
Citation: Al-Betar, M.A.; Alyasseri,

Z.A.A.; Al-Qazzaz, N.K.; Makhadmeh,

S.N.; Ali, N.S.; Guger, C. EEG Channel

Selection for Stroke Patient

Rehabilitation Using BAT Optimizer.

Algorithms 2024, 17, 346. https://

doi.org/10.3390/a17080346

Academic Editor: Gabriella Trucco

Received: 21 May 2024

Revised: 14 July 2024

Accepted: 15 July 2024

Published: 8 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

EEG Channel Selection for Stroke Patient Rehabilitation Using
BAT Optimizer
Mohammed Azmi Al-Betar 1,* , Zaid Abdi Alkareem Alyasseri 2,3,* , Noor Kamal Al-Qazzaz 4,
Sharif Naser Makhadmeh 1,5, Nabeel Salih Ali 2 and Christoph Guger 6

1 Artificial Intelligence Research Center (AIRC), College of Engineering and Information Technology,
Ajman University, Ajman P.O. Box 346, United Arab Emirates; sharif.makhadmeh@uop.edu.jo

2 Information Technology Research and Development Center (ITRDC), University of Kufa, Najaf 54001, Iraq;
nabeel@uokufa.edu.iq

3 College of Engineering, University of Warith Al-Anbiyaa, Karbala 56001, Iraq
4 Biomedical Engineering Department, AL-Khwarizmi College of Engineering, University of Baghdad,

Baghdad 47146, Iraq; noorbme@kecbu.uobaghdad.edu.iq
5 Data Science and Artificial Intelligence Department, Faculty of Information Technology, University of Petra,

Amman 1196, Jordan
6 G.Tec Medical Engineering GmbH, 4521 Schiedlberg, Austria; guger@gtec.at
* Correspondence: m.albetar@ajman.ac.ae (M.A.A.-B.); zaid.alyasseri@uokufa.edu.iq (Z.A.A.A.)

Abstract: Stroke is a major cause of mortality worldwide, disrupts cerebral blood flow, leading to
severe brain damage. Hemiplegia, a common consequence, results in motor task loss on one side of
the body. Many stroke survivors face long-term motor impairments and require great rehabilitation.
Electroencephalograms (EEGs) provide a non-invasive method to monitor brain activity and have
been used in brain–computer interfaces (BCIs) to help in rehabilitation. Motor imagery (MI) tasks,
detected through EEG, are pivotal for developing BCIs that assist patients in regaining motor purpose.
However, interpreting EEG signals for MI tasks remains challenging due to their complexity and
low signal-to-noise ratio. The main aim of this study is to focus on optimizing channel selection
in EEG-based BCIs specifically for stroke rehabilitation. Determining the most informative EEG
channels is crucial for capturing the neural signals related to motor impairments in stroke patients.
In this paper, a binary bat algorithm (BA)-based optimization method is proposed to select the most
relevant channels tailored to the unique neurophysiological changes in stroke patients. This approach
is able to enhance the BCI performance by improving classification accuracy and reducing data
dimensionality. We use time–entropy–frequency (TEF) attributes, processed through automated
independent component analysis with wavelet transform (AICA-WT) denoising, to enhance signal
clarity. The selected channels and features are proved through a k-nearest neighbor (KNN) classifier
using public BCI datasets, demonstrating improved classification of MI tasks and the potential for
better rehabilitation outcomes.

Keywords: EEG; feature extraction; channel selection; stroke patients; BAT algorithm

1. Introduction

The World Health Organization (WHO) lists stroke as the second greatest cause of
mortality globally because of the damage it causes to the brain through disruptions in
cerebral circulation [1,2]. One of the most debilitating forms of nervous system damage is
hemiplegia, which describes partial or complete paralysis of one side of the body including
the arm, leg, foot, and hand. Ischemic stroke, the most common type of stroke, causes
interruption of cerebral perfusion, which results in rapid loss of brain function [3,4]. Sixty
percent or more of stroke survivors require rehabilitation due to permanent motor function
impairment [5]. However, stroke survivors endure a wide range of disabilities, including
visual and cognitive deficits, that have a cumulatively devastating effect on their ability to
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carry out even the most basic of tasks. Accordingly, research into efficient treatment and
rehabilitation of stroke victims has been a focus for many years [6].

An electroencephalogram (EEG) is a non-invasive method that estimates the elec-
trical activity of the brain with good time resolution in order to define the results of a
variety of mental tasks. By translating brain EEG signals into control instructions, brain–
computer interfaces (BCIs) help people with physical impairments interact with the sensory
world outside [7]. Motor imagery (MI) is the mental imagining of body movement with-
out real muscle movement, and its accompanying rhythmic activities of the brain can
be recorded and used as the input signals of BCI systems. Event-related desynchroniza-
tion/synchronization (ERD/ERS) refers to the detection of the rhythmic power changes in
the sensorimotor area within the Rolandic mu (9–13 Hz) and beta (13–30 Hz) frequency
bands, which can be used to distinguish between various types of MI tasks [8]. Due to the
fact that MI does not require any extraneous stimuli, BCIs based on MI have a wide variety
of potential uses [9].

The volatility and complexity of EEG signals, however, cause difficulties for con-
ventional MI-BCI decoding [7]. Crucial and difficult issues remain in enhancing EEG
decoding capacity, extracting discriminative information from low signal-to-noise EEGs,
and realizing reliable classification of various MI tasks [8].

Channel selection in EEG-based investigations is important to determine the subset
of channels that is most informative in terms of capturing the proper neural signals for
the chosen application [10]. Nevertheless, such considerations and their corresponding
challenges may differ in other application contexts, and that can be seen when comparing
stroke rehabilitation with emotion processing and dementia detection using an EEG-based
dataset [11]. For example, stroke rehabilitation is characterized by the fact that with
neurological defects resulting from the stroke event, there are certain modifications in
the activity of the brain and the functioning of the neural networks. EEG data can also
be characterized by specific features that distinguish them from healthy subjects or other
patients, such as changes in the topological organization of networks, aberrant activity, and
appearance of novel regulatory strategies [12].

Therefore, the approach to choosing the most significant EEG channels for stroke
rehabilitation may need to be more selective and specific. The idea is to find out which
of the channels provides the best recording of the neural characteristics of the particular
motor, cognitive, or behavioral impairment which a stroke patient may present, and it will
not be the same as the channels that would be ideal for other applications [13]. However,
there are distinct approaches such as emotion processing and dementia detection that may
employ different neurophysiological mechanisms and/or spectrotemporal patterns. For
example, in emotion processing, the frequency band related to emotion processing can
be spread across different cortical areas, and the aim of the channel selection could be to
capture this distributed frequency activity. Similarly, in the case of dementia detection,
the alteration of brain structure and function which define cognitive impairment might
represent a different spatial distribution of load that calls for different rules for choosing
the channels [14]. With a direct focus on the channel selection problem in the context of
stroke rehabilitation, the proposed study intends to contribute an effective solution that
can improve the performance of a BCI and thus improve the rehabilitation process.

