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Abstract: Effective resource management constitutes a cornerstone of construction project success.
This is a challenging combinatorial optimization problem with multiple and contradictory objectives
whose complexity rises disproportionally with the project size and special characteristics (e.g.,
repetitive projects). While relevant work exists, there is still a need for thorough modeling of the
practical implications of non-optimal decisions. This study proposes a multi-objective model, which
can realistically represent the actual loss from not meeting the resource utilization priorities and
constraints of a given project, including parameters that assess the cost of exceeding the daily resource
availability, the cost of moving resources in and out of the worksite, and the cost of delaying the project
completion. Optimization is performed using Genetic Algorithms, with problem setups organized
in a spreadsheet format for enhanced readability and the solving is conducted via commercial
software. A case study consisting of 16 repetitive projects, totaling 160 activities, tested under
different objective and constraint scenarios is used to evaluate the algorithm effectiveness in different
project management priorities. The main study conclusions emphasize the importance of conducting
multiple analyses for effective decision-making, the increasing necessity for formal optimization as a
project’s size and complexity increase, and the significant support that formal optimization provides
in customizing resource allocation decisions in construction projects.

Keywords: resource-constrained scheduling; resource allocation; resource leveling; multi-objective
optimization; repetitive projects; Genetic Algorithms

1. Introduction

The resource-constrained scheduling problem (RCSP) has been thoroughly investi-
gated over the past few decades and continues to be a topic of considerable interest for
researchers due to its vital importance in project management. The purpose of project
scheduling analysis is to create optimal time plans and resource selection and allocation
strategies while still finishing the project on schedule. This is a classical combinatorial
problem with application in several production-based processes, including in the construc-
tion industry.

While there have been plenty of research efforts in developing methods and algorithms
for the typical RCSP, most of them have been evaluated with rather small and simple project
structures. It is known, however, that construction projects are typically large (in terms
of the number of activities) and complex (work interdependence), while they are often
developed in a repetitive structure of identical sub-projects. In real-world environments,
daily work planning is frequently required for a set of repetitive projects (i.e., construction
projects that contain recurrent units). These units/sub-projects are made up of a common
work structure. Three types of repetitive construction projects can be defined based on the
direction of the workflow succession along the sub-projects:

• Horizontal/linear repetitive projects, which have a linear geometrical layout (e.g.,
highways, pipelines, and tunnels). In this case, sub-projects may be executed in parallel;
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• Vertical repetitive projects, which involve the repetition of a sub-project network in
a non-linear way (e.g., high-rise buildings). The sub-projects can be executed in a
serial manner;

• Multiple repetitive projects, which consist of both horizontal and vertical repetitive
processes (e.g., wide-area multistorey buildings).

The resource-constrained scheduling problem typically aims to smooth out resource
usage over time and avoid resource overallocation throughout the project life cycle or
during project phases. The benefits of such a process are multiple. First, there is a rela-
tively constant resource usage, avoiding the need for continuous resource incoming and
outcoming or resources being idle at the construction site. In terms of human resources,
the condition of occasional working acts negatively in both their performance and morale.
Further, if resource constraints exist (this is typical in construction work), the resource
imbalance and variation in time lead to project delays and cost overruns. Finally, in multi-
project cases, poor resource usage in one project substantially affects the performance of
other projects in which the construction company is involved.

Resource leveling, with or without resource constraints, has been widely analyzed
in the past. The majority of existing works use simple statistical criteria, such as the
standard deviation of the resource usage values in time, to assess the resource allocation
effectiveness. Although this is a useful criterion for some theoretical analysis, it holds
two major deficiencies. First, it is not connected with some type of measure that can
provide a practical outcome of the loss associated with the observed deviations from
the optimal solution (e.g., cost). Most importantly, although it provides a measure of the
resource allocation variability extent, it cannot provide a robust indication of the day-by-day
resource allocation variability.

The focus of this work is to assess the potential of evolutionary-type optimization
methods in obtaining near-optimal resource allocation schemes in large and repetitive
projects from a practical point of view (i.e., in real-life applications). With this aim, two de-
cision parameters with direct cost representation of the resource allocation imbalances are
considered to provide an objective assessment of the resource allocation success in actual
projects. These parameters are the cumulative overallocation of resource demand over
the daily availability and the cumulative resource movements in and out of the project
due to the varying demands from period to period. The above-real-cost parameters are
supplemented by and compared to other no-direct-cost criteria that have been widely
used in the resource allocation optimization literature (e.g., the standard deviation of the
resource histogram values). Optimization is based on Genetic Algorithm principles and is
performed via general-purpose commercial software. These decisions came from the facts
that (a) GAs represent a typical and well-performing method of evolutionary computing
(as indicated by existing research); and (b) the majority of existing commercial software
performs GA optimization. Such a selection seems to be fundamental in real-life construc-
tion projects, in which case simple and easy-to-use tools are more likely to be employed by
design and scheduling engineers.

This study addresses the resource-constrained scheduling problem of a large-size
project consisting of 16 repetitive sub-projects with 10 activities each. A multi-objective
optimization formulation is set considering four decision parameters in a weighted-sum
formulation. These sub-objectives are analyzed both individually and collectively in
several forms and are comparatively evaluated to provide performance indications as well
as practical implications regarding the employment of the alternative parameters.

The rest of this paper is organized as follows. Section 2 presents the existing research
efforts and results in optimizing resource-constrained scheduling. Section 3 presents the
problem description and the proposed model formulation. Section 4 presents the case study
development with the corresponding analyses and results. Finally, Section 5 provides a
brief discussion of the obtained results and the main conclusions of the study.
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2. Related Work

Several approaches and algorithms have been developed in the past to address the
typical RCSP problem. These techniques can be divided into three categories: exact
methods, heuristic methods, and meta-heuristic and evolutionary algorithms. In the first
category, linear/integer programming (LP/IP) has been widely used. In this approach,
mathematical relationships are built that linearly express the problem goals and limitations,
and pertinent methods (e.g., the Simplex method) are used to develop a solution. Examples
of works that solve scheduling problems using linear programming include those in [1,2].

