
Citation: Piazza, M.; Bertolazzi, E.;

Frego, M. A Non-Smooth Numerical

Optimization Approach to the

Three-Point Dubins Problem (3PDP).

Algorithms 2024, 17, 350. https://

doi.org/10.3390/a17080350

Academic Editors: Sona Taheri, Kaisa

Joki and Napsu Karmitsa

Received: 9 July 2024

Revised: 6 August 2024

Accepted: 8 August 2024

Published: 10 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

A Non-Smooth Numerical Optimization Approach to the
Three-Point Dubins Problem (3PDP)
Mattia Piazza 1,† , Enrico Bertolazzi 1,† and Marco Frego 2,†,∗

1 Department of Industrial Engineering, University of Trento, Via Sommarive 9, 38123 Trento, Italy;
mattia.piazza@unitn.it (M.P.); enrico.bertolazzi@unitn.it (E.B.)

2 Faculty of Engineering, Free University of Bozen-Bolzano, Piazza Università 1, 39100 Bolzano, Italy
* Correspondence: marco.frego@unibz.it
† These authors contributed equally to this work.

Abstract: This paper introduces a novel non-smooth numerical optimization approach for solving the
Three-Point Dubins Problem (3PDP). The 3PDP requires determining the shortest path of bounded
curvature that connects given initial and final positions and orientations while traversing a specified
waypoint. The inherent discontinuity of this problem precludes the use of conventional optimization
algorithms. We propose two innovative methods specifically designed to address this challenge.
These methods not only effectively solve the 3PDP but also offer significant computational efficiency
improvements over existing state-of-the-art techniques. Our contributions include the formulation of
these new algorithms, a detailed analysis of their theoretical foundations, and their implementation.
Additionally, we provide a thorough comparison with current leading approaches, demonstrating
the superior performance of our methods in terms of accuracy and computational speed. This
work advances the field of path planning in robotics, providing practical solutions for applications
requiring efficient and precise motion planning.

Keywords: Dubins vehicle; path planning; Dubins traveling salesman problem; trigonometry;
non-smooth optimization

1. Introduction

One of the central problems in robotics is motion, or path planning, which accounts
for computing a feasible path (possibly an optimal one, for some design criterion) for a
robot moving from a starting configuration to a final one. A configuration can be just the
position, but can also contain additional information like the orientation or the curvature.
A feasible path can be required to pass along fixed or moving obstacles or to follow internal
waypoints [1–3]. Other physical limitations that restrict the path’s shape are differential
constraints, called nonholonomic, which characterize a vehicle’s trajectories. An important
one is the requirement of bounded curvature, which asks that the path does not have excessive
sharp turns because the robot can steer up to a minimum turning radius ρmin, which is
defined as the inverse of the maximum curvature of the path, κmax = 1

ρmin
. As an optimality

criterion, minimizing the path length is very common. Another common assumption is
that the vehicle travels at a constant speed; thus, the shortest path is equivalent to the other
important optimization functional, the minimum time. However, this can be extended and
completed by combining motion primitives [4–6].

The mathematical model containing all these design requirements is the Markov–
Dubins problem, which is defined formally as follows. A Markov–Dubins path (MDP) [7]
between two assigned points in R2, Pi = (xi, yi) and Pf = (x f , y f ), with angles ϑi and ϑ f

is the C1 and piecewise C2 path of minimum length γ : [0, L]→ R2 such that the absolute
value of the curvature of the path γ, at almost every point, is not greater than κmax > 0;
see [8]. The problem, originally formulated by Markov in 1889 was solved only in 1957

Algorithms 2024, 17, 350. https://doi.org/10.3390/a17080350 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a17080350
https://doi.org/10.3390/a17080350
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0003-0182-5867
https://orcid.org/0000-0003-0487-5210
https://orcid.org/0000-0003-2855-9052
https://doi.org/10.3390/a17080350
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a17080350?type=check_update&version=1


Algorithms 2024, 17, 350 2 of 26

by Dubins [9], who proved that there are six extremal solutions to the associated optimal
control problem:

Minimize L =
∫ L

0
1 dℓ subject to |u(ℓ)| ≤ κmax,

x′(ℓ) = cos(θ(ℓ)), y′(ℓ) = sin(θ(ℓ)), θ′(ℓ) = u(ℓ),

x(0) = xi, y(0) = yi, θ(0) = ϑi,

x(L) = x f , y(L) = y f , θ(L) = ϑ f .

(1)

Each extremal is composed of at most three internal arcs. This sequence of curves can
be written as words: LSR, RLR, LSL, etc., where L, S, and R represent a left turn,
straight segment, and right turn, respectively. A more compact notation is obtained
by writing C for an arc of a circle and S for a straight line segment. Not all possi-
ble combinations of curves are optimal; it has been proved that the optimal words are
only [8,10] CSC, CS, SC, S, CCC, CC, and C. Thus, there are 15 possible combinations:
LSL, LSR, RSL, RSR, RLR, LRL, LS, RS, SL, SR, S, LR, RL, L, R.

In practice, only the first six words are considered; the others can be obtained by
setting some of their arcs to zero. However, there is no way to know in advance which of
the six words is the shortest, and usually, the solution is found through trial-and-error (or
brute force) enumeration of all six. A recent method to avoid this trial-and-error procedure
employs Machine Learning to train an AI to determine the optimal solution without the
need to enumerate all candidate solutions [11].

The Multipoint Markov–Dubins Problem (MPMDP) generalizes the classic problem to a
sequence of assigned planar points P0, . . . , Pn using interpolation with Dubins paths [12,13].
The initial and final angles, ϑ0 and ϑn, are assigned, while the other intermediate angles ϑj,
for j = 1, . . . , n− 1, are free and thus are unknowns of the problem. Even for a few points,
the brute force method, i.e., trying all cases for each pair of consecutive points, becomes
rapidly infeasible due to the exponential growth of possible test cases. Recent solutions to
the multipoint problem are based on a Non-Linear Programming approach (NLP) [12,13]
or Mixed-Integer Non-Linear Programming (MINLP) [12]. The most effective technique is
actually the iDPP method based on the Iterative Dynamic Programming Principle [12] and
is suitable for parallel computing architectures on CPUs as well as on GPUs [14].

A special case of the MPMDP requires finding an obstacle-free path through three
points, which is a problem with name and importance: 3PDP—Three-Point Dubins Problem.
Despite being a subcase of the solved MPMDP case, the 3PDP has received special attention
in the last decade because of its application as a subroutine in a high-level planner for the
Dubins Traveling Salesman Problem (DTSP) [15–17]. This subroutine is used to insert a
new point in an existing path; therefore, the initial, the new middle, and the final point
are specified, as well as the initial and final angles. Thus, the 3PDP reduces to the one-
dimensional problem of finding the angle corresponding to the central point, so that the
curvature constraint is satisfied, and the minimum length is preserved. To solve this
non-smooth minimization problem, several methods can be employed [18–20].

The crucial point of interest in this special instance of the MPMDP is the computational
time: since it is called repeatedly as a subroutine of the DTSP, the solutions based on brute
force, Dynamic Programming, or NLP/MINLP are considered too inefficient because of the
considerable overhead. Therefore, a solution to this problem has been sought, as detailed
in the next section, aiming at computational efficiency.

1.1. Problem Formulation

The 3PDP is formulated as follows: given an initial point Pi = (xi, yi) with orientation
ϑi, a middle point Pm = (xm, ym), and a final point Pf = (x f , y f ) with orientation ϑ f , find
the shortest concatenation of two Dubins paths that begin in Pi, pass through Pm, and
reach Pf while respecting the constraints of having the maximum absolute curvature not
exceeding κmax; see Figure 1. The problem is clearly one-dimensional, with the angle ϑm at



Algorithms 2024, 17, 350 3 of 26

Pm being the only unknown of the problem. Once ϑm is determined, the solution becomes
trivial, since it is just twice the application of the standard Dubins problem.

−1

−0.5

0

0.5

y

−2 −1.5 −1 −0.5 0 0.5 1
x

Pi

Pm

Pf
ϑi

ϑm

ϑ f

Figure 1. An example and scheme of an instance of the 3PDP. This path is an example of the LSLSR
type. The three arcs of each Dubins are represented by colors red, green, and blue

Despite being formally simple, the 3PDP is quite involved: the function of the total
length to be minimized is, indeed, not continuous and thus non-smooth. Therefore, classic
optimization methods cannot be applied, and different methods are required [19,21].

1.2. Paper Contribution and Layout

Our research presents an efficient and compact solution to the Three-Point Dubins
Problem (3PDP), addressing the non-smooth minimization challenge. Our key contribu-
tions are as follows:

• Analytical Derivative Computation: We formulated a compact, closed-form solution for
the Markov–Dubins problem. With this formulation, we significantly reduce com-
putational overhead and improve the efficiency. This is instrumental to finding the
analytical expressions for the derivatives of the Dubins path length with respect to
the initial and final angles. These expressions allow for a more precise and faster
computation of path lengths and gradients, enabling a better optimization perfor-
mance. Additionally, we established bounds for the existence regions of each of the
six possible solutions. With this analysis, we can isolate discontinuities and provide a
more accurate and efficient solution to the 3PDP.

• Optimal Path Length and Derivative Analysis: We computed the length and derivatives
of the optimal 3PDP path, precisely framing it as a non-smooth minimization problem.

• Introduction of Two Non-smooth Minimization Methods: We propose two specialized
non-smooth minimization algorithms tailored for the 3PDP:

– A pattern search algorithm, which can be further enhanced with Algorithm 748 [22].
– A trichotomy algorithm, similarly augmentable with Algorithm 748.

Algorithm 748 can be used to perform the root-finding of the first derivatives of the
path length, improving the efficiency and accuracy of the solution up to machine
precision.

