
Citation: Bosse, S. A Virtual Machine

Platform Providing Machine Learning

as a Programmable and Distributed

Service for IoT and Edge On-Device

Computing: Architecture,

Transformation, and Evaluation of

Integer Discretization. Algorithms

2024, 17, 356. https://doi.org/

10.3390/a17080356

Academic Editors: Marek Bolanowski,

Andrzej Białas, Janusz Furtak and

Andrzej Paszkiewicz

Received: 17 June 2024

Revised: 2 August 2024

Accepted: 5 August 2024

Published: 15 August 2024

Copyright: © 2024 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

A Virtual Machine Platform Providing Machine Learning as a
Programmable and Distributed Service for IoT and Edge
On-Device Computing: Architecture, Transformation, and
Evaluation of Integer Discretization
Stefan Bosse 1,2

1 Department Mathematics and Computer Science, University of Bremen, 28359 Bremen, Germany;
sbosse@uni-bremen.de

2 Department Mechanical Engineering, University of Siegen, 57072 Siegen, Germany

Abstract: Data-driven models used for predictive classification and regression tasks are commonly
computed using floating-point arithmetic and powerful computers. We address constraints in dis-
tributed sensor networks like the IoT, edge, and material-integrated computing, providing only
low-resource embedded computers with sensor data that are acquired and processed locally. Sensor
networks are characterized by strong heterogeneous systems. This work introduces and evaluates
a virtual machine architecture that provides ML as a service layer (MLaaS) on the node level and
addresses very low-resource distributed embedded computers (with less than 20 kB of RAM). The
VM provides a unified ML instruction set architecture that can be programmed to implement decision
trees, ANN, and CNN model architectures using scaled integer arithmetic only. Models are trained
primarily offline using floating-point arithmetic, finally converted by an iterative scaling and trans-
formation process, demonstrated in this work by two tests based on simulated and synthetic data.
This paper is an extended version of the FedCSIS 2023 conference paper providing new algorithms
and ML applications, including ANN/CNN-based regression and classification tasks studying the
effects of discretization on classification and regression accuracy.

Keywords: Tiny ML; distributed sensor networks; discretization; integer arithmetic

1. Introduction

To address ubiquitous computing, edge computing, and distributed sensor networks,
as well as a significant increase in device density and sensor deployment towards smart and
self-aware sensors, sophisticated and dependable data processing architectures are required.
The field of tiny machine learning (ML) is an emerging field posing challenges that are only
partially addressed [1]. Floating-point arithmetic, with a high dynamic range and sufficient
precision, is frequently used to compute machine learning models. Only integer arithmetic
(8–32 bit) is supported by very low-resource tiny embedded systems, e.g., ARM Cortex
M0-based systems; hence, training with integer arithmetic must be completed directly
on the target device [2] or by model modification and freezing [3]. The computation of
complex deep learning (DL) models is further limited by memory and computing power
constraints of ultra-low-power devices [4]. To overcome software limitations and limited
computability, hardware designs are becoming more popular [5]. We focus on the software
processing of ML models on low-resource and low-power devices by model transformation
fitting of low-resource devices.

The present work addresses virtualization on the programming level in IoT and
sensor networks using very low-resource computers, typically with less than 64 kB of
available RAM, with a particular focus on machine learning (ML) provided as a virtualized
service. Compared with [6], we provide new algorithms and ML applications, includ-
ing ANN/CNN-based regression and classification tasks, with a rigorous evaluation of

Algorithms 2024, 17, 356. https://doi.org/10.3390/a17080356 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a17080356
https://doi.org/10.3390/a17080356
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-8774-6141
https://doi.org/10.3390/a17080356
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a17080356?type=check_update&version=2

Algorithms 2024, 17, 356 2 of 33

discretization errors. The set of discretized non-linear transfer functions is extended, opti-
mized, and evaluated rigorously. A new unified data set derived from physical simulation
is used to demonstrate the capability and accuracy of the ML VM service, which can be
deployed on any very low-resource micro-controller providing integer arithmetic only, as
well as on desktop computers. We evaluate the VM MLISA and the model transformation
process with respect to constraints and its application in Structural Health Monitoring.

A functional prediction or regression model is composed of linear and non-linear
functions. The most critical part in the transformation and scaling process of ML models
towards integer arithmetic is the non-linear function, e.g., the tanh transfer function. A
chained composition can introduce high non-linearity, which must be handled carefully to
avoid exploding model errors. For this purpose, we will train ANN models with data from
highly non-linear analytical functions for the implementation of surrogate models. There is
an extended evaluation of computational complexity and requirements for most relevant
applications. The advantage of using a textual programming language instead of binary
code is demonstrated by extended examples.

This work focuses on a universal VM suitable for implementation on very low-resource
embedded systems and providing ML as a programmable service. Although “as a service”
is a common cloud-based paradigm, we use this term in terms of virtualization on node
and single computer level.

There is ongoing work to implement the computation of ML models with 8 or less bit
integer arithmetic (and storage data size) on micro-controllers [7,8], commonly called Tiny
ML [9] or ML on commodity devices [1]. We will relax this hard constraint by assuming a
32-bit microprocessor, e.g., the widely used Arm Cortex M series with chip die areas below
0.1 mm2 and power consumption about 10 mW (active mode). Finally, we implement
ML with 16 bit data-size storage (input, intermediate, and output data as well as model
parameters). Overflow issues are relaxed by using 32-bit arithmetic internally. In [9], the
authors outlined the benefits of Tiny ML in the context of sensor networks. Tiny ML enables
the local processing of sensor data without extensive periodic communication to external
serves, especially in the context of real-time capable structural health monitoring (SHM)
systems. In [9], the computation of complex and deep convolutional neural networks
(CNNs) was implemented on the sensor node level, often equipped with digital signal pro-
cessors (DSPs) with optimized vector operations and sometimes floating-point arithmetic
units (FPUs). The authors chose an Arm Cortex M4-based micro-controller, which provides
dedicated DSP and FPU operations and 320 kB of RAM. In [3], the authors presented a
software framework to run lightweight neural networks on micro-controllers based on
both the ARM Cortex-M series and the RISC-V-based parallel ultra-low-power (PULP)
platform, especially addressing energy-efficient computing, which is a high constraint
on self-powered autonomous sensor nodes. The efficient implementation of ML models
using a dedicated model and training library Fast ANN on the Arm Cortex M architecture
is also demonstrated in [10]. They claim that the model computation is still possible on
FPU-less micro-controllers but do not give evaluations for real use cases. In addition, all
these frameworks create static model code, which cannot easily be updated at run-time
(no service).

Instead of performing software model transformations to map a model using arith-
metic A defined by an accuracy, value, and dynamic range, on a model using arithmetic B
with lower accuracy and reduced value and dynamic ranges, the model can be mapped
on a dedicated hardware architecture, providing the elementary core operations of ML
models, as described by [1]. Although this is the most efficient method, this approach
prevents the use of widely used and cheap electronic components and universal and flexible
model computations, as well as update services (of the model and the ML services). This
compromises the deployment of the proposed ML/VM architecture in embedded systems
with limited or no reprogramming capabilities (like material-integrated systems, discussed
in Section 2).

Algorithms 2024, 17, 356 3 of 33

This paper is organized as follows. A short introduction to material-integrated sensor
nodes for structural health monitoring (SHM) is given to outline the motivation as well as
the communication architecture, defining constraints for the VM and its ML service intro-
duced and used in this work. An extended section describes the REXA VM with a focus
on ML. The transformation process of continuous ML models to discretized integer-scaled
arithmetic models is described in detail, and approximation methodologies and discretiza-
tion errors are discussed for non-linear transfer functions. Two use cases demonstrate the
capability of the transformation process, the REXA VM ML operations, and typical accuracy
losses that can be expected in real applications for regression and classification tasks.

We introduce two different model scaling algorithms (static and dynamic) and evaluate
the effect of discretization on the model accuracy with the two use-case examples. One use
case uses synthetic sensor data created by wave propagation simulation, and the second
uses input data from a mathematical model. The first use case combines classification
and regression tasks into one model, and the second is a pure regression model. The
main focus is on the non-linear activation functions used in neuronal network models
and their discretization errors. The two use cases will demonstrate the quality of the
proposed scaling approach and the simplicity of the VM programming for classification
and regression models, including CNN architectures.

2. Sensor Node Architecture for SHM and Communication Architecture

The virtualization and deployment of VMs onto tiny micro-controllers was inspired
by the wireless material-integrated sensor node [11,12], which is embedded between
two layers of a fiber–metal laminate plate and developed in the DFG research group 3022 for
automated diagnostics of hidden damages in fiber–metal laminates using guided ultrasonic
waves (GUW). The sensor node is supplied with power via RFID/NFC communication
technology only [13]. The energy harvester is able to deliver up to 15 mW of continuous
power, significantly constraining the selection and operation of the electronic parts, as
shown in Figure 1. After the sensor node is integrated into the plate, no software updates
or maintenance can be applied. The communication with the micro-controller takes place
only via the NFC tag. The communication is bidirectional, originally via the NFC tag’s
EEPROM (code and data). Alternatively, wireless communication can be realized directly
with a write-through mode (because the lifetime of the EEPROM is limited to about
1000–10,000 write cycles), writing message data directly to the micro-controller. The sensor
node uses an ARM Cortex STM32 L031 device, an NFC tag with a power supply, and
a pre-amplifier for piezoelectric sensors. The features are summarized in Table 1. More
details and descriptions of the sensor node can be found in [12].

Table 1. Features of the material-integrated wireless sensor node.

Feature Value

Size 17 × 17 mm (without antenna and sensor)

Sensors Piezoelectric transducer, MEMS sensor, temperature, radio
field strength

Components
ADC (1 MSPS, 8–12 bit resolution), pre-amplifier, power regulator, NFC
tag, ARM Cortex M0 STM32L031 micro-controller with 8 kB RAM and
32 kB ROM

Communication Wireless, NFC (13.56 MHz), up to 100 kb/s
Energy Energy harvesting by NFC tag, up to 15 mW continuous power
Software REXA VM (CS = 1024, DS = 512, RS/FS = 32, only single-precision data)

Algorithms 2024, 17, 356 4 of 33

Algorithms 2024, 17, x FOR PEER REVIEW 4 of 35

Feature Value

Software REXA VM (CS = 1024, DS = 512, RS/FS = 32, only single-precision data)

Figure 1. ARM Cortex M0-based sensor node (STM32L031) implementing the REXA VM for
material-integrated GUW sensing with NFC for energy transfer and bidirectional communication
with only 8 kB of RAM and 32 kB of ROM.

Although this work focuses on the design and implementation of a universal VM
suitable for implementation on very low-resource embedded systems and providing ML
as a programmable service, communication aspects are relevant and must be considered
as constraints, both for the design and operation of the VM and the communication
design. Communication with material-integrated sensor nodes is commonly performed
by using wireless technologies, but in the presence of metals and dielectric materials,
wireless communication is a challenge. Low- and mid-frequency RFID technologies are
widely used. In this work, it is assumed that the REXA VM is accessible by RFID/NFC
communication, as shown in Figure 2. Sensor nodes communicate wirelessly via
RFID/NFC tag circuits with a reader, which is connected short-range to a “remote” VM
instance. The reader nodes are connected long-range (wired or wireless) to establish a
distributed network. The reader nodes are communication end-points and message
routers.

Figure 1. ARM Cortex M0-based sensor node (STM32L031) implementing the REXA VM for material-
integrated GUW sensing with NFC for energy transfer and bidirectional communication with only
8 kB of RAM and 32 kB of ROM.