As the project’s size and complexity increase, these methods eventually prove to be
ineffective for setting up the computerized problem structure, even though they can offer
exact solutions. Since the solution space is often large to fully explore, especially as the
problem size increases, heuristic techniques are used to first generate lists of feasible solu-
tions and then search among them by bounding and pruning until a (near) optimal solution
is obtained (branch and bound algorithms). The main drawbacks of such approaches are
that the best solution is not always guaranteed and there is no single universal bounding
algorithm that can be used to solve all problems. The work in [3] might be referred to as
representative of such type of methods.

Metaheuristic techniques or evolutionary algorithms are used to provide near-optimal
solutions when the precise solution to a problem is not known or is computationally de-
manding to determine. Evolutionary algorithms imitate the selection process in which,
within the population set, members that least fit are eliminated while suitable members
survive and multiply towards better solutions. In this direction, the studies [4,5] have
employed Genetic Algorithms to explore near-optimal solutions in resource-constrained
scheduling problems. Genetic Algorithms have also been applied to level daily resource
utilization and minimize project makespan [6,7]. Other studies have created hybrid evolu-
tionary algorithms or approaches by combining Genetic Algorithms with other evolutionary
algorithms or techniques to produce better results [8]. The Ant Colony Optimization (ACO)
algorithm [9], along with various hybrid ACO structures [10], has been employed to ad-
dress the resource-constrained scheduling problem in both its classical formulation and its
extended forms, such as those involving alternative execution modes. The employment of
Harmony Search Algorithm (HS) to optimize the multi-mode resource-constrained project
scheduling problem is reported in [11]. In a similar vein, the Particle Swarm Optimization
(PSO) algorithm has also been utilized for optimizing resource-constrained scheduling
problems, with an illustrative application detailed in [12]. The research in [13] uses the
Artificial Bee Colony algorithm to solve problems from the PSPLIB library and compares it
with several different algorithms from the literature such as GA, PSO, PSO +, ANGEL, and
others. The research in [14] evaluates the performance of different types of bee algorithms
(Bee Algorithm, Artificial Bee Colony, and Bee Swarm Optimization) for solving RCSP
problems. The effectiveness of the Differential Evolution (DE) algorithm has been evaluated
in [15]. The works in [16,17] address complex scheduling problems by developing hyper-
heuristic algorithms based on Particle Swarm Optimization and Simulated Annealing,
respectively. A hyper-heuristic algorithm is defined as a top-level heuristic algorithm that
controls the application of other lower-level algorithms applied to the problem solution
space. Finally, the concept of entropy-maximization for project resource-leveling has been
introduced in [18] based on a minimum moment parameter of the resource time series.

The challenge of maintaining the continuity of various resources working on different
tasks or sub-projects is a distinctive trait of repetitive projects. At the same time, the goal
of a rather constant usage of the construction company’s resources over time remains a
top priority. When scheduling and allocating resources in large and repetitive projects, it
is harder to visualize and carry out the process than in typical, small, or non-repetitive
ones. The aim is still to reduce resource idle time, machinery movement in and out of the
workplace, and staff hiring and firing situations. The development of an optimization model
for scheduling such projects could result in significant time, resource consumption, and
cost savings. The literature includes research efforts focusing on the resource scheduling
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problem in repetitive and multi-projects and in approaches targeting multiple optimization
goals, mainly during the last ten years. The review results are codified in Table 1. The
information that is presented includes the optimization sub-objectives, the solving methods,
and the main characteristics of the case studies for method evaluation.

Table 1. The literature review outcomes.

No. Authors Year Objective Function
Repetitive/

Multi-
Projects

Multi-
Objective

No. of
Activities

Optimization
Method

1 Roca et al. [19] 2008
minimize (1) project makespan,

(2) variance of the sum of the resource
usage over time

- Yes 30, 60, 90,
120 NSGA-II

2 Kaiafa and
Chassiakos [5] 2015

minimize (1) resource overallocation,
(2) project deadline exceedance,

(3) day-by-day resource fluctuations
- Yes 10 Genetic

Algorithms

3 Myszkowski
et al. [10] 2015 minimize (1) project makespan, and

(2) project cost - Yes 100, 200 Ant Colony
Optimization

4 Beşikçi et al.
[20] 2015 minimize total weighted tardiness

of projects M No 120, 180 Genetic
Algorithms

5 Mathew et al.
[21] 2016 minimize (1) project duration,

(2) project cost R Yes 20, 90 Genetic
Algorithm

6 Eshraghi [15] 2016 minimize (1) project makespan,
(2) resource capacity total cost - Yes 30, 60, 120

Differential
Evolution
Algorithm

7 Yassine et al.
[22] 2017 minimize project duration M No 30, 60, 90,

120
Genetic

Algorithms

8 Ei-Abbasy et al.
[23] 2017

minimize (1) duration of the project
group, (2) total cost, (3) financing cost,

(4) maximum required credit,
(5) resource fluctuation, and (6) peak

resource demand

M Yes 9, 25, 30 NSGA-II

9 Eid et al. [24] 2018

minimize (1) project duration,
(2) project cost, (3) cumulative project

interruptions, (4) project unit
delivery delays

R Yes 20, 75

Genetic
Algorithms
and Pareto

Front sorting

10 Samuel and
Mathew [25] 2018 minimize project duration R No 20 Genetic

Algorithm

11 Salama and
Moselhi [26] 2019 minimize (1) project duration,

(2) project cost, (3) work interruptions R Yes 20

Linear
scheduling

method (LSM),
critical chain

project
management
(CCPM) and

Genetic
Algorithm

(GA)

12 Nieves et al.
[27] 2019 minimize project duration R No 84 Linear

programming

13 Hariga et al.
[2] 2019

minimize (1) resource utilization
fluctuations, (2) activity splitting costs,

(3) direct and indirect activity costs
- Yes 10

Mixed-integer
linear program

(MILP)

14 Kannimuthu
et al. [28] 2019 minimize (1) project duration, (2) cost,

(3) maximize project quality M Yes 30, 50, 60,
90

Probabilistic
Global Search

Lausanne

15 Abido and
Elazouni [29] 2021

minimize (1) resource fluctuations,
(2) maximum value of the cumulative

negative cash, maximize
anticipated profit

- Yes 18
Evolutionary
programming

(EP)

16 Yuan et al. [30] 2021 minimize (1) makespan,
(2) operational cost M Yes 30, 60, 90

Hybrid
Cooperative
Co-evolution

Algorithm
(HCOEA)
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Table 1. Cont.