• Implementation and Accessibility: We provided a comprehensive implementation of
our algorithms in a C++ library with a Matlab interface, named Clothoids [23,24].
The library, along with clear descriptions and pseudocode of the algorithms, is freely
available and open-source, facilitating further research and practical applications,
bridging the gap between theoretical research and practitioners, ensuring that our
work can be readily used and extended by others.



Algorithms 2024, 17, 350 4 of 26

This paper is structured as follows: Section 2 gives insight into the 3PDP and presents
state-of-the-art methods on the subject. Section 3 develops the solution to the standard
Dubins problem and, in particular, the length of the solution as a function of the givens of
the problem. Our novel derivation allows us to compute the derivatives of the lengths of
the various cases, as shown in Section 4. In Section 5, we detail our solution of the 3PDP,
comprising all cases. The corresponding algorithms are discussed in Section 6 and tested in
Section 7. Finally, we present our conclusions in Section 8.

2. Background and State-of-the-Art Methods

Several results approximate the solution of the MPMDP under the hypothesis that
the distance between consecutive points is at least d⋆ := 4ρmin = 4/κmax, a condition
that implies that only CSC paths will constitute the solution, so that cases CCC are not
considered. Under this hypothesis, in defining the angles at the waypoints as the angles of
the line segment connecting the adjacent points in the sequence, the approximation yields
a path that is not more than 1.91 times longer than the optimal one. Without the d > d⋆

distance assumption, there is a method to construct a path that is at most 5.03 times longer
than the optimal, a factor which decreases to 2.58 if the distance between the points is more
than d⋆ [25,26].

Apart from the bounds, some exact results can be derived and computed in different
ways, covering some or all the possible feasible paths.

The first exact result in the problem of visiting an ordered sequence of waypoints
with a Dubins path is given in [25,27,28], under the assumption that the distance between
consecutive points is at least d⋆, thus considering the CSC cases only. It is shown that
the problem becomes locally convex over an open region; however, this region is not
even connected, and therefore, 2n−2 subproblems must be solved, each containing a local
minimum of the original problem. In their analysis, the authors reduce the complexity to
2k, with k being the number of sharp turns of the path.

A different approach, based on inversive geometry [26], proposes an iterative method
(IM) to solve the 3PDP with a 3× 3 non-linear system of equations to find the optimal
angle at the middle point for paths CSC-CSC (or shorter words). This method that com-
bines geometric arguments with the bisection algorithm is compared with the brute force
method of discretizing the middle angle with 360 samples and testing all cases (called the
discretization-based method—DBM [29,30]), showing a computational time improvement
ranging from a factor of about 14 in the best case, for points that have a distance greater
than d⋆, to a worse case improvement of a factor of 5 for points that are closer than d⋆.
Regarding accuracy, the iterative method in [26] is generally more precise than the brute
force DBM. However, it does not cover the cases where the path contains a CCC word.

An approach that covers all cases and is based on algebraic methods is the one
proposed in [31], where the trigonometric relations that characterize the solution are
transformed into polynomials of relatively high degree, from 4 to 20. In the paper, it is
discussed that although, in principle, there are 6× 6 potential path types (4 CSCs and
2 CCCs for each pair of points), of these 36 cases, only 18 are optimal candidates; see
Table 1.

The algorithm requires constructing and finding the (real) roots of these 18 polynomials
and, for each admissible root, testing the length of the path. The angle corresponding to
the shortest length is elected as the optimal angle at the midpoint. This method is called
the polynomial-based method, PBM, and requires, in the worst case, the computation of
2 × 4 + 2 × 6 + 10 × 8 + 4 × 20 = 180 pairs of Dubins paths, plus the time to find up to
their 180 roots. Depending on the distance of the points, this method achieves a speed-up
ranging from 25 to 45 times the speed of the DBM with 360 samples [31].



Algorithms 2024, 17, 350 5 of 26

A recent method [28] is based on geometrical observations and solves the case for
points having a distance larger than d⋆; thus, the cases are CSC (but not CCC). It takes the
name of the geometry-based method or GBM. This method is purely geometrical and bases
the solution on the construction of a special ellipse. The solution is computed by building
circles of radius ρmin with tangents on the initial and final points (four possible circles).
Then, an ellipse is defined by its foci laying in the previously built circle centers. The ellipse
must be tangent to the circle of radius ρmin centered in the middle point.

Table 1. The types of the 18 admissible paths; the subscript indicates the degree of the corresponding
polynomial according to [31]. For instance, RSLRL20 means that the path is of type CSCCC and that
the resulting polynomial has degree 20.

CCCCC CCCSC CSCCC CSCSC

RLRLR6 RLRSR8 RSRLR8 RSRSR4

LRLRL6 RLRSL20 LSRLR20 LSRSR8

LRLSL8 RSLRL20 RSRSL8

LRLSR8 LSLRL8 LSRSL8

LSLSL4

RSLSL8

LSLSR8

RSLSR8

The optimal angle is given by the angle of the common tangent to the ellipse and
the circle centered at the middle point, and a semi-analytical solution to the problem is
provided. The computational improvement over the DBM is of a factor of 150, and it can
find a shorter solution in about 92% of the instances: if the path contains a CSC word, the
solution will be exact and thus better than the DBM, but not when the path contains a CCC.

3. Derivation of Dubins Path with Trigonometry

This section is devoted to deriving the solution of the classic Dubins problem to
obtain analytic relations for the optimal lengths so that the next section can compute
their derivatives.

Without loss of generality, the original problem (1) can be transformed into a simpler
one by translating, rotating, and scaling the original configuration such that xi = yi = 0,
and x f = d, y f = 0 with a unitary maximum curvature of κmax = 1. Let d be the Euclidean
distance between the initial and final points scaled by the maximum curvature:

d =
√
(x f − xi)2 + (y f − yi)2/κmax. (2)

Then, the aforementioned transform is the following, (3): the translation is given by
−(xi, yi) and is followed by a rotation around (0, 0) by an angle −ϕ given by
ϕ = atan2(y f − yi, x f − xi), followed by a scaling of κ−1

max = ρmin, or compactly,[
x
y

]
=

1
κmax

[
cos ϕ sin ϕ
− sin ϕ cos ϕ

][
x− xi
y− yi

]
. (3)

Let α = ϑi + ϕ and β = ϑ f + ϕ be the initial and final angles in the transformed coor-
dinate system. The new initial point is thus the origin with angle α, and the final point
is on the positive x−axis at distance d, (2), from the origin and angle β with maximum
unitary curvature.



Algorithms 2024, 17, 350 6 of 26

The solution to a Dubins problem is a sequence of three curves (lines or arcs [32]) that
can be written in the following form for j ∈ 0, 1, 2:

j−th curve:


x(ℓ) = xj + s(sin(ϑj + sℓ)− sin θj) + (1− s2)ℓ cos θj,

y(ℓ) = yj + s(cos θj − cos(ϑj + sℓ)) + (1− s2)ℓ sin θj,

θ(ℓ) = ϑj + sℓ,

(4)

where ℓ is the curvilinear abscissa, x(ℓ) and y(ℓ) are the coordinates, and θ(ℓ) is the
orientation. Let us define x0 = y0 = 0 and ϑ0 = α, corresponding to the initial point.
Notice that, when the integer variable s is equal to 0, the function represents a line segment,
whereas, when s = 1, the curve is an arc of a unitary circle turning left, and, when s = −1,
the circle is turning right.

The Dubins problem is formulated with three internal segments (CSC or CCC) with
known initial and final coordinates and headings in the transformed coordinate system.
Hence, we can juxtapose three of such curves. Using the notation s1, s2, and s3 for the signs
of the curvature of the three segments coming from (4), we can write the equations for the
three segments:

x1 = 0 + s1(sin ϑ1 − sin α)

y1 = 0 + s1(cos α− cos ϑ1)

ϑ1 = α + s1ℓ1

x2 = x1 + s2(sin ϑ2 − sin ϑ1) + (1− s2
2)ℓ2 cos ϑ1

y2 = y1 + s2(cos ϑ1 − cos ϑ2) + (1− s2
2)ℓ2 sin ϑ1

ϑ2 = ϑ1 + s2ℓ2

0 = x2 + s3(sin β− sin ϑ2)

d = y2 + s3(cos ϑ2 − cos β)

β = ϑ2 + s3ℓ3.

(5)

The proposed transformation simplifies the equations, eliminating x1, x2, y1, y2, ϑ1, and ϑ2
from the general system (5). Moreover, we can separate two families of solutions based on
the presence or absence of the middle singular arc (straight line segment), that is, the CSC
and CCC cases.

Before proceeding, it is also convenient to define some notation and shorthand for the
trigonometric functions of the angles α and β that will be used in the following sections,
to specify that the expression depends on trigonometric combinations of α and β:

S− = sin α− sin β
C− = cos α− cos β
S+ = sin α + sin β
C+ = cos α + cos β

Pα,β = {sin α, cos α, sin β, cos β} (6)

where Pα,β denotes a set of the trigonometric functions of the angles α and β. We remark
that S± and C± are functions of Pα,β, but we drop the explicit dependence on Pα,β to keep
the notation light.

For all three cases, we want to compute the total length of the path, which is the sum
of the lengths of the three segments.