Although this work focuses on the design and implementation of a universal VM
suitable for implementation on very low-resource embedded systems and providing ML as
a programmable service, communication aspects are relevant and must be considered as
constraints, both for the design and operation of the VM and the communication design.
Communication with material-integrated sensor nodes is commonly performed by using
wireless technologies, but in the presence of metals and dielectric materials, wireless
communication is a challenge. Low- and mid-frequency RFID technologies are widely used.
In this work, it is assumed that the REXA VM is accessible by RFID/NFC communication,
as shown in Figure 2. Sensor nodes communicate wirelessly via RFID/NFC tag circuits
with a reader, which is connected short-range to a “remote” VM instance. The reader nodes
are connected long-range (wired or wireless) to establish a distributed network. The reader
nodes are communication end-points and message routers.

Algorithms 2024, 17, x FOR PEER REVIEW 5 of 35

Figure 2. Principle REXA VM network architecture using different wired and wireless
communication technologies.

The communication capabilities have an impact on the ML models that can be
implemented with respect to the code and data size. It can be expected that the typical
message size will not exceed 1k Bytes. The transfer of 1k Byte of payload data requires
about one second of transfer time, including packet fragmentation. ML models, including
the forward prediction functions, are submitted to the VM via text, including the fixed
model parameters. In the use-case section, the text and code + data sizes are measured,
showing that small and moderate complex models, including CNNs, can be transferred
by such a resource-constraint communication channel.

3. REXA VM Architecture and Programming Language
The REXA VM is the core component for implementing and virtualizing ML on

low-resource computers using a programmable approach. The next sub-sections describe
the VM architecture briefly to aid in understanding the implementation details of the
following use cases.

3.1. Architecture
The real-time capable and extensible architecture (REXA) VM is a full-featured script

engine based on a stack processor architecture. A detailed description can be found in
[11,14]. Although any programming language can be used, we implemented a modified
subset of the stack-based Forth programming language [15]. Any ISA can be
implemented by addressing stack-based computation, but Forth is a well-known and
long-standing programming language that is firstly a high- and low-level language,
secondly can be implemented efficiently on low-resource systems, thirdly is extensible
(e.g., by the MLISA introduced in this work), and fourthly requires only simple
compilers. In contrast, C/C++ is a compiled language not intended for script execution as
intended in this work, and C/C++ compilers are complex, whereas Forth compilers are
not.

The full version embeds a text-to-byte-code compiler that translates Forth programs
into byte-code. A dialect of the Forth programming language provides high-level
constructs like loops and functions (words in the Forth terminology), as well as the
compactness of the VM implementation, including a hand-written language parser and

Figure 2. Principle REXA VM network architecture using different wired and wireless communica-
tion technologies.

Algorithms 2024, 17, 356 5 of 33

The communication capabilities have an impact on the ML models that can be imple-
mented with respect to the code and data size. It can be expected that the typical message
size will not exceed 1k Bytes. The transfer of 1k Byte of payload data requires about
one second of transfer time, including packet fragmentation. ML models, including the
forward prediction functions, are submitted to the VM via text, including the fixed model
parameters. In the use-case section, the text and code + data sizes are measured, showing
that small and moderate complex models, including CNNs, can be transferred by such a
resource-constraint communication channel.

3. REXA VM Architecture and Programming Language

The REXA VM is the core component for implementing and virtualizing ML on low-
resource computers using a programmable approach. The next sub-sections describe the
VM architecture briefly to aid in understanding the implementation details of the following
use cases.

3.1. Architecture

The real-time capable and extensible architecture (REXA) VM is a full-featured script
engine based on a stack processor architecture. A detailed description can be found
in [11,14]. Although any programming language can be used, we implemented a modified
subset of the stack-based Forth programming language [15]. Any ISA can be implemented
by addressing stack-based computation, but Forth is a well-known and long-standing
programming language that is firstly a high- and low-level language, secondly can be
implemented efficiently on low-resource systems, thirdly is extensible (e.g., by the MLISA
introduced in this work), and fourthly requires only simple compilers. In contrast, C/C++
is a compiled language not intended for script execution as intended in this work, and
C/C++ compilers are complex, whereas Forth compilers are not.

The full version embeds a text-to-byte-code compiler that translates Forth programs
into byte-code. A dialect of the Forth programming language provides high-level constructs
like loops and functions (words in the Forth terminology), as well as the compactness of
the VM implementation, including a hand-written language parser and an incremental
direct compiler producing VM code. One main feature is the binding of data and code in
frames without the necessity of a free-used memory block list-driven dynamic memory
management. All dynamic run-time data are stored on multiple data stacks. Such binary
byte-code frames with embedded data can be exchanged among different processors and
sensor nodes. The compilation, as well as the code execution, can be performed under
soft real-time constraints. The run-time can be estimated in advance, e.g., offline, by a VM
twin with check-pointing, tracing, and monitoring capabilities. The REXA VM is written in
plain C and is highly portable. Alternatively, the REXA VM can be implemented in other
programming languages like JavaScript to support embedding in UI applications.

The REXA VM was designed especially for deployment on low-resource micro-
controllers with less than 64 kB RAM and low clock frequencies below 50 MHz. It utilizes a
freely programmable ISA, but the ISA of the VM used in this work is closely related to the
Forth programming language [15]. The VM is a pure stack processor, i.e., most operations
process data via multiple stack memories with a zero-operand instruction format. There
is support for arrays and access to external buffers via the DIOS (see below). The VM
instruction loop processes byte-code programs stored in a code segment (CS).

Figure 3 shows the architecture design of the REXA VM and its interoperability with
the closely coupled just-in-time (JIT) compiler. The JIT compiler depends on the VM ISA,
which can be freely defined, although this work is strongly related to the Forth programing
language. The architecture details depend on the configuration (single- or multi-tasking,
number of stacks, and customized extensions and accelerators). The principle architecture
is equal for software and hardware implementations. Profiling is an optional feature used
for predictive real-time scheduling, as well as the energy-aware real-time scheduler.

Algorithms 2024, 17, 356 6 of 33

Algorithms 2024, 17, x FOR PEER REVIEW 6 of 35

an incremental direct compiler producing VM code. One main feature is the binding of
data and code in frames without the necessity of a free-used memory block list-driven
dynamic memory management. All dynamic run-time data are stored on multiple data
stacks. Such binary byte-code frames with embedded data can be exchanged among
different processors and sensor nodes. The compilation, as well as the code execution, can
be performed under soft real-time constraints. The run-time can be estimated in advance,
e.g., offline, by a VM twin with check-pointing, tracing, and monitoring capabilities. The
REXA VM is written in plain C and is highly portable. Alternatively, the REXA VM can
be implemented in other programming languages like JavaScript to support embedding
in UI applications.

The REXA VM was designed especially for deployment on low-resource
micro-controllers with less than 64 kB RAM and low clock frequencies below 50 MHz. It
utilizes a freely programmable ISA, but the ISA of the VM used in this work is closely
related to the Forth programming language [15]. The VM is a pure stack processor, i.e.,
most operations process data via multiple stack memories with a zero-operand
instruction format. There is support for arrays and access to external buffers via the DIOS
(see below). The VM instruction loop processes byte-code programs stored in a code
segment (CS).

Figure 3 shows the architecture design of the REXA VM and its interoperability with
the closely coupled just-in-time (JIT) compiler. The JIT compiler depends on the VM ISA,
which can be freely defined, although this work is strongly related to the Forth
programing language. The architecture details depend on the configuration (single- or
multi-tasking, number of stacks, and customized extensions and accelerators). The
principle architecture is equal for software and hardware implementations. Profiling is an
optional feature used for predictive real-time scheduling, as well as the energy-aware
real-time scheduler.

Figure 3. Basic REXA-VM architecture with integrated JIT compiler, stacks, and byte-code
processor [11,12].

The code segment (CS) is the central storage for source code, byte-code, and
embedded data. The CS is partitioned into dynamically sized code frames, commonly

Figure 3. Basic REXA-VM architecture with integrated JIT compiler, stacks, and byte-code proces-
sor [11,12].

The code segment (CS) is the central storage for source code, byte-code, and embedded
data. The CS is partitioned into dynamically sized code frames, commonly assigned to a
task (depending on the scheduling model), as shown in Figure 4. Assuming a 16-bit VM, the
CS is limited to 32k Bytes in size. The scheduler controls and monitors the byte-code loop
(vmloop). Code operations can suspend task execution by waiting for events handled by
an event table. The input–output system (IOS, similar to the widely used foreign function
interface (FFI), extends the code and data space of the VM) is the central bridge between the
core VM and the host application. The VM architecture is optimized for resource sharing,
e.g., using an ADC sample buffer for computations from the VM programming level.

Temporary (short lifetime) data are stored and manipulated directly on fixed-size
stack memories:

1. The data stack (DS) holds most of the processing data and instruction operands;
2. The return stack (RS) used for function calls (not accessible from the programming

level for security reasons);
3. Optional loop stack (FS) used for loop counters and secondary user data (can be

merged with RS for memory efficiency).

All non-temporary data are either embedded in the code frames or provided by the
host application via the data input–output system layer (DIOS) API or by providing Io
functions using the function input–output system layer (FIOS) API. All MLISA operations
are attached to the VM using the FIOS; ADC buffers are attached by the DIOS.

The data width of the stack cell is always 16 bit (single word width). The REXA
VM also supports double-word operations (as a configurable option). Double words are
composed of two single data words (word order depends on the native byte order of the
underlying processor). The VM can read and write double words directly from and to
stacks (single memory access). The access time of multiplexed single and double word
access to the stacks by memory pointer casting is commonly identical (assuming 32-bit
microprocessors). The push and pop operations involved in most of the VM instruction
code words modify stack pointers (dstop, rstop, fstop). For security reasons, the return

Algorithms 2024, 17, 356 7 of 33

stack (which holds code pointers on function calls) should not be accessed directly by
program code.

Besides hardcore stacks implemented inside the VM, soft-core stacks can be imple-
mented on the programming level in data arrays (embedded in code frames). Push and
pop operations are provided by the core instruction word set:

Algorithms 2024, 17, x FOR PEER REVIEW 7 of 35

assigned to a task (depending on the scheduling model), as shown in Figure 4. Assuming
a 16-bit VM, the CS is limited to 32k Bytes in size. The scheduler controls and monitors
the byte-code loop (vmloop). Code operations can suspend task execution by waiting for
events handled by an event table. The input–output system (IOS, similar to the widely
used foreign function interface (FFI), extends the code and data space of the VM) is the
central bridge between the core VM and the host application. The VM architecture is
optimized for resource sharing, e.g., using an ADC sample buffer for computations from
the VM programming level.

Temporary (short lifetime) data are stored and manipulated directly on fixed-size
stack memories:
1. The data stack (DS) holds most of the processing data and instruction operands;
2. The return stack (RS) used for function calls (not accessible from the programming

level for security reasons);
3. Optional loop stack (FS) used for loop counters and secondary user data (can be

merged with RS for memory efficiency).
All non-temporary data are either embedded in the code frames or provided by the

host application via the data input–output system layer (DIOS) API or by providing Io
functions using the function input–output system layer (FIOS) API. All MLISA
operations are attached to the VM using the FIOS; ADC buffers are attached by the DIOS.

The data width of the stack cell is always 16 bit (single word width). The REXA VM
also supports double-word operations (as a configurable option). Double words are
composed of two single data words (word order depends on the native byte order of the
underlying processor). The VM can read and write double words directly from and to
stacks (single memory access). The access time of multiplexed single and double word
access to the stacks by memory pointer casting is commonly identical (assuming 32-bit
microprocessors). The push and pop operations involved in most of the VM instruction
code words modify stack pointers (dstop, rstop, fstop). For security reasons, the return
stack (which holds code pointers on function calls) should not be accessed directly by
program code.