Channel selection is the main focus of this study. Many electrodes are utilized in
medical and diagnostic treatments. For practical BCI applications, many electrodes are
needed for classification accuracy; however, putting many electrodes on the scalp is time-
consuming and subject to EEG signal overfitting. To fix these issues, researchers need to
identify the electrodes that are unable to be classified. Electrode selection can evaluate the
neurological knowledge of individuals due to varying reactions and subject-dependent
ideal electrode placement [15]. The user-dependent classification job requires automatic
electrode relevance determination. This challenge can be overcome by considering a wide
range of electrodes and using many methods to identify the appropriate channels for each
patient. A particle BA-based optimization technique was used to pick the most accurate
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EEG channels for stroke patient rehabilitation. Each EEG data channel provides unique
classification features. Channel selection reduces data storage and processing, speeds up
classifier training by using simpler data, and reduces the “curse of dimensionality”.

Many studies have examined channel selection in healthy people [16,17], whereas
the present study focuses on stroke rehabilitation, where stroke patients’ underlying
neurophysiological abnormalities and limitations may demand a customized channel
selection strategy.

Choosing EEG channels for emotion processing, cognitive assessment, and clinical
diagnosis often involves knowledge of neural mechanisms and brain regions linked with
the desired activities. Common brain activity patterns and optimal channel selection are
well established for healthy people. However, strokes can alter brain structure, connectivity,
and function. These alterations may cause abnormal brain patterns and compensatory
processes [18,19]. Thus, the best EEG channels for stroke rehabilitation may differ from
those recommended for healthy people.

To capture stroke patients’ neural correlates of motor, cognitive, and behavioral ab-
normalities, channel selection must be more specialized and personalized due to stroke-
induced neuroplasticity. Targeting stroke patients with a customized solution that can
properly recognize neural fingerprints and brain activity patterns is intended to connect
stroke-related deficiencies. This stage is crucial to developing BCI-based stroke therapies
that improve rehabilitation outcomes [20].

The literature on channel selection in healthy people can be useful, but this study
recognizes the need to address stroke survivors’ unique issues and considerations. Scientists
examined channel selection differences between stroke patients and healthy people to better
understand neurophysiological changes and optimal BCI setups for stroke rehabilitation.

Therefore, in this study, a binary bat algorithm (BA)-based optimization method is used to
identify the most important EEG channels for stroke rehabilitation. Thus, this method is suited
to stroke survivors’ needs by optimizing BCI technology and rehabilitation effectiveness.

Raw EEG data are segmented and filtered using standard filters and the automated
independent component analysis with wavelet transform (AICA-WT) denoising approach
in an effort to address the issues mentioned above. Then, time–entropy–frequency (TEF)
attributes are created by combining the effective features from the time, entropy, and
frequency domains. As a result, the BA-based optimization method is used to optimize the
TEF characteristics in order to choose the efficient channels that improve the stationarity
and resilience of the system. After we train a KNN classifier technique, we conduct a
series of experiments to evaluate our proposed framework using 25 MI-based BCI sessions
with follow-up assessment visits to examine the functional changes before and after EEG
neurorehabilitation from public datasets from the BCI Competition. The hybrid time–
entropy–frequency (TEF) attributes used in the AICA-WT-TEF-Chs framework for MI-BCI
classification are intended to efficiently leverage the underlying information of the time,
entropy, and frequency domains on classification performance.

The approach suggested in this paper makes the following contributions. First, it
looks at how time–entropy–frequency (TEF) variables affect classification performance.
Second, it uses the effective EEG channels generated by a BA-based optimization method
to detect changes both before and after rehabilitation. Third, it tests the effectiveness of the
AICA-WT-TEF-Chs framework utilizing a variety of classification models and cutting-edge
techniques. By eliminating extraneous dimensions, effective channel selection decreases
the amount of data that must be stored and processed, speeds up classifier training by
using simpler data, and prevents classifier overfitting by lessening the impact of the “curse
of dimensionality”.

2. Related Works

EEG-based BCIs in particular have good temporal resolution [21], but the recorded
wave activity may be corrupted in a variety of ways depending on the artifacts that occurred,
so preprocessing the raw EEG signals is critical in the classification of MI-based signals.
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Most of the time, these artifacts can imitate or overlay the abnormal behavior of the brain.
Studies have investigated artifacts’ effects on EEG signals, including eye blinks, ocular
movements, cardiac artifacts, and muscular activity, and noise from power lines can also
intersect an EEG’s frequencies [22,23]. As a result, assessing the efficiency of EEG signals
in the presence of background noise can be difficult. Spatial filters can produce a more
localized signal for each electrode in this situation because EEG-based BCIs in particular
have poor spatial resolution.

To choose the best characteristics for BCI-MI-based EEG analysis, feature extraction is
carried out for each recorded channel in multiple domains. The most popular technique is to
use common spatial patterns (CSPs) to obtain discriminant features from high-dimensional
EEG signals, which may be used to identify the spatial characteristics related to ERD
produced by various MI tasks [24]. However, the efficiency of CSPs is easily impacted by
noise and is highly sensitive to the choice of frequency bands [16]. Several feature extraction
techniques were developed to analyze the EEG data in the time, frequency, and time–
frequency domains to address the issue of efficacy [25]. Additionally, wavelet coherence
(WC) bispectrum characteristics were suggested in [26] for distinguishing between right
and left MI.

The sizes of the features derived from EEG signals are usually pretty big for each
channel, and they get bigger when one moves to the next channel. The classification of
several features necessitates additional computation and time. To solve this issue, the
most effective feature set must be obtained by selecting a subset of EEG channels that are
more closely related to mental work than others. The four evaluation methodologies of
filtering, wrapping, embedding, and hybrid can be used to categorize feature selection
algorithms [27]. Based on specific statistical criteria, the filtering method used for motor
intention-based EEG activities is taken into consideration. For instance, before classifying
the motor intent activity, He et al. [28] developed the statistical method of the Bhattacharyya
bound for channel selection. The best candidate subset was chosen using this method,
which also employed a CSP and sequential search strategy. Tam et al. [29] suggested a
different statistical method based on CSP rank for sorting filter coefficients with absolute
values and then choosing the features with the biggest succeeding coefficient. Although
the filtering technique has low accuracy, it operates quickly and is unaffected by the subject
or classifier choice.

