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Abstract: Pinhole corrosions on oil and gas pipelines are difficult to detect and size and, therefore,
pose a significant challenge to the pipeline integrity management practice. This study develops
two convolutional neural network (CNN) models to identify pinholes and predict the sizes and
location of the pinhole corrosions according to the magnetic flux leakage signals generated using
the magneto-static finite element analysis. Extensive three-dimensional parametric finite element
analysis cases are generated to train and validate the two CNN models. Additionally, comprehensive
algorithm analysis evaluates the model performance, providing insights into the practical application
of CNN models in pipeline integrity management. The proposed classification CNN model is shown
to be highly accurate in classifying pinholes and pinhole-in-general corrosion defects. The proposed
regression CNN model is shown to be highly accurate in predicting the location of the pinhole and
obtain a reasonably high accuracy in estimating the depth and diameter of the pinhole, even in the
presence of measurement noises. This study indicates the effectiveness of employing deep learning
algorithms to enhance the integrity management practice of corroded pipelines.

Keywords: deep learning algorithm; convolutional neural network; pipeline; corrosion; pinhole;
finite element analysis; magnetic flux leakage signal

1. Introduction

Pipelines are economical and safe means for transporting and distributing large vol-
umes of oil and gas products across great distances [1]. However, pipeline failures can lead
to severe consequences such as fatalities, economic losses, and environmental damages [2].
Among the various failure mechanisms threatening the structural integrity of pipelines,
corrosion is a leading threat [3]. The in-line inspection (ILI) tool is widely used for detecting
and measuring corrosions to assess pipeline integrity [4], and magnetic flux leakage (MFL)
is the predominant ILI technology for identifying internal and external corrosion defects
in both liquid and gas pipelines [5]. The Pipeline Operators Forum (POF) suggests that a
single corrosion anomaly on the internal or external surface of a pipeline can be categorized
into one of seven classes based on the ILI-reported corrosion length and width as illustrated
in Figure 1 [6], i.e., axial slotting, circumferential slotting, axial grooving, circumferential
grooving, general, pinhole and pitting, to better quantify the accuracy of ILI tools and
facilitate the selection of appropriate models to evaluate the burst capacity of pipelines
containing corrosion defects [6,7].

The estimation of the corrosion anomaly sizes based on MFL signals falls into the
inverse modeling realm. The pipeline industry frequently employs the iterative inverse
model because of its remarkable precision [8–10]. However, the iterative inverse model
is computationally costly. Inverse models based on machine learning provide promising
alternatives to sizing corrosion defects from MFL signals with high accuracy but are more
computationally efficient compared to the iterative inverse models [11–13]. For instance,
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Kandroodi et al. [14] fed the algorithm-estimated defect width and length, as well as
the extracted peak-to-peak values from the MFL signals, into a Gaussian radial basis
function neural network to predict the corrosion depth. Feng et al. [15] proposed an error
adjustment methodology for reconstructing the corrosion profiles from MFL signals based
on a radial basis function neural network. However, these models have certain limitations:
the training of these models relies on manually chosen features from the MFL signals,
potentially omitting valuable data necessary for accurately predicting the corrosion profile.
Additionally, the majority of these techniques focus solely on one MFL signal dimension,
neglecting the critical information present in the other two dimensions.
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Figure 1. Seven corrosion anomaly categories are based on the anomaly length and width. Note:
A = max{10 mm, pipe wall thickness}.

Over the past decade, convolutional neural networks (CNNs) have risen as a rev-
olutionary deep learning algorithm, yielding remarkable results across various pattern
recognition fields, including image and voice processing [16,17]. The CNN tool can au-
tomatically extract deep features from input data in place of manually designed feature
extractors; therefore, it is well suited to solve the inverse modeling based on the MFL
signals. The application of CNN in the inverse analysis of MFL signals has been reported
in the literature. Lu et al. [18] introduced the visual transformation CNN, which predicts
the length, width, and depth of anomalies by taking into account two components (i.e., cir-
cumferential and radial) of the MFL signal while disregarding the longitudinal component.
Shen and Zhou [19] employed CNN to estimate the locations and dimensions of corrosions
on steel pipelines based on three components of the MFL signals. Wang and Chen [20]
proposed a CNN architecture comprising two main modules: one for anomaly classification
and another for anomaly size regression. The input of the classification module consists
of all three components of the MFL signal, and the outputs are seven anomaly categories,
as illustrated in Figure 1. The regression module incorporates seven separate CNNs, each
tailored to a specific anomaly type, predicting dimensions such as width, length, and depth
of the defect.