Besides hardcore stacks implemented inside the VM, soft-core stacks can be
implemented on the programming level in data arrays (embedded in code frames). Push
and pop operations are provided by the core instruction word set:

array mystack 100
1 mystack push
mystack pop . cr
3 mystack get (Gets copy of n-th value from top)

Figure 4. (Left) Incremental growing code segment (single-tasking), persistent code cannot be
removed. (Right) Dynamically partitioned code segments using code frames and linking code
frames due to fragmentation.

Algorithms 2024, 17, x FOR PEER REVIEW 7 of 35

assigned to a task (depending on the scheduling model), as shown in Figure 4. Assuming
a 16-bit VM, the CS is limited to 32k Bytes in size. The scheduler controls and monitors
the byte-code loop (vmloop). Code operations can suspend task execution by waiting for
events handled by an event table. The input–output system (IOS, similar to the widely
used foreign function interface (FFI), extends the code and data space of the VM) is the
central bridge between the core VM and the host application. The VM architecture is
optimized for resource sharing, e.g., using an ADC sample buffer for computations from
the VM programming level.

Temporary (short lifetime) data are stored and manipulated directly on fixed-size
stack memories:
1. The data stack (DS) holds most of the processing data and instruction operands;
2. The return stack (RS) used for function calls (not accessible from the programming

level for security reasons);
3. Optional loop stack (FS) used for loop counters and secondary user data (can be

merged with RS for memory efficiency).
All non-temporary data are either embedded in the code frames or provided by the

host application via the data input–output system layer (DIOS) API or by providing Io
functions using the function input–output system layer (FIOS) API. All MLISA
operations are attached to the VM using the FIOS; ADC buffers are attached by the DIOS.

The data width of the stack cell is always 16 bit (single word width). The REXA VM
also supports double-word operations (as a configurable option). Double words are
composed of two single data words (word order depends on the native byte order of the
underlying processor). The VM can read and write double words directly from and to
stacks (single memory access). The access time of multiplexed single and double word
access to the stacks by memory pointer casting is commonly identical (assuming 32-bit
microprocessors). The push and pop operations involved in most of the VM instruction
code words modify stack pointers (dstop, rstop, fstop). For security reasons, the return
stack (which holds code pointers on function calls) should not be accessed directly by
program code.

Besides hardcore stacks implemented inside the VM, soft-core stacks can be
implemented on the programming level in data arrays (embedded in code frames). Push
and pop operations are provided by the core instruction word set:

array mystack 100
1 mystack push
mystack pop . cr
3 mystack get (Gets copy of n-th value from top)

Figure 4. (Left) Incremental growing code segment (single-tasking), persistent code cannot be
removed. (Right) Dynamically partitioned code segments using code frames and linking code
frames due to fragmentation.

Figure 4. (Left) Incremental growing code segment (single-tasking), persistent code cannot be
removed. (Right) Dynamically partitioned code segments using code frames and linking code frames
due to fragmentation.

The compiler translates the source code text into byte-code instructions. It is a just-
in-time (JIT) compiler that can compile code incrementally and on demand. Since the ISA
of stack processors consists mostly of zero-operand instructions, it supports fine-grained
compilation at the token level, including ML models. The source text can be directly stored
in the code segment referenced by a code frame (or any other data buffer, alternatively).
Most instruction words can be directly mapped to a consecutively numbered operation
code. Therefore, the compiler translates the source code into byte-code in place, i.e., by
replacing the text with binary byte-code, saving additional target memory buffers. An
instruction word consists of at least one character and thus can always be replaced by the
op-code (one byte). Although a literal value can consist of only one digit and the data of a
single word value occupies two bytes, there is always a space or newline character after
a literal value, providing the required data space. Extension of the current code frame
at the end is always possible (as long as there is free space in the CS). One exception is a
double-word literal value requiring at least two characters and the suffix “l”, followed by
an obligatory separator character and the space, providing four bytes of data space in total.

Data are either stored on the stacks during run-time or embedded in the code frame
during translation. Scalar variables and initialized arrays can always be embedded in place.
Non-initialized arrays are appended to the end of the compiled code frame (placing id
delayed until the code frame is compiled).

3.2. Programming Language

The programming language consists of the Forth core set, which is mainly zero-
operand words. A word is either a numerical or string value storing this value on the
data stack or an instruction word like arithmetic or control flow operations. Zero-operand
instructions get their operands from the stacks and store results on the stack again. User
functions (words) can be defined by using the operator, as shown in Example 1. Because

Algorithms 2024, 17, 356 8 of 33

user words, as well as core words, get their operands via the stack and store results on
the stack, a comment in the form LHS -- RHS is commonly used to specify the input and
output function interface. The left-hand side specifies the input arguments (right is the top
of the stack), and the right-hand side specifies the output (if any).

A typical REXA VM program for ML consists of a head section defining initialized and
non-initialized arrays, and words computing data, as shown in Example 1 and discussed in
detail in the MLISA Section 4.

Algorithms 2024, 17, x FOR PEER REVIEW 8 of 35

The compiler translates the source code text into byte-code instructions. It is a
just-in-time (JIT) compiler that can compile code incrementally and on demand. Since the
ISA of stack processors consists mostly of zero-operand instructions, it supports
fine-grained compilation at the token level, including ML models. The source text can be
directly stored in the code segment referenced by a code frame (or any other data buffer,
alternatively). Most instruction words can be directly mapped to a consecutively
numbered operation code. Therefore, the compiler translates the source code into
byte-code in place, i.e., by replacing the text with binary byte-code, saving additional
target memory buffers. An instruction word consists of at least one character and thus
can always be replaced by the op-code (one byte). Although a literal value can consist of
only one digit and the data of a single word value occupies two bytes, there is always a
space or newline character after a literal value, providing the required data space.
Extension of the current code frame at the end is always possible (as long as there is free
space in the CS). One exception is a double-word literal value requiring at least two
characters and the suffix “l”, followed by an obligatory separator character and the space,
providing four bytes of data space in total.

Data are either stored on the stacks during run-time or embedded in the code frame
during translation. Scalar variables and initialized arrays can always be embedded in
place. Non-initialized arrays are appended to the end of the compiled code frame
(placing id delayed until the code frame is compiled).

3.2. Programming Language
The programming language consists of the Forth core set, which is mainly

zero-operand words. A word is either a numerical or string value storing this value on
the data stack or an instruction word like arithmetic or control flow operations.
Zero-operand instructions get their operands from the stacks and store results on the
stack again. User functions (words) can be defined by using the operator, as shown in
Example 1. Because user words, as well as core words, get their operands via the stack
and store results on the stack, a comment in the form LHS -- RHS is commonly used to
specify the input and output function interface. The left-hand side specifies the input
arguments (right is the top of the stack), and the right-hand side specifies the output (if
any).

A typical REXA VM program for ML consists of a head section defining initialized
and non-initialized arrays, and words computing data, as shown in Example 1 and
discussed in detail in the MLISA Section 4.

array X 3
array P { 1 2 3 }
array Y 3
(n -- sum)
: productsum
 0 (sum)
 swap
 (n) 0 do
 X i cell+ ! (X[i])
 P i cellü ! (P[i])
 * (X[i]*P[i])
 + (+sum)
 loop
 (sum)
;
3 productsum
Y 1 cell+ @ (Y[1]=sum)

Example 1. REXA Forth program sketch.

4. ML Instruction Set Architecture

The extensible REXA VM is a stack-based process that provides ML as a programmable
service via its input–output system bridge. To enable and support efficient processing of
ML models, a set of basic ML operations are added to the ISA of the VM. This ISA can
be extended at any time. The ML instruction set architecture extension MLISA provides
universal ML micro-service operations (ML and MLISA as a service, MLaaS). A code frame
describes the ML model structure and defines an inference function that evaluates a specific
model by applying the following ML core and vector operations to the input data, e.g., a
measured time-resolved sensor signal. There are primarily three classes of ML models
supported by the MLISA:

1. Decision trees (DT);
2. Fully connected artificial neural networks (FC-ANNs);
3. Convolutional neural networks (CNNs).

An ML task consists of the prior training phase using example data and the post-
application inference phase using new unknown data. Actually, we only support the online
and on-site inference of already offline-trained models. The following MLISA provides
only operations for the applications of mathematical models based on discrete integer
arithmetic. The original models were trained with standard numerical methods using
floating point arithmetic transformed to integer-scaled models. Training using classical
error back-propagation methods is currently not supported due to the requirement of
storing a suitable training and test data set on the device, which is not available on very
low-resource microcontrollers.

4.1. ML Core Operations

ANN and CNN computations require efficient and generic vector operations crucial to
implementing ML on microcontrollers, at least for model inference. The REXA VM provides
a unified core set of vector operations that can be used for the iterative computation of
ANN and CNN models. It is assumed that the integer data width of the models is N-bit

Algorithms 2024, 17, 356 9 of 33

and that there is 2N-bit arithmetic. In our case, we have 16-bit model data and 32-bit native
integer arithmetic. The set of basic operations needed to implement ANN and CNN models
and perform forward activation computations consists of the following:

1. Element-wise vector operations, i.e., addition and multiplication, vecmul: op1vec op2vec
dstvec scalevec;

2. Dot-product operations performing a sum of product data fusion (vecprod: veca vecb scale
→ number);

3. A folding operation for node layer computations (vecfold: invec wgtvec outvec scalevec);
4. A convolution operation for CNN computations (vecconv: invec wgtvec outvec scale in-

width kwidth stride pad);
5. A pooling operation for CNN computations reusing the vecconv operation. The second

argument combines the kernel height and a pooling function index (max, min, and
so on) if the kernel width argument is negative (vecconv: invec kheight + poolfun out-
vec scale inwidth -kwidth stride pad);

6. A mapping operation applying a function elementwise (vecmap: srcvec dstvec func scalvec);
7. A reduction operation applying a function to all elements returning an aggregate value

(vecred: vec vecoff veclen op) with the supported functions min, max, sum, and average;
8. A vector reshape operation shrinking or expanding a vector (vecshape: srcvec dstvec scale);
9. A generic scaling operation (vecscale: srcvec dstvec scalevec).

Vector operations commonly operate on arrays embedded in code frames, as shown in
Definition 1. Scaling is typically applied after an aggregation operation, e.g., after comput-
ing a vector dot product sum of products (using 2N arithmetic), to avoid overflow. Some
operations use one scaling factor for all elements, as discussed in the following section.

Definition 1. Initialized arrays embedded in place in code frames and non-initialized arrays stored
at the end of the compiled code frame.

Algorithms 2024, 17, x FOR PEER REVIEW 10 of 35

8. A vector reshape operation shrinking or expanding a vector (vecshape: srcvec dstvec
scale);

9. A generic scaling operation (vecscale: srcvec dstvec scalevec).
Vector operations commonly operate on arrays embedded in code frames, as shown

in Definition 1. Scaling is typically applied after an aggregation operation, e.g., after
computing a vector dot product sum of products (using 2N arithmetic), to avoid
overflow. Some operations use one scaling factor for all elements, as discussed in the
following section.

Definition 1. Initialized arrays embedded in place in code frames and non-initialized arrays stored at the end
of the compiled code frame.

