of Algorithm 3.

A = D
β = ε

B = T
γ = id(L)
Lm(D) = Lm(T)
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Table 10. Cont.

Leftmost(T)

For T −→ T∗ For T −→ int

1. Evaluating the first
conditional of Algorithm 3.

A = T

2. Evaluating the second
conditional of Algorithm 3.

A = T
β = ε β = ε
B = T a = int
γ = ∗ γ = ε
Lm(T) ⊇ Lm(T) Lm(T) = {int}

Leftmost(L)

For L −→ I

1. Evaluating the first
conditional of Algorithm 3.

A = L
β = ε
B = I
γ = ε
Lm(L) = Lm(I)

Leftmost(I)

For I −→ T For I −→ T, I

1. Evaluating the first
conditional of Algorithm 3.

A = I

2. Evaluating the first
conditional of Algorithm 3.

A = I
β = ε β = ε
B = T B = T
γ = ε γ =, I
Lm(I) ⊇ Lm(T) Lm(I) = Lm(T)

Summary of Leftmost sets of non-terminals:

• Leftmost(S) = Lm(D).
• Leftmost(D) = Lm(T).
• Leftmost(T) = {int}.
• Leftmost(L) = Lm(I).
• Leftmost(I) = Lm(T).

Substituting the sets:

• Leftmost(S) = {int}.
• Leftmost(D) = {int}.
• Leftmost(T) = {int}.
• Leftmost(L) = {int}.
• Leftmost(I) = {int}.

5.2.5. Case Studies

For Algorithm 5, the application of some precedence relations is exhibited.

1. For the delimiter symbol $:

(a) $ ⋖L(S) −→ Rule (A.1).

• $ ⋖ ;
• $ ⋖ id
• $ ⋖ ∗
• $ ⋖ int

(b) R(S)⋗ $ −→ Rule (A.2).

• ; ⋗ $

2. For S −→ SD;
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(a) X = S, Y = D −→ Rule (E.1).
R(S) ⋗ Lm(D)

• ; ⋗ int

u = null, l = [ ]
(b) X = D, Y = ; −→ Rule (D.1).

R(D) ⋗ ;

• ) ⋗ ;

u = null, l = [ ]

3. For D −→ Tid(L)

(a) X = id, Y = ( −→ Rule (B).

• id .
= (

u = null, l = [ ]
(b) X = (, Y = L −→ Rule (C).

( ⋖ L(L)

• ( ⋖ ,
• ( ⋖ ∗
• ( ⋖ int

u = (, l = [ ]
(c) X = L, Y = ) −→ Rule (D.1).

R(L) ⋗ )

• , ⋗ )
• ∗ ⋗ )
• int ⋗ )

u ̸= null −→ u .
= b −→ (

.
= ) −→ Rule (D.2).

u = null, l = [ ]

4. In the following cases, the form XY is not fulfilled in the right side part of the produc-
tion; therefore, no rule can be applied:

(a) T −→ int
(b) L −→ I
(c) L −→ ε
(d) I −→ T

The remaining precedence relations are derived using the same method as the previ-
ously demonstrated cases.

5.2.6. Operator Precedence Table

At the end of the algorithm execution, operator precedence Table 11 is obtained.

Table 11. Precedence Table of Example 2.

; id ( ) ∗ int , $
; ⋗ ⋗

id .
=

(
.
= ⋖ ⋖ ⋖

) ⋗
∗ ⋗ ⋗ ⋗ ⋗

int ⋗ ⋗ ⋗ ⋗
, ⋗ ⋖ ⋖ ⋖
$ ⋖ ⋖ ⋖ ⋖
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5.2.7. Bottom-Up Parsing

Let int id(); int id(int, int); be a string obtained by rightmost derivation, then applying
Algorithm 1 results in the bottom-up parsing detailed in Table 12.

Table 12. Bottom-up Parsing of Example 2.

Stack Input Action

$ int id(); int id(int, int); $ Shift

$int id(); int id(int, int); $ Reduce

$ id(); int id(int, int); $ Shift

$id (); int id(int, int); $ Shift

$id( ); int id(int, int); $ Shift

$id() ; int id(int, int); $ Reduce

$ ; int id(int, int); $ Shift

$; int id(int, int); $ Reduce

$ int id(int, int); $ Shift

$int id(int, int); $ Reduce

$ id(int, int); $ Shift

$id (int, int); $ Shift

$id( int, int); $ Shift

$id(int , int); $ Reduce

$id( , int); $ Shift

$id(, int); $ Shift

$id(, int ); $ Reduce

$id(, ); $ Reduce

$id( ); $ Shift

$id() ; $ Reduce

$ ; $ Shift

$; $ Reduce

$ $ Accept

5.3. Example 3
5.3.1. Grammar

Given the following non-OPG:
S −→ ABC
A −→ aA | a
B −→ bB | b | ε
C −→ CDc | c
D −→ d
The sets are built step by step following the algorithms.