No. Authors Year Objective Function
Repetitive/

Multi-
Projects

Multi-
Objective

No. of
Activities

Optimization
Method

17 Sharma and
Trivedi [31] 2021

minimize (1) project completion time,
(2) project completion cost, (3) project
resource moment, and (4) maximize

the project quality index

- Yes 13

Opposition-
based
Non-

dominated
sorting Genetic
Algorithm III
(OBNSGA III)

18 Hegazy and
Kamarah [11] 2022

minimize total project cost (activity
direct cost, project indirect cost,

penalties, incentives)
R No 30, 70 Genetic

Algorithm

19 Dai et al. [32] 2023
minimize cumulative absolute

deviations between daily and average
resource usage

R No 7, 240

Two-stage
GA-based
scheduling
algorithm

20 He at al. [33] 2023 minimize the maximal cash flow gap M No 10, 20, 40,
60 Tabu search

21 Bredael and
Vanhoucke [34] 2024

minimize (1) total portfolio makespan,
(2) average portfolio makespan,

(3) average project delay, (4) average
relative gap, (5) squared project delay,

(6) maximum project delay,
(7) maximum relative gap

M No 360, 720,
1440

Genetic
Algorithm

Summarizing the results of Table 1, existing methods have tackled several aspects of
the RCSP, with a variety of decision parameters and solution methods. A main concept that
is widely used in this direction is the resource fluctuation assessment. The parameter that
is frequently used for such purpose is a statistical moment-type of the resource variability
time series. It is argued below that such a parameter does not hold a realistic representation
of the loss (cost) associated with high-variability resource utilization. Therefore, parameters
that directly refer to the specificities of resource allocation failures need to be considered.
A set of such parameters are proposed in the current study with proper justification and
effectiveness evaluation. Previous research efforts typically examine small- to medium-
sized projects (generally consisting of up to 30–60 tasks). Based on the literature search,
16 studies have analyzed case studies consisting of up to 60 activities, 6 studies up to
90 activities, 10 studies up to 120 activities, while there are 3 studies with up to 200 activities,
and 1 with 1440 activities. The present study addresses the resource-constrained scheduling
problem with decision parameters in a multi-objective structure that closely represents
actual practice. The effectiveness of the alternative decision parameters, individually or
collectively, is evaluated on the basis of a large-sized project consisting of 16 repetitive sub-
projects and 160 activities in total. This study aims to integrate the scheduling of repetitive
projects with a multi-objective optimization approach, addressing a gap in the literature
where these two aspects are either underrepresented individually [35] or not studied
extensively in combination. The different optimization models, which are developed in this
study, are comparatively evaluated to provide performance indications as well as practical
implications regarding the employment of the alternative parameters.

3. Proposed Model

In this section, the problem formulation and mathematical structure underpinning
the proposed approach are presented, providing the foundation for subsequent analysis
and discussion. Based on the task precedence relations and durations, the project structure
is implemented in a spreadsheet environment. The start time of each task is associated
with the finish time of all predecessors (using a max function) while the finish time is
set based on the start time and the task duration. To allow for task re-scheduling and
resource allocation improvement, a time lag is considered for each task between the latest
predecessor finished and the actual start of the task under consideration. These time lags
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act as the independent variables of the optimization model. If these lags are constrained to
obtain a non-negative value, all schedules developed are valid in terms of task precedence
relations and the only additional constraint is for the project delivery by the given deadline.
After developing a time schedule, based on task time lags, the number of the cumulative
required resources per period is calculated based on the task scheduling and the resource
needs of the individual tasks. The process of assigning new time lags is repeated within
the iterative optimization process until a termination point is reached. The flowchart of the
algorithm implementation is shown in Figure 1.
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The mathematical formulation of the optimization model includes the following
notation:

N: number of project tasks;
i: task number;
di: duration of task i;
si: start time of task i;
fi: finish time of task i;
s0: project start time (by assumption s0 = 0);
FN: project finish time (FN = maxN

i=1 fi);
D: project duration deadline;
t: time frame (t = 1, 2, . . ., D);
xi(t): binary variable equal to 1 if si < t ≤ fi, 0 otherwise;
ri: number of resources of task i at time period t;
Rt: cumulative resource requirement at period t (Rt = ∑N

i=1 ri·xi(t));
Rm: mean resource usage;
C: total cost of the project.
The following decision variables are defined:
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ei: time shift of task i from predecessors.
The problem constraints are the following:
Task Scheduling Constraints:

si = maxi fi + ei, ∀i, ∀ predecessor j o f task i, (1)

fi = si + di, ∀i (2)

ei ≥ 0, ∀i (3)

Project Completion Constraints:

FN ≤ D, (4)

In the present work, several decision parameters are used, which can be more tangibly
associated with the real effects of resource imbalance or constraints in resource availabil-
ity [36]. These include the following:

• RIO—Resources in and out: this accounts for the sum of resource unit deviations from
day to day and represents the cost of moving resources (human and machinery) in
and out of the construction site day by day.

RIO = ∑D+1
t=1 |Rt − Rt−1|, R0 = RD+1 = 0, (5)

• RLE—Resource limit excess: this measures the cumulative number of resources exceed-
ing the daily resource availability and accounts for the financial impact of recruiting
more additional resources than initially planned.

RLE = ∑D
t=1(Rt − Rm), ∀ t at which Rt > Rm, (6)

• MaxR—Maximum resource demand: this shows the maximum resource value in the
resource histogram indicating the cost from attempting to satisfy the full resource
requirements.