ℓ = ℓ1 + ℓ2 + ℓ3. (7)



Algorithms 2024, 17, 350 7 of 26

3.1. Case CSC

This case happens when s2 = 0 and, depending on the sign of s1 and s3, gives origin
to the curves LSL, RSR, LSR, and RSL. Then, system (5) simplifies to

d = s1(sin ϑ1 − sin α) + ℓ2 cos ϑ1 + s3(sin β− sin ϑ2)

0 = s1(cos α− cos ϑ1) + ℓ2 sin ϑ1 + s3(cos ϑ2 − cos β),
(8)

and by imposing the continuity conditions to (8) on the angle of the line segment
ϑ1 = ϑ2 = ϑS = α + s1ℓ1 = β− s3ℓ3, we have

d = (s1 − s3) sin ϑS − s1 sin α + s3 sin β + ℓ2 cos ϑS

0 = (s3 − s1) cos ϑS + s1 cos α− s3 cos β + ℓ2 sin ϑS.
(9)

We combine these two equations in (9), multiplying by sin ϑS and cos ϑS, respectively,
and we obtain an explicit expression for ℓ2 and an implicit expression for ϑS:

ℓ2 = (d− s3 sin β + s1 sin α) cos ϑS + (s3 cos β− s1 cos α) sin ϑS

0 = (d− s3 sin β + s1 sin α) sin ϑS − (s3 cos β− s1 cos α) cos ϑS + s3 − s1.
(10)

This case can be further separated into two subcases, the first, CSC+, with the two
circular arcs turning in the same direction (LSL and RSR), and the other, CSC−, with cir-
cular arcs in the opposite direction (LSR and RSL). They have two different solutions, as
detailed below.

3.1.1. The Subcase CSC+: LSL and RSR

As stated in the previous section, this solution type falls into the CSC+case, where
s2 = 0 and s1 = s3 = s. Hence, we can rewrite equations (10) in terms of the parameters
Pα,β using notation (6) as follows:

(d + sS−) sin ϑS + sC− cos ϑS = 0

(d + sS−) cos ϑS − sC− sin ϑS = ℓ2.
(11)

From the first equation, we can solve for ϑS, and the second is already solved for ℓ2,
as a function of ϑS. Thus, we have

ϑCSC+

S = atan2
(
−C−, d + sS−

)
mod π. (12)

We choose the only ϑS producing a non-negative ℓ2. Any ϑS not respecting this
constraint is discarded. The length ℓ2 is obtained from (11), knowing the solution in (12),
and from the condition ϑ1 = ϑ2 = ϑS = α + sℓ1 = β− sℓ3, we can derive the other lengths
ℓ1 and ℓ3, which are as follows:

ℓCSC+

1 = s(ϑCSC+

S − α) mod 2π

ℓCSC+

2 = (d + sS−) cos ϑCSC+

S − sC− sin ϑCSC+

S

ℓCSC+

3 = s(β− ϑCSC+

S ) mod 2π.

(13)



Algorithms 2024, 17, 350 8 of 26

3.1.2. The Subcase CSC−: LSR and RSL

This solution type falls into the CSC− case, where s2 = 0, s1 = s, and s3 = −s. It
is possible to rewrite equations (10) in terms of the parameters Pα,β using notation (6)
as follows:

(d + sS+) sin ϑS + sC+ cos ϑS = 2s

(d + sS+) cos ϑS − sC+ sin ϑS = ℓ2.
(14)

We can substitute the expression for ϑS to obtain a polynomial equation as a function
of the auxiliary variable X.

ϑS = π + 2 arctan(X), cos ϑS =
X2 − 1
X2 + 1

, sin ϑS =
−2X

X2 + 1
. (15)

Therefore, using (15) in (14), multiplying by (X2 + 1), and using s2 = 1, we can obtain
a quadratic equation in X as follows:

0 = (2− C+) X2 + 2(s d + S+) X + (2 + C+). (16)

Hence, once the polynomial equation is solved. We can substitute the expression for
ϑS in (14), derive the lengths ℓ2, and retrieve ℓ1 and ℓ3 with the following:

ϑCSC−
S = atan2(−2X, X2 − 1). (17)

If |2− S+| ≪ 1, the polynomial in (16) is not well posed and ill conditioned. There-
fore, we can change the coordinates to X = 1/Y to reshape the polynomial, yielding the
following expression:

ϑS = π + 2 arctan(1/Y), cos ϑS =
1−Y2

Y2 + 1
, sin ϑS =

−2Y
Y2 + 1

. (18)

From the condition ϑ1 = ϑ2 = ϑS = α + s1ℓ1 = β − s3ℓ3 and (14), (15), or (18), we can
derive the lengths ℓ1, ℓ2, and ℓ3, recalling also (17), as follows:

ℓCSC−
1 = s(ϑCSC−

S − α) mod (2π)

ℓCSC−
2 = (d + sS+) cos ϑCSC−

S − sC+ sin ϑCSC−
S

ℓCSC−
3 = s(ϑCSC−

S − β) mod (2π).

(19)

3.1.3. Range of the Solution

The solution exists only for angles coming from real roots of polynomial (16). The
discriminant DCSC+of that polynomial is

1
4
DCSC+ = (s d + S+)2 − (2− C+)(2 + C+)

= 2
(
sd(sin α + sin β) + sin α sin β + cos α cos β

)
+ d2 − 2,

(20)

In introducing new variables Z and W, defined by the relations α = 2 arctan Z and
β = 2 arctan W, it is possible to convert the trigonometric expressions into polynomials.
Substituting each of these relations into the discriminant in (20), we obtain two polynomials:

PCSC+(Z; β) = (sd sin β− cos β + t)Z2 + 2(sd + sin β)Z + sd sin β + cos β + t,

PCSC+(W; α) = (sd sin α− cos α + t)W2 + 2(sd + sin α)W + sd sin α + cos α + t,
(21)



Algorithms 2024, 17, 350 9 of 26

where t = d2

2 − 1. The real roots of PCSC+(Z; β) represent the border of the range interval
where α can run, to obtain a solution for the CSC+ problem for a fixed β. The same holds
for PCSC+(W; α) for the interval range of β.

The range detection is fundamental in the solution to the 3PDP. In general, the length
of the 3PDP is a discontinuous function of the middle angle (see Figure 2). Standard direct
search [33,34] and non-smooth minimization algorithms [35,36] can fail to find the solution
if evaluation points are located in a small discontinuity region (see Figure 3). Hence, our
proposed approach , discussed in the later sections, employs the solution of polynomial (21)
to isolate the discontinuity points and treat them separately in the minimization algorithm.

The range detection is fundamental to finding the points that are candidate to be
points of discontinuity of the length of the Dubins path with respect to initial or final angles
α and β.

−6 −5 −4 −3 −2 −1 0 1 2

−2

−1

0

1

x (m)

y
(m

)

−π −π
2

0 π
2

π10

15

20

25

30

ϑm (rad)

ℓ
(m

)

ℓ
min with PST
min with DBM

−π −π
2

0 π
2

π

−2

0

2

ϑm (rad)

d
ℓ
(m

)

dℓ
min with PST
min with DBM

Figure 2. Example of the total length of a three-point Dubins path. Spatial coordinates are in meters,
and angles are in radiant. (Top: path result with alternating colors for each arc; Middle: total length
ℓ as a function of middle angle ϑm; Bottom: derivative of total length ℓ as a function of middle
angle ϑm).



Algorithms 2024, 17, 350 10 of 26

3.2. Case CCC

The CCC case, happening when s2 ̸= 0, comprises two paths: LRL and RLR. In this
situation, we can impose s1 = s3 = −s2 = s and simplify (5) to obtain

s d = (sin ϑ1 − sin α)− (sin ϑ2 − sin ϑ1) + (sin β− sin ϑ2)

0 = (cos α− cos ϑ1)− (cos ϑ1 − cos ϑ2) + (cos ϑ2 − cos β).
(22)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.4

−0.2

0

0.2

0.4

x (m)

y
(m

)

−π −π
2

0 π
2

π0

5

10

15

20

ϑm (rad)

ℓ
(m

)

ℓ
min with PS
min with DBM

−π −π
2

0 π
2

π

−1

0

1

ϑm (rad)

d
ℓ
(m

)

dℓ
min with PS
min with DBM

Figure 3. Example of the total length of a three-point Dubins path. Spatial coordinates are in meters,
and angles are in radiant. (Top: path result with alternating colors for each arc; Middle: total length
ℓ as a function of middle angle ϑm; Bottom: derivative of total length ℓ as a function of middle
angle ϑm).



Algorithms 2024, 17, 350 11 of 26

Equation (22) can be rewritten in compact form as

s d = 2(sin ϑ1 − sin ϑ2) + sin β− sin α

0 = 2(cos ϑ2 − cos ϑ1) + cos α− cos β

β = α + s(ℓ1 − ℓ2 + ℓ3).

(23)

We can state equations (23) in terms of the parameters Pα,β using notation (6) as

s d = 2(sin ϑ1 − sin ϑ2)− S−

0 = 2(cos ϑ2 − cos ϑ1) + C−.
(24)

From (24) and squaring, we obtain

1
4
(s d + S−)2 = (sin ϑ1 − sin ϑ2)

2 = sin ϑ2
1 + sin ϑ2

2 − 2 sin ϑ1 sin ϑ2

1
4
(C−)2 = (cos ϑ2 − cos ϑ1)

2 = cos ϑ2
1 + cos ϑ2

2 − 2 cos ϑ1 sin ϑ2

(25)

and by adding the two equalities (25) (and dividing by 2), we obtain

(s d + S−)2 + (C−)2

8
= 1− sin ϑ1 sin ϑ2 − cos ϑ1 sin ϑ2

= 1− cos(ϑ2 − ϑ1) = 1− cos ℓ2,

(26)

where the last step follows inserting the sixth equation of (5), that is, ϑ2 − ϑ1 = s2ℓ2,
and noting that cosine is even. Thus, ℓ2 can be obtained from (26) as follows:

tCCC =
3 + cos(α− β) + s d(sin β− sin α)

4
− d2

8
,

cos ℓ2 = 1− (s d + S−)2 + (C−)2

8
= tCCC,

ℓ2 = arccos(tCCC), or ℓ2 = 2π − arccos(tCCC).