5.3.2. Left

The Left sets are calculated as detailed in Table 13.
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Table 13. Left Sets calculation for the CFG in Example 3.

Left(S)

For S −→ ABC

1. Evaluating the first
conditional of Algorithm 2.

A = S

2. Evaluating the first
conditional of Algorithm 2.

A = S
β = ε β = A
B = A B = B
γ = BC γ = C
L(S) ⊇ L(A) L(S) ⊇ L(A) ∪ L(B)

3. Evaluating the first
conditional of Algorithm 2.

A = S
β = AB
B = C
γ = ε
L(S) = L(A) ∪ L(B) ∪ L(C)

Left(A)

For A −→ aA

1. Evaluating the second
conditional of Algorithm 2.

A = A

2. Evaluating the first
conditional of Algorithm 2.

A = A
β = ε β = a
a = a B = A
γ = A γ = ε

L(A) ⊇ {a} L(A) ⊇ {a} ∪ L(A)

For A −→ a

3. Evaluating the second
conditional of Algorithm 2.

A = A
β = ε

a = a
γ = ε

L(A) = {a}

Left(B)

For B −→ bB

1. Evaluating the second
conditional of Algorithm 2.

A = B

2. Evaluating the first
conditional of Algorithm 2.

A = B
β = ε β = b
a = b B = B
γ = B γ = ε

L(B) ⊇ {b} L(B) ⊇ {b} ∪ L(B)

For B −→ b

3. Evaluating the second
conditional of Algorithm 2.

A = B
β = ε

a = b
γ = ε

L(B) = {b}
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Table 13. Cont.

Left(C)

For C −→ CDc

1. Evaluating the first
conditional of Algorithm 2.

A = C

2. Evaluating the first
conditional of Algorithm 2.

A = C
β = ε β = C
B = C B = D
γ = Dc γ = c
L(C) ⊇ L(C) L(C) ⊇ L(D)

3. Evaluating the second
conditional of Algorithm 2.

A = C
β = CD
a = c
γ = ε
L(C) ⊇ L(D) ∪ {c}

For C −→ c

4. Evaluating the second
conditional of Algorithm 2.

A = C
β = ε
a = c
γ = ε
L(C) = L(D) ∪ {c}

Left(D)

For D −→ d

1. Evaluating the second
conditional of Algorithm 2.

A = D
β = ε
a = d
γ = ε
L(D) = {d}

Summary of Left sets of non-terminals:

• Left(S) = L(A) ∪ L(B) ∪ L(C).
• Left(A) = {a}.
• Left(B) = {b}.
• Left(C) = L(D) ∪ {c}.
• Left(D) = {d}.
Substituting the sets:

• Left(S) = {a, b, d, c}.
• Left(A) = {a}.
• Left(B) = {b}.
• Left(C) = {d, c}.
• Left(D) = {d}.

5.3.3. Right

The Right sets are calculated as detailed in Table 14
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Table 14. Right Sets calculation for the CFG in Example 3.

Right(S)

For S −→ ABC

1. Evaluating the first
conditional of Algorithm 4.

A = S
γ = AB
B = C
β = ε
R(S) = R(C)

Right(A)

For A −→ aA

1. Evaluating the first
conditional of Algorithm 4.

A = A

2. Evaluating the second
conditional of Algorithm 4.

A = A
γ = a γ = ε

B = A a = a
β = ε β = A
R(A) ⊇ R(A) R(A) ⊇ {a}

For A −→ a

3. Evaluating the second
conditional of Algorithm 4.

A = A
γ = ε

a = a
β = ε

R(A) = {a}

Right(B)

For B −→ bB

1. Evaluating the first
conditional of Algorithm 4.

A = B

2. Evaluating the second
conditional of Algorithm 4.

A = B
γ = b γ = ε

B = B a = b
β = ε β = B
R(B) ⊇ R(B) R(B) ⊇ {b}

For B −→ b

3. Evaluating the second
conditional of Algorithm 4.

A = B
γ = ε

a = b
β = ε

R(b) = {b}

Right(C)

For C −→ CDc For C −→ c

1. Evaluating the second
conditional of Algorithm 4.

A = C

2. Evaluating the second
conditional of Algorithm 4.

A = C
γ = CD γ = ε

a = c a = c
β = ε β = ε

R(C) ⊇ {c} R(C) = {c}



Algorithms 2024, 17, 345 29 of 34

Table 14. Cont.