According to a report from the European Gas Pipeline Incident Data Group (EGIG) [21],
pinhole corrosion is identified as a major contributor to pipeline failures due to its potential
to evolve from a small initial volume of metal loss into more severe metal loss, given the
challenge in detection via pressure monitoring, particularly when the leaked products do
not exceed ground level [22,23]. Despite the impact of pinholes on pipeline integrity, studies
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that are specifically focused on detecting and sizing pinhole corrosions are limited in the
literature, thus creating a knowledge gap. Furthermore, small corrosion anomalies such as
pinholes may sometimes overlap with a relatively large corrosion area [23–25], creating a
complex defect known in this study as a pinhole-in-general corrosion (PIC) defect. There
are also few studies in the literature investigating the detection and sizing of PIC defects.

The objective of this study is to develop deep learning algorithms, i.e., CNN models,
to classify and size pinholes and PIC defects based on a large set of MFL signals. The
classification CNN model deals with six scenarios, i.e., pinholes on the internal or external
pipe surface, general corrosions on the internal or external surface, and PIC defects on the
internal or external surface. The signals for the pinholes and PIC defects identified by the
classification model are then fed into the regression CNN model to predict the sizes and
location of the pinhole and PIC defects. In practice, it is not necessary to apply the two CNN
models sequentially. Depending on the specific application, data can be fed directly into
the regression model if the classification has already been carried out through other means
and the primary goal is to predict the size of the defect. Since real MFL signals are typically
proprietary and not publicly accessible, the MFL signals used in this study are numerically
generated by applying the three-dimensional (3D) magneto-static finite element analyses
(FEA) using the commercial software COMSOL (Version 5.6). The three-dimensional (i.e.,
longitudinal, circumferential, and radial) MFL signal maps serve as inputs for training
and validating CNN models to classify the defects and predict the sizes, as well as the
circumferential and longitudinal positions, of pinholes on the pipeline. The impact of the
measurement noises associated with the MFL signal on the accuracy of the regression CNN
model is also investigated. This research fills a knowledge gap in the literature by applying
CNN to detect, locate, and size pinholes and pinhole-in-corrosion defects. It is noted that
accurately identifying the position of the pinhole within the general corrosion is crucial
as the relative position of the pinhole within the general corrosion has a marked effect on
the burst capacity of the PIC defect and, therefore, has strong implications for the accurate
prediction of the burst capacity. This study demonstrates the effectiveness of CNN for
the detection and sizing of pinhole corrosion and the viability of CNN for applications in
pipeline integrity management practice.

The rest of the paper is structured as follows. Section 2 introduces the principles of
the MFL technology and essential background information on the relationship between
MFL signals and anomaly features. Section 3 introduces the proposed FEA model and the
simulation parameters of MFL signals. Section 4 describes the structure of the developed
CNN models and their application to the classification and regression of pinholes. The
corresponding predictive accuracy of the CNN models is also discussed in Section 4.
Section 5 summarizes the concluding remarks of the study.

2. Principles of MFL Technique

The magneto-statics FEA is employed to numerically generate the MFL signals in the
study. The corresponding governing equation derived from Maxwell’s equations is shown
in Equation (1):

∇×
(

1
µ
∇× A

)
= 0 (1)

where ∇× denotes the curl operation; µ represents the magnetic permeability of the
ferromagnetic specimen (N/A2), and A is the magnetic potential vector. Equation (1) is
solved under the specified boundary conditions to obtain A, which is then used to obtain
the magnetic flux density B as follows [26,27]:

B = ∇× A (2)