On the other hand, the classifier and the subject are quite important in the wrapper
selection process [30]. In this way, the subset candidates are assessed using classification
accuracy and can thus make more accurate predictions than filtering techniques. As a result,
the wrapper strategy is more computationally expensive than the filtering technique and is
subject to the overfitting problem [31], which can be avoided by employing cross-validation
measures for prediction. For choosing the best channel, the majority of wrapper strategies
use the sequential forward search, backward elimination strategy [32], and heuristic search
method [33,34]. Without mentioning a stopping condition, the filtering and wrapping
procedures have also been coupled for selection purposes. This hybrid strategy was created
to deal with huge datasets. Gaur et al., for instance [35], offered the best possible channel
selection technique based on CSPs. Before ranking all the channels according to their scores
and using the classification accuracy to evaluate the chosen ideal channel combination, they
first applied the L1 norm of a CSP to group the channel contribution scores. Finally, using
the defined criteria for a particular classifier’s learning process, the embedded approach
was used to choose significant channels.

To choose channels with the best classification outcomes, Shi et al. [36] used feature
selection techniques, recursive feature removal, and zero-norm optimization trained with
support vector machines. The use of these techniques allowed the EEG channels to be
significantly reduced [37].

The crucial step in the classification of EEG data is to use pertinent features that signifi-
cantly affect the system’s ability to classify data effectively [38–40]. Therefore, to achieve the
best classification performance, it is necessary to use valid features from EEG signals [41].
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Furthermore, global optimization techniques and machine learning classification can be
combined to address such problems in the BCI domain, including feature extraction and
selection [42]. Several algorithms gained a lot of interest for their applications in feature
selection, for instance, differential evolution (DE), simulated annealing (SA), particle swarm
optimization (PSO), artificial bee colony (ABC), and ant colony optimization (ACO) [43].

Research has been conducted on channel selection for different BCI paradigms in-
cluding recursive channel elimination for motor imagery tasks [44]. In a study that was
conducted by Rakotomamonjy et al. [45], the researchers used a channel selection technique
that was built into the training of an SVM classifier. The space of features was searched
using GA in the references [46,47], and the fitness function was the weighted linear com-
bination of the number of features and the accuracy of the SVM. Udhaya et al. in [48]
suggested a PSO-based rough set feature selection approach to determine the best subset
of features, and the accuracy of a neighborhood classifier was utilized as the evaluation
criterion for the feature subset. DE was utilized by Baig et al. [49], and PSO and GA were
utilized by Atyabi et al. [50] in order to find the best feature subset, respectively. In [51], the
process of selecting characteristics for EEG-based emotion identification used ant colony
optimization, simulated annealing, genetic algorithms, particle swarm optimization, and
differential evolution. The performance of these EA-based approaches for feature selection
is quite encouraging.

However, the size of the search area is predetermined in these algorithms; therefore,
throughout each iteration, it is important to make a decision regarding whether or not
each feature should be chosen. Under these circumstances, the computational effort will
be wasted on some features that are superfluous, unnecessary, or of a trivial nature. In
addition, evolutionary algorithms (EAs) readily converge to a local optimum as a result
of the wide search space as well as the interference of redundant, irrelevant, and trivial
features. In this study, we design EA-based feature selection methods for motor imagery
BCI through the reduction of dimensionality.

The performance of a classifier will dramatically decline as the number of features
increases due to the dimensionality curse, which occurs when the number of features
surpasses a specific threshold. Additionally, the training procedure takes longer the higher
the feature dimensionality becomes [46].

In order to locate a large number of existing channels, feature selection is required
with a thorough search for extracting related channels [10,52]. Researchers have focused
on feature selection issues and suggested complete search-, greedy search-, and random
search-based approaches [11]. High computational costs and convergence to local optimum
remain issues with these selection techniques [53].

3. BAT Algorithm

In this section, the bat optimization algorithm is introduced and illustrated in terms
of its inspiration, microbats, and their lifestyle in nature, along with the method’s general
optimization procedure and mathematical formulation.

3.1. Inspiration of BAT

The bat optimization algorithm was first proposed by Xin-She Yang in 2010 [54]. Xin-
She Yang proposed the bat algorithm based on microbats’ characteristics of echolocation,
used for hunting prey, and movement in darkness. A microbat produces extremely loud
sound pulses and hears their echo from the objects and prey around it. Based on the echo
sound, bats can define the type of prey and the strategy for hunting it. The bats usually
produce 10 to 20 pulses every second when they are searching for prey. Once they are close
to the prey, the number of pulses increases to 200 pulses every second and the sound pulse
becomes quieter.

In nature, microbats have a collective hunting behavior, where they fly together with
determined velocity to hunt prey simultaneously by using the echolocation characteristic,
as shown in Figure 1. The figure presents the movement of microbats based on the echoloca-
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tion mechanism, where the microbats update their locations and move toward prey based
on the echo sound and the location of other microbats, determined by interacting with each
other. Furthermore, the microbats’ velocity becomes higher and the pulses lower when the
microbats are close to the prey location.

Figure 1. Bat movement toward prey.

In the BAT algorithm, each microbat is considered as a solution in the population,
the position of the prey is the optimal solution for a particular optimization problem, the
location is presented in a vector x with a range between fmin and fmax, the velocity of
microbats is presented in a vector v, and the wavelength is λ with pulse rate r ∈ [0, 1] and
loudness range A, where the largest is presented as Ao and the lowest is Amin.

3.2. Procedure of BAT

This section presents the general optimization procedure of the BAT algorithm. This
optimization procedure contains six main steps, which are presented in Figure 2 and
thoroughly discussed below:

Figure 2. Bat algorithm flowchart.

• Step 1: BAT algorithm parameter initialization. In this step, the BAT parameters
are initialized with initial values. These parameters are the number of microbats
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(solutions) (N), maximum number of iterations (MaxItr), max ( fmax) and min ( fmin)
frequency range, velocity vector (v), loudness rate (A), pulse rate (r), initial pulse rate
(r0), two parameters (λ and α) with constant values in the range [0, 1], and bandwidth
range (ε) in the range [−1, 1].

• Step 2: BAT population memory initialization. The BAT solutions are randomly
generated in this step using Equation (1), considering the BAT algorithm and particular
optimization problem parameters and constraints.

xj
i = lbi + (ubi − lbi)× R, (1)

where ∀i = 1, 2, . . . , d, ∀j = 1, 2, . . . , N, and R is a random number between 0 and 1.
The produced solutions together generate the population, as shown in Equation (2),
and are stored in the BAT memory (BM) in ascending order on the basis of their fitness
values. The best solution with the fittest values is assigned to xGbest and stored in the
first position of the BM.