(27)

The solution exists when the argument of arccos is in the interval [−1, 1]. Therefore, the
tCCC solved in (27) must be comprised between −1 and 1, yielding the following inequality:

−1 ≤ 3 + cos(α− β) + s d(sin β− sin α)

4
− d2

8
≤ 1. (28)

The previous expression (28) can be multiplied by 4 and moved −d2/2 + 3 to the left
and right side:

d2

2
− 7 ≤ cos(α− β) + s d(sin β− sin α) ≤ d2

2
+ 1. (29)

We can obtain the other relations from the trigonometric relations furnished by (24).
From ϑ1 = α + sℓ1 and ϑ2 = α + s(ℓ1 − ℓ2) and expanding the trigonometric functional, we
obtain a linear system in cos ℓ1 and sin ℓ1, and from ϑ1 = β + s(ℓ2 − ℓ3) and ϑ2 = β− sℓ3
and expanding the trigonometric functions again, we obtain a linear system in cos ℓ3 and
sin ℓ3 as follows:



Algorithms 2024, 17, 350 12 of 26

[
sin α− sin α̃ s(cos α− cos α̃)
cos α− cos α̃ s(sin α̃− sin α)

][
cos ℓ1
sin ℓ1

]
=

1
2

[
s d + S−

C−

]
,

[
sin β̃− sin β s(cos β− cos β̃)
cos β̃− cos β s(sin β̃− sin β)

][
cos ℓ3
sin ℓ3

]
=

1
2

[
s d + S−

C−

]
,

(30)

where α̃ = α− sℓ2 and β̃ = β + sℓ2. In conclusion, we can summarize the results for the
CCC case as follows:

Evaluate
tCCC =

3 + cos(α− β)− s dS−

4
− d2

8
, (31)

If tCCC ∈ [−1, 1], then build

ℓ2 = arccos(tCCC) and ℓ2 = 2π − arccos(tCCC); (32)

solve the linear system (30) and compute

ℓ1 = atan2(sin ℓ1, cos ℓ1) mod 2π,

ℓ3 = atan2(sin ℓ3, cos ℓ3) mod 2π.
(33)

Discard the solutions that do not satisfy α + s(ℓCCC
1 − ℓCCC

2 + ℓCCC
3 ) = β mod 2π.

Range of the Solution

The solution exists only when condition (29) is satisfied. Introducing new variables
X and Y, in the same fashion as before, defined from the angles α = 2 arctan X and
β = 2 arctan Y, and substituting them in the inequality (29), we obtain four quadratic
polynomials:

p = s d sin β− d2

2
, q = 2(sin β− s d)

PCCC,1(X; β) = (p− cos β− 1)X2 + qX + p + cos β− 1

PCCC,2(X; β) = (p− cos β + 7)X2 + qX + p + cos β + 7

(34)

and

p = −s d sin α− d2

2
, q = 2(sin α + s d)

PCCC,3(X; α) = (p− cos α− 1)X2 + qX + p + cos α− 1

PCCC,4(X; α) = (p− cos α + 7)X2 + qX + p + cos α + 7.

(35)

The real roots of the polynomials return the border of the interval range where α can
run, to yield a solution for the CCC problem with β fixed. The same holds for PCCC,2/3(X; α)
for the interval range of β.

The following section uses the results derived so far to compute the derivatives of the
optimal lengths so that an algorithm for the 3PDP can be constructed.



Algorithms 2024, 17, 350 13 of 26

4. Derivatives of the Optimal Lengths

In this section, we present the partial derivatives of the optimal lengths with respect
to the initial and final angles α and β.

4.1. Derivatives of the LSL and RSR Cases

For the CSC+case given in (13), we can trivially derive some partial derivatives of
the lengths with respect to α or β. For instance, ∂α(ℓ1 + ℓ3) = −s and ∂β(ℓ1 + ℓ3) = s.
The derivatives of ℓ2 with respect to α and β can be computed and simplified using (11)
and collecting (12):

∂αℓ
CSC+

2 = s cos(α− ϑCSC+

S )−
(

sC− cos ϑCSC+

S + (sd + S−) sin ϑS

)
∂αϑCSC+

S

= s cos(α− (α + sℓCSC+

1 ))

= s cos ℓCSC+

1 ,

∂βℓ
CSC+

2 = −s cos(β− ϑCSC+

S )− s
(
C− cos ϑCSC+

S + (sd + S−) sin ϑCSC+

S

)
∂βϑCSC+

S

= −s cos(β− (β− sℓCSC+

3 ))

= −s cos ℓCSC+

3 .

(36)

Therefore, we can write the partial derivatives of the sum of the lengths using the
result from (36):

∂α(ℓ
CSC+

1 + ℓCSC+

2 + ℓCSC+

3 ) = s(cos ℓCSC+

1 − 1),

∂β(ℓ
CSC+

1 + ℓCSC+

2 + ℓCSC+

3 ) = s(1− cos ℓCSC+

3 ).
(37)

To remove the dependency of ℓ1 and ℓ3 from (37), we substitute their expression (13),
so that we can write the partial derivatives of the sum of the lengths as follows (considering
ℓ the total length, ℓ = ℓ1 + ℓ2 + ℓ3):

∂α(ℓ
CSC+

) = s(cos(ϑCSC+

S − α)− 1),

∂β(ℓ
CSC+

) = s(1− cos(β− ϑCSC+

S )).
(38)

The upper bound of the derivative in (37) and (38) and thus of the Lipschitz constant
is 2.

4.2. Derivatives of the LSR and RSL Cases

We compute herein the partial derivatives of the optimal lengths for the CSC−case
given in (19) with respect to α or β:

∂α(ℓ
CSC−
1 + ℓCSC−

3 ) = 2 s ∂αϑCSC−
S − s,

∂β(ℓ
CSC−
1 + ℓCSC−

3 ) = 2 s ∂βϑCSC−
S − s.

(39)



Algorithms 2024, 17, 350 14 of 26

Then, using (6) and (14), we have

∂αℓ
CSC−
2 = ∂α

(
(d + sS+) cos ϑCSC−

S − sC+ sin ϑCSC−
S

)
= s cos(α− ϑCSC−

S )−
(
(d + sS+) sin ϑCSC−

S + sC+ cos ϑCSC−
S

)
∂αϑCSC−

S

= s cos ℓCSC−
1 − 2 s ∂αϑCSC−

S ,

∂βℓ
CSC−
2 = ∂β

(
(d + sS+) cos ϑCSC−

S − sC+ sin ϑCSC−
S

)
= s cos(β− ϑCSC−

S )−
(
(d + sS+) sin ϑCSC−

S + sC+ cos ϑCSC−
S

)
∂βϑCSC−

S

= s cos ℓCSC−
3 − 2 s ∂αϑCSC−

S .

(40)

In this case, the partial derivatives of the sum of the lengths cancel out the contribution
of the partial derivative of ϑS, yielding a simplified expression derived from (39) and (40):

∂α(ℓ
CSC−
1 + ℓCSC−

2 + ℓCSC−
3 ) = s(cos ℓCSC−

1 − 1),

∂β(ℓ
CSC−
1 + ℓCSC−

2 + ℓCSC−
3 ) = s(cos ℓCSC−

3 − 1).
(41)

Substituting the lengths into their expression from (19), we can write the partial
derivatives of the sum of the lengths from (41) as

∂α(ℓ
CSC−) = s(cos(ϑCSC−

S − α)− 1),

∂β(ℓ
CSC−) = s(cos(ϑCSC−

S − β)− 1).
(42)

The upper bound of the derivative and thus of the Lipschitz constant is 2.

4.3. Derivatives of the LRL and RLR Cases

Using equation (33) again, we have

2ℓCCC
2 = ℓCCC

1 + ℓCCC
2 + ℓCCC

3 − s(β− α) mod (2π), (43)

and thus, deriving (43), we obtain

2∂αℓ
CCC
2 = ∂αℓ

CCC + s, 2∂βℓ
CCC
2 = ∂βℓ

CCC − s. (44)

Then, from (44) and in recalling Equation (33) and the expression of tCCC from (27),

∂α(ℓ
CCC) = 2∂α(ℓ

CCC
2 )− s = ± sin(α− β) + s d cos α

2
√

1− (tCCC)2
− s,

∂β(ℓ
CCC) = 2∂α(ℓ

CCC
2 ) + s = s∓ sin(α− β) + s d cos β

2
√

1− (tCCC)2
.

(45)

The sign depends on whether the first or the second solution for ℓ2 is used.
The results in (38), (42) and (45) are compactly implemented in Algorithm 1, which

solves the classic point-to-point Dubins problem and returns the solution and its derivatives.
This is instrumental for building the algorithm that solves the 3PDP presented in the
next section.