The MFL technique relies on the measurement principle where a ferromagnetic ma-
terial demonstrates MFL in the vicinity of a defect, as illustrated in Figure 2 [18]. The
measurement procedure is as follows: during the ILI process, the MFL tool is propelled
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through the pipeline, and magnets within the tool generate a magnetic field. In a perfect
pipe, all magnetic flux remains within the pipe wall [28], resulting in a uniform magnetic
field distribution [29]. However, in the presence of defects, some magnetic flux “leaks”
outside the pipe, forming a magnetic leakage field close to the defect [30]. This leakage field
is detected by Hall sensors, generating electrical signals [29]. The strength and distribution
of the flux leakage vary depending on the geometry of the defect on the pipeline. By
capturing the MFL signal, which typically consists of a three-dimensional magnetic flux
density (B) vector field, represented by Bx in the circumferential direction of the pipe, By in
the radial direction, and Bz in the longitudinal (axial) direction, it is possible to estimate the
size and location characteristics of the corrosion defect.
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Figure 2. Principle of MFL technique.

Axial (AMFL) and circumferential (CMFL) MFL tools are the two types of MFL tools
categorized by the arrangement of the magnets inside the MFL tool. In AMFL tools, the
permanent magnets are oriented parallel to the longitudinal axis of the pipe. These tools
excel in detecting and measuring defects in the circumferential direction of the pipe but
are less effective in sizing features oriented axially [31]. Conversely, CMFL tools have
magnets positioned in the circumferential direction of the pipeline. They are more precise
in measuring features aligned along the longitudinal direction compared to AMFL tools.
The CMFL tool is the main focus of this study because it is more accurate than the AMFL
tool for sizing longitudinally-oriented corrosion anomalies, which are perpendicular to
the hoop stress resulting from the pipe’s internal pressure and, therefore, can have a great
influence on the pipeline burst capacity.

3. Simulating MFL Signals Using FEA
3.1. Simulation Parameters

The CMFL tool considered in this study includes three pairs of permanent magnets.
NdFeB is selected as the magnetic material with a high coercive force of 895,000 A/m,
stable magnetic properties, and high magnetic energy [32]. The steel used to simulate the
pipe is assumed to be grade X52, characterized by a remanent flux density (Br) of 1T, an
electrical conductivity of 5.882 × 106 S/m, coercive field strength (Hc) of 415 A/m, and
saturation flux density (Bs) of 1.9T. Figure 3 shows the schematics of a cross-section of the
CMFL tool and pipe section, and the geometric and material properties of each component
are summarized in Table 1. It is noted that the lift-off value is assumed to be 5 mm, which
is the distance between the sensor and the pipe’s internal surface [33].
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Table 1. Geometry of every component within the proposed 3D CMFL model.

Elements Pipe Section Magnets Brushes Yoke

geometry (mm) 600 × 610 × 10 a 300 × 81 × 105 b 300 × 81 × 20 b 300 × 300 × 40 a

a Length × outside diameter × wall thickness. b Length × width × thickness.

3.2. FEA Cases

A series of FEA models are created and analyzed with the same magnetization con-
ditions and pipe attributes, but they vary in corrosion types, geometric parameters, and
locations in this study. The simulation involves 9600 analysis cases, with 1600 cases allo-
cated to each of the six scenarios as illustrated in Figure 4, namely internal general corrosion
(Gin), external general corrosion (Gex), internal pinhole (Pin), external pinhole (Pex), internal
PIC defect (PICin), and external PIC defect (PICex). The general corrosion is idealized as
cuboidal-shaped, defined by the width (wg), depth (dg), and length (lg), and the pinhole is
idealized as cylindrical-shaped, defined by the radius (rp) and depth (dp). Note the center
of the pinhole in a PIC defect is assumed to be coincident with that of the general corrosion,
which is defined by two coordinates, i.e., its longitudinal location (h) and circumferential
location (ϕ), within a 160 × 160 mm designated area as shown in Figure 5. This area is
marked in light blue, with its center specified by the coordinates (r, φ = 0, h = 0), where
r represents the inner radius of the pipe. This specific 160 × 160 mm square area on the
inner pipe wall was selected because it encompasses the largest area, showing a consistent
magnetic flux density profile between the neighboring magnets.

The analysis cases involving general corrosion only, i.e., Gin and Gex, include four
values of wg, i.e., 30, 50, 70, and 90 mm, four values of dg/t, i.e., 20, 40, 60, and 80%, where t
denotes the pipe wall thickness, and four values of lg, i.e., 30, 50, 70, and 90 mm. This results
in 64 general corrosions in total with varying sizes. In terms of the corrosion location, five
values of h (−50, −25, 0, 25, and 50 mm) and five values of ϕ (−10, −5, 0, 5, and 10 degrees)
are considered. The permutations of 64 defects and 25 locations lead to 1600 cases for each
of Gin and Gex.