BM =


x1

1 x1
2 · · · x1

d
x2

1 x2
2 · · · x2

d
...

... · · ·
...

xN
1 xN

2 · · · xN
d

, (2)

• Step 3: Bat population intensification. Now, all microbats x fly and change their
position considering a velocity v defined by a frequency f that is generated randomly,
as shown in Equations (3) and (4). Accordingly, the bat positions are updated using
Equation (5).

fi = fmin + ( fmin − fmax)× R, (3)

v′ji = vj
i + (xj

i − xGbest)× fi, (4)

x′ji = xj
i + v′ji , (5)

It is notable that the microbats update their locations to be closer to the global best
(xGbest). Thus, the new position of the microbats intensifies the position in a direction
toward xGbest.

• Step 4: Bat population diversification.
In this step, the microbats’ positions are updated based on random parameters to
attempt to find better global solutions. A new solution is selected from the BM based
on a selection method and assigned to xGbest. Subsequently, the current solution is
updated using xGbest as follows:

x′ji = xGbest + ε × A′
j, (6)

where A′ is the loudness average. As Steps 3 and 4 are contradictory steps, the BAT
algorithm chooses one of them at a time for execution. This selection is based on the
following equation:

x′j =

{
xGbest + ε × A′

j if rj ≤ R

xj + v′j otherwise
, (7)

• Step 5: BM update. The position of the microbats in the BM will be updated in this
step if the new location is fitter than the old one and R ≤ Aj. Moreover, xGbest will be
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updated if the new BM contains a solution with a better fitness value. Subsequently, rj
and Aj values will be updated in accordance with Equations (8) and (9).

rj = r0
j (1 − e(−γ×itr)), (8)

Aj = α × Aj, (9)

where itr denotes the current iteration number.
• Step 6: Stop criterion. Steps 3, 4, and 5 will be repeated until the algorithm reaches the

stop criterion.

4. Proposed Method

This section presents the main contribution of this paper. The proposed method
includes five phases, which are presented in Figure 3 and thoroughly discussed below.

1 
 

 
Figure 3. A proposed method for electroencephalogram channel selection.

4.1. Phase I: EEG Signal Acquisition

In this study, the source of the dataset is from g.tec Medical Engineering GmbH, a
standard EEG dataset; details about this dataset are explained in [8]. The EEG data of
poststroke patients with hemiparesis of the upper extremities were studied. This study
involved 8 poststroke patients treated with the recoveriX system (g.tec medical engineering
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GmbH), with a mean age of 22 years (SD = 4.582). Each participant received BCI-based
MI training for three months, with 2 training sessions each week (for a total of 25 training
sessions). The study team conducted and analyzed two assessments (pre- and post-training).
The pretraining evaluation was scheduled 30 to 35 days prior to the intervention, and the
post-training evaluation was conducted a few days after the intervention (see Figure 4). The
Ethikkommission des Landes Oberosterreich in Austria (#D-42-17) authorized this study
protocol, and each patient signed an informed consent form prior to the preassessment.
Finally, this dataset is captured with a sample rate of 256 Hz.

(a)

(b)

Figure 4. (a) EEG electrode distributions based on 10–20 system; (b) schematic diagram of EEG
recording protocol.

According to system indications for an MI mental task, the patients were instructed to
visualize dorsal wrist movement. Prior to and after EEG neurorehabilitation, the patients
participated in 25 MI-based BCI sessions with follow-up evaluation visits to measure the
functional changes. Each session consisted of 240 MI repetitions with both hands, broken
down into three 80-trial runs. Each session lasted approximately one hour, including
the time required for setup and cleanup. The MI-based BCI tasks were illustrated with
randomized inter-trial intervals in a pseudo-random order.
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For capturing all the various neural processes that take place during stroke rehabilitation—
involving cognitive, affective, and motor components—sixteen-channel active EEG caps
were employed. The caps were made by the g.tec medical engineering GmbH company
in Austria.

According to the international 10–20 system, the EEG electrodes were positioned as
follows: (FC5, FC1, FCz, FC2, FC6, C5, C3, C1, Cz, C2, C4, C6, CP5, CP1, CP2, and CP6).
To the subject, a ground electrode was applied at FPz and a reference electrode was affixed
at the right earlobe.

These channels are linked with different cognitive and sensorimotor processes which
are in some way impaired in patients after a stroke. Particularly, the frontocentral channels
(FC5, FC1, FCz, FC2, FC6) are associated with emotional regulation, working memory, and
secondary motor area. Further, it is important to note that the central channels (C5, C3,
C1, Cz, C2, C4, and C6) are related to sensory–motor integration and body movement
representation. In addition, the centroparietal channels (CP5, CP1, CP2, CP6) are described
to be involved in the process of integration of the exteroceptive and the proprioceptive
inputs as well as in the regulation of the voluntary movements [22].

4.2. Phase II: Preprocessing

Each channel of the recorded EEG dataset initially used two standard filters. First,
a bandpass filter (BPF) with frequencies between (8 and 30 Hz) was used to confine the
band of the recorded EEG data, and second, a Butterworth (BW) notch filter at (50 Hz)
was used to reduce the noise from power line interference. (ICs) s(t) = [s1(t), . . . , sn(t)],
utilizing the FastICA algorithm proposed by [55]. The set s(t) of n unknown components
that were linearly mixed within matrix A and the set x(t) of n observations where x(t) =
[x1(t), . . . , xn(t)] [56–58] represent the EEGs and are related to s(t), t, which is the time;
hence, the ICA equation is

x(t) = As(t) (10)

Then, three metrics were used to evaluate the artifactual components, ICs: kurtosis
(Kurt), skewness (Skw), and sample entropy (SampEn). If these parameters surpassed
the pm1.2 threshold for each IC, the IC was marked as critical and denoised using WT.
The practical value of the threshold was determined through trial and error and previous
research [59–61]. The threshold value of ±1.2 is not a drawback of the AICA–WT technique,
as the artifactual ICs were not rejected but were denoised using the WT technique. As
a result, WT denoised the marked ICs before returning the enhanced components to the
original EEG dataset [22,23].

4.3. Phase III: EEG Feature Extraction

Three different feature extraction techniques are used in this work. These techniques
include time domain features, entropy features, and frequency domain features as extracted
in [8].

4.4. Phase IV: EEG Channel Selection Using BAT Optimizer

This phase is the main contribution, and it includes several steps to achieve the optimal
subset of the EEG channels which can provide the highest accuracy rate. The following
steps represent how we adapt the BAT optimizer for the EEG channel selection problem:

• Step 1: BAT algorithm parameter initialization. In this step, the BAT parameters
are initialized with initial values. These parameters are the number of microbats
(solutions) (N), maximum number of iterations (MaxItr), max ( fmax) and min ( fmin)
frequency range, velocity vector (v), loudness rate (A), pulse rate (r), initial pulse rate
(r0), two parameters (λ and α) with constant values in the range [0, 1], and bandwidth
range (ε) in the range [−1, 1], as shown in Table 1.
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Table 1. Metaheuristic parameters.