┌─────────────┐ ┌─────────────┐
│ array x 100 │ │ bytecode .. │
│ array y 2...│ ││
│ array z { 1 │ │ <array z>...│
│ .3 4 ...}...│ ││
││..=>.├─────────────┤
││ │ <array x>...│
││ │ <array y>...│
└─────────────┘ └─────────────┘
<array>: [LEN:2][DATA:LEN*WORDSIZE]

4.2. Vector Operations
The dynamic ranges of different integer (fixed point) and floating-point coding are

shown in Table 2.

Table 2. Dynamic ranges of different integer (fixed point) and floating-point codings.

Coding Dynamic Range

Int8 48 dB

Int16 96 dB

Int32 192 dB

Int64 385 dB

float16 180 dB

float32 1529 dB

float64 12,318 dB

The core set of vector operations provided by the REXA VM supporting (16-bit)
integer arithmetic ANN and CNN computations are summarized in Tables 3 and 4. These
operations are the primary part of the MLISA.

Vector operations always operate on single data words (16 bit), but internally, 32-bit
arithmetic is used to avoid over- and underflows. To scale to a signed 16 bit integer, some
of the operations use a scale factor or scale factor vector (negative scale values reduce,
positive expand the values by the scale factor) to avoid overflows or underflows in
following computations, similar to scaled tensors in [7,8]. Vector operations can access
arrays stored in code frames or provided externally by the host application (e.g., a signal
buffer).

4.2. Vector Operations

The dynamic ranges of different integer (fixed point) and floating-point coding are
shown in Table 2.

Table 2. Dynamic ranges of different integer (fixed point) and floating-point codings.

Coding Dynamic Range

Int8 48 dB
Int16 96 dB
Int32 192 dB
Int64 385 dB

float16 180 dB
float32 1529 dB
float64 12,318 dB

The core set of vector operations provided by the REXA VM supporting (16-bit)
integer arithmetic ANN and CNN computations are summarized in Tables 3 and 4. These
operations are the primary part of the MLISA.

Algorithms 2024, 17, 356 10 of 33

Table 3. Part 1 of the basic vector ANN functions operating on embedded or external array data
(e.g., the sample buffer).

Vector Operation

Algorithms 2024, 17, x FOR PEER REVIEW 11 of 36

Table 3. Part 1 of the basic vector ANN functions operating on embedded or external array data
(e.g., the sample buffer).

Vector Operation
array <ident> <#cells>
Allocates a data array at the end of the code segment
array <ident> { v1 v2 .. }
Allocates an initialized data array inside the code segment.
vecload
(srcvec srcoff dstvec --
Loads a data array into another array buffer. The source can be any external data provided by the IOS or internal embedded data.
vecscale
(srcvec dstvec scalevec --)
Scales the source data array with scaling factors from the scale array and stores the result in the destination array. Negative scaling
values reduce, and positive values expand the source data values. Can be used for scalar multiplication and division, too.

vecadd,vecmul
(op1vec op2vec dstvec scalevec --)
Adds or multiplies two vectors element-wise with an optional result scaling (value 0 disables scaling). Both input and destination
vectors must have the same size. Constant down-scaling of all elements is provided by a negative scaling value (instead of vector
reference).
vecsumn
(op1vec op2vec .. opnvec dstvec scale n --)
Special operation required for sliced convolution: sums over multiple vectors element-wise with an optional result scaling (value 0
disables scaling). Both input and destination vectors must have the same size. Constant down-scaling of all elements is provided
by a negative scaling value. Internal double-word arithmetics prevent overflow.

Table 4. Part 2 of the basic vector ANN functions operating on embedded or external array data
(e.g., the sample buffer).

Vector Operation
vecfold
(invec wgtvec outvec scalevec --)
Performs a folding operation ivec × wgtvec with a given filter. The weights vector wgtvec must have the size |invec|*|outvec|.
vecconv
(invec wgtvec outvec scale inwidth wgtwidth stride pad --)
Performs a two-dimensional kernel-based convolution operation ivec ⊗ wgtvec. The width of the input and kernel matrix (still a
linear array) must be provided, and the width of the output and the heights are computed automatically from the vector lengths. If
wgtwidth is negative, a pooling operation is performed. The wgtvec argument provides then the height of the filter and the
operation to be performed.
vecconv
(invec wgtvec outvec scale inwidth wgtwidth stride pad --)
Performs a two-dimensional pooling if wgtwidth is negative. The wgtvec argument provides the height of the filter and the
operation to be performed (function index).
vecmap
(srcvec dstvec func scalevec --)
Maps all elements from the source array onto the destination array using an external (IOS) or internal (user-defined word)
function, e.g., the sigmoid function.
vecred
(vec vecoff veclen op -- index value / valueL valueM)
Reduces a vector to a scalar value. Supported operations are min (1) and max (2), returning position and value, mean (4) and average
(8), returning a double-word value.

Vector operations always operate on single data words (16 bit), but internally, 32-bit
arithmetic is used to avoid over- and underflows. To scale to a signed 16 bit integer, some of
the operations use a scale factor or scale factor vector (negative scale values reduce, positive
expand the values by the scale factor) to avoid overflows or underflows in following
computations, similar to scaled tensors in [7,8]. Vector operations can access arrays stored
in code frames or provided externally by the host application (e.g., a signal buffer).

The computation of these operations is defined by the following formulas:

vecmul
(
→
a ,

→
b
)
= (a1b1, a2b2, .., anbn)

T

dotprod
(
→
a ,

→
b
)
=

→
a ·

→
b =

n
∑

i=1
aibi

f old
(→

a , ĉ
)
=

(
n
∑

i=1
aici,1,

n
∑

i=1
aici,2, ..,

n
∑

i=1
aici,n

)T

conv
(→

a ,
→
c
)
=

(→
a [1 : cn] ·→c ,

→
a [s : s + cn] ·→c ,

→
a [2s : 2s + cn] ·→c , ..

)
map

(→
a , f

)
= (f (a1), f (a2), .., f (an))

T

n =
∣∣∣→a ∣∣∣ = ∣∣∣∣→b ∣∣∣∣

(1)

with cn as the kernel size (width multiplied by height) and s as the striding value (de-
fault is one).

The vecconv operation can be used for convolutional and pooling layers (pooling
is used if wgtwidth is negative and the wgtvec value contains the weight matrix height
combined with the pooling function selector). An activation function must be applied
separately using the vecmap operation, e.g., by applying a sigmoid function to all elements
of a vector.

Algorithms 2024, 17, 356 11 of 33

The vecsumn function is required for sliced convolution. In this case (see architectural
description), a partial convolution is performed for one input array and stored in an
accumulator array. After all partial convolutions are calculated, the sum of all vectors must
be calculated (with final scaling). This can be done in principle with the vecadd operation,
but due to the accumulator (single word size), overflows can occur before final scaling.

Table 4. Part 2 of the basic vector ANN functions operating on embedded or external array data
(e.g., the sample buffer).

Vector Operation

Algorithms 2024, 17, x FOR PEER REVIEW 11 of 36

Table 3. Part 1 of the basic vector ANN functions operating on embedded or external array data
(e.g., the sample buffer).

Vector Operation
array <ident> <#cells>
Allocates a data array at the end of the code segment
array <ident> { v1 v2 .. }
Allocates an initialized data array inside the code segment.
vecload
(srcvec srcoff dstvec --
Loads a data array into another array buffer. The source can be any external data provided by the IOS or internal embedded data.
vecscale
(srcvec dstvec scalevec --)
Scales the source data array with scaling factors from the scale array and stores the result in the destination array. Negative scaling
values reduce, and positive values expand the source data values. Can be used for scalar multiplication and division, too.

vecadd,vecmul
(op1vec op2vec dstvec scalevec --)
Adds or multiplies two vectors element-wise with an optional result scaling (value 0 disables scaling). Both input and destination
vectors must have the same size. Constant down-scaling of all elements is provided by a negative scaling value (instead of vector
reference).
vecsumn
(op1vec op2vec .. opnvec dstvec scale n --)
Special operation required for sliced convolution: sums over multiple vectors element-wise with an optional result scaling (value 0
disables scaling). Both input and destination vectors must have the same size. Constant down-scaling of all elements is provided
by a negative scaling value. Internal double-word arithmetics prevent overflow.

Table 4. Part 2 of the basic vector ANN functions operating on embedded or external array data
(e.g., the sample buffer).

Vector Operation
vecfold
(invec wgtvec outvec scalevec --)
Performs a folding operation ivec × wgtvec with a given filter. The weights vector wgtvec must have the size |invec|*|outvec|.
vecconv
(invec wgtvec outvec scale inwidth wgtwidth stride pad --)
Performs a two-dimensional kernel-based convolution operation ivec ⊗ wgtvec. The width of the input and kernel matrix (still a
linear array) must be provided, and the width of the output and the heights are computed automatically from the vector lengths. If
wgtwidth is negative, a pooling operation is performed. The wgtvec argument provides then the height of the filter and the
operation to be performed.
vecconv
(invec wgtvec outvec scale inwidth wgtwidth stride pad --)
Performs a two-dimensional pooling if wgtwidth is negative. The wgtvec argument provides the height of the filter and the
operation to be performed (function index).
vecmap
(srcvec dstvec func scalevec --)
Maps all elements from the source array onto the destination array using an external (IOS) or internal (user-defined word)
function, e.g., the sigmoid function.
vecred
(vec vecoff veclen op -- index value / valueL valueM)
Reduces a vector to a scalar value. Supported operations are min (1) and max (2), returning position and value, mean (4) and average
(8), returning a double-word value.

4.3. Activation Functions

Besides the vector operations that can be simply implemented in closed form with
integer arithmetic, transfer functions with non-linear behavior are the most critical part of
the integer computation of ML models. There are different transfers (activation) that are
used in ANN and CNN models; the most prominent examples are:

• Linear function (linear) without x- and y-limits;
• Logistic or sigmoid function (sigmoid) with y-limit = [−1, 1];
• Hyperbolic tangent function (tanh) with y-limit = [−1, 1];
• Rectifying linear unit (relu) with one-side open y-limit = [0, ∞).

sigmoid(x) = 1
1+e−x

tanh(x) = ex−e−x

ex+e−x
(2)

The linear and relu functions can be directly implemented with integer arithmetic
without loss of accuracy (except due to the integer discretization). The highly non-linear
sigmoid and tanh functions require an approximation by using a hybrid approach combining
a (compacted) look-up table (LUT) and an interpolation function. The tanh function can be
neglected since it can be replaced, in most cases, by the sigmoid function without loss of
generalization (of course, prior to training).

Trigonometric functions and functions composed of trigonometric functions are imple-
mented with piecewise linear and non-linear look-up tables. The approximated discretized
sigmoid function algorithm is shown in Algorithm 1. For example, the error of the dis-
cretized sigmoid function is always less than 1% or below 10 digital values while only

Algorithms 2024, 17, 356 12 of 33

requiring 30 bytes of LUT space and less than 10 unit operations (in addition to the LUT
size of the fplog10 function). These software functions can be immediately implemented
in hardware, too. The LUTs are computed with Algorithm 2. The approximation of the
tanh function is much more complex and computationally intensive as it involves the
computation of two exponential terms, posing exploding behavior for larger negative and
positive x values, as shown in Figure 5. The exploding functional behavior is relaxed for
the sigmoid function by computing the sigmoid function only for positive x-values and
using a logarithmic base function, finally mirroring and flipping the result for negative
x-values, which does not prevent exploding gradients in the case of the tanh function.