Algorithms 2024, 17, 350 15 of 26

Algorithm 1 Dubin’s solver with derivatives

1: function DUBINS(Pi, ϑi, Pf, ϑ f , κmax)
2: Input: Pi = (xi, yi), ϑi, Pf = (x f , y f ), ϑ f , κmax;
3: Transform to a standard problem with rotation, translation, and scaling
4: ϕ← atan2(y f − yi, x f − xi); d← ||Pi − Pf||/κmax (2); α← ϑi + ϕ; β← ϑ f + ϕ;
5: ℓ1, ℓ2, ℓ3, s1, s2, s3, ∂αℓ, ∂βℓ← DUBINSCSCP(d, α, β)
6: ℓ1, ℓ2, ℓ3, s1, s2, s3, ∂αℓ, ∂βℓ← DUBINSCSCM(d, α, β)
7: ℓ1, ℓ2, ℓ3, s1, s2, s3, ∂αℓ, ∂βℓ← DUBINSCCC(d, α, β)
8: Select the solution with minimal ℓ1 + ℓ2 + ℓ3
9: return ℓ1/κmax, ℓ2/κmax, ℓ3/κmax, s1, s2, s3, ∂αℓ/κmax, ∂βℓ/κmax;

10: end function
1: function DUBINSCSCP(d,α,β)
2: S− ← sin α− sin β; C− ← cos α− cos β; (6)
3: for s ∈ {−1, 1} do

4:

ϑS ← atan2(−C−, d + sS−) mod π (12)
ℓ1 ← s(ϑS − α) mod 2π (13)
ℓ2 ← (d + sS−) cos ϑS − sC− sin ϑS (13)
ℓ3 ← s(β− ϑS) mod 2π (13)

ℓ← ℓ1 + ℓ2 + ℓ3 (7)
∂αℓ← s(cos(ϑS − α)− 1) (38)
∂βℓ← s(1− cos(β− ϑS)) (38)

5: end for
6: Select the solution with minimal ℓ and return ℓ1, ℓ2, ℓ3, s, 0, s, ∂αℓ, ∂βℓ;
7: end function
1: function DUBINSCSCM(d,α,β)
2: S+ ← sin α + sin β; C+ ← cos α + cos β; (6)
3: for s ∈ {−1, 1} do
4: for X real root of (2− C+) X2 + 2(s d + S+) X + (2 + C+) = 0 do

5:

ϑS ← atan2(−2X, X2 − 1) (12)
ℓ1 ← s(ϑS − α) mod (2π) (19)
ℓ2 ← (d + sS+) cos ϑS − sC+ sin ϑS (19)
ℓ3 ← s(ϑS − β) mod (2π) (19)

ℓ← ℓ1 + ℓ2 + ℓ3 (7)
∂αℓ← s(cos(ϑS−α)−1) (42)
∂βℓ← s(cos(ϑS−β)−1) (42)

6: end for
7: end for
8: Select the solution with minimal ℓ or set ℓ1 = ℓ2 = ℓ3 = ∞ in case no solution exists.
9: return ℓ1, ℓ2, ℓ3, s, 0,−s, ∂αℓ, ∂βℓ;

10: end function
1: function DUBINSCCC(d,α,β)
2: S− ← sin α− sin β; (6)
3: for s ∈ {−1, 1} do
4: t← (3 + cos(α− β)− s dS−)/4− d2/8 (31)
5: if t ∈ [−1, 1] then
6: for ℓ2 ∈ {arccos(t), 2π − arccos(t)} (32) do
7: solve linear system (30) and compute
8: ℓ1 ← atan2(sin ℓ1, cos ℓ1) mod 2π (33);
9: ℓ3 ← atan2(sin ℓ3, cos ℓ3) mod 2π (33);

10: ∂αℓ← ±(sin(α− β) + s d cos α)/(2
√

1− t2)− s (45)
11: ∂βℓ← s∓ (sin(α− β) + s d cos β)/(2

√
1− t2) (45)

12: end for
13: end if
14: if not α + s(ℓ1 − ℓ2 + ℓ3) = β mod 2π (34) (35) then
15: Discard the solution
16: end if
17: end for
18: return ℓ1, ℓ2, ℓ3, s,−s, s, ∂αℓ, ∂βℓ;
19: end function



Algorithms 2024, 17, 350 16 of 26

5. Three-Point Dubins Problem (3PDP)

In this section, we derive the formulation for the 3PDP. The resulting Dubins spline
will be a concatenation of two Dubins paths. Hence, the total length of such a spline will be
the sum of the lengths of the two elementary Dubins paths:

ℓtotal(Pi, Pm, Pf, ϑi, ϑm, ϑ f ) = ℓdub1(Pi, Pm, ϑi, ϑm) + ℓdub2(Pm, Pf, ϑm, ϑ f ), (46)

where Pi = (xi, yi), Pm = (xm, ym), and Pf = (x f , y f ) are the three points defining the
3PDP path, ϑi and ϑ f are the initial and final angles of the path, and finally, ϑm is the angle
of the middle point and the only unknown variable. Therefore, we will consider the total
length ℓtotal as a function of ϑm only and also consider its derivative, ℓ′total. Hence, (46) can
be rewritten as

ℓtotal(ϑm) = ℓdub1(ϑm) + ℓdub2(ϑm),

ℓ′total(ϑm) = ℓ′dub1(ϑm) + ℓ′dub2(ϑm).
(47)

The derivatives are computed thanks to the results of the previous sections and,
given (47), we have the following:

ℓ′dub1(ϑm) = ∂ϑmℓdub1(Pi, Pm, ϑi, ϑm) = ∂βℓdub1∂ϑm β1,

ℓ′dub2(ϑm) = ∂ϑmℓdub2(Pm, Pf, ϑm, ϑ f ) = ∂αℓdub2∂ϑm α2.
(48)

Recalling that for a single segment ϑi = α− ϕ and x f = d, y f = 0, ϑ f = β− ϕ, and
ϕ = atan2(y f − yi, x f − xi), we obtain

∂ϑm β1 = ∂ϑm(ϑm + ϕ1) = 1,

∂ϑm α2 = ∂ϑm(ϑm + ϕ2) = 1
(49)

However, ϕ1 = atan2(ym − yi, xm − xi) and ϕ2 = atan2(y f − ym, x f − xm) do not
depend on ϑm and can be considered constants. Therefore, the derivatives of the lengths
with respect to ϑm are computed using (48) and (49):

ℓ′total(ϑm) = ∂β1ℓdub1(Pi, Pm, ϑi, β1 − ϕ1) + ∂α2ℓdub2(Pm, Pf, α2 − ϕ2, ϑ f ).

However, we cannot simply find the root of the previous equation because the lengths
are piecewise continuous functions of ϑm. Therefore, we need to use a numerical method
to find the optimal angle ϑm that minimizes the total length of the path.

Figure 2 illustrates the optimal configuration of the three-point Dubins connection.
In the second subfigure, the total length is depicted as a function of the middle-point angle.
This total length, which is the sum of the two individual lengths, can exhibit discontinuities.
Depending on the problem’s boundary conditions, some configurations are feasible only
for a limited range of internal angles. Additionally, the third subplot displays the behavior
of the analytical derivative of the total length. Notably, there are jumps in the derivative
even in regions where the total length appears to be smooth.

Therefore, finding the minimum length solution cannot rely on standard minimization
or root-finding algorithms [19]. These traditional methods assume a certain level of smooth-
ness and continuity in the target function and its derivatives. Therefore, we introduce a
specialized section about algorithms designed to handle such irregularities effectively as
in non-smooth optimization [18–20]. Furthermore, it is important to highlight that the
minimum can occur at a jumping point where the derivative may differ from zero.



Algorithms 2024, 17, 350 17 of 26

6. Algorithms

In this section, we present two algorithms employed to find the optimal angle ϑm that
minimizes the total length of the three-point Dubins path. Both algorithms are based on a
mixed approach that combines a pattern search method with a non-derivative root finder.

As highlighted in the previous section, the total length of the path can have disconti-
nuities in the derivative. Therefore, the angle ϑm that minimizes the total length of the path
cannot be found, in general, by simply computing the root of the derivative of the total
length. This is true from a global perspective. However, if some regularity conditions are
met in a specific region (interval), the root of the derivative can be used to find the optimal
angle ϑm.

6.1. Discretization-Based Method (DBM [29])

This algorithm is the baseline used in the literature to compare new methods. It is
based on the observation that once the angle ϑm is fixed, the corresponding length of the
3PDP is readily obtained by applying the classic Dubins solution two times, first from Pi, ϑi
to Pm, ϑm and a second time from Pm, ϑm to Pf, ϑ f . The method discretizes the round angle
with N points and selects as the solution of the 3PDP the angle that returns the minimum
length. This is not very accurate and not very fast. Nevertheless, it is a straightforward
method used as a baseline with standard value N = 360 and a discretization of one degree.
It is described in Algorithm 2.

Algorithm 2 Discretization-Based Method (DBM [29])

1: function DUBINS3PDBM(Pi, ϑi, Pf, ϑ f , Pm, κmax, N)
2: ϑm ← 0; ∆ϑ← 2π/N; ℓmin ← ∞;
3: while ϑm < 2π do
4: S← TWODUBINS(Pi, ϑi, Pm, ϑm, Pf, ϑ f , κmax);
5: if S.ℓ < ℓmin then
6: ℓmin ← S.ℓ; C ← S; (* select this solution *)
7: end if
8: ϑm ← ϑm + ∆ϑ;
9: end while

10: return C; (* the structure of the selected solution *)
11: end function

1: function TWODUBINS(Pi, ϑi, Pm, ϑm, Pf, ϑ f , κmax)
2: S.A← DUBINS(Pi, ϑi, Pm, ϑm, κmax);
3: S.B← DUBINS(Pm, ϑm, Pf, ϑ f , κmax);
4: S.ℓ← S.A.ℓ+ S.B.ℓ; (* store total length *)
5: S.ϑi ← ϑi; S.ϑm ← ϑm; S.ϑ f ← ϑ f ;
6: return S; (* return a structure with the two curves *)
7: end function

6.2. Pattern Search with Root Finder

Algorithm 3 combines the potential of a pattern search method with a non-derivative
root finder. The pattern search method is used iteratively to refine the interval of angles
where the total length has a local minimum. The iterative search stops when the interval is
small enough or whenever sufficient conditions to use the non-derivative root finder are
met. The non-derivative root finder yields the optimal angle ϑm inside the regular interval
retrieved by the pattern search method. The sufficient conditions are that the solution
does not change type inside the interval. If the derivatives at the interval’s endpoints
have opposite signs, then, by continuity, the minimum is inside the interval. In this case,
a non-derivative root finder, which searches the zero of the derivative of the length, is used.
The algorithm employed to find the root is a variant of the bisection with interpolation
Algorithm 748 from [22].