The analysis cases involving pinhole corrosion only, i.e., Pin and Pex, include eight
values of rp, i.e., 1, 1.5, 2, 2.5, 3, 3.5, 4, and 4.5 mm, and eight values of dp/t, i.e., 10, 20, 30,
40, 50, 60, 70, and 80%. This results in 64 pinhole corrosions in total with varying sizes.
In terms of the corrosion location, five values of h (−50, −25, 0, 25, and 50 mm) and five
values of ϕ (−10, −5, 0, 5, and 10 degrees) are considered. The permutation of 64 defects
and 25 locations also leads to 1600 cases for each of Pin and Pex.
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Analysis cases involving PIC defects, i.e., PICin and PICex, include wg = lg = 50 mm
and four values of rp, i.e., 1, 2, 3, and 4 mm. In terms of the sizes of general and pinhole
corrosions, three groups are considered to capture a wider range of relative relationships
between general and pinhole corrosions. The first includes dg/t equal to 20% and dp/t equal
to 30, 40, 50, 60, 70, or 80%. The second group includes dg/t equal to 30% and dp/t equal to
40, 50, 55, 60, 70, or 80%. The last group includes dg/t equal to 40% and dp/t equal to 50, 60,
70, or 80%. It should be noted that dp/t is assumed to be at least 10% larger than dg/t in
all three groups. This results in 64 PIC defects in total with varying sizes. In terms of the
corrosion location, five values of h (−50, −25, 0, 25, and 50 mm) and five values of ϕ (−10,
−5, 0, 5, and 10 degrees) are considered. The permutation of 64 defects and 25 locations
leads to 1600 cases for each of PICin and PICex. It follows that a dataset consisting of
9600 cases (1600 × 6 = 9600) is generated in this study. This large dataset is intended to
facilitate the training and validation of the CNN model, enabling comprehensive analysis
and robust model development.

The developed FEA model meshes using 4-node tetrahedral elements, where the
minimum size is 4 mm, and the maximum mesh size is 55 mm after a convergence study.
Specifically, grids inside the 160 mm × 160 mm area are finely resolved at 1 mm intervals.
At each grid point, the value of B is calculated via interpolation between two mesh nodes.
The system of nonlinear equations is solved using the Newton-Raphson method. As an
illustration, Figure 6 depicts the 3D magnetic flux density information (i.e., Bx, By, and
Bz) within the 160 mm × 160 mm area of a selected FE model. The proposed FEA model
was validated by comparing the simulation results with experimental data from a CMFL
tool reported by Ireland and Torres [34] and an AMFL tool reported by Azizzadeh and
Safizadeh [35]. Readers are referred to Shen and Zhou [19] for details of the validation.
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MFL signals in practical applications inevitably include noise stemming from factors 
such as non-uniform pipe wall thickness and differences in sensor lift-off values [36]. 
These noises can impact the accuracy of the inverse model, necessitating the inclusion of 
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Figure 6. FEA-obtained Bx, By, and Bz corresponding to a PIC defect on the internal pipe surface
(wg = 50 mm, lg = 50 mm, dg/t = 40%, rp = 4 mm, dp/t = 80%, h = 0 mm and ϕ = 0 degree).

MFL signals in practical applications inevitably include noise stemming from factors
such as non-uniform pipe wall thickness and differences in sensor lift-off values [36]. These
noises can impact the accuracy of the inverse model, necessitating the inclusion of noises in
the FEA-simulated MFL signals. The signal-to-noise (SNR) ratio serves as an important
parameter for quantifying the noise in the three-dimensional MFL signal. Equation (3)
defines SNR in this study [37]:

SNR = 10log10

 ∑160
n=1 ∑160

m=1

[
Bx(n, m)2 + By(n, m)2 + Bz(n, m)2

]
∑160

n=1 ∑160
m=1

[
wx(n, m)2 + wy(n, m)2 + wz(n, m)2

]
 (3)
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where wx, wy and wz denote the noises along three directions of the pipe, namely circumfer-
ential, radial and longitudinal directions, respectively, and (n, m) (where n, m = 1, 2,. . ., 160)
represents the coordinate of each grid (with 1 mm resolution) in the 160 mm × 160 mm area,
with a total of 25,600 grids. By considering a representative value of SNR equal to 20 [38],
three 160 × 160 matrices of Gaussian-distributed white noises, which are assumed to be
independent of each other, are simulated and then applied to Bx, By, and Bz, respectively.
Each matrix assumes a mean value of zero, with standard deviations adjusted through trial
and error until achieving the predefined signal-to-noise ratio. Let σn denote the standard
deviation of wx; the standard deviations of wy and wz are assumed to be 0.75σn and 0.25σn,
respectively. The scaling of σn is based on the relative magnitudes of Bx, By, and Bz derived
from the finite element analysis: for a given analysis case, Bx consistently has the highest
magnitude, followed by By and Bz, respectively. The final noisy input to the CNN model
consists of the three matrices Bx, By, and Bz, each combined with respective noisy matrices
wx, wy, and wz, resulting in noisy representations of the MFL signals.

It is emphasized that the noisy MFL signal matrices are only fed into the regression
CNN model as an extended part in Section 4.2.4. Fan et al. [39] reported that the effect
of Gaussian noise on the CNN classification model accuracy is minor. Acharya et al. [40]
indicated that removing the noise is not necessary for image classification with deep
learning algorithms [41]. Therefore, we only consider the impact of the noises on the
accuracy of the regression model in the present study.

4. Convolutional Neural Network
4.1. Classification CNN
4.1.1. Input Information

The input to a CNN model is commonly represented as an RGB color image, including
three color channels corresponding to green, red, and blue, respectively. This input is
compatible with the three-dimensional MFL signals. For a given FE model, the 3D magnetic
flux density information (i.e., Bx, By, and Bz) within the designated square area is exported
from the COMSOL software at the 160 mm × 160 mm area grids with a resolution of 1 mm.
The three generated 160 × 160 matrices of noise-free MFL signals (one matrix for each
dimension) are denoted as the input of the proposed CNN model, and the six types of
corrosion (i.e., Gin, Gex, Pin, Pex, PICin, and PICex) are the output.

4.1.2. Proposed Structure

The proposed classification CNN model in this study comprises a total of 20 layers:
layers 1 to 12 are dedicated to feature extraction, while layers 13 to 20 are focused on
classification. Layer 20 serves as the output layer, comprising six components that represent
the six corrosion types. The detailed information on each layer is summarized in Table 2.
As shown in Table 2, the size of the filter in the convolution layer is selected to be (5 × 5),
which is a typical size for large filters [42]. The size of the filter in the maxpooling layer
is (2 × 2), consistent with those commonly used in the existing literature [43,44]. Several
dropout layers that randomly drop a certain percentage of neurons from the neural network
during the training process are included in the model to avoid overfitting. The employed
dropout rate is 0.2, i.e., 20% of the neurons in the neural network are randomly deactivated.
Figure 7 depicts the architecture of the proposed classification model with the dimension
of each layer, where the input, convolution layers, and max-pooling layers are depicted in
pink, blue, and green, respectively. Note that the dropout layers are not shown in Figure 7
as they do not impact the data dimensionality. The thick white line represents the flattened
layer, the fully connected layers are represented in orange, and the output layers are shown
in yellow in Figure 7.
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Table 2. CNN classification model layer information.

Part Layer No. Layer Name Parameters

Feature extraction

1 Convolution 64 filters with size equals to (5 × 5)

2 Maxpooling Pooling size equals to (2 × 2)

3 Dropout Rate = 0.2

4 Convolution 128 filters with size equals to (5 × 5)

5 Maxpooling Pooling size equals to (2 × 2)

6 Dropout Rate = 0.2

7 Convolution 256 filters with size equals to (5 × 5)

8 Maxpooling Pooling size equals to (2 × 2)

9 Dropout Rate = 0.2

10 Convolution 512 filters with size equals to (5 × 5)

11 Maxpooling Pooling size equals to (2 × 2)

12 Dropout Rate = 0.2

Classification

13 Flatten layer Unit number equals to 51,200

14 Fully connected layer Unit number equals to 128

15 Dropout Rate = 0.2

16 Fully connected layer Unit number equals to 64

17 Dropout Rate = 0.2

18 Fully connected layer Unit number equals to 32

19 Dropout Rate = 0.2

20

Output 1 Unit number equals to 1

Output 2 Unit number equals to 1

Output 3 Unit number equals to 1

Output 4 Unit number equals to 1

Output 5 Unit number equals to 1

Output 6 Unit number equals to 1
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4.1.3. Results