MaxR = maxD
t=1Rt, (7)

• STD—Standard deviation: the standard deviation of the resource histogram values in
time is considered as well for the sake of comparison.

STD =

√
∑D

t=1(Rt − Rm)
2

FN − 1
, (8)

The above parameters (decision criteria) are incorporated in a weighted-sum objective
function of the following form:

minC = w1 · STD + w2 · RLE + w3 · MaxR + w4 · RIO, (9)

where wi accounts for the corresponding unit cost values, defined by the user and repre-
senting the problem characteristics. With such a formulation, the distinct criteria can be
evaluated both individually and collectively. The weights in the above formulation indicate
the importance of each parameter in any specific case. Regarding the physical meaning of
the weights, RLE and RIO account for parameters that can be directly valuated in cost terms
of the corresponding resource allocation inefficiencies, thus, the related weights hold unit
cost values. MaxR and STD are generic parameters that are often used to smooth out tem-
poral deviations of such histograms. For these parameters, the weights are appropriately
normalized to provide the desired level of influence in a bi- or multi-objective assessment.

In real-life (construction) projects, scheduling and resource utilization decisions are
most probably assisted by simple formulations and handy tools that can be easily used
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by design engineers. With this aim, the RCSP problem is developed in an Ms-Excel
365 spreadsheet structure to assist development, readability, model performance check-
ing, and result evaluation. The employment of existing commercial software for opti-
mization significantly alleviates the reluctance of the engineer to dig in and develop an
optimization algorithm or implement one from the literature. While general-purpose
software may not be as effective as a fine-tuned algorithm for a specific problem, it is still
a valuable tool to significantly improve resource allocation, especially in large projects.
Genetic Algorithms have been found to be effective in resource-constrained scheduling
problems, presenting a stable growth since 2010 and being the most used in the last
five years [37]. Further, commercial evolutionary algorithm-related optimization software
has principally incorporated this type of algorithm. Optimization in this study is performed
via a commercial optimization software (Palisade (now named Lumivero) Evolver, v8.6.0,
https://lumivero.com/products/decision-tools/evolver/, accessed on 1 August 2024),
which runs as an add-in of Ms-Excel. The software allows different parametrization of the
GA structure. As part of this analysis, it was found that, although this parametrization has
not displayed much impact on the solution quality, a formulation with 50-chromosome
population size and crossover and mutation rates of 0.5 and 0.1, respectively, seems to pro-
vide somewhat improved results. The problem runs have been performed on a typical PC
with the following specifications: Intel® Core (TM) i3-3110M CPU @ 2.4 GHz, RAM 4GB.

4. Case Study

The case study includes a 160-activity project which consists of 16 repetitive identical
basic projects of 10 activities each. The whole project is formed by considering four basic
projects in a serial execution form, which are then scaled up in a parallel quadruple
execution arrangement, as shown in Figure 2. The resulting project can be considered a
typical repetitive and large project.
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The input data of the basic 10-activity project are shown in Table 2, while its network
diagram is illustrated in Figure 3 ([38]). The project has been designed to include diverse
features of a (construction) project (e.g., activities that can take place in parallel or be
executed alone (in the case of task J), time floats of different sizes, etc.). The number
of resources for all activities has been assumed at two units per day. Even though in
practice, several types of resources are used in (construction) projects, in this case study,
a single resource type is considered for all activities. In general, if there are two or more
resource types, the effectiveness in resource allocation may be hindered by the conflicting
requirements of different resource types of project activities. This means that a schedule
that leads to a nice resource histogram of one resource type may not provide a desirable
allocation of another resource type. As a result, the global solution may already present
some resource allocation inefficiencies and, as such, the capability of the optimizer cannot
be objectively assessed. Using a single resource type, the optimal resource pattern may
be developed beforehand, especially in small projects. Therefore, the net outcome of the
optimization can be assessed. Further, the solution space for a particular project is the
same (it includes all feasible alternative schedules), irrespective of the number of resource
types. Thus, the problem size remains the same with the exception that some additional
calculations for the added resource types are required in each optimization step.

https://lumivero.com/products/decision-tools/evolver/
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Table 2. Project data for the applied example.

Activity Predecessors Duration Resources

A Start 5 2
B Start 10 2
C Start 4 2
D A 7 2
E C 5 2
F A 4 2
G B, D, E 3 2
H C 6 2
I Start 4 2
J F, G, H, I 2 2
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The activity durations and resources have been set in a way that facilitates the devel-
opment of a perfectly flat resource histogram in certain cases of the following analyses, and
this is the reason for assuming uniform resource usage in all activities. Prior knowledge of
the exact solution is important in objectively evaluating the actual convergence potential of
the optimization process.

With the input data of the case study example, the minimum duration of the basic
project is 17 days, while for the full project, it is 68 days. The resource allocation histogram
of the project, in its default early start scheduling form, presents significant peaks and
valleys in resource demand throughout the project length (Figure 4). The repetitive resource
allocation pattern in the diagram results from the serial execution of sub-projects. The
high resource demand at specific periods may be difficult to serve, while the high resource
fluctuations at specific time points require expenditures for transferring resources in and
out of the construction site.
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A typical optimization run develops a resource allocation plan, such as the one shown
in Figure 5. The top part presents the resource requirements of the full project, while the
following diagrams show the resource allocation of the series of sequential sub-projects.
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The different colors indicate the contribution of each basic project within the sequential
structure. The red line in the cumulative diagram indicates the daily resource availability,
which corresponds to the mean resource requirement and indicates the ideal scenario of
a perfect resource allocation scheme. The diagrams reveal that diverse (non-repetitive)
resource patterns are built for each sub-project independently from others in both directions
of the project scaling-up. This observation indicates that the whole project is treated as
a rather “random” structure. It is also shown that the sub-projects in each series do not
interfere with each other, following the serial deployment setting and constraints. In terms
of resource allocation effectiveness, a highly leveled resource diagram has been developed
around the average of 16 resources per day for a 100-day duration.
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Figure 5. Typical optimized resource allocation diagram. The red line indicates the daily re-
source availability.