Algorithm Parameters Population Size Runs

CS β = 1.5, Pa = 0.25 20 30
PSO c1 = c2 = 2 20 30
BAT A = 0.5, r = 0.5 20 30
FFA α = 0.5, γ = 1, β0 = 0.2 20 30

GWO - 20 30

• Step 2: BAT population memory initialization. The BAT solutions are randomly gener-
ated in this step using Equation (11), considering the BAT algorithm and particular
optimization problem parameters and constraints.

xj
i = lbi + (ubi − lbi)× R, (11)

where ∀i = 1, 2, . . . , d, ∀j = 1, 2, . . . , N, and R is a random number between 0 and 1.
The produced solutions together generate the population, as shown in Equation (12),
and are stored in the BAT memory (BM) in ascending order on the basis of their fitness
values. The best solution with the fittest values is assigned to xGbest and stored in the
first position of the BM.

BM =


x1

1 x1
2 · · · x1

d
x2

1 x2
2 · · · x2

d
...

... · · ·
...

xN
1 xN

2 · · · xN
d

, (12)

• Step 3: BAT population intensification. Now, all microbats x fly and change their
position considering a velocity v defined by a frequency f that is generated randomly,
as shown in Equations (13) and (14). Accordingly, the bat positions are updated using
Equation (15).

fi = fmin + ( fmin − fmax)× R, (13)

v′ji = vj
i + (xj

i − xG
i best)× fi, (14)

x′ji = xj
i + v′ji , (15)

It is notable that the microbats update their locations to be closer to the global best
(xGbest). Thus, the new position of the microbats intensifies the position in a direction
towards xGbest.

• Step 4: BAT population diversification.
In this step, the microbats’ positions are updated based on random parameters to
attempt to find better global solutions. A new solution is selected from the BM based
on a selection method and assigned to xbest. Subsequently, the current solution is
updated using xbest, as follows:

x′ji = xbest + ε × A′
j, (16)

where A′ is the loudness average. As Steps 3 and 4 are contradictory steps, the BAT
algorithm chooses one of them at a time for execution. This selection is based on the
following equation:

x′j =

{
xbest + ε × A′

j if rj ≤ R

xj + v′j otherwise
, (17)
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• Step 5: BM update. The position of the microbats in the BM will be updated in this
step if the new location is fitter than the old one and R ≤ Aj. Moreover, XGbest will be
updated if the new BM contains a solution with a better fitness value. Subsequently, rj
and Aj values will be updated in accordance with Equations (18) and (19).

rj = r0
j (1 − e(−γ×itr), (18)

Aj = α × Aj, (19)

where itr denotes the current iteration number.
• Step 6: stop criterion. Steps 3, 4, and 5 will be repeated until the algorithm reach the

stop criterion.

4.5. Phase V: Classification

A KNN classifier is used in this work. In this proposed method, the dataset is split
into 60% training, 20% validation, and 20% testing.

5. Experiments and Results

This section thoroughly explains the performance of the proposed method (BAT)
of EEG channels for stroke patient rehabilitation. Since the proposed approach is non-
deterministic, the mean accuracy rate over 20 runs is computed to avoid biased results.
The experiments use a Ideapad 310 Lenovo PC, China. Intel Core i7® 2.59 Ghz processor,
16 GB of RAM, and official Windows 10. The performance of the proposed method is
evaluated using two measures, namely, accuracy and the number of EEG channels selected,
with light shed on the stability of the algorithms by computing the best, worst, and mean
accuracy. Moreover, a statistical test is adopted based on the classification accuracy of
the motor/imaging EEG dataset using the sum of ranks of the metaheuristic algorithms.
The proposed method is tested using three types of EEG features: time domain features,
frequency domain features, and entropy domain features. Furthermore, the performance
results of the proposed method are evaluated using a statistical test to show the significance
of the proposed method compared with other metaheuristic algorithms.

Table 1 shows the parameters used for the selected metaheuristic algorithms that are
used in this work.

5.1. Time Domain Results

Table 2 presents the results of seven features in the time domain: Higuchi’s fractal
dimension (HFD); the Hjorth parameters Hjorth activity (HjAc), Hjorth complexity (Hj-
Comp), and Hjorth mobility (HjMo); Hurst (Hur); kurtosis (Kurt); and skewness (Skw).
The accuracy and the number of EEG channels selected are two measurements to evaluate
the seven features chosen for the motor/imaging EEG dataset. The evaluation metrics are
classified into three categories: best, worst, and mean accuracy and no. of channels selected
to evaluate the algorithms’ stability.

According to Table 2, the performance results for the metaheuristic algorithms PSO,
GWO, FFA, CS, and BAT with several features achieved different and remarkable accuracy
concerning best, worst, and mean accuracy and the number of channels selected. For the
HFD feature, the BAT algorithm achieved better accuracies of 99, 97.5, and 92.8 for best,
mean, and worst accuracy and channel selection, respectively. For the HjAc feature, the
BAT algorithm achieved high accuracy, 97.7, for accuracy and no. of channels selected in
the best case, while PSO achieved a valuable ratio of 94.4 and 85.3 in accuracy and the
number of channels selected in the mean and worst cases, respectively. For the HjComp
feature, the PSO algorithm achieved an accuracy of 88.6 and 84.7 concerning mean and
worst cases, while the BAT algorithm achieved the highest accuracy of 93.8 in the best
case. For the HjMo feature, BAT obtained 97.8, 95.4, and 88.6 for best, mean, and worst
among other metaheuristic algorithms. For the Hur feature, PSO gained high accuracies of
72.8, 65.2, and 56.6 for best, mean, and worst, respectively. For the Kurt feature, the BAT
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algorithm obtained valuable accuracies of 73.2, 68.8, and 63.1 for best, mean, and worst
accuracy and the number of channels selected, respectively.

Moreover, for Skw, BAT achieved high accuracies of 79.2 and 72.5 for best and mean,
respectively, compared with PSO, which obtained an accuracy of 58 in the worst case
of accuracy. Figure 4 shows the results of the time domain features for the convergence
rate and channel distribution, comparing the BAT and PSO algorithms, which achieved
the highest accuracy over the other metaheuristic algorithms, i.e., GWO, FFA, and CS.
In Figure 4a, the convergence rate shows the channels and the number of iterations for
the BAT and PSO algorithms. In addition, Figure 4b presents the effective and emotive
channels when channels are distributed in the BAT and PSO algorithms.