Algorithms 2024, 17, x FOR PEER REVIEW 13 of 35

discretized sigmoid function algorithm is shown in Algorithm 1. For example, the error of
the discretized sigmoid function is always less than 1% or below 10 digital values while
only requiring 30 bytes of LUT space and less than 10 unit operations (in addition to the
LUT size of the fplog10 function). These software functions can be immediately
implemented in hardware, too. The LUTs are computed with Algorithm 2. The
approximation of the tanh function is much more complex and computationally intensive
as it involves the computation of two exponential terms, posing exploding behavior for
larger negative and positive x values, as shown in Figure 5. The exploding functional
behavior is relaxed for the sigmoid function by computing the sigmoid function only for
positive x-values and using a logarithmic base function, finally mirroring and flipping
the result for negative x-values, which does not prevent exploding gradients in the case of
the tanh function.

Figure 5. Exploding output values for negative x-values (e−x term) and positive x-values (ex term) of
the exponential function.

tanh can be rewritten as shown in the following Eq., computing the discretized tanh
using the same approach as used for the sigmoid function:

() () 2
21

1xtanh x sgn x
e

= − +
(3)

Algorithm 1. Range-segmented and LUT-based implementation of the sigmoid and hyperbolic
tangent functions with less than 1% approximation error for a wide range of x-values (using
approximated LUT-based log10 function). Shown is the C program code. The data types are in the
format: s = signed or u = unsigned, b = byte, and the number gives the number of bytes.
static ub1 log10lut[] = { <90/DX values> }
// x-scale is 1:10 and log10-scale is 1:100
sb2 fplog10(sb2 x) {
 sb2 shift=0;
 while (x>=100) { shift++; x/=10; };
 return shift*100+(sb2)log10lut[x-10];
}
static ub1 sglutA[] = { <24 values> }; // alt. ub2
static ub1 sglutB[] = { <6 elements> };
// y scale 1:1000 [0,1], x scale 1:1000
sb2 fpsigmoid(sb2 x) {
 sb2 y;
 ub1 mirror=x<0?1:0;
 if (mirror) x=-x;
 if (x>=RC1*1000) return mirror?0:1000;
 if (x<=RA1*1000) {

ep en

x

-10 -8 -6 -4 -2 0 2 4 6 8 10

y

25000

20000

15000

10000

5000

0

Figure 5. Exploding output values for negative x-values (e−x term) and positive x-values (ex term) of
the exponential function.

tanh can be rewritten as shown in the following Eq., computing the discretized tanh
using the same approach as used for the sigmoid function:

tanh(x) = sgn(x)
(

1 − 2
e2|x| + 1

)
(3)

The LUT table can be computed with a stretched x distribution as follows, assuming
∆x = 1, 2, 3, ...:

log10lut =
{

int
(

log10

(
i

10

)
100

)
: i ∈ I, 10 ≤ i < 100 ∧ (i − 10)%∆x = 0

}
(4)

with % as the modulo operation that creates an equidistant series of values. The log10lut
table size is 90/∆x with an unsigned byte data type. The accuracy (relative error) of the
sigmoid approximation is plotted in Figure 6 with an input and output scaling factor of 10
for different LUT sizes. The LUT sizes were 90, 45, and 23, respectively. Using ∆x larger
than 1 results in a significantly increased approximation error for small x-values (20%), but
the average relative error rises only from 1% to 3%.

Algorithms 2024, 17, 356 13 of 33

Algorithm 1. Range-segmented and LUT-based implementation of the sigmoid and hyperbolic
tangent functions with less than 1% approximation error for a wide range of x-values (using
approximated LUT-based log10 function). Shown is the C program code. The data types are in the
format: s = signed or u = unsigned, b = byte, and the number gives the number of bytes.

Algorithms 2024, 17, x FOR PEER REVIEW 14 of 36

Algorithm 1. Range-segmented and LUT-based implementation of the sigmoid and hyperbolic
tangent functions with less than 1% approximation error for a wide range of x-values (using
approximated LUT-based log10 function). Shown is the C program code. The data types are in the
format: s = signed or u = unsigned, b = byte, and the number gives the number of bytes.
static ub1 log10lut[] = { <90/DX values> }
// x-scale is 1:10 and log10-scale is 1:100
sb2 fplog10(sb2 x) {
 sb2 shift=0;
 while (x>=100) { shift++; x/=10; };
 return shift*100+(sb2)log10lut[x-10];
}
static ub1 sglutA[] = { <24 values> }; // alt. ub2
static ub1 sglutB[] = { <6 elements> };
// y scale 1:1000 [0,1], x scale 1:1000
sb2 fpsigmoid(sb2 x) {
 sb2 y;
 ub1 mirror=x<0?1:0;
 if (mirror) x=-x;
 if (x>=RC1*1000) return mirror?0:1000;
 if (x<=RA1*1000) {
 y = 500+((x*231)/1000);
 return mirror?1000-y:y;
 } else if (x<RB1*1000) {
 ub2 i10 = fplog10((x/5)/2)-OA1;
 y = ((sb2)sglutA[i10])+YA1;
 return mirror?1000-y:y;
 } else {
 ub2 i10 = fplog10((x/10)/10)-OB1;
 y = ((sb2)sglutB[i10])+YB1;
 return mirror?1000-y:y;
 }
 return 0;
}
static ub1 thlutA[] = { <24 values> }; // alt. ub2
static ub1 thlutB[] = { <6 elements> };
// y scale 1:1000 [0,1], x scale 1:1000
sb2 fptanh(sb2 x) {
 sb2 y;
 ub1 mirror=x<0?1:0;
 if (mirror) x=-x;
 if (x>=RC2*1000) return mirror?-1000:1000;
 if (x<=RA2*1000) {
 y = (x*920)/1000;
 return mirror?-y:y;
 } else if (x<RB2*1000) {
 ub2 i10 = fplog10((x/2)/2)-OA2
 y = thlutA[i10]+YA2;
 return mirror?-y:y;
 } else {
 ub2 i10 = fplog10((x/10)/10)-OB2,
 y = thlutB[i10]+YB2;
 return mirror?-y:y;
 }
 return 0;
}

The LUT table can be computed with a stretched x distribution as follows, assuming
Δx = 1, 2, 3, ...:

 10 100 : ,10 100 10 % 0
10

i
log10lut int log i i i x

 (4)

The fpsigmoid function LUTs are computed iteratively using the fplog10 function for
LUT index stretching, described by the following pseudo-code in Algorithm 2. The sym-
metry of the sigmoid function is exploited by just computing the positive normalized
x-range and applying mirroring and flipping for negative values. The positive function
is approximated by four segments. The normalized x-range [0, 1] is handled by a linear
function directly computable in the range [0, RA], followed by the first highly non-linear

Algorithms 2024, 17, 356 14 of 33

segment in the range (RA, RB), and the converging segment in the range (RB, RC), and
finally a constant segment (x ≥ RC).

Algorithms 2024, 17, x FOR PEER REVIEW 15 of 35

Figure 6. Relative discretization error of integer-scaled LUT-based approximation of the log10
function for different Δx values (1,2,4) and LUT sizes of 90, 45, and 23, respectively.

The fpsigmoid function LUTs are computed iteratively using the fplog10 function for
LUT index stretching, described by the following pseudo-code in Algorithm 2. The
symmetry of the sigmoid function is exploited by just computing the positive normalized
x-range and applying mirroring and flipping for negative values. The positive function is
approximated by four segments. The normalized x-range [0, 1] is handled by a linear
function directly computable in the range [0, RA], followed by the first highly non-linear
segment in the range (RA, RB), and the converging segment in the range (RB,RC), and
finally a constant segment (x ≥ RC).

Algorithm 2. Computation of the segmented LUTs A/B for the integer-scaled sigmoid and
hyperbolic tangent functions. F is the real-valued generator function for sigmoid or tanh LUT
computation. The log10 function is used to stretch the x distribution in the LUTs.
RA := 1 RB := 3 RC := 10 δ=0.01
OA := int(fplog10(int(x*1000/5))/2)
OB := int(fplog10(int(x*1000/10))/10)
YA := int(F(RA)*1000)
YB := int(F(RB)*1000)
lutA := []
for x=RA to RB step δ do
 i10 := int(fplog10(int(x*1000/5))/2)-OA
 if lutA[i10] = undefined then
 lutA[i10] := int(F(x)*1000)-YA
 endif
done
lutB := []
for x=RB to RC step δ do
 i10 := int(fplog10(int(x*1000/10))/10)-OB
 if lutB[i10] = undefined then
 lutB[i10] := int(F(x)*1000)-YB
 endif
done

Figure 6. Relative discretization error of integer-scaled LUT-based approximation of the log10 function
for different ∆x values (1,2,4) and LUT sizes of 90, 45, and 23, respectively.

Algorithm 2. Computation of the segmented LUTs A/B for the integer-scaled sigmoid and
hyperbolic tangent functions. F is the real-valued generator function for sigmoid or tanh LUT
computation. The log10 function is used to stretch the x distribution in the LUTs.

Algorithms 2024, 17, x FOR PEER REVIEW 16 of 36

Algorithm 2. Computation of the segmented LUTs A/B for the integer-scaled sigmoid and
hyperbolic tangent functions. F is the real-valued generator function for sigmoid or tanh LUT
computation. The log10 function is used to stretch the x distribution in the LUTs.
RA := 1 RB := 3 RC := 10 δ=0.01
OA := int(fplog10(int(x*1000/5))/2)
OB := int(fplog10(int(x*1000/10))/10)
YA := int(F(RA)*1000)
YB := int(F(RB)*1000)
lutA := []
for x=RA to RB step δ do
 i10 := int(fplog10(int(x*1000/5))/2)-OA
 if lutA[i10] = undefined then
 lutA[i10] := int(F(x)*1000)-YA
 endif
done
lutB := []
for x=RB to RC step δ do
 i10 := int(fplog10(int(x*1000/10))/10)-OB
 if lutB[i10] = undefined then
 lutB[i10] := int(F(x)*1000)-YB
 endif
done

The accuracy (relative error) of the sigmoid approximation is ploĴed in Figure 7
with an input and output scaling factor of 10,000 (i.e., 1:10,000). For x > −3, the error is
below 5% and decreases to 1% on average. For x < −3, the relative error increases
significantly due to the integer discretization error. The error increases in some x-ranges
for lower fplog10 resolution (smaller LUT sizes, Δx = 4) but can be improved if the
sigmoid interval ranges R are shifted towards larger values (increasing the sigmoid LUT,
too). The red and green areas show lowered or increased accuracy. The accuracy of the
transfer function itself is not a measure of the accuracy of ML models using this function,
especially if post-trained (adapted) using the discretized function instead of the
continuous function. For the segment ranges R = [A = 1, B = 3, C = 10], the sizes of the LUTs
are |sglutA| = 24 and |sglutB| = 6, for R = [1, 7, 15], the sizes are |sglutA| = 43 and |sglutB|
= 8, approximately |sglutA| ≈ 6(B − A + 1) and |sglutB| ≈ C − B, in addition to the LUT size
of the fplog10 function (90/Δx), requiring in total 6(B − A + 1) + C − B + 90/Δx Bytes of static
storage.

Algorithms 2024, 17, 356 15 of 33

The accuracy (relative error) of the sigmoid approximation is plotted in Figure 7 with
an input and output scaling factor of 10,000 (i.e., 1:10,000). For x > −3, the error is below 5%
and decreases to 1% on average. For x < −3, the relative error increases significantly due
to the integer discretization error. The error increases in some x-ranges for lower fplog10
resolution (smaller LUT sizes, ∆x = 4) but can be improved if the sigmoid interval ranges
R are shifted towards larger values (increasing the sigmoid LUT, too). The red and green
areas show lowered or increased accuracy. The accuracy of the transfer function itself is
not a measure of the accuracy of ML models using this function, especially if post-trained
(adapted) using the discretized function instead of the continuous function. For the segment
ranges R = [A = 1, B = 3, C = 10], the sizes of the LUTs are |sglutA| = 24 and |sglutB| = 6,
for R = [1, 7, 15], the sizes are |sglutA| = 43 and |sglutB| = 8, approximately |sglutA|
≈ 6(B − A + 1) and |sglutB| ≈ C − B, in addition to the LUT size of the fplog10 function
(90/∆x), requiring in total 6(B − A + 1) + C − B + 90/∆x Bytes of static storage.