As stated above, the analysis considers alternative optimization criteria either individ-
ually or in combination. Initially, each decision criterion is optimized individually. This is
conducted to explore the full performance potential of each criterion without any interfer-
ence with other possible objectives. Next, optimization is performed with pairs of criteria,
especially those that are not linked with a linear relation. Finally, two-step optimization
is examined, based on distinct criteria, to explore any potential improvements. Alternate
constraint levels for resource availability and project completion time are considered to
provide a comprehensive assessment of the process output and effectiveness.
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Figures 6–12 indicatively present the optimal resource allocation histograms associated
with a project duration of 160 days to obtain a pictorial form of the solution quality. The
red line in each diagram indicates the daily resource availability. It is observed that the
decision criteria STD, RLE, and MaxR end up as quite leveled histograms as they attempt
to spread out resources across the whole project makespan and in numbers that are close
to the resource availability level (Figure 6, Figure 7, and Figure 8, respectively). Among
them, the STD and RLE criteria provide comparable resource histograms (in terms of
resource usage fluctuations) and appear to perform better than the MaxR criterion in
lessening such fluctuations. In a different direction, the RIO criterion results in resource
allocation patterns that avoid high day-by-day resource usage alterations. To minimize the
cumulative deviation of such kind, the resulting schedule typically does not fill the whole
project length availability (Figure 9). Inevitably, the cumulative resource units exceeding
the preset resource availability threshold (i.e., RLE value) increase in comparison to the
previous criteria. However, the resource allocation histogram presents fewer and smoother
resource transitions from day to day. Figures 10 and 11 illustrate representative resource
histograms when bi-objective optimization of two criteria is applied, namely STD or RLE
with RIO, respectively. As expected, the obtained solutions lie somewhere in between those
provided by the corresponding single-criterion considerations. The importance of this
analysis lies in its capacity to consider conflicting criteria with their corresponding actual
costs to provide a solution that minimizes the total cost. Finally, the potential effectiveness
of a two-step sequential optimization process incorporating different criteria is examined.
In this example, the RLE or the STD criterion is first employed, leading to the corresponding
best possible solution. Starting from this solution, a second optimization is performed using
the RIO criterion. Figure 12 provides an indicative output of the sequential optimization of
the STD and RIO criterion. Further discussion of the results is provided next.
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Table 3 presents the input and output values of the analyzed cases. Case 0 refers to
the initial (non-optimized) project schedule corresponding to the early start times. This
schedule acts as the initial optimization solution in all cases examined. Case 1 represents
the solution with the minimum standard deviation (STD) of the daily resource usage as a
single objective. Similarly, Case 2 provides the result of minimizing the cost of exceeding
the daily resource availability (RLE). In the same path, Case 3 indicates the solution of
minimizing the maximum resource demand (MaxR) that is observed during the project.
The last single-objective Case 4 examines the minimization of resource movements in
and out of the project throughout its length (RIO). The next two cases present the results
of bi-objective optimization; specifically, Case 5 considers the criteria STD and RIO, and
Case 6 the criteria RLE and RIO. Finally, Cases 7 and 8 incorporate two-step sequential
optimizations between criteria STD and RIO and RLE and RIO, respectively, meaning that
an optimization run is performed with respect to the first criterion and, upon the optimum
solution found, another optimization is run with respect to the second criterion.

The rationale behind such development is as follows. The problem under consideration
aims to provide real-life solutions in regard to actual construction (or similar) projects.
In this direction, there are two main cost contributions, one from exceeding the resource
availability and the other related to the need for transferring resources in and out of the
project. In extreme cases, only one of these cost elements may exist. For instance, there may
be the case that it is costly to recruit additional resources (e.g., use of special machinery)
but the cost of moving such resources is negligible (e.g., sub-projects being next to each
other). In such a case, a rather single-objective project is encountered, using either of the
three parameters, STD, RLE, or MaxR, which serve this objective (Cases 1, 2, and 3). On the
other hand, there may be cases in which additional resources can be easily allocated to the
project with no extra cost for overallocation (this mostly concerns human resources of an
ordinary specialty). In addition, the cost in and out of the project may be high, for instance,
if the sub-projects are dispersedly located. In the general case, both objectives provide
some contribution to the resource allocation cost so that optimization of both objectives, in
the form of a cost–sum approach, is sought based on their relative unit cost to each other
(Cases 5 and 6). The last two cases (7 and 8) aim to investigate whether the optimization of
the two conflicting objectives in a serial mode of respective single-objective optimizations
can provide better results compared to the concurrent optimization of the two parameters.

The analysis has been extended to several levels of project durations and correspond-
ing resource thresholds. In each case, the RCSP has been considered, employing individual
criterion or pairs of criteria and optimization modes (single- or two-step optimization).
In each run, all parameter values that correspond to the final solution are recorded. Each
optimization case is run three times to account for the expected variability in results due to
the stochastic nature of the optimization (GA) algorithm. Among the three outputs, the
best one is registered. This is an anticipated course of action in practical applications of
such a problem. In a more research-oriented effort, the typical course of action is to perform
several trials and record the statistics of all runs (average or median, standard deviation,
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confidence intervals, etc.). Some indicative results of such kind are presented further below.
The numbers in bold in Table 3 indicate the absolute best values of the examined parameters
among all optimization tests in each project length/resource availability case.

Table 3. Optimal results for example project.