By adopting an 80–20% training-test data ratio, there are 1280 training cases and
320 test cases for each of the six corrosion types. The classification results obtained from the
proposed CNN model are summarized in Table 3. Table 3 demonstrates that the proposed
model consistently achieves prediction accuracies higher than 0.93 in both the training
and test datasets, with the lowest accuracy of 0.934 observed in the training dataset for
Gex. It is noted that the model performs better in the test dataset than the training dataset,
with accuracy rates of each corrosion type in the test dataset higher than or equal to the
rates in the training dataset. This may be due to the regularization techniques, such as
dropout, adopted in the CNN model. Although these techniques can prevent overfitting,
they may also introduce noise or uncertainty during training, which could temporarily
degrade the model’s performance on the training data while improving the generalization
and performance on the test data [45].

Table 3. Results of the classification CNN model.

Category No. Category Total Train Test Misprediction
in Train

Misprediction
in Test Train Accuracy Test Accuracy

0 Gin 1600 1280 320 7 0 0.978 1.000

1 Gex 1600 1280 320 21 0 0.934 1.000

2 Pin 1600 1280 320 0 0 1.000 1.000

3 Pex 1600 1280 320 2 0 0.994 1.000

4 PICin 1600 1280 320 1 0 0.997 1.000

5 PICex 1600 1280 320 1 1 0.997 0.997

Notably, 32 cases in the training dataset and one case in the test dataset have been
misclassified, resulting in a misprediction rate of 0.34% (33/9600 = 0.34%), demonstrating
the excellent accuracy of the developed model. Figure 8 illustrates the distribution of
mispredictions in the training dataset across different categories. For instance, 65.6% (i.e.,
21) of misclassified training cases belong to the Gex category. Among these, four cases
are misclassified as Pin, and 17 cases are misclassified as Pex. Furthermore, six out of the
33 cases have misclassified locations (internal/external surface of the pipe), i.e., two Pex
cases misclassified as Pin, and four Gex cases misclassified as Pin.

Note that the model achieves better classification accuracy for Pin, Pex, PICin, and PICex
than for Gin and Gex. The values of dg/t included in the entire dataset for all six types of
corrosions are 20, 30, 40, 60, and 80%, while the values of dp/t included in the entire dataset
are 20, 30, 40, 50, 55, 60, 70 and 80%. The wider range of the corrosion depth for cases
involving pinholes (i.e., Pin, Pex, PICin, and PICex) compared to the cases involving general
corrosion (Gin and Gex) allows the model to learn a richer set of features and variations
associated with pinhole corrosion, making the model more adept at distinguishing between
different types and severity of pinhole corrosion. All of the 28 misclassified cases in the
Gin and Gex categories involve relatively shallow corrosions, among which 26 cases have
dg/t = 20% and two cases have dg/t = 40%. The distribution of the 28 misclassified cases
by wg/lg is shown in Figure 9. Figure 9 indicates that the classification CNN model is less
accurate for wide general corrosions with wg/lg larger than 1.67. It is also noteworthy that
the developed model is less accurate for cases containing external corrosions (i.e., Gex, Pex,
and PICex) than for cases involving internal corrosions (i.e., Gin, Pin, and PICin). A potential
explanation is that the model input (i.e., the MFL signal map) for external defects has less
pronounced features because the variation in B due to the metal-loss defect on the external
pipe surface is smaller than that caused by the internal metal-loss defect as the external
defect is farther away from the sensor than the internal defect.
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4.2. Regression CNN
4.2.1. Input Information