Algorithms 2024, 17, 350 18 of 26

Algorithm 3 Pattern Search Refinement (Based on Direct Search [37])

1: function DUBINS3PPATTERNREFINE(Pi, ϑi, Pm, ϑm, Pf, ϑ f , κmax, ϑL
m, ϑC

m, ϑR
m)

2: L← TWODUBINS(Pi, ϑi, Pm, ϑL
m, Pf, ϑ f , κmax);

3: C ← TWODUBINS(Pi, ϑi, Pm, ϑC
m, Pf, ϑ f , κmax);

4: R← TWODUBINS(Pi, ϑi, Pm, ϑR
m, Pf, ϑ f , κmax);

5: while R.ϑm − L.ϑm > ∆ϑmin do (* refine solution *)
6: OPTIONAL: If curve type for L, C is the same
7: and the length derivative changes sign, use algo 748
8: to refine the solution between L.θm and C.θm and return.
9:

10: OPTIONAL: If curve type for C, R is the same
11: and the length derivative changes sign, use algo 748
12: to refine the solution between C.θm and R.θm and return.
13:
14: L̂← TWODUBINS(Pi, ϑi, Pm, (L.ϑm + C.ϑm)/2, Pf, ϑ f , κmax);
15: R̂← TWODUBINS(Pi, ϑi, Pm, (R.ϑm + C.ϑm)/2, Pf, ϑ f , κmax);
16: if L̂.ℓ < R̂.ℓ then
17: if L̂.ℓ < C.ℓ then
18: R← C; C ← L̂;
19: else
20: L← L̂; R← R̂;
21: end if
22: else
23: if R̂.ℓ < C.ℓ then
24: L← C; C ← R̂;
25: else
26: L← L̂; R← R̂;
27: end if
28: end if
29: end while
30: return C; (* best solution found *)
31: end function

Algorithm 4 (Pattern Trichotomy) is similar to the previous one with a slight variation.
The main drawback of the pattern search method is that it can find only one local minimum
of the total length. Algorithm 4 overcomes, in part, this limitation using a pattern search
method to find multiple local minima of the total length. The algorithm iteratively searches
for the local minima of the total length and stores them in a list of candidate minima.
Then, the algorithm explores the candidates in a neighborhood of decreasing size and stops
the search in two cases. The first is when the interval is small enough. The second case
is when sufficient conditions are met, where the fast bisection can be used on the total
length derivative. In both cases, the solution found is stored if it is better than a previously
computed one.

The previously described methods (Algorithms 3 and 4) are not always able to catch
the correct minima if there are discontinuities or jumps smaller than the first sampling
range ∆ϑ. Our proposed hybrid method (Algorithm 5) overcomes this problem by isolating
first the discontinuity points, and then adding at least two more points (before and after
the jump). Furthermore, additional points are sampled according to the interval range
∆ϑ. The discontinuity isolation is performed by computing the existence range of the
solution computed in (21), (34) and (35). The algorithm loops over all the sampled points,
comparing the left and right samples. If the length at the central point is less or equal to
the left and right lengths, we refine the solution. The algorithm returns the best solution
found. The refinement phase is conducted by either the DUBINS3PPATTERNREFINE or
DUBINS3PTRICHOTOMYREFINE functions described in Algorithms 3 and 4.



Algorithms 2024, 17, 350 19 of 26

Algorithm 4 Trichotomy Refine (Based on Trichotomy Method [36])

1: function DUBINS3PTRICHOTOMYREFINE(Pi, ϑi, Pm, ϑm, Pf, ϑ f , κmax, ϑL
m, ϑC

m, ϑR
m )

2: L← TWODUBINS(Pi, ϑi, Pm, ϑL
m, Pf, ϑ f , κmax);

3: C ← TWODUBINS(Pi, ϑi, Pm, ϑC
m, Pf, ϑ f , κmax);

4: R← TWODUBINS(Pi, ϑi, Pm, ϑR
m, Pf, ϑ f , κmax);

5: while R.ϑm − L.ϑm > ∆ϑmin do (* refine solution *)
6: OPTIONAL: If curve type for L, C is the same
7: and the length derivative change signs, use algo 748
8: to refine the solution between L.θm and C.θm and return.
9:

10: OPTIONAL: If curve type for C, R is the same
11: and the length derivative changes sign, use algo 748
12: to refine the solution between C.θm and R.θm and return.
13:
14: L̂← TWODUBINS(Pi, ϑi, Pm, (L.ϑm + 2C.ϑm)/3, Pf, ϑ f , κmax);
15: if L̂.ℓ ≤ C.ℓ then
16: L̃← TWODUBINS(Pi, ϑi, Pm, (2L.ϑm + C.ϑm)/3, Pf, ϑ f , κmax);
17: if L̃.ℓ ≤ L̂.ℓ then
18: C ← L̃; R← L̂;
19: else
20: L← L̃; R← C; C ← L̂;
21: end if
22: else
23: R̂← TWODUBINS(Pi, ϑi, Pm, (R.ϑm + 2C.ϑm)/3, Pf, ϑ f , κmax);
24: if R̂.ℓ ≤ C.ℓ then
25: R̃← TWODUBINS(Pi, ϑi, Pm, (2R.ϑm + C.ϑm)/3, Pf, ϑ f , κmax);
26: if R̃.ℓ ≤ R̂.ℓ then
27: L← R̂; C ← R̃;
28: else
29: L← C; C ← R̂; R← R̃;
30: end if
31: else
32: L← L̂; R← R̂;
33: end if
34: end if
35: end while
36: return C; (* best solution found *)
37: end function

Algorithm 5 Hybrid Search

1: function DUBINS3PHYBRIDSEARCH(Pi, ϑi, Pf, ϑ f , Pm, κmax, ∆ϑ)
2: ϑd ← Compute the candidate discontinuity points
3: ϑs ← sample points (at least 2 close to ϑd with distance less or equal to ∆ϑ)
4: for all ϑm ∈ ϑc do
5: ϑL

m, ϑR
m ← left and right sample points of ϑm

6: if ℓ(ϑm) ≤ ℓ(ϑL
m) and ℓ(ϑm) ≤ ℓ(ϑR

m) then
7: C ← REFINE(Pi, ϑi, Pm, ϑm, Pf, ϑ f , κmax, ϑL

m, ϑm, ϑR
m)

8: end if
9: end for

10: return C; (* the structure of the best computed solution *)
11: end function
where REFINE can be DUBINS3PPATTERNREFINE or DUBINS3PTRICHOTOMYREFINE



Algorithms 2024, 17, 350 20 of 26

7. Numerical Tests and Results

In this section, we briefly present the numerical results and performance achievements.
The tests were conducted on a commercial laptop with an Apple M2 Max processor.
The test was performed on a sampled pool of 10, 000 random three-point Dubins problems,
which is the standard benchmark test for the 3PDP found in the literature. The results are
summarized in Tables 2–5.

We employed two different ranges of sampling, the first coming from the literature
and representing a standard benchmark case, whereas the second was more representative
of the solution-type distribution. Without loss of generality, we kept the initial and final
points fixed at (−1, 0) and (1, 0), respectively.

In the first sampling, we took the middle point uniformly distributed in [−10, 10]×
[−10, 10]. The initial and final angles were in the interval [−π, π], and the maximum
curvature was kept constant at 1. The same test was conducted in [26,28,31]. In summary,

(xm, ym) ∈ [−10, 10]× [−10, 10], θi, θ f ∈ [−π, π], and κmax = 1, (50)

The second test sampled the middle point randomly inside the region [−2, 2]× [−2, 2].
As before, the initial and final angles were randomly sampled in the interval [−π, π],
and we randomly generated the maximum curvature inside the interval [0.1, 1.5]. In brief,

(xm, ym) ∈ [−2, 2]× [−2, 2], θi, θ f ∈ [−π, π], and κmax ∈ [0.1, 1.5]. (51)

We proposed the second test because, when the middle point is distant from the initial
and the final points, we lose two potential solutions of the 3PDP. When the distance is
greater than the maximum curvature inverse, we can only observe 4 of the 18 possible
solutions, which are the ones with the straight line in the middle.

In Tables 2 and 4, we present the mean and standard deviation of both the number of
iterations and computational time for the sampling in (50) and (51), respectively. The last
columns of the tables present the number of calls to the Dubins function, on average. It is
important to highlight that the number of iterations is linked to the number of Dubins calls
(twice). The information is redundant, but most of the available state-of-the-art publications
report the number of Dubins calls. The computational time is measured in milliseconds. It
is important to stress that the computational time depends on the implementation.

Tables 3 and 5 present a comparison between different approaches scaling the results
with the DBM benchmark. The ratio is computed as the number of iterations and time of the
algorithm divided by the number of iterations and time of the DBM algorithm. The results
are presented for the sampling in (50) and (51), respectively.

The four tables (Tables 2–5) showcase the strong performance of our algorithm when
the middle point is distant, on average. In fact, in this occurrence, both the length and the
derivative do not jump; hence, non-smooth root-finding algorithms can be used to obtain
the minimum length curve.

The results show that the proposed algorithms outperform the benchmark algorithms
in terms of the number of iterations and time. The pattern search with the root finder
and the pattern trichotomy algorithms are more efficient than the brute force (DBM) and
refinement (iDDP) algorithms by a factor ranging between 4.27 and 6.67 times depending
on the proposed sampling. Moreover, it should be noted that these methods do not achieve
the same precision: indeed, the DBM evaluates the problem with a 1-degree precision,
while the other methods have a precision of 10−2 degrees. However, the threshold precision
can be set to a custom value in our proposed methods.

The Pattern Trichotomy algorithm is the most efficient one. It requires the fewest
iterations and the least amount of time. The pattern search algorithm is slightly less effi-
cient than the Pattern Trichotomy algorithm. However, it is still more efficient than the
DBM, IM, PBM, and iDDP algorithms. The pattern search algorithm combined with the
root finder (algorithm 748) requires fewer iterations on average. However, the trichotomy
algorithm implementation allows a speed-up in the computational time. Hence, the pattern



Algorithms 2024, 17, 350 21 of 26

trichotomy algorithm equipped with a root finder is the fastest and most efficient. Further-
more, when root finding is employed, both pattern search with algorithm 748 and Pattern
Trichotomy with algorithm 748 yield the same exact result up to machine precision.