Optimization Criteria

Case 0 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8

Initial
Solution STD RLE MaxR RIO

Multi-
Objective
STD-RIO

Multi-
Objective
RLE-RIO

Sequential
STD-RIO

Sequential
RLE-RIO

R
es

ou
rc

e
co

ns
tr

ai
nt

6
(D

=
26

7)

FN 68 267 267 267 231 267 267 267 267
STD 13.67 1.18 1.59 1.26 4.07 1.78 2.14 1.26 1.95
RLE 1192 90 130 100 534 170 194 102 172

MaxR 40 8 10 8 16 10 14 8 12
RIO 272 228 258 230 108 130 136 164 170

R
es

ou
rc

e
co

ns
tr

ai
nt

8
(D

=
20

0)

FN 68 200 200 200 195 200 200 200 200
STD 13.67 1.7 1.9 1.37 4.76 1.91 2.1 2.04 1.99
RLE 1056 120 104 92 400 136 140 146 134

MaxR 40 12 14 10 18 12 14 14 12
RIO 272 192 214 174 116 114 120 122 134

R
es

ou
rc

e
co

ns
tr

ai
nt

10
(D

=
16

0)

FN 68 160 160 160 156 160 160 160 160
STD 13.67 1.36 1.35 1.74 3.60 1.88 1.89 1.31 2.39
RLE 976 70 66 102 256 110 98 62 124

MaxR 40 14 12 14 16 14 16 14 16
RIO 272 172 154 176 88 98 114 110 104

R
es

ou
rc

e
co

ns
tr

ai
nt

12
(D

=
13

4)

FN 68 134 134 134 134 134 133 134 134
STD 13.67 1.55 1.39 1.36 6.27 2.3 3.48 2.11 2.31
RLE 896 56 48 50 368 106 152 96 96

MaxR 40 16 16 16 24 18 20 16 18
RIO 272 160 140 148 70 96 102 104 112

R
es

ou
rc

e
co

ns
tr

ai
nt

16
(D

=
10

0)

FN 68 100 100 100 100 100 100 100 100
STD 13.67 1.97 1.86 2.05 3.85 2.4 2.2 2.31 2.22
RLE 736 62 52 66 158 86 62 70 66

MaxR 40 20 20 20 24 20 20 20 22
RIO 272 168 120 148 78 100 84 98 100

Notation. D: project duration deadline, FN: project finish time, STD: standard deviation of daily resource
requirements, RLE: resource limit excess (overallocation), MaxR: maximum resource usage, RIO: number of
resources in and out of project.

The results in Table 3 show that all criteria end up with considerable resource allocation
improvement in comparison to the initial settings. All criteria but RIO eventually converge
to the given project duration deadline. An overview of the table results shows the following:

• Criteria STD, RLE, and MaxR aim mainly at resource leveling and overallocation
reduction. The RLE and STD provide comparable outputs; in some cases, interestingly,
a slightly better value of RLE is obtained when using the STD criterion rather than the
RLE itself (and vice versa). Although the results are comparable, the main advantage
of the RLE output is that it can be easily valuated in pure cost terms. Instead, the STD
value does not have a direct cost representation of the resource allocation inefficiency.
The MaxR criterion provides a coarser picture of the optimization output as it accounts
only for the peak resource deviation without considering the distribution of individual
resources in detail. However, this criterion occasionally ends up with the best RLE
and/or STD outputs among other criteria;

• The RLE criterion appears to be more representative of the financial loss than the
MaxR since it accounts for any single-resource excess above the availability threshold
over the project duration. Instead, the MaxR criterion indicates the maximum excess
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but not the cumulative excess along the project. In addition, because the number of
resources appears in integer form, several discrete solutions present the same MaxR
value (but different RLEs), making it difficult to differentiate among them in terms of
detailed effectiveness;

• There is no single criterion among these three that clearly outperforms the other two in
all or most cases. The results in Table 3 show that a parameter can obtain a better value
when another objective is pursued. This means that it is rather useful to experiment
with all three criteria within the analysis process;

• The RIO criterion is not closely aligned with the goals of resource diagram smoothness
and resource overallocation minimization. It rather pursues to develop resource
allocation patterns with few and low transitions in resource usage from day to day. As
a result, it generally permits higher resource overallocation but smoother transitions
from level to level in time. The solutions are usually associated with reduced project
duration and higher average resource loading. In this case, some extra cost savings can
be realized in terms of indirect project costs from duration reduction (not considered
in the analysis). Similarly to the RLE criterion, the RIO can be practically valuated
in pure cost terms if the unit cost of the resource (primarily machinery type) and
movement in and out of the project is known;

• The employment of multi-objective or sequential optimization appears to provide
solutions that are often of higher quality than single-objective optimization. In every
optimization case, all four parameters associated with the final solution are recorded
so that the real-life cost of this solution can be calculated;

• The employment of multiple runs with the same criterion (or criteria) appears also to
be beneficial as the stochastic nature of the solution method leads to distinct solutions
among alternative runs;

• A useful tip for performing optimization when the objective function takes discrete
values (this pertains to RLE, RIO, and mostly MaxR, which obtain integer values within
a short range) is the following. The evolutionary process generates and evaluates
new solutions as the process goes on. If these new solutions fail to push the fitness
value to its next discrete level, the solution population is not promptly and adequately
refreshed to effectively search the decision space. To avoid this trapping, one can
add a small perturbation in the objective function to let the optimization engine be
continuously active. In the present case, a very small STD component (appropriately
regulating the weight w4) and not practically affecting the main optimization criterion
is added to the objective function to provide such kind of service. In fact, the majority
of the results presented in Table 3 (best values in each case) have been obtained
with such a formulation. The above augmentation is not useful in cases where the
optimization parameter already calculates continuous values (e.g., STD).