Right(D)

For D −→ d

1. Evaluating the second
conditional of Algorithm 4.

A = D
γ = ε
a = d
β = ε
R(D) = {d}

Summary of Right sets of non-terminals:

• Right(S) = R(C).
• Right(A) = {a}.
• Right(B) = {b}.
• Right(C) = {c}.
• Right(D) = {d}.
Substituting the sets:

• Right(S) = {c}.
• Right(A) = {a}.
• Right(B) = {b}.
• Right(C) = {c}.
• Right(D) = {d}.

5.3.4. Leftmost

The Leftmost sets are calculated as detailed in Table 15.

Table 15. Leftmost Sets calculation for the CFG in Example 3.

Leftmost(S)

For S −→ ABC

1. Evaluating the first
conditional of Algorithm 3.

A = S
β = ε
B = A
γ = BC
Lm(S) = Lm(A)

Leftmost(A)

For A −→ aA For A −→ a

1. Evaluating the second
conditional of Algorithm 3.

A = A

2. Evaluating the second
conditional of Algorithm 3.

A = A
β = ε β = ε

a = a a = a
γ = A γ = ε

Lm(A) ⊇ {a} Lm(A) = {a}

Leftmost(B)

For B −→ bB For B −→ b

1. Evaluating the second
conditional of Algorithm 3.

A = B

2. Evaluating the second
conditional of Algorithm 3.

A = B
β = ε β = ε

a = b a = b
γ = B γ = ε

Lm(B) ⊇ {b} Lm(B) = {b}
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Table 15. Cont.

Leftmost(C)

For C −→ CDc For C −→ c

1. Evaluating the first
conditional of Algorithm 3.

A = C

2. Evaluating the second
conditional of Algorithm 3.

A = C
β = ε β = ε
B = C a = c
γ = Dc γ = ε
Lm(C) ⊇ Lm(C) Lm(C) = {c}

Leftmost(D)

For D −→ d

1. Evaluating the second
conditional of Algorithm 3.

A = D
β = ε
a = d
γ = ε
Lm(D) = {d}

Summary of Leftmost sets of non-terminals:

• Leftmost(S) = Lm(A).
• Leftmost(A) = {a}.
• Leftmost(B) = {b}.
• Leftmost(C) = {c}.
• Leftmost(D) = {d}.
Substituting the sets:

• Leftmost(S) = {a}.
• Leftmost(A) = {a}.
• Leftmost(B) = {b}.
• Leftmost(C) = {c}.
• Leftmost(D) = {d}.

5.3.5. Case Studies

For Algorithm 5, the application of some precedence relations is exhibited.

1. For the delimiter symbol $:

(a) $ ⋖L(S) −→ Rule (A.1).

• $ ⋖ a
• $ ⋖ b
• $ ⋖ d
• $ ⋖ c

(b) R(S)⋗ $ −→ Rule (A.2).

• c ⋗ $

2. For S −→ ABC

(a) X = A, Y = B −→ Rule (E.1).
R(A) ⋗ Lm(B)

• a ⋗ b

u = null, l = [A]
(b) X = B, Y = C −→ Rule (E.1).

R(B) ⋗ Lm(C)

• b ⋗ c
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A ∈ l ̸= [ ] −→ Rule (E.3).
R(A) ⋗ Lm(C)

• a ⋗ c

u = null, l = [ ]

3. For A −→ aA

(a) X = a, Y = A −→ Rule (C).
a ⋖ L(A)

• a ⋖ a

u = a, l = [ ]

4. For B −→ bB

(a) X = b, Y = B −→ Rule (C).
b ⋖ L(B)

• b ⋖ b

u = b, l = [ ]

5. For C −→ CDc

(a) X = C, Y = D −→ Rule (E.1).
R(C) ⋗ Lm(D)

• c ⋗ d

u = null, l = [ ]
(b) X = D, Y = c −→ Rule (D.1).

R(D) ⋗ c

• d ⋗ c

u = null, l = [ ]

6. In the following cases, the form XY is not fulfilled in the right side part of the produc-
tion; therefore, no rule can be applied:

(a) A −→ a
(b) B −→ b
(c) B −→ ε
(d) C −→ c
(e) D −→ d

The remaining precedence relations are derived using the same method as the previ-
ously demonstrated cases.

5.3.6. Operator Precedence Table

At the end of the algorithm execution, operator precedence Table 16 is obtained.

Table 16. Precedence Table of Example 3.

a b c d $
a ⋖ ⋗ ⋗
b ⋖ ⋗
c ⋗ ⋗
d ⋗
$ ⋖ ⋖ ⋖ ⋖

5.3.7. Bottom-Up Parsing

Let aabbcdc be a string obtained by rightmost derivation, then applying Algorithm 1
results in the bottom-up parsing detailed in Table 17.
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Table 17. Bottom-up Parsing of Example 3.