Looking at the comparison in Table 5, we can see that the pattern search and Pattern
Trichotomy algorithms require approximately 4 times fewer iterations than the DBM
algorithm, and 2.8 times with respect to the iDPP. However, if we compare the time
required by the algorithms, the pattern search exhibits a factor of 270, and the Pattern
Trichotomy, a factor of 320. Other speed-up factors (compared to the brute force DBM)
declared in the literature are about 3 for the iDPP [12], which is a general method capable
of solving the MPMDP with n points, adapted for the case n = 3; about 5 for the inversive
geometry iterative method (IM) [26]; between 25 and 45 for the polynomial-based method
(PBM) [31]; and about 150 for the geometry-based method (GBM) [28], (which solves exactly
the case of points at distance d > d⋆ only, and gives a good approximation otherwise).
Therefore, we can conclude that our methods are performant.

Figure 3 illustrates the optimal configuration of the three-point Dubins connection in
a challenging configuration. In the second subfigure, the total length showcases strong
discontinuities resulting in a tiny interval of existence of the retrieved minimum. Fur-
thermore, the derivative displays many noncontinuous points, hence demonstrating the
non-applicability of derivative methods, at least globally.

Table 2. The evaluation of the proposed algorithms with the benchmark test with mean µ and
standard deviation σ of iterations and computational times for the sampling in (50).

Algorithm Iter Number Time (ms) N. Dubins Calls
µ σ µ σ

Pattern search 85.54 10.66 0.174 0.036 ∼171
Pattern search + 748 46.27 10.72 0.122 0.031 ∼92
Pattern Trichotomy 73.69 7.97 0.150 0.026 ∼147
Pattern Trichotomy + 748 54.99 8.74 0.115 0.025 ∼109

DBM – Algorithm 2 360 0.0 54.846 3.210 720
iDPP [12] 128 0.0 19.455 0.740 256

Table 3. Comparison between number of iterations and time with respect to brute force DBM for
sampling in (50). (n/a means not available.)

Algorithm Iter Number Ratio Time Ratio

Pattern search 4.27 325.66
Pattern search + 748 6.57 471.78
Pattern Trichotomy 4.94 374.73
Pattern Trichotomy + 748 6.67 493.50

iDPP [12] 2.81 2.82
IM [26] n/a 5
PBM [31] n/a [25, 45]
GBM [28] n/a 150

We compared the example proposed in [28,31], where they tested their implementation
versus the DBM. The test example has the following definition:

Pi = (0, 0), ϑi =
π

3
, Pm = (10, 5), Pf = (15, 20), ϑ f =

π

6
. (52)

The DBM yields the following solution:

ℓtotal = 27.11279494, θM = 0.8575935377. (53)



Algorithms 2024, 17, 350 22 of 26

This is a suboptimal solution, as highlighted in [28]. Their work claims to obtain
a solution that is 1.08 × 10−6 % better than that of the DBM. Our approach provides
solutions with the following values, reported in Table 6 and Figure 4, representing our best
solution. The DBM performs 360 iterations and will need to perform 100 times more to
achieve the same precision as in [28]. Moreover, the pattern search and Pattern Trichotomy
algorithms stop the iteration when a custom tolerance is reached (1/100 degree). On the
other hand, when combined with Algorithm 748, our approach retrieves the solution to
machine precision, yielding the true numerical minimum.

Table 4. The evaluation of the proposed algorithms with the benchmark test with mean µ and
standard deviation σ of iterations and computational times for the sampling in (51).

Algorithm Iter Number Time (ms) N. Dubins Calls
µ σ µ σ

Pattern search 88.35 20.57 0.217 0.047 ∼176
Pattern search + 748 77.70 23.55 0.187 0.031 ∼155
Pattern Trichotomy 74.78 13.34 0.179 0.032 ∼149
Pattern Trichotomy + 748 68.54 14.81 0.163 0.034 ∼137

DBM – Algorithm 2 360 0.0 55.577 3.357 720
iDPP [12] 128 0.0 19.720 0.845 256

Table 5. Comparison between number of iterations and time with respect to brute force DBM for
sampling in (51). (n/a means not available.)

Algorithm Iter Number Ratio Time Ratio

Pattern search 4.27 265.66
Pattern search + 748 5.02 315.19
Pattern Trichotomy 4.95 318.01
Pattern Trichotomy + 748 5.47 354.27

iDPP [12] 2.81 2.82
IM [26] n/a 5
PBM [31] n/a [25, 45]
GBM [28] n/a 150

Table 6. Comparison of result with the best result (pattern search + 748 and Pattern Trichotomy + 748).

Algorithm Length θM

Pattern search + 748 27.1127934 0.8556738609
Pattern Trichotomy + 748 +0.0 +0.0
Pattern search +1.552× 10−11 +3.711× 10−5

Pattern Trichotomy +8.985× 10−13 +8.929× 10−6

DBM – Algorithm 2 +5.672× 10−8 +2.243× 10−3

iDPP [12] +0.0 +1.510× 10−8



Algorithms 2024, 17, 350 23 of 26

0 5 10 15

0

5

10

15

20

x (m)
y
(m

)

−π −π
2

0 π
2

π

28

30

32

ϑm (rad)

ℓ
(m

)

ℓ
min PST+748
min DBM

−π −π
2

0 π
2

π
−4

−2

0

2

4

ϑm (rad)

d
ℓ
(m

)

dℓ
min PST+748
min DBM

Figure 4. An example of the total length of a three-point Dubins path for comparison with [28]. (Top:
path result with alternating colors for each arc; Middle: total length ℓ as a function of the middle
angle ϑm; Bottom: derivative of total length ℓ as a function of the middle angle ϑm.)

8. Conclusions

We presented two novel algorithms for solving the 3PDP, a non-smooth constrained
minimization problem and an optimal control problem. Our methods leverage the pat-
tern search technique, integrating analytic derivatives within continuous-length function
intervals to enhance computational efficiency. This improvement is crucial for the 3PDP
and may also be used for the Dubins Traveling Salesman Problem. In these examples, high
performance is essential due to the routine’s frequent invocation.

Extensive numerical tests were conducted on a standard benchmark pool of 10,000 random
Three-Point Dubins Problems. Two different sampling ranges were employed to reflect
standard benchmarks and more representative scenarios with a middle point close to the



Algorithms 2024, 17, 350 24 of 26

initial and final points. The results demonstrate that our proposed algorithms significantly
outperform existing methods in terms of both iteration count and computational time.

For the first sampling range, our pattern search and Pattern Trichotomy algorithms
achieved an iteration count reduction factor of approximately 4.27 to 6.674 times compared
to the DBM algorithm, and a time reduction factor ranging from ∼325 to ∼493 times.
For the second sampling range, the iteration count reduction factors were similar with a
range of 4.27 to 5.47 times, with the time reduction factors being 265 to 354 times compared
to the DBM algorithm. Additionally, when combined with Algorithm 748, both the pattern
search and Pattern Trichotomy methods consistently yielded results with machine precision,
demonstrating their robustness and accuracy.

These performance improvements are notable when compared to other state-of-the-art
methods, such as the polynomial-based method (PBM) in [31], which achieves a 25–45 times
speed-up over the DBM, and the geometry-based method (GBM) in [28], which offers a
speed-up of approximately 150 times. Our methods achieve a computational speed-up
factor exceeding 300 times compared to the DBM and less than half the time declared
in [28].

Overall, our methods represent a significant advancement in solving the 3PDP effi-
ciently, making them highly suitable for applications where computational performance
is critical.

9. Future Works

Our research is ongoing, and this work is part of a broader project. We are working
on the generalization of the 3PDP to the Multipoint Markov–Dubins problem (MPMDP).
The goal is to provide a general and fast method to solve these Dubins-related challenging
problems encountered in robotics. Our research aims to find a solution that does not rely
on finite meshing exploration.

Moreover, we are working on domain-specific applications for the 3PDP. We are
including our implementation into an autonomous parking framework [38]. The solution
to the 3PDP is used to efficiently compute an exploration trajectory with obstacle collision
checking. Furthermore, we are extending the framework developed in [4] to include low-
speed maneuvers with the 3PDP. The goal is to employ a piecewise constant curvature
profile for valet maneuvers.

Author Contributions: Conceptualization, M.P., E.B. and M.F.; Methodology, M.P., E.B. and M.F. The
authors contributed equally to this work. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Wang, C.; Zhong, Z.; Xiang, X.; Zhu, Y.; Wu, L.; Yin, D.; Li, J. UAV Path Planning in Multi-Task Environments with Risks through

Natural Language Understanding. Drones 2023, 7, 147. https://doi.org/10.3390/drones7030147.
2. Perez-Ramos, J.L.; Ramirez-Rosales, S.; Canton-Enriquez, D.; Diaz-Jimenez, L.A.; Xicotencatl-Ramirez, G.; Herrera-Navarro, A.M.;

Jimenez-Hernandez, H. Algorithm Based on Morphological Operators for Shortness Path Planning. Algorithms 2024, 17, 184.
https://doi.org/10.3390/a17050184.

3. Latif, E.; Parasuraman, R. On the Intersection of Computational Geometry Algorithms with Mobile Robot Path Planning.
Algorithms 2023, 16, 498. https://doi.org/10.3390/a16110498.

4. Piazza, M.; Piccinini, M.; Taddei, S.; Biral, F. MPTREE: A Sampling-based Vehicle Motion Planner for Real-time Obstacle
Avoidance. IFAC-PapersOnLine 2024, 58, 146–153. https://doi.org/10.1016/j.ifacol.2024.07.332.