Algorithms 2024, 17, x FOR PEER REVIEW 16 of 35

The accuracy (relative error) of the sigmoid approximation is plotted in Figure 7
with an input and output scaling factor of 10,000 (i.e., 1:10,000). For x > −3, the error is
below 5% and decreases to 1% on average. For x < −3, the relative error increases
significantly due to the integer discretization error. The error increases in some x-ranges
for lower fplog10 resolution (smaller LUT sizes, Δx = 4) but can be improved if the
sigmoid interval ranges R are shifted towards larger values (increasing the sigmoid LUT,
too). The red and green areas show lowered or increased accuracy. The accuracy of the
transfer function itself is not a measure of the accuracy of ML models using this function,
especially if post-trained (adapted) using the discretized function instead of the
continuous function. For the segment ranges R = [A = 1, B = 3, C = 10], the sizes of the LUTs
are |sglutA| = 24 and |sglutB| = 6, for R = [1, 7, 15], the sizes are |sglutA| = 43 and |sglutB|
= 8, approximately |sglutA| ≈ 6(B − A + 1) and |sglutB| ≈ C − B, in addition to the LUT size
of the fplog10 function (90/Δx), requiring in total 6(B − A + 1) + C − B + 90/Δx Bytes of static
storage.

Figure 7. Relative discretization error of integer-scaled LUT-interpolated approximation of the
sigmoid function using the discretized log10 LUT-interpolation function for different LUT
resolutions and sigmoid segment ranges R. The small error plots show only positive x values.

Figure 7. Relative discretization error of integer-scaled LUT-interpolated approximation of the sigmoid
function using the discretized log10 LUT-interpolation function for different LUT resolutions and
sigmoid segment ranges R. The small error plots show only positive x values.

The implementation of the integer version of the tanh function requires extended
LUTs due to the higher gradient in the x-range [0, 1], i.e., choosing RA < 1. Typical results
compared with the real-valued function are shown in Figure 8. Selected error statistics of
the fpsigmoid and fptanh functions are shown in Table 5. The median error is mostly below
1%. Higher errors commonly occur with small y values as a result of integer discretization

Algorithms 2024, 17, 356 16 of 33

and not the approximation itself. The LUT sizes vary between 20 and 50 elements and are
small enough to be stored in very low-resource micro-controllers, even if a 16-bit data word
size is required.

Table 5. Relative discretization error (in %) of the fpsigmoid and fptanh functions for different parameter
settings (only for x > 0). Storage types: B = Byte (8-bit), W = Word (16-bit).

F ∆x RA RB RC LUTL LUTA LUTB Min Mean Median Max

fpsigmoid 0.5 1 3 10 179B 24B 6B 0.04 0.55 0.34 2.32
fpsigmoid 1 1 3 10 90B 24B 6B 0.04 0.55 0.34 2.32
fpsigmoid 4 1 3 10 23B 24B 6B 0.05 0.78 0.39 5.13
fpsigmoid 1 1 5 10 90B 35W 4B 0.05 0.40 0.20 2.32
fpsigmoid 1 1 5 7 90B 35W 3B 0.004 0.38 0.20 2.32
fpsigmoid 0.5 1 5 7 90B 50W 3B 0.004 0.42 0.21 2.32
fptanh 0.5 0.5 3 10 179B 39W 6B 0.04 0.61 0.10 9.52
fptanh 0.5 1 3 10 179B 24B 6B 0.05 1.00 0.10 17.13
fptanh 0.5 0.5 3 7 179B 39W 5B 0.00 0.59 0.10 9.52
fptanh 1 1 3 10 79B 24B 6B 0.05 0.61 0.10 9.52

Algorithms 2024, 17, x FOR PEER REVIEW 17 of 35

The implementation of the integer version of the tanh function requires extended
LUTs due to the higher gradient in the x-range [0, 1], i.e., choosing RA < 1. Typical results
compared with the real-valued function are shown in Figure 8. Selected error statistics of
the fpsigmoid and fptanh functions are shown in Table 5. The median error is mostly
below 1%. Higher errors commonly occur with small y values as a result of integer
discretization and not the approximation itself. The LUT sizes vary between 20 and 50
elements and are small enough to be stored in very low-resource micro-controllers, even
if a 16-bit data word size is required.

Table 5. Relative discretization error (in %) of the fpsigmoid and fptanh functions for different
parameter settings (only for x > 0). Storage types: B = Byte (8-bit), W = Word (16-bit).

F Δx RA RB RC LUTL LUTA LUTB Min Mean Median Max

fpsigmoid 0.5 1 3 10 179B 24B 6B 0.04 0.55 0.34 2.32

fpsigmoid 1 1 3 10 90B 24B 6B 0.04 0.55 0.34 2.32

fpsigmoid 4 1 3 10 23B 24B 6B 0.05 0.78 0.39 5.13

fpsigmoid 1 1 5 10 90B 35W 4B 0.05 0.40 0.20 2.32

fpsigmoid 1 1 5 7 90B 35W 3B 0.004 0.38 0.20 2.32

fpsigmoid 0.5 1 5 7 90B 50W 3B 0.004 0.42 0.21 2.32

fptanh 0.5 0.5 3 10 179B 39W 6B 0.04 0.61 0.10 9.52

fptanh 0.5 1 3 10 179B 24B 6B 0.05 1.00 0.10 17.13

fptanh 0.5 0.5 3 7 179B 39W 5B 0.00 0.59 0.10 9.52

fptanh 1 1 3 10 79B 24B 6B 0.05 0.61 0.10 9.52

Figure 8. Relative discretization error of integer-scaled LUT-interpolated approximation of the tanh
function using the discretized log10 LUT-interpolation function.

To summarize, the accurate approximation of the highly non-linear and widely used
sigmoid and tanh functions is possible with a segmented LUT approach. The
computational complexity is low (less than 20 unit operations are required for one
function evaluation), and the storage requirement is low (about 200 Bytes for each
function). The average relative error is below 1%, except for small integer values limited
by the discretization error.

5. Transformation Process
In the following, we introduce the transformation process of a floating-point

arithmetic model to a scaled fixed-point (FP) integer arithmetic model. For historical
reasons, we call the floating-point model Foo and the fixed-point integer-scaled model
FooFP, and the same is true for the activation function, Act and ActFP, respectively. The
transformation process can be summarized as follows:

Figure 8. Relative discretization error of integer-scaled LUT-interpolated approximation of the tanh
function using the discretized log10 LUT-interpolation function.

To summarize, the accurate approximation of the highly non-linear and widely used
sigmoid and tanh functions is possible with a segmented LUT approach. The computational
complexity is low (less than 20 unit operations are required for one function evaluation),
and the storage requirement is low (about 200 Bytes for each function). The average relative
error is below 1%, except for small integer values limited by the discretization error.

5. Transformation Process

In the following, we introduce the transformation process of a floating-point arithmetic
model to a scaled fixed-point (FP) integer arithmetic model. For historical reasons, we call
the floating-point model Foo and the fixed-point integer-scaled model FooFP, and the same
is true for the activation function, Act and ActFP, respectively. The transformation process
can be summarized as follows:

1. Training of model using floating-point arithmetic using a generic ML software frame-
works like Neataptic [16] or ConvNetJS [17];

2. Validation of model using test data to estimate model accuracy;
3. Transformation of original model in an annotated unified surrogate Foo model for

later analysis and FooFP transformation and model comparison;
4. Restructuring and refactoring of Foo model (layer expansion, i.e., mapping three-

dimensional tensors on vectors suitable for vector operations);
5. Statistical analysis (value boundary scans) of data flow in the Foo model using the

entire data set;
6. Calculation of scaling factors (static or dynamic scaling);

Algorithms 2024, 17, 356 17 of 33

7. Transformation of the unified Foo model to a surrogate FooFP model using integer-
scaled arithmetic;

8. Test of FooFP using discretized and scaled test data and comparison with results from
Foo model with respect to overflow (should not occur) and model accuracy deviation;

9. Transforming layers into a sequence of MLISA vector operations;
10. Test MLISA integer model using the (simulated) VM and with the integer data set and

validate with Foo/FooFP models.

For the sake of simplicity and modifiability, we use two JavaScript-based ML frameworks:

1. Neataptic primarily for pure ANN models [16];
2. ConvNetJS for CNN models (including ANN) [17].

Both frameworks provide direct access to the network layers, the forward and back-
ward functions, and enable easy modification to support the model transformation process
and perform statistical analysis. Our approach can be used with other frameworks, e.g., Py-
Torch and Tensorflow, although it is more difficult to implement our algorithms.

There are three phases in the model transformation:

1. Mapping the internal framework model (e.g., ConvNetJS) to an annotated functional
unified standard model (USM) aligned to the operational vector semantics of the VM
MLISA and refactoring if necessary (see Figure 9);

2. Annotation of the USM with statistics derived from analysis of model parameters,
input, intermediate, and output data;

3. Calculation of scale factors based on the statistical analysis and replacement of floating-
point vector operations with integer-scaled vector operations (for simulation), ar-
ranged in a sequential list of MLISA vector and scale operations.

Algorithms 2024, 17, x FOR PEER REVIEW 19 of 35

Figure 9. Phase 1 transformation (CNN). (Top) Transformation of 3-dim tensors into multiple
vectors for convolutional and pooling layers and flattening of multiple vectors from last
convolutional or pooling layer into one vector for the input of a fully connected neuronal layer.
(Bottom) Convolutional and pooling operations factorized into sequential and accumulated vector
operations.

The sliced and sequential accumulated convolution, pooling, and product-sum
calculation of fully connected neuronal layers is required to match the MLISA vector
operations provided by the REXA VM, as shown principally in Algorithm 3. If a previous
layer has a depth (z) ordering, i.e., a result of a multi-filter convolution operation, the
following layer must process the output for each z-layer independently using slicing and
accumulators and, finally, fusion by the vecsumn operation. Each slice has its own weight
or filter coefficient set.

Algorithm 3. Principle factorization of sliced accumulated operations
(Layer i-1=3)
(Output of layer i-1)
array yL3N0 62
array yL3N1 62
array yL3N2 62
array yL3N3 62

(Layer i=4)
(Output of layer i)
array yL4N0 60
array yL4N1 60
array yL4N2 60
array yL4N3 60

(Accumulators of layer i shared by all nodes)
array aL4S0 60
array aL4S1 60
array aL4S2 60
array aL4S3 60

(Filter weights for each slice and node)
array wL4N0S0 { .. }
array wL4N0S1 { .. }
..

Figure 9. Phase 1 transformation (CNN). (Top) Transformation of 3-dim tensors into multiple vectors
for convolutional and pooling layers and flattening of multiple vectors from last convolutional or
pooling layer into one vector for the input of a fully connected neuronal layer. (Bottom) Convolutional
and pooling operations factorized into sequential and accumulated vector operations.