The results of the classification CNN model are utilized to extract correctly classified
cases for Pin, Pex, PICin, and PICex, excluding four misclassifications in the training dataset
and one misclassification in the test dataset, resulting in 1600, 1598, 1599, and 1598 input
cases for Pin, Pex, PICin, and PICex, respectively, to train and validate the regression CNN
model. The three generated 160 × 160 matrices of noise-free MFL signals for each of the
6395 (=1600 + 1598 + 1599 + 1598) cases are the input to the developed regression model, and
the predicted rp, dp/t, h, and ϕ values for each case are the output. The correctly classified
data are adopted to train the regression CNN model because including misclassified data
(such as a general corrosion anomaly misclassified as a pinhole) in training is problematic,
e.g., defining an error function that is applicable to all input data, including misclassified
data. Alternatively, the training of the regression CNN model can be completely separated
from the classification model; that is, the entire 6400 parametric finite element analysis
cases involving pinholes can be employed to train the regression model. In this study,
the correctly classified dataset, which consists of 6395 cases and is almost identical to the
complete dataset, is employed to train and validate the regression CNN model.
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4.2.2. Proposed Structure

The proposed regression CNN model in the present study comprises a total of 23 layers:
layers 1 to 16 are dedicated to feature extraction, while layers 17 to 23 are focused on
regression. Layer 23 is the output layer, which includes four components representing
the predicted rp, dp/t, h, and ϕ values, respectively. The detailed CNN regression model
layer information is presented in Table 4. It is noted that, in addition to the dropout layers
introduced in Section 4.1.2, several batch normalization layers are incorporated within
the typical CNN layers to prevent overfitting [46–48]. As shown in Table 4, the tuned
hyperparameters in the feature extraction process of the regression model, such as the
filter size of the convolution layer, the pooling size, and the dropout rate, are the same as
those in the classification CNN model, while the employed dropout rate in the regression
process of the regression CNN model is 0.5. Figure 10 depicts the architecture of the
developed regression model with the dimensions of different layers. Note that the dropout
and batch normalization layers are excluded from the diagram as they do not impact the
data dimensionality. The color scheme utilized to distinguish various layers in Figure 10 is
consistent with those utilized in Figure 7.

Table 4. CNN regression model layer information.

Part Layer No. Layer Name Parameters

Feature extraction

1 Convolution 64 filters with size equals to (5 × 5)

2 Batch normalization

3 Maxpooling Pooling size equals to (2 × 2)

4 Dropout Rate = 0.2

5 Convolution 128 filters with size equals to (5 × 5)

6 Batch normalization

7 Maxpooling Pooling size equals to (2 × 2)

8 Dropout Rate = 0.2

9 Convolution 256 filters with size equals to (5 × 5)

10 Batch normalization

11 Maxpooling Pooling size equals to (2 × 2)

12 Dropout Rate = 0.2

13 Convolution 512 filters with size equals to (5 × 5)

14 Batch normalization

15 Maxpooling Pooling size equals to (2 × 2)

16 Dropout Rate = 0.2

Regression

17 Flatten layer Unit number equals to 51,200

18 Dropout Rate = 0.5

19 Fully connected layer Unit number equals to 64

20 Fully connected layer Unit number equals to 128

21 Fully connected layer Unit number equals to 256

22 Fully connected layer Unit number equals to 512

23

Output 1 Unit number equals to 1

Output 2 Unit number equals to 1

Output 3 Unit number equals to 1

Output 4 Unit number equals to 1
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4.2.3. Results

The coefficient of determination (i.e., R2) is used to measure the accuracy of each
parameter prediction (i.e., rp, dp/t, h, and ϕ), defined by the following equation.

R2 = 1 −
∑N

i=1 (Y true,i − Ypred,i)
2

∑N
i=1 (Y true,i − Ytrue)2

(4)