Table 2. The performance of metaHeuristic algorithms with several feature extraction approaches for
motor/imaging EEG dataset.

Feature/Algorithm PSO GWO FFA CS BAT

Best Accuracy 97.9 90.7 66.7 54.9 99

No. channels 8 3 1 1 6

HFD Worst Accuracy 81.5 67.4 45.1 43.2 92.8

No. channels 12 6 3 2 13

Mean Accuracy 94.4 76.2 56.7 50.6 97.5

No. channels 9 4 2 2 10

Best Accuracy 97.1 88.4 68.8 55.1 97.7

No. channels 5 3 1 1 4

HjAc Worst Accuracy 85.3 70.4 41.7 42.1 77.9

No. channels 9 5 3 2 14

Mean Accuracy 94.4 82.1 60.7 48.7 90.8

No. channels 8 4 3 2 8

Best Accuracy 91.2 78.9 58.8 48.7 93.8

No. channels 7 3 2 1 5

HjComp Worst Accuracy 84.7 58.1 47.4 40.9 74.7

No. channels 15 6 3 2 13

Mean Accuracy 88.6 69.9 53.9 44.2 88.2

No. channels 9 4 3 1 9

Best Accuracy 96.5 89.3 67.9 53.5 97.9

No. channels 6 2 2 1 5

HjMo Worst Accuracy 86.4 51.8 53.9 43.8 88.6

No. channels 11 6 3 2 12

Mean Accuracy 92.3 80.6 61.2 47.9 95.4

No. channels 9 4 3 1 9

Best Accuracy 72.8 57.9 47.2 44.1 70.1

No. channels 4 2 1 1 5

Hur Worst Accuracy 56.6 44.1 41.5 41.3 53.9

No. channels 10 6 3 2 11

Mean Accuracy 65.2 51.7 44.7 42.6 64.9

No. channels 8 4 3 2 9
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Table 2. Cont.

Feature/Algorithm PSO GWO FFA CS BAT

Best Accuracy 71.2 61 48.4 43.4 73.2

No. channels 7 3 2 1 7

Kurt Worst Accuracy 56.5 48.2 43.3 40.3 63.1

No. channels 12 6 3 2 12

Mean Accuracy 65.6 54.9 45.4 42 68.8

No. channels 9 5 3 2 10

Best Accuracy 78.7 63.7 50 44.4 79.2

No. channels 4 1 2 1 3

Skw Worst Accuracy 58 41 43.2 40.4 48.2

No. channels 11 6 3 2 13

Mean Accuracy 69.6 53.3 45.9 42.3 72.5

No. channels 7 4 2 2 9

5.2. Entropy Domain Results

Table 3 shows the results of the performance accuracy using seven entropy features,
namely, ConFuzEn, FuzEn, impe, MFEmu, RCMFEmu, SampEn, and TsEn. Based on the
accuracy and the number of selected channels for best, worst, and mean cases, these entropy
features are used to compare the five metaheuristic algorithms, PSO, GWO, FFA, CS, and
BAT, respectively. Compared to the other seven entropy features, the best classification
performance achieved the highest accuracy using ConFuzEn with the PSO algorithm com-
pared to the GWO, FFA, CS, and BAT algorithms. Other entropy features produced higher
accuracy results with the BAT algorithm than the PSO, GWO, FFA, and CS algorithms. The
BAT algorithm registered accuracies of 95.5, 95.6, 88.1, 87.2, 91.4, and 84.6 using FuzEn,
impe, MFEmu, RCMFEmu, SampEn, and TsEn, respectively. Furthermore, Figure 5 presents
the performance evaluation results between the BAT and PSO algorithms concerning the
convergence rate and channel distribution.

Figure 5. Cont.
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Figure 5. Convergence rate and channel distribution.

Table 3. The performance of metaHeuristic algorithms with several feature extraction approaches for
motor/imaging EEG dataset.

Feature/Algorithm PSO GWO FFA CS BAT

Best Accuracy 96.6 82.7 61.3 52 96.5

No. channels 3 3 1 1 7

ConvFuzEn Worst Accuracy 76.4 64.7 45.5 42.5 87.1

No. channels 11 6 3 2 14

Mean Accuracy 90.2 73.6 54.9 45.8 93.2

No. channels 8 5 2 1 11

Best Accuracy 93.6 81.6 60.6 49.1 95.5

No. channels 2 4 2 1 8

FuzEn Worst Accuracy 82.2 68.7 50.5 41.8 88.9

No. channels 10 6 3 2 12

Mean Accuracy 88.6 74.4 55.7 45.5 92.1

No. channels 7 5 3 1 10

Best Accuracy 94.7 78.6 59.3 49.8 95.6

No. channels 5 3 2 1 7

impen Worst Accuracy 75.8 56.1 47.9 44.3 84.9

No. channels 10 6 3 2 12

Mean Accuracy 85.3 69.8 52.3 46.6 90.8

No. channels 8 5 2 2 10
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Table 3. Cont.

Feature/Algorithm PSO GWO FFA CS BAT

Best Accuracy 85.2 73.6 54.3 46.8 88.1

No. channels 7 3 2 1 7

MFEmu Worst Accuracy 70.8 55.9 45.1 40.5 75.5

No. channels 12 6 3 2 12

Mean Accuracy 80.7 66.1 49.4 44.8 84

No. channels 9 5 2 2 9

Best Accuracy 84.3 67.7 51.9 46.6 87.2

No. channels 4 2 2 1 8

RCMFEmu Worst Accuracy 63.7 47 44.9 41.2 75.3

No. channels 12 6 3 2 13

Mean Accuracy 77.3 56.5 47.7 43 80.3

No. channels 8 4 2 1 10

Best Accuracy 87.9 71.5 52.9 51.9 91.4

No. channels 6 3 1 1 7

SampEn Worst Accuracy 75.4 53.2 42.6 40.4 75.9

No. channels 10 6 3 3 14

Mean Accuracy 81.4 63.7 48.2 44.3 83.6

No. channels 8 5 2 2 10

Best Accuracy 83.9 72.5 52.3 46.6 84.6

No. channels 7 3 1 1 4

TsEn Worst Accuracy 65.9 54.4 41.2 40.2 61.3

No. channels 12 7 3 2 13

Mean Accuracy 78.7 64.5 47.2 42.8 79.8

No. channels 10 5 2 1 10

5.3. Frequency Domain Results

Based on Table 4, the frequency domain features of meanF and medF obtained high
accuracies of 96.7 and 83.4 for the PSO and BAT algorithms, respectively. In the best, worst,
and mean cases, meanF gained a significant accuracy relative to the medF feature on the
overall accuracy results for the PSO and BAT algorithms. The best accuracy of medF was
obtained at 96.7 with PSO, while the worst and mean achieved accuracies were 90.3 and 93.8
with the BAT algorithm, respectively. Moreover, the BAT algorithm scored high accuracy
classification results of 83.4 and 78.4 relative to the best and worst accuracies with the
feature of medF, respectively, while PSO gained an accuracy of 69.5. The convergence rate
and the channel distribution are shown in Figure 6.