The sliced and sequential accumulated convolution, pooling, and product-sum calcula-
tion of fully connected neuronal layers is required to match the MLISA vector operations
provided by the REXA VM, as shown principally in Algorithm 3. If a previous layer has a
depth (z) ordering, i.e., a result of a multi-filter convolution operation, the following layer
must process the output for each z-layer independently using slicing and accumulators and,
finally, fusion by the vecsumn operation. Each slice has its own weight or filter coefficient set.

Algorithms 2024, 17, 356 18 of 33

Algorithm 3. Principle factorization of sliced accumulated operations

Algorithms 2024, 17, x FOR PEER REVIEW 20 of 36

layer has a depth (z) ordering, i.e., a result of a multi-filter convolution operation, the
following layer must process the output for each z-layer independently using slicing and
accumulators and, finally, fusion by the vecsumn operation. Each slice has its own weight
or filter coefficient set.

Algorithm 3. Principle factorization of sliced accumulated operations
(Layer i-1=3)
(Output of layer i-1)
array yL3N0 62
array yL3N1 62
array yL3N2 62
array yL3N3 62

(Layer i=4)
(Output of layer i)
array yL4N0 60
array yL4N1 60
array yL4N2 60
array yL4N3 60

(Accumulators of layer i shared by all nodes)
array aL4S0 60
array aL4S1 60
array aL4S2 60
array aL4S3 60

(Filter weights for each slice and node)
array wL4N0S0 { .. }
array wL4N0S1 { .. }
..

: forward

 (First Conv filter operation N=0)
 yL3N0 wL4N0S0 aL4S0 -5000 62 3 1 0 vecconv
 yL3N1 wL4N0S1 aL4S1 -5000 62 3 1 0 vecconv
 yL3N2 wL4N0S2 aL4S2 -5000 62 3 1 0 vecconv
 yL3N3 wL4N0S3 aL4S3 -5000 62 3 1 0 vecconv
 aL4S0 aL4S1 aL4S2 aL4S3 yL4N0 0 4 vecsumn

 yL4N0 yL4N0 $ relu 0 vecmap

The statistical analysis is split into a static and a dynamic analysis. The dynamic
analysis applies the phase-1 transformed Foo ML model (still floating-point arithmetic) to
all training and test data samples. The fivenum statistics (minimum, maximum, median,
and first and third quantiles) are recorded for the input vectors x of a layer, the output
vectors y, and intermediate values like the sum output of a neuron. Additionally,
statistics of static parameters like weights and biases are recorded.

5.1. Scaling

The floating-point numbers must be scaled for the target data type range, e.g., N = 16
bit signed integer. The set of values consists of input, output, and intermediate data,
convolutional filter coefficients, and weight parameters. The following three significant
issues arise:
1. Discretization error (relative and absolute);
2. Underflow (zero);
3. Overflow (modulo N or clipped to max(N)).

To avoid overflows, the scaling factor should be lowered such that the maximum
value does not exceed about 0.7 max(N), i.e., introducing a safety margin, e.g., limiting
the secure value range of a signed 16-bit integer value to [−10,000, 10,000]. If an ML model

The statistical analysis is split into a static and a dynamic analysis. The dynamic
analysis applies the phase-1 transformed Foo ML model (still floating-point arithmetic) to
all training and test data samples. The fivenum statistics (minimum, maximum, median,
and first and third quantiles) are recorded for the input vectors x of a layer, the output
vectors y, and intermediate values like the sum output of a neuron. Additionally, statistics
of static parameters like weights and biases are recorded.

5.1. Scaling

The floating-point numbers must be scaled for the target data type range, e.g., N = 16 bit
signed integer. The set of values consists of input, output, and intermediate data, convolutional
filter coefficients, and weight parameters. The following three significant issues arise:

1. Discretization error (relative and absolute);
2. Underflow (zero);
3. Overflow (modulo N or clipped to max(N)).

To avoid overflows, the scaling factor should be lowered such that the maximum
value does not exceed about 0.7 max(N), i.e., introducing a safety margin, e.g., limiting the
secure value range of a signed 16-bit integer value to [−10,000, 10,000]. If an ML model is
applied to new unknown input data, this secure range can be left without exceeding the
real value range of any input, intermediate, and output variables. If the model poses (high)
non-linearity, the behavior is unpredictable for unknown data (layer accumulative over-
or underflow errors). To avoid increased discretization and underflow errors, the scaling
should be lifted, especially between layers, but with some constraints discussed later on.

Algorithms 2024, 17, 356 19 of 33

The idealistic scaling function is:

ax = min(x)
kx =

xi,max
max(x)−min(x)

xi = (xr − ax) · kx

(5)

with xi as the target scaled (fixed point) integer value and xr as the original real (floating
point) value. This scaling would exploit the full integer value range (including the safety
margin), but accumulative (sum) or sign-dependent operations like relu would fail due to
the origin shift. An improved origin and sign-preserving scaling is then:

mx =

{
|min(x)| if |min(x)| > |max(x)|
|max(x)| if |max(x)| > |min(x)|

kx =
xi,max

mx
xi = xr · kx

(6)

The scaling is not part of the values. Instead, the scaling factors are static parameters
of the model.

Different scaling architectures for functional nodes (neurons) and convolution and
pooling nodes are shown in Figure 10. There is symmetric scaling with the same input
and output scaling and asymmetric scaling with different scaling factors on the input
and output. The activation function expects a specific input and output scaling, therefore
requiring intermediate re-scaling to meet this constraint. For instance, the fpsigmoid and
fptanh functions discussed in Section 4.3 expect a static x- and y-scaling of 1000. The weights
of neuronal nodes and the kernel coefficients of convolutional nodes are scaled based on
the model analysis (minimum and maximum). The bias scaling is the same as for the
weights. A convolutional layer applies n different filters to the input data, which can be one
linear vector or multiple vectors from a previous convolutional layer. The filter dimension
can be considered an additional data depth dimension. A neuronal network layer always
flattens the depth dimension. The processing of one convolutional operation involves an
accumulator that sums the results of the filter application to all input (depth) vectors, as
shown in Figure 10 (Bottom).

The dynamic and adaptive re-scaling of intermediate variables and parameters has no
effect if a following layer is a discretized LUT-based function (e.g., tanh) but can have an
effect if there is a non-LUT-based function or if another accumulative (FC/CONV) function
is applied.

Things become more difficult if we assume different (optimized) scaling of inter-
mediate values. The finest granularity of dynamic scaling is one vector, e.g., the entire
output of a neural node layer or one (depth) output vector of a convolutional or pooling
layer gets the same scaling. The following operation processes multiple input vectors
sequentially by using an accumulator. If different input vectors have different scaling
(fractional to normalized scaling), the scaling must be corrected before summing up the
results in the accumulator. Convolutional and neuronal node operations are always
product–sum operations, as shown in Figure 11. A scaled product–sum is then given by
the following re-scaling:

σ = Σisxxiswwi = sxswΣixiwi
σ | s = σ sσ

swsx

(7)

To evaluate the dynamic fine-grained scaling, we compare these models with a globally
statically scaled model, i.e., applying a fixed scaling factor to all values, e.g., s0 = 10,000
for 16-bit signed integer values if the statistical analysis returned a value range within the
limits [−1, 1] for all model parameters, input, intermediate, and output values. Therefore, a
best guess static scaling is given by range/max(M), where max(M) is the maximum absolute
value of any parameter and any value of the input, intermediate, and output data.

Algorithms 2024, 17, 356 20 of 33

Algorithms 2024, 17, x FOR PEER REVIEW 21 of 35

Different scaling architectures for functional nodes (neurons) and convolution and
pooling nodes are shown in Figure 10. There is symmetric scaling with the same input
and output scaling and asymmetric scaling with different scaling factors on the input and
output. The activation function expects a specific input and output scaling, therefore
requiring intermediate re-scaling to meet this constraint. For instance, the fpsigmoid and
fptanh functions discussed in Section 4.3 expect a static x- and y-scaling of 1000. The
weights of neuronal nodes and the kernel coefficients of convolutional nodes are scaled
based on the model analysis (minimum and maximum). The bias scaling is the same as
for the weights. A convolutional layer applies n different filters to the input data, which
can be one linear vector or multiple vectors from a previous convolutional layer. The
filter dimension can be considered an additional data depth dimension. A neuronal
network layer always flattens the depth dimension. The processing of one convolutional
operation involves an accumulator that sums the results of the filter application to all
input (depth) vectors, as shown in Figure 10 (Bottom).

The dynamic and adaptive re-scaling of intermediate variables and parameters has
no effect if a following layer is a discretized LUT-based function (e.g., tanh) but can have
an effect if there is a non-LUT-based function or if another accumulative (FC/CONV)
function is applied.

Figure 10. Scaling architectures for (Top) functional nodes, i.e., neurons; (Bottom) convolution or
pooling operation.

Things become more difficult if we assume different (optimized) scaling of
intermediate values. The finest granularity of dynamic scaling is one vector, e.g., the
entire output of a neural node layer or one (depth) output vector of a convolutional or

Figure 10. Scaling architectures for (Top) functional nodes, i.e., neurons; (Bottom) convolution or
pooling operation.

Algorithms 2024, 17, x FOR PEER REVIEW 22 of 35

pooling layer gets the same scaling. The following operation processes multiple input
vectors sequentially by using an accumulator. If different input vectors have different
scaling (fractional to normalized scaling), the scaling must be corrected before summing
up the results in the accumulator. Convolutional and neuronal node operations are
always product–sum operations, as shown in Figure 11. A scaled product–sum is then
given by the following re-scaling:

i x i w i x w i i i

w x

s x s w s s x w
ss
s s

σ

σ

σ σ

= Σ = Σ

=∣
 (7)

Figure 11. Accumulative scaled convolution or multi-vector input (flattening) neural network
operation based on a product–sum calculation. Each accumulative iteration uses a different input
scaling sd normalization with respect to the output scaling s.

To evaluate the dynamic fine-grained scaling, we compare these models with a
globally statically scaled model, i.e., applying a fixed scaling factor to all values, e.g., s0 =

10,000 for 16-bit signed integer values if the statistical analysis returned a value range
within the limits [−1, 1] for all model parameters, input, intermediate, and output values.
Therefore, a best guess static scaling is given by range/max(M), where max(M) is the
maximum absolute value of any parameter and any value of the input, intermediate, and
output data.

Any product–sum calculation with scaled weights (scaling factor sw) requires a
downscaling of 1/sw afterward, performed directly with the MLISA vector operations, as
shown in Algorithm 4.

Algorithm 4. Downscaling of MLISA vector functions assuming a weight scale factor of 5000. The
X/Y scaling is not relevant here and must not be adjusted.
array X 4
array W { 1000 2000 3000 4000 }
array Y 4
X W Y -5000 vecfold

Figure 11. Accumulative scaled convolution or multi-vector input (flattening) neural network
operation based on a product–sum calculation. Each accumulative iteration uses a different input
scaling sd normalization with respect to the output scaling s.

Any product–sum calculation with scaled weights (scaling factor sw) requires a down-
scaling of 1/sw afterward, performed directly with the MLISA vector operations, as shown
in Algorithm 4.

Algorithms 2024, 17, 356 21 of 33

Algorithm 4. Downscaling of MLISA vector functions assuming a weight scale factor of 5000. The
X/Y scaling is not relevant here and must not be adjusted.

Algorithms 2024, 17, x FOR PEER REVIEW 23 of 36

Figure 11. Accumulative scaled convolution or multi-vector input (flaĴening) neural network
operation based on a product–sum calculation. Each accumulative iteration uses a different input
scaling sd normalization with respect to the output scaling s.