where Ytrue,i and Ypred,i represent the true and predicted values, respectively, of each pre-
dicted parameter for the ith (i = 1, 2,. . ., N) point in a given dataset containing N data
points, and Ytrue denotes the true mean value of N data points associated with a predicted
parameter. Table 5 summarizes the R2 values for the four parameters in the test dataset
included in the regression model. The R2 values are also plotted in a so-called radar chart
in Figure 11. The true values of the four parameters rp, dp/t, h, and ϕ compared with the
estimated values by the CNN for the corrosions in the test set are depicted in Figure 12. It is
evident from Table 5 that the CNN model’s predictions of the corrosion location parameters
(i.e., h and ϕ) show strong agreement with the actual values, as reflected by the R2 values
of 1.0 for all four corrosion categories. In terms of the size predictions (i.e., rp and dp/t), the
model is more accurate for internal corrosions (Pin and PICin) than for external corrosions
(Pex and PICex). These results also indicate that the performance of the model is better
for cases containing pinholes only than for cases containing PIC. This is expected as PIC
introduces additional complexity, including the presence of general corrosion, which may
impact the model’s accuracy. Overall, the obtained R2 values demonstrate the CNN model’s
accuracy in predicting the size parameters, with a higher accuracy observed for corrosions
on the internal surface and pinholes. However, note that although the predictions for rp and
dp/t are, in general, accurate, Figure 12 reveals relatively large error bands in both rp and
dp/t predictions. For instance, the predicted values of rp range from 1.14 mm to 3.45 mm
for (rp)true equal to 2 mm. The large error bands may be explained by the small dimensions
of the pinhole corrosion and the limited spatial resolution of the model. Furthermore,
the presence of composite corrosion features can introduce additional complexities and
uncertainties, leading to larger error bands in the predictions. Therefore, further investiga-
tion is required to explore the factors contributing to the reduction of regression errors for
pinhole corrosions.
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Table 5. Results of the regression CNN model without noise.

Category No. Category
Cases Test R2

Total Train Test rp dp/t h ϕ

0 Pin 1600 1280 320 0.91 0.95 1.00 1.00

1 Pex 1598 1277 321 0.88 0.92 1.00 1.00

2 PICin 1599 1280 319 0.89 0.85 1.00 1.00

3 PICex 1598 1279 319 0.86 0.77 1.00 1.00

Overall 6395 5116 1279 0.89 0.91 1.00 1.00
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Figure 12. Comparison of true and predicted values of rp, dp/t, h, and ϕ for the anomalies in the
regression test dataset without noise.
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4.2.4. Influence of Noise

Figure 13 compares the results of the regression CNN model for noisy input (SNR = 20)
with those of the noise-free scenario described in Section 4.2.3. With the presence of noise,
the R2 values for predicting rp and dp/t decrease somewhat compared to the noise-free
scenario. The decrease in R2 values is more prominent for Pex and PICex cases, indicating
that the model is more affected by noise when predicting the sizes of external corrosion.
Despite the decrease in the accuracy in predicting the corrosion sizes, the model maintains
R2 = 1 for the location parameters (h and ϕ) across all corrosion types except for Pex,
indicating its robustness in capturing the spatial information even in the presence of noise.
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Finally, it is important to point out that the CNN classification and regression models
developed in this study are specifically tuned to certain pipeline and MFL tool attributes,
such as the pipe wall thickness, magnet properties, lift-off values, and defect shapes. There-
fore, further investigations are needed to determine how well the CNN model performs
with various pipe wall thicknesses and different MFL tool parameters. Further studies are
also needed to take into account the movement of the MFL tool into the prediction models.

5. Conclusions

This paper reports a novel study that focuses on the classification and sizing of pinhole
corrosions on pipelines using deep learning algorithms. We propose a CNN classification
model to classify six different types of corrosions (i.e., Gin, Gex, Pin, Pex, PICin, and PICex)
on pipelines and a CNN regression model to estimate the sizes and location of the pinhole
defects based on MFL signals generated using magneto-static FEA. Extensive 3D parametric
FEA cases involving box-shaped general corrosions and cylinder-shaped pinholes are used
to simulate the 3D MFL signals by varying the defect depth, length, width, and longitudinal
and circumferential locations. The CNN classification and regression models are then
trained and validated using the simulated MFL signals.

The proposed classification model is shown to have excellent accuracy in classifying
six types of corrosion defects with a misprediction rate of 0.34% (33/9600 = 0.34%). The
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proposed regression model is highly accurate in predicting the location of the pinhole and
achieves good accuracy in predicting the depth and diameter of the pinhole. Through
a comparative analysis of the CNN regression model with noise-free and noisy signals
(SNR = 20) as input, it is observed that the noise impact on the predictive accuracy of the
regression model is moderate. This study demonstrates the application of deep learning
algorithms to facilitate the integrity management of pipelines containing complex-shaped
corrosion defects.
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