Stack Input Action

$ aabbcdc$ Shift

$a abbcdc$ Shift

$aa bbcdc$ Reduce

$a bbcdc$ Reduce

$ bbcdc$ Shift

$b bcdc$ Shift

Table 17. Cont.

Stack Input Action

$bb cdc$ Reduce

$b cdc$ Reduce

$ cdc$ Shift

$c dc$ Reduce

$ dc$ Shift

$d c$ Reduce

$ c$ Shift

$c $ Reduce

$ $ Accept

5.4. Discussion

In the examples, three CFGs are considered: one OPG and two non-OPGs. In the
first CFG, it is observed that it complies with the basic rule, while the following ones do
not since they present productions with consecutive non-terminal symbols on the right
side. Regardless of the nature of the CFG, the proposed algorithms play a crucial role in
obtaining the operator precedence table. Using Algorithm 1 applied to a specific string for
each CFG, a bottom-up parsing is performed, verifying that the strings are generated by
their respective grammars. This process underscores the functionality of the proposal to
perform bottom-up parsing based on operator precedence, even when the CFGs do not
fulfill the basic requirement of the OPGs.

6. Exceptions

If the CFG has any of the following forms, the rules outlined in the algorithms of this
paper would not apply:

1. A −→ aBb
B −→ βa
The sets for B in the second production are:
L(B) = {a}.
R(B) = {a}.
The precedence relations based on the sections of Algorithm 5 exhibit:

• For the rule (C): a ⋖ a and u = a.
• For the rule (D.1): a ⋗ b.
• For the rule (D.2): a .

= b.

Applying rules (D.1) and (D.2) generates the conflict.
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2. A −→ aBb
B −→ aβ

Being β
∗

=⇒ ε ∨ β
∗

=⇒ γa.
According to the established conditions, the sets for B in the second production are
L(B) = {a}.
R(B) = {a}.
The precedence relations based on the sections of Algorithm 5 exhibit:

• For the rule (C): a ⋖ a and u = a.
• For the rule (D.1): a ⋗ b.
• For the rule (D.2): a .

= b.

The application of rules (D.1) and (D.2) generates the conflict.
If theR(B) does not contain a, then the conflict does not arise.

3. A −→ bBa
B −→ aβ
The sets for B in the second production are:
L(B) = {a}.
R(B) = {a}.
The precedence relations based on the sections of Algorithm 5 exhibit:

• For the rule (C): b ⋖ a and u = b.
• For the rule (D.1): a ⋗ a.
• For the rule (D.2): b .

= a.

The application of rules (C) and (D.2) generates the conflict.
4. A −→ bBa

B −→ βa
Being β

∗
=⇒ ε ∨ β

∗
=⇒ aγ.

According to the established conditions, the sets for B in the second production are:
L(B) = {a}.
R(B) = {a}.
The precedence relations based on the sections of Algorithm 5 exhibit:

• For the rule (C): b ⋖ a and u = b.
• For the rule (D.1): a ⋗ a.
• For the rule (D.2): b .

= a.

The application of rules (C) and (D.2) generates the conflict.
If the L(B) does not contain a, then the conflict does not arise.

When CFG productions take the following form, there will be no conflicts:
A −→ aBb
B −→ γ
where γ has neither a at the end of the right side nor b at the end of the left side.

7. Conclusions

Previous work has addressed the application of OPGs to solve problems related to the
parsing of various forms of languages; however, not much emphasis has been placed on
the definition of the Left and Right sets nor on the generation of an algorithm to find the
operator precedence table.

In this work, we have redefined the sets Right and Left, previously exposed by other
authors, and introduced a novel set called Leftmost. These sets form the basis for an
algorithm that constructs the operator precedence table. Each set is constructed from an
algorithm that facilitates its obtaining, adding a new dimension to the existing research.

The proposed algorithm for constructing the precedence table, while breaking (with
some exceptions) the basic definition of an OPG, opens up new possibilities. It allows for
the construction of an operator precedence table from a non-OPG CFG, paving the way for
a bottom-up parsing algorithm to recognize a string generated by the CFG.
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Three examples of CFGs are shown: one OPG and two non-OPGs. The proposed
algorithms are systematically applied to these examples, step by step, until the operator
precedence tables are obtained, regardless of the CFG’s nature. Additionally, the bottom-up
parsing algorithm is applied to specific strings for each grammar, providing verification
that they generated them.

It is important to note that while the algorithm and the definition of the new sets
of terminal symbols are significant advancements, they do have limitations. It is not
always possible to solve all cases where two or more adjacent terminal symbols are on the
right-hand side. There are exceptions, and we must be aware of them.
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