Figure 6. Cont.
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Figure 6. Convergence rate and channel distribution.

As mentioned, Table 4 shows the performance of the proposed method (BAT) com-
pared with the PSO, GWO, FFA, and CS algorithms using frequency domain features.
The BAT algorithm achieved better results than all other algorithms except in some cases
in which the PSO algorithm slightly outperformed it, such as in meanF, where the best
accuracy was 96.7 for PSO and 96.3 for BAT. However, the overall runs of the BAT algorithm
achieved better results with accuracy measures equal to 93.8, 91.2, 76.4, 54, and 50 for the
BAT, PSO, GWO, FFA, and CS algorithms, respectively. The convergence rate and the
channel distribution are shown in Figure 7.

Figure 7. Cont.
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Figure 7. Convergence rate and channel distribution.

Table 4. The performance of BAT algorithm compared with several metaheuristic algorithms using
frequency domain features.

Feature/Algorithm PSO GWO FFA CS BAT

Best Accuracy 96.7 87.3 64.1 52.5 96.3

No. channels 5 3 2 1 7

meanF Worst Accuracy 65.4 66 50.2 41.9 90.3

No. channels 10 6 3 2 12

Mean Accuracy 91.2 76.4 54 50 93.8

No. channels 8 4 2 2 10

Best Accuracy 82.7 69.2 53.6 46.6 83.4

No. channels 6 3 2 1 6

MedF Worst Accuracy 69.5 55.5 41 20 68.7

No. channels 10 6 3 2 14

Mean Accuracy 76.3 60.6 46.1 36.5 78.4

No. channels 9 4 2 2 10

5.4. Statistical Analysis Results

Before presenting our findings for the accuracy and no. of channels selected for
improving the classification performance of the stroke EEG signals’ time, entropy, and fre-
quency features analysis, we would like to examine the influence of classification accuracy
in the motor/imaging EEG dataset by the adoption of the sum of ranks of the metaheuristic
algorithms. In this way, the feature that improved the rank accuracy of selected channels
can be identified.

As shown in Table 5, we performed the sum of ranks of the PSO, GWO, FFA, CS,
and BAT metaheuristic algorithms according to the individual feature domain. In the
time domain, we tested seven features. The BAT algorithm significantly improved the
accuracy rank, especially in HFD and Hjac, for an accuracy rank of 99 and 97.7, respectively.
Moreover, other features in the time domain, such as HjComp, HjMo, Kurt, and Skw,
showed an influential impact on the classification accuracy results relative to the sum
of the rank of the BAT algorithm except for the Hur feature, which had a high effect on
the PSO algorithm. However, in the statistical test phase, the BAT algorithm had low
summation-of-rank results among other metaheuristic algorithms.

On the other hand, the sum of ranks for the BAT algorithm showed a meaningful
impact on the classification accuracy results relative to the seven features of the entropy
domain except for the ConvFuzEn feature, which had a remarkable effect on the PSO
algorithm with a difference of 0.1 compared with BAT concerning the sum-of-rank results
in the statistical analysis. However, the BAT algorithm had low summation-of-rank results
in the statistical test phase among the other metaheuristic algorithms.

However, in the classification accuracy results from the frequency domain features,
meanF showed a salient ameliorating effect on the accuracy with the PSO algorithm relative
to the accuracy rank 96.7 compared with the medF feature, which had an 83.4 accuracy
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rank with the BAT algorithm. Moreover, the BAT and PSO algorithms had low summation-
of-rank results among other metaheuristic algorithms.

Table 5. The sum of ranks of metaHeuristic algorithms based on classification accuracy on mo-
tor/imaging EEG dataset.

Feature/Algorithm PSO GWO FFA CS BAT

HFD Accuracy 97.9 90.7 66.7 54.9 99

Rank 2 3 4 5 1

HjAc Accuracy 97.1 88.4 68.8 55.1 97.7

Rank 2 3 4 5 1

HjComp Accuracy 91.2 78.9 58.8 48.7 93.8

Rank 2 3 4 5 1

TDF HjMo Accuracy 96.5 89.3 67.9 53.5 97.9

Rank 2 3 4 5 1

Hur Accuracy 72.8 57.9 47.2 44.1 70.1

Rank 1 3 4 5 2

Kur Accuracy 71.2 61 48.4 43.4 73.2

Rank 2 3 4 5 1

Skw Accuracy 78.7 63.7 50 44.4 79.2

Rank 2 3 4 5 1

Summation of Ranks 13 21 28 35 8

meanF Accuracy 96.7 87.3 64.1 52.5 96.3

Rank 1 3 4 5 2

FDF MedF Accuracy 82.7 69.2 53.6 46.6 83.4

Rank 2 3 4 5 1

Summation of Ranks 3 6 8 10 3

ConvFuzEn Accuracy 96.6 82.7 61.3 52 96.5

Rank 1 3 4 5 2

FuzEn Accuracy 93.6 81.6 60.6 49.1 95.5

Rank 2 3 4 5 1

impen Accuracy 94.7 78.6 59.3 49.8 95.6

Rank 2 3 4 5 1

EDF MFEmu Accuracy 85.2 73.6 54.3 46.8 88.1

Rank 2 3 4 5 1

RCMFEmu Accuracy 84.3 67.7 51.9 46.6 87.2

Rank 2 3 4 5 1

SampEn Accuracy 87.9 71.5 52.9 51.9 91.4

Rank 2 3 4 5 1

TsEn Accuracy 83.9 72.5 52.3 46.6 84.6

Rank 2 3 4 5 1

Summation of Ranks 13 21 28 35 8

Figure 8 shows the results of the speed of metaheuristic algorithms in seconds.
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Figure 8. Speed of metaheuristic algorithms in seconds.