To obtain a more global picture of the algorithm’s effectiveness in achieving the desired
outcome, the best parameter values from Table 3 are presented in relative terms in Figure 13.
In particular, the RLE and RIO values are related to the total number of resources used
throughout the project while the MaxR and STD values reflect deviations fromthe average
resource level in each case. The results indicate that the total number of resources in excess
of resource availability (RLE) and the total number of the resource movements in and out
of the project (RIO) are in the order of 3% and 7.5% in relation to the cumulative number
of resources used throughout the project. The standard deviation of the resource usage is
between 10% and 20% in relation to the corresponding mean value. Finally, the maximum
resource usage overruns the mean value by 25% to 33%. All deviations tend to increase as
the project length increases and the mean resource usage decreases. This may be expected
as the alternative schedule formulations progressively become limited towards this end.
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To examine the degree of correlation among the alternate decision parameters in
more detail, indicative solutions of all runs are considered and graphically illustrated in
Figures 14 and 15. The results of the analysis indicate a high correlation between the STD
and RLE criteria. The diagram of Figure 14 illustrates a strong linearity between the two
criteria, even in the case that the optimization is based on the RIO criterion. In the latter
case, the only difference is that both STD and RLE obtain quite higher but still proportional
values in comparison to their own optimization outcome. On the other hand, the correlation
between RIO and RLE (similar to STD) does not result in an observable pattern (Figure 15).
Instead, it appears that these pairs of criteria create a point cloud with low correlation.
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As discussed above, the RLE and RIO criteria provide diverging results that appear
to lead to somewhat conflicting goals. As a result, trade-off solutions may be obtained
depending on the weights that are used in the fitness function (9). Figure 16 presents
several solutions that have been obtained with experimentations with different weights and
combination runs for the case of a 160-day project. These outputs form a rather scattered
trade-off point cloud without, however, a well-developed Pareto front. This result indicates
a fair level of randomness of the obtained solutions and, therefore, the need to try different
criteria and run combinations.
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This observation raises another inquiry need. Most of the results in Table 3 have been
obtained following three runs of each case and the insertion of the best result among the
runs. This can be considered adequate from a practical point of view. In a more theoretical
analysis though, a larger number of optimization repetitions would be required with the
corresponding statistics (mean, median, and standard deviation) being recorded. This
analysis has been indicatively performed for the 160-day project duration case and the
criteria RLE and STD. Based on eleven runs, the mean value and the standard deviation of
RLE were 79 and 13.5, respectively (the best RLE value in Table 3 is 66 in single-criterion
optimization and 62 in two-step optimization). This example shows that the possibility of
reaching an extremely good solution with few runs is rather moderate. Nevertheless, even
the mean values are not far away from those codified as best, especially if linked to the
starting point of the optimization. In practice, therefore, the three-run scenario can provide
an adequately good solution in most cases.

Another interesting inquiry is related to the comparison of the obtained solution to
the exact solution for the problem under consideration, if the latter can be known a priori.
In general, the exact solution is not known and cannot be established a priori, at least in
large and randomly developed case studies. In the current case study, and following the
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project data setup, the solution for the 200-day project duration can be developed manually
and ends up in a fully leveled resource histogram. In the other cases, the exact solution
for the whole project is not known but it can be ascertained that the resource histogram
is not totally plain due to the fact that sub-projects in serial arrangement do not overlap
with each other while activity J is executed alone in every sub-project. Comparisons of
the outputs in Table 3 that correspond to the 200-day project, versus all other durations,
indicate that the algorithm’s effectiveness is consistently similar across all duration cases,
regardless of the quality of the exact solution. This suggests that the quality of the exact
solution does not significantly impact the quality of the approximate solution developed
by the evolutionary algorithm. In other words, the evolutionary algorithm produces robust
solutions that are effective, even without knowledge of the exact optimal solution.

Besides the solution quality, another typical measure of algorithm effectiveness is the
required computational effort (or time) to reach a solution. Figure 17 presents the typical
convergence path of the employed algorithm and software across alternative optimization
criteria. The convergence results are normalized with respect to the objective values at the
start of the process to facilitate comparisons among different criteria; this is indicated with
the unity value of the y-axis at the beginning of time. In each criterion, results of multiple
runs are included to provide a more representative picture of the convergence process. Since
all optimization runs have identical computation processes with all individual parameters
and the fitness value being calculated in every case, the presented curves are quite typical of
all case studies that were examined. This means that the majority of the runs have attained
high convergence to their final fitness value within 10 to 15 min, which can be deemed
satisfactory for resource optimization of a project of that size (160 activities), considering
also that this is an off-line analysis and does not require real-time decisions. It is interesting
to note that the convergence pattern of the single RIO criterion is typically quite gradual
within the convergence timespan. Instead, all other criteria gain much of their convergence
at the beginning of the process. In the case of two sequential runs with different criteria
(Cases 7 and 8), each run takes approximately the same amount of time as if it were
executed independently.

Figure 17. Algorithm convergence progress (200-day case).
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5. Discussion

The resource-constrained scheduling problem is a multi-objective one with varying
objective priorities in each project case and deployment environment. Thus, different opti-
mization criteria should be developed in order to utilize those that better fit the individual
problem objectives and characteristics. Focusing merely on a single sub-objective provides
a partial view of the solution potential and typically prevents participants from making
informed and concise decisions.

In this work, an optimization model is developed for multi-objective resource-con-
strained scheduling aimed at large and repetitive projects. Several specific parameters
(decision criteria) have been integrated in a multi-objective model that attempts to mini-
mize the negative impact from not meeting the project priorities and constraints. These
parameters are associated with (a) the exceedance of the daily resource availability and
(b) the day-by-day fluctuations of resource needs. The above deviations result in direct
financial losses, which can be assessed depending on the specificities of each particular
project. On the other hand, the above sub-objectives are partly conflicting, meaning that
a holistic evaluation, including single- and multi-criteria analysis is performed in any
potentially productive way. The present study examines different objectives and criteria,
either separately or in combination, to evaluate the degree to which each optimization
structure facilitates certain or prevailing objectives in actual projects.

To serve the needs for easy and practical application, which is important in scheduling
operations of actual (construction) projects, the problem is structured in a spreadsheet form
where scheduling and resource allocation calculations are made. Evolutionary algorithms
have been found to perform well in such problem environments and the present work em-
ploys Genetic Algorithms in this direction. In addition, known general-purpose GA-solving
commercial software has been employed. In construction industry practice, it is expected
to use such type of assistance rather than developing an optimization model internally.
Finally, due to the stochastic nature of evolutionary algorithms, it is recommended to
implement multiple runs of a specific optimization setup to develop a clearer picture of the
solution potential.