5. Chitsaz, H.; LaValle, S.M. Time-optimal paths for a Dubins airplane. In Proceedings of the 2007 46th IEEE Conference on Decision
and Control, New Orleans, LA, USA, 12–14 December 2007; pp. 2379–2384. https://doi.org/10.1109/CDC.2007.4434966.

https://doi.org/10.3390/drones7030147
https://doi.org/10.3390/a17050184
https://doi.org/10.3390/a16110498
https://doi.org/10.1016/j.ifacol.2024.07.332
https://doi.org/10.1109/CDC.2007.4434966


Algorithms 2024, 17, 350 25 of 26

6. Scharff Willners, J.; Gonzalez-Adell, D.; Hernández, J.D.; Pairet, È.; Petillot, Y. Online 3-Dimensional Path Planning with
Kinematic Constraints in Unknown Environments Using Hybrid A* with Tree Pruning. Sensors 2021, 21, 1152. https://doi.org/
10.3390/s21041152.

7. Markov, A.A. Some examples of the solution of a special kind of problem on greatest and least quantities. Soobshch. Karkovsk.
Mat. Obshch 1887, 1, 250–276.

8. Kaya, C.Y. Markov–Dubins path via optimal control theory. Comput. Optim. Appl. 2017, 68, 719–747. https://doi.org/10.1007/s1
0589-017-9923-8.

9. Dubins, L.E. On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal
positions and tangents. Am. J. Math. 1957, 79, 497–516.

10. Park, S. Three-Dimensional Dubins-Path-Guided Continuous Curvature Path Smoothing. Appl. Sci. 2022, 12, 11336. https:
//doi.org/10.3390/app122211336.

11. Consonni, C.; Brugnara, M.; Bevilacqua, P.; Tagliaferri, A.; Frego, M. A new Markov–Dubins hybrid solver with learned decision
trees. Eng. Appl. Artif. Intell. 2023, 122, 106166.

12. Frego, M.; Bevilacqua, P.; Saccon, E.; Palopoli, L.; Fontanelli, D. An Iterative Dynamic Programming Approach to the Multipoint
Markov-Dubins Problem. IEEE Robot. Autom. Lett. 2020, 5, 2483–2490.

13. Kaya, C.Y. Markov–Dubins interpolating curves. Comput. Optim. Appl. 2019, 73, 647–677. https://doi.org/10.1007/s10589-019-0
0076-y.

14. Saccon, E.; Bevilacqua, P.; Fontanelli, D.; Frego, M.; Palopoli, L.; Passerone, R. Robot motion planning: Can GPUs be a game
changer? In Proceedings of the 2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC), Virtual,
12–16 July 2021; pp. 21–30.

15. Isaacs, J.T.; Hespanha, J.P. Dubins Traveling Salesman Problem with Neighborhoods: A Graph-Based Approach. Algorithms 2013,
6, 84–99. https://doi.org/10.3390/a6010084.

16. Nayak, A.; Rathinam, S. Heuristics and Learning Models for Dubins MinMax Traveling Salesman Problem. Sensors 2023, 23, 6432.
https://doi.org/10.3390/s23146432.

17. Li, L.; Shi, D.; Jin, S.; Yang, S.; Zhou, C.; Lian, Y.; Liu, H. Exact and Heuristic Multi-Robot Dubins Coverage Path Planning for
Known Environments. Sensors 2023, 23, 2560. https://doi.org/10.3390/s23052560.

18. Mäkelä, M.M. On the methods of nonsmooth optimization. In System Modelling and Optimization; Sebastian, H.J., Tammer, K.,
Eds.; Berlin/Heidelberg, Germany, 1990; pp. 177–186.

19. Bagirov, A.; Karmitsa, N.; Mäkelä, M.M. Introduction to Nonsmooth Optimization: Theory, Practice and Software; Springer:
Berlin/Heidelberg, Germany, 2014; Volume 12.

20. Bagirov, A.M.; Karmitsa, N.; Taheri, S. Partitional Clustering via Nonsmooth Optimization; Springer Nature: Cham, Switzerland,
2020.

21. Holmes, M.H. Introduction to Numerical Methods in Differential Equations; Springer: Berlin/Heidelberg, Germany, 2007.
22. Alefeld, G.E.; Potra, F.A.; Shi, Y. Algorithm 748: Enclosing zeros of continuous functions. ACM Trans. Math. Softw. (TOMS) 1995,

21, 327–344. https://doi.org/10.1145/210089.210111.
23. Bertolazzi, E.; Bevilacqua, P.; Frego, M. Clothoids: A C++ library with MATLAB interface for the handling of clothoid curves.

Rend. Del Semin. Mat. 2018, 76, 47–56.
24. Bertolazzi, E.; Frego, M. Clothoids: A C++ Library with Matlab Interface. 2019. Available online: https://github.com/ebertolazzi/

Clothoids (accessed on 1 June 2024).
25. Goaoc, X.; Kim, H.S.; Lazard, S. Bounded-Curvature Shortest Paths through a Sequence of Points. Research Report RR-7465,

INRIA, HAL ID:inria-00539957. 2010. Available online: https://inria.hal.science/inria-00539957 (accessed on 1 June 2024).
26. Sadeghi, A.; Smith, S.L. On efficient computation of shortest Dubins paths through three consecutive points. In Proceedings

of the 2016 IEEE 55th Conference on Decision and Control (CDC), Las Vegas, NV, USA, 12–14 December 2016; pp. 6010–6015.
https://doi.org/10.1109/CDC.2016.7799192.

27. Goaoc, X.; Kim, H.S.; Lazard, S. Bounded-Curvature Shortest Paths through a Sequence of Points Using Convex Optimization.
SIAM J. Comput. 2013, 42, 662–684. https://doi.org/10.1137/100816079.

28. Parlangeli, G.; De Palma, D.; Attanasi, R. A novel approach for 3PDP and real-time via point path planning of Dubins’ vehicles in
marine applications. Control Eng. Pract. 2024, 144, 105814. https://doi.org/10.1016/j.conengprac.2023.105814.

29. Chen, Z.; Shima, T. Relaxed Dubins problems through three points. In Proceedings of the 2019 27th Mediterranean Conference
on Control and Automation (MED), Akko, Israel, 1–4 July 2019; pp. 501–506.

30. Cohen, I.; Epstein, C.; Isaiah, P.; Kuzi, S.; Shima, T. Discretization-based and look-ahead algorithms for the dubins traveling
salesperson problem. IEEE Trans. Autom. Sci. Eng. 2016, 14, 383–390.

31. Chen, Z.; Shima, T. Shortest Dubins paths through three points. Automatica 2019, 105, 368–375. https://doi.org/10.1016/j.
automatica.2019.04.007.

32. Bertolazzi, E.; Frego, M. A Note on Robust Biarc Computation. Comput.-Aided Des. Appl. 2019, 16, 822–835. https://doi.org/10.1
4733/cadaps.2019.822-835.

33. Hooke, R.; Jeeves, T.A. “ Direct Search” Solution of Numerical and Statistical Problems. J. ACM 1961, 8, 212–229. https:
//doi.org/10.1145/321062.321069.

34. Custódio, A.L.; Madeira, J.A. GLODS: Global and local optimization using direct search. J. Glob. Optim. 2015, 62, 1–28.

https://doi.org/10.3390/s21041152
https://doi.org/10.3390/s21041152
https://doi.org/10.1007/s10589-017-9923-8
https://doi.org/10.1007/s10589-017-9923-8
https://doi.org/10.3390/app122211336
https://doi.org/10.3390/app122211336
https://doi.org/10.1007/s10589-019-00076-y
https://doi.org/10.1007/s10589-019-00076-y
https://doi.org/10.3390/a6010084
https://doi.org/10.3390/s23146432
https://doi.org/10.3390/s23052560
https://doi.org/10.1145/210089.210111
https://github.com/ebertolazzi/Clothoids
https://github.com/ebertolazzi/Clothoids
https://inria.hal.science/inria-00539957
https://doi.org/10.1109/CDC.2016.7799192
https://doi.org/10.1137/100816079
https://doi.org/10.1016/j.conengprac.2023.105814
https://doi.org/10.1016/j.automatica.2019.04.007
https://doi.org/10.1016/j.automatica.2019.04.007
https://doi.org/10.14733/cadaps.2019.822-835
https://doi.org/10.14733/cadaps.2019.822-835
https://doi.org/10.1145/321062.321069
https://doi.org/10.1145/321062.321069


Algorithms 2024, 17, 350 26 of 26

35. Audet, C. A Survey on Direct Search Methods for Blackbox Optimization and Their Applications; Springer: Berlin/Heidelberg, Germany,
2014.

36. Antonova, A.; Ibryaeva, O.L. A new zero-order 1-D optimization algorithm: Trichotomy method. arXiv 2019, arXiv:1903.07117.
37. Audet, C.; Dennis, J.E., Jr. Mesh adaptive direct search algorithms for constrained optimization. SIAM J. Optim. 2006, 17, 188–217.
38. Pagot, E.; Piccinini, M.; Bertolazzi, E.; Biral, F. Fast Planning and Tracking of Complex Autonomous Parking Maneuvers With

Optimal Control and Pseudo-Neural Networks. IEEE Access 2023, 11, 124163–124180.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction
	Problem Formulation
	Paper Contribution and Layout

	Background and State-of-the-Art Methods
	Derivation of Dubins Path with Trigonometry
	Case CSC
	The Subcase CSC+: LSL and RSR 
	The Subcase CSC-: LSR and RSL
	Range of the Solution

	Case CCC

	Derivatives of the Optimal Lengths
	Derivatives of the LSL and RSR Cases
	Derivatives of the LSR and RSL Cases
	Derivatives of the LRL and RLR Cases

	Three-Point Dubins Problem (3PDP)
	Algorithms
	Discretization-Based Method (DBM chen2019relaxed)
	Pattern Search with Root Finder

	Numerical Tests and Results
	Conclusions
	Future Works
	References