5.5. Results Discussion

This research aims to choose the most relevant EEG channels that produce an effective
accuracy rate for stroke patient rehabilitation by using a binary bat algorithm-based opti-
mization technique to optimize TEF characteristics. To further improve the classification
performance of stroke EEG signals, three types of features (namely, time, entropy, and
frequency domain features) were used as the baseline for the classification task. Two
measurements were applied to evaluate the performance of the proposed method, accu-
racy and no. of EEG channels selected. Furthermore, we adopted a statistical test using
the sum of the ranks for the motor/imaging EEG dataset to examine the influence of
the classification accuracy and the significance of the suggested method compared with
state-of-the-art metaheuristic algorithms such as PSO, GWO, FFA, and CS. Firstly, the
accuracy and the no. of EEG channels selected were evaluated by computing the best,
worst, and mean accuracy values to capture the stability of the implemented algorithm. In
the time domain, seven features were tested, and the HFD feature had the most significant
influence on the improvement of the classification task in the BAT optimizer among other
optimization algorithms for the best, mean, and worst cases of accuracy and the no. of
channels selected, respectively, based on a kNN classifier. In addition, the BAT results
outperformed in the testing values for the best accuracy case compared with PSO, which
had the highest results compared with the GWO, FFA, and CS algorithms in the HjAc
and HjComp features. Moreover, the results for the BAT optimizer registered high best,
mean, and worst accuracy values and the no. of channels selected, respectively, with the
HFD, HjMo, and Kurt features, respectively, while PSO had the most significant influence
on the improvement of the classification task compared with BAT with the Hur feature
based on best, mean, and worst accuracy and the no. of channels selected, respectively.
For the best-case values, the BAT optimizer outperformed in the valuable and highest
values among PSO and the other metaheuristic algorithms with the six features of HFD,
HjAc, HjComp, HjMo, Kurt, and Skw, respectively (see Table 2). Furthermore, according to
the results of the performance accuracy using seven entropy features based on the KNN
classifier, the best classification performance was achieved with the highest accuracy using
ConFuzEn with the PSO algorithm compared to the GWO, FFA, CS, and BAT algorithms.
Other entropy features produced higher accuracy results with the BAT algorithm than the
PSO, GWO, FFA, and CS algorithms according to the best, mean, and worst accuracy values
and the no. of channels selected, respectively. The BAT algorithm registered best-case
accuracy values of 95.5, 95.6, 88.1, 87.2, 91.4, and 84.6 using the FuzEn, impe, MFEmu,
RCMFEmu, SampEn, and TsEn features, respectively, while PSO outperformed BAT with
accuracy result values for the ConvFuzEn feature for the KNN classifier (see Table 3).



Algorithms 2024, 17, 346 21 of 24

The BAT and PSO algorithms obtained high accuracies of 96.7 and 83.4, respectively,
compared with other algorithms in the literature for meanF and medF frequency domain
features. The BAT algorithm scored high accuracy classification results of 83.4 and 78.4 rel-
ative to the best and worst accuracies with the feature of medF, respectively, while PSO
gained an accuracy of 69.5; furthermore, the PSO and BAT algorithms gained significantly
in accuracy relative to the medF feature on the overall accuracy results in the best, worst,
and mean accuracy cases. Based on the classification results on the basis of the features
from the three different domains types, the BAT and PSO algorithms exerted significant
impacts on the classification performance compared with the results of the GWO, FFA,
and CS optimization algorithms concerning the accuracy and the no. of channels selected,
respectively. Hence, they demonstrate a significant improvement in the average accuracy
relative to the classification result on the basis of the individual feature domains, as can
seen in Figure 5, which explains the comparison between the convergence rate and channel
distribution for the BAT and PSO algorithms.

Second, we examined the influence of classification accuracy on the motor/imaging
EEG dataset using the adopted sum of ranks of metaheuristic algorithms. Thus, the
feature that improved the rank accuracy of the selected channels can be identified. The BAT
algorithm significantly improved the accuracy rank, especially in the HFD and Hjac features,
with an accuracy rank of 99 and 97.7, respectively, compared with the PSO, GWO, FFA,
and CS algorithms according to the sum-of-ranks results with respect to the time domain.
Furthermore, features such as HjComp, HjMo, Kurt, and Skw showed an influential impact
on the classification accuracy results relative to the sum of the rank of the BAT algorithm
except for the Hur feature, which had a high effect on the PSO algorithm. However, in
the statistical test phase, the BAT algorithm had low summation-of-rank results among
the other metaheuristic algorithms. Further, the BAT algorithm showed a meaningful
impact on the classification accuracy results for the sum of ranks relative to the seven
features of the entropy domain except for the ConvFuzEn feature, which had a remarkable
effect on the PSO algorithm with a difference of 0.1 compared with BAT concerning the
sum-of-rank results in the statistical analysis. However, in the statistical test phase, the BAT
algorithm had a low summation-of-rank results among the other metaheuristic algorithms.
Moreover, the BAT and PSO algorithms had low summation-of-rank results among the
other metaheuristic algorithms in the frequency domain features. The meanF feature
showed a salient ameliorating effect on the accuracy with the PSO algorithm relative to the
accuracy rank of 96.7 compared with the medF feature, which had an 83.4 accuracy rank
with the BAT algorithm.

6. Conclusions and Future Work

This paper proposes a new method for EEG channel selection based on an optimization
algorithm called the BAT-inspired algorithm. The main purpose of the proposed algorithm
is to select the most relevant EEG channels that can provide a higher accuracy rate for
stroke patient rehabilitation.

The proposed method was tested using a standard EEG dataset collected from eight
poststroke patients with hemiparesis of the upper extremities. The EEG data were captured
using EEG caps with 16 active electrodes from g.Nautilus PRO, g.tec medical engineering
GmbH, Austria.

The proposed method used several EEG feature extraction methods such as the time
domain, frequency domain, and entropy domain. In addition, the proposed method (BAT)
was compared with four metaheuristic algorithms, namely, particle swarm optimization
(PSO), grey wolf optimizer (GWO), cuckoo search (CS), and firefly algorithm (FFA). The
performance of the proposed method was evaluated using the accuracy rate and the number
of channels selected. The proposed method achieved the best results over all the feature
extraction methods and showed a significant improvement using a standard statistical
analysis test called the summation of ranks test.
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Finally, the proposed method succeeded in reducing the number of EEG channels to
less than half while maintaining the accuracy rate.

Regarding future works, the proposed method suffers from some problems; for ex-
ample, the proposed method is unable to generate new solutions that have the ability to
increase accuracy (i.e., stuck in local minima). For that, the proposed method will need to be
improved to overcome this problem by modifying the mechanism of the BAT algorithm or
hybridizing the BAT algorithm with another metaheuristic algorithm to be able to find the
optimal solution. Regarding the second problem, the current version of the BAT algorithm
focuses on finding the optimal solution that provides the highest accuracy rate and does
not consider the number of EEG channels in the objective function. Therefore, in future
work, we will work on the proposed multiobjective BAT version using the highest accuracy
and the lowest number of EEG channels simultaneously.
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