Optimization is performed in the form of a weighted-sum function of several param-
eters (criteria) that can potentially be used in combination for providing global decision-
making assistance. The weighted-sum structure perfectly fits the problem nature. This is
because the weights represent (at least in some of the included parameters, RLE and RIO)
explicit actual unit cost values of the corresponding resource inefficiencies. As such, the
objective function provides a pure cost value that can undisputably be used for assessing
the specific project schedule, which minimizes the total resource allocation cost. Among
the decision parameters that have been considered, the STD, RLE, and MaxR promote the
goals of resource leveling and resource overallocation prevention. In another optimization
direction, the RIO parameter can better represent the adverse effect of resource movement
in and out of the project. The analysis reveals that all criteria can potentially end up with
comparatively enhanced solutions and, therefore, it is advised to perform runs with all
criteria, either individually or collectively. It is also advised to make multiple runs with
each set of criteria as the output of an evolutionary type of search is not deterministic. The
experimentation with the case study example shows that the employment of such a global
analysis generally is in favor of improved results.

The case study results indicate that the optimization with the proposed strategy can
provide rather effective resource allocation patterns, both in terms of resource overallocation
and resource variations from day to day. In all cases that were examined, both the resource
overallocation and the resource fluctuations in time are within a range of 3% to 7.5% of the
total resources that are used in the project. This deviation appears to be acceptable for a
project of such size (160 activities), especially if the exact solution (which is rarely known)
also presents a degree of resource allocation inefficiencies. This means that the net deficit of
the evolutionary algorithm solution, in comparison to the corresponding exact solution, is
even lower than the percentages mentioned above.
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6. Conclusions

The resource-constrained scheduling problem is a complex combinatorial one and
includes several activity and resource input parameters as well as constraints that need to
be met. As the project size (and complexity) rises, e.g., in the case of large and repetitive
projects, the computational burden increases fast and the solution quality drops. In such
cases, metaheuristic algorithms may be employed for solving the problem effectively
(near-optimal solutions) and efficiently (reasonable time requirements).

The findings of the present work indicate that such methods can provide valuable and
thorough decision support in multi-objective resource-constrained scheduling considering
the specific priorities and objectives in every project case, including large and repetitive
projects. In fact, although the optimization effectiveness may drop with the project’s size
and complexity, the importance of using formal optimization becomes more imperative in
the case of large or repetitive projects.

This work demonstrates that evolutionary algorithms, particularly Genetic Algorithms,
can be effective tools for solving the RCSP in large and repetitive projects. The integration
of multiple optimization criteria allows for a more comprehensive evaluation of potential
solutions, enhancing decision-making. The exploitation of user-friendly software tools
and easy-to-implement solution strategies is essential for the broader adoption of these
optimization methods in engineering practice. By addressing both theoretical and practical
aspects, this study contributes to the advancement of optimization techniques in project
management and paves the way for future research and practical applications in the
field. In fact, future work should further focus on closing the gap between research and
practice by incorporating practical aspects associated with the construction industry’s
needs and specificities.

Author Contributions: Conceptualization, V.L. and A.C.; Methodology, V.L. and A.C.; Software,
V.L. and A.C.; Validation, V.L., A.C. and S.K.; Formal Analysis, V.L., A.C. and S.K.; Investigation,
V.L. and A.C.; Resources, V.L., A.C. and S.K.; Data Curation, V.L. and A.C.; Writing—Original Draft
Preparation, V.L. and A.C.; Writing—Review and Editing, V.L., A.C. and S.K.; Visualization, V.L. and
A.C.; Supervision, A.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author/s.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Berthaut, F.; Grèze, L.; Pellerin, R.; Perrier, N.; Hajji, A. Optimal Resource-Constraint Project Scheduling with Overlapping Modes;

Cirrelt: Montreal, QC, Canada, 2011; pp. 1–15.
2. Hariga, M.; Shamayleh, A.; El-Wehedi, F. Integrated Time–Cost Tradeoff and Resources Leveling Problems with Allowed Activity

Splitting. Int. Trans. Oper. Res. 2019, 26, 80–99. [CrossRef]
3. Moukrim, A.; Quilliot, A.; Toussaint, H. An Effective Branch-and-Price Algorithm for the Preemptive Resource Constrained

Project Scheduling Problem Based on Minimal Interval Order Enumeration. Eur. J. Oper. Res. 2015, 244, 360–368. [CrossRef]
4. Alcaraz, J.; Maroto, C.; Ruiz, R. Solving the Multi-Mode Resource-Constrained Project Scheduling Problem with Genetic

Algorithms. J. Oper. Res. Soc. 2003, 54, 614–626. [CrossRef]
5. Kaiafa, S.; Chassiakos, A.P. A Genetic Algorithm for Optimal Resource-Driven Project Scheduling. Procedia Eng. 2015, 123,

260–267. [CrossRef]
6. Hegazy, T.; Kamarah, E. Schedule Optimization for Scattered Repetitive Projects. Autom. Constr. 2022, 133, 104042. [CrossRef]
7. Khalilzadeh, M. Resource Levelling in Projects Considering Different Activity Execution Modes and Splitting. J. Eng. Des. Technol.

2021, 20, 1073–1100. [CrossRef]
8. Bettemir, Ö.; Sonmez, R. Hybrid Genetic Algorithm with Simulated Annealing for Resource-Constrained Project Scheduling.

J. Manag. Eng. 2015, 31, 04014082. [CrossRef]
9. Li, H.; Zhang, H. Ant Colony Optimization-Based Multi-Mode Scheduling under Renewable and Nonrenewable Resource

Constraints. Autom. Constr. 2013, 35, 431–438. [CrossRef]

https://doi.org/10.1111/itor.12329
https://doi.org/10.1016/j.ejor.2014.12.037
https://doi.org/10.1057/palgrave.jors.2601563
https://doi.org/10.1016/j.proeng.2015.10.087
https://doi.org/10.1016/j.autcon.2021.104042
https://doi.org/10.1108/JEDT-11-2020-0463
https://doi.org/10.1061/(ASCE)ME.1943-5479.0000323
https://doi.org/10.1016/j.autcon.2013.05.030


Algorithms 2024, 17, 351 21 of 22
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