To evaluate the dynamic fine-grained scaling, we compare these models with a
globally statically scaled model, i.e., applying a fixed scaling factor to all values, e.g., s0 =

10,000 for 16-bit signed integer values if the statistical analysis returned a value range
within the limits [−1, 1] for all model parameters, input, intermediate, and output values.
Therefore, a best guess static scaling is given by range/max(M), where max(M) is the
maximum absolute value of any parameter and any value of the input, intermediate, and
output data.

Any product–sum calculation with scaled weights (scaling factor sw) requires a
downscaling of 1/sw afterward, performed directly with the MLISA vector operations, as
shown in Algorithm 4.

Algorithm 4. Downscaling of MLISA vector functions assuming a weight scale factor of 5000. The
X/Y scaling is not relevant here and must not be adjusted.
array X 4
array W { 1000 2000 3000 4000 }
array Y 4
X W Y -5000 vecfold

5.2. Workflow

The transformation of the continuous floating-point arithmetic model into scaled
discrete integer arithmetic is an iterative process and depends on the specific use case and
the training data.

The entire workflow and model processing pipeline is shown in Figure 12. The USM is
basically a layer table providing relevant information for each layer L, the layer parameters
(weights w and bias b), layer-specific statistical data analysis S, including each layer latent
variable output z, a layer surrogate function F using floating-point arithmetic, scaling factors
S for each layer and node of a layer (for weight and bias parameters w and b, input and
output scaling for each layer, zin and zout, respectively), and finally the integer-scaled and
transformed surrogate function FP. The functions F and FP are used for model simulation,
under- and overflow analysis, and model error analysis. The MLISA vector operations are
derived from the L, P, and S information. Tensor flattening and layer node restructuring
are conducted in the first USM transformation phase.

The statistical analysis, as shown in Algorithm 5, must provide value distributions of
all model parameters and average statistics of input, intermediate, and output nodes based
on the available training (including validation) data. Under- and overflow of integer arith-
metic operations must be prevented by choosing the scaling factors with a safety margin.
Discretization and rounding errors using integer-scaled arithmetic are accumulative across
model layers, requiring a simulation of the scaled model to detect range violations.

The scaled transformation can be static using one fixed model scaling factor s0 based on
the absolute maximum value calculated from all (x,w,b,z,y) values, as shown in Algorithm 6,
or dynamically adapting each layer scaling independently to fill the available integer value
range optimally (reduced by the safety margin), as shown in Algorithm 7. This is completed
by using layer-specific re-scaling factors applied to the global preset factor s0.

Note that layer parameters are vectors of vectors (i.e., a matrix). One vector is associ-
ated with one node of a layer, e.g., a neuron function (vector of weights) or one convolution
operation of a convolutional layer (vector of kernel coefficients).

Algorithm 5. Static and dynamic analysis of the pre-transformed continuous USM/Foo model.
The layer-specific F function is a surrogate and simulation function using floating-point arithmetic
that also performs statistical collection on calling. The compute table implements all layer-specific
computations, e.g., convolution or application of activation functions. Finally, the global model
statistics stats = (min,max) of all values and parameters are computed

Algorithms 2024, 17, x FOR PEER REVIEW 25 of 36

The scaled transformation can be static using one fixed model scaling factor s0 based
on the absolute maximum value calculated from all (x,w,b,z,y) values, as shown in
Algorithm 6, or dynamically adapting each layer scaling independently to fill the
available integer value range optimally (reduced by the safety margin), as shown in
Algorithm 7. This is completed by using layer-specific re-scaling factors applied to the
global preset factor s0.

Note that layer parameters are vectors of vectors (i.e., a matrix). One vector is
associated with one node of a layer, e.g., a neuron function (vector of weights) or one
convolution operation of a convolutional layer (vector of kernel coefficients).

Algorithm 5. Static and dynamic analysis of the pre-transformed continuous USM/Foo model. The
layer-specific F function is a surrogate and simulation function using floating-point arithmetic that
also performs statistical collection on calling. The compute table implements all layer-specific
computations, e.g., convolution or application of activation functions. Finally, the global model
statistics stats = (min,max) of all values and parameters are computed

updateStats = (l,x) => (l.stats[$x] := l.stats[$x] + fivenum(x))
for ∀ l ∈ L do:
 if l.parameters.w then updateStats(l,w=l.parameters.w)
 if l.parameters.b then updateStats(l,b=l.parameters.b)
 l.F = (l,x) => (updateStats(l,x)
 y=compute[l.type](x,l.parameters)
 updateStats(l,y)
 y)
predictFoo = (L,D) =>
 for ∀ d ∈ D do
 x := d
 for ∀ l ∈ L do:
 y := l.F(l,x)
 x := y
 L.stats = □ { ∀ l.stats ∈ L } // global model statistics
 y

Algorithm 6. Static scaling algorithm transforming a continuous into a discrete model.
The layer-specific FP function is a surrogate and simulation function using bit-accurate
integer-scaled arithmetic. The default scale is s0, applied to all model parameters and
input values. The default range includes a safety margin, e.g., for 16-bit integer, it could
be range = 10,000 (but maximal about 30,000)

s0 = range / max(|L.stats.max|,|L.stats.min|)
for ∀ l ∈ L do
 if l.parameters.w then l.parametersFP.w = scale(l.parameters.w,s0)
 if l.parameters.b then l.parametersFP.b = scale(l.parameters.b,s0)
 l.FP = (l,x) => (y=computeFP[l.type](x,l.parametersFP,s0)
 y)

Algorithms 2024, 17, 356 22 of 33

Algorithms 2024, 17, x FOR PEER REVIEW 23 of 35

5.2. Workflow
The transformation of the continuous floating-point arithmetic model into scaled

discrete integer arithmetic is an iterative process and depends on the specific use case and
the training data.

The entire workflow and model processing pipeline is shown in Figure 12. The USM
is basically a layer table providing relevant information for each layer L, the layer
parameters (weights w and bias b), layer-specific statistical data analysis S, including
each layer latent variable output z, a layer surrogate function F using floating-point
arithmetic, scaling factors S for each layer and node of a layer (for weight and bias
parameters w and b, input and output scaling for each layer, zin and zout, respectively),
and finally the integer-scaled and transformed surrogate function FP. The functions F
and FP are used for model simulation, under- and overflow analysis, and model error
analysis. The MLISA vector operations are derived from the L, P, and S information.
Tensor flattening and layer node restructuring are conducted in the first USM
transformation phase.

The statistical analysis, as shown in Algorithm 5, must provide value distributions of
all model parameters and average statistics of input, intermediate, and output nodes
based on the available training (including validation) data. Under- and overflow of
integer arithmetic operations must be prevented by choosing the scaling factors with a
safety margin. Discretization and rounding errors using integer-scaled arithmetic are
accumulative across model layers, requiring a simulation of the scaled model to detect
range violations.

Figure 12. The ML model transformation pipeline creating an intermediate USM and then creating
a sequence of MLISA vector operations.

Figure 12. The ML model transformation pipeline creating an intermediate USM and then creating a
sequence of MLISA vector operations.

Algorithm 6. Static scaling algorithm transforming a continuous into a discrete model. The
layer-specific FP function is a surrogate and simulation function using bit-accurate integer-scaled
arithmetic. The default scale is s0, applied to all model parameters and input values. The default
range includes a safety margin, e.g., for 16-bit integer, it could be range = 10,000 (but maximal
about 30,000)

Algorithms 2024, 17, x FOR PEER REVIEW 25 of 36

The scaled transformation can be static using one fixed model scaling factor s0 based
on the absolute maximum value calculated from all (x,w,b,z,y) values, as shown in
Algorithm 6, or dynamically adapting each layer scaling independently to fill the
available integer value range optimally (reduced by the safety margin), as shown in
Algorithm 7. This is completed by using layer-specific re-scaling factors applied to the
global preset factor s0.

Note that layer parameters are vectors of vectors (i.e., a matrix). One vector is
associated with one node of a layer, e.g., a neuron function (vector of weights) or one
convolution operation of a convolutional layer (vector of kernel coefficients).

Algorithm 5. Static and dynamic analysis of the pre-transformed continuous USM/Foo model. The
layer-specific F function is a surrogate and simulation function using floating-point arithmetic that
also performs statistical collection on calling. The compute table implements all layer-specific
computations, e.g., convolution or application of activation functions. Finally, the global model
statistics stats = (min,max) of all values and parameters are computed

updateStats = (l,x) => (l.stats[$x] := l.stats[$x] + fivenum(x))
for ∀ l ∈ L do:
 if l.parameters.w then updateStats(l,w=l.parameters.w)
 if l.parameters.b then updateStats(l,b=l.parameters.b)
 l.F = (l,x) => (updateStats(l,x)
 y=compute[l.type](x,l.parameters)
 updateStats(l,y)
 y)
predictFoo = (L,D) =>
 for ∀ d ∈ D do
 x := d
 for ∀ l ∈ L do:
 y := l.F(l,x)
 x := y
 L.stats = □ { ∀ l.stats ∈ L } // global model statistics
 y

Algorithm 6. Static scaling algorithm transforming a continuous into a discrete model.
The layer-specific FP function is a surrogate and simulation function using bit-accurate
integer-scaled arithmetic. The default scale is s0, applied to all model parameters and
input values. The default range includes a safety margin, e.g., for 16-bit integer, it could
be range = 10,000 (but maximal about 30,000)

s0 = range / max(|L.stats.max|,|L.stats.min|)
for ∀ l ∈ L do
 if l.parameters.w then l.parametersFP.w = scale(l.parameters.w,s0)
 if l.parameters.b then l.parametersFP.b = scale(l.parameters.b,s0)
 l.FP = (l,x) => (y=computeFP[l.type](x,l.parametersFP,s0)
 y)

Algorithms 2024, 17, 356 23 of 33

Algorithm 7. Simplified dynamic scaling algorithm transforming a continuous into a discrete
model. The layer-specific FP function is a surrogate and simulation function using bit-accurate
integer-scaled arithmetic. The default scale is s0, applied to all model parameters and input
values, but re-scaling factors can modify the default scale, including input and output scaling of
layer functions. It is important to keep track of the current layer input and output re-scaling
(reScaleCurrent).

Algorithms 2024, 17, x FOR PEER REVIEW 26 of 36

Algorithm 7. Simplified dynamic scaling algorithm transforming a continuous into a
discrete model. The layer-specific FP function is a surrogate and simulation function
using bit-accurate integer-scaled arithmetic. The default scale is s0, applied to all model
parameters and input values, but re-scaling factors can modify the default scale,
including input and output scaling of layer functions. It is important to keep track of the
current layer input and output re-scaling (reScaleCurrent).

range = 10000
reScaleCurrent := 1
range = 10000 // default ± integer value range
imul = (x,k) => (if k>0 then int(x*k) else int(x/k))
idiv = (x,k) => (if k>0 then int(x/k) else int(x*k))

adaptScale = (max,scale,range) => (rescale=range/(max*scale)
 rescale<0?-int(-1/rescale):
 int(rescale))
for ∀ l ∈ L do
 l.scale=s0*reScaleCurrent
 yrescale =
adaptScale(max(|l.stats.y.min|,|l.stats.y.max|),s0*reScaleCurrent,range)
 if not layerHasFixedScale(l) and
 not layerHasFixedScale(next) and
 yrescale>reScaleCurrent then
 l.rescaleY = int(yrescale/reScaleCurrent)
 else if yrescale < 0 then
 if -yrescale > reScaleCurrent or
 (reScaleCurrent%-yrescale) ≠ 0) yrescale = -reScaleCurrent
 l.rescaleY = yrescale
 else
 l.parametersFP.rescaleY = 1
 if l.parameters.w then
 l.scaleW=s0
 l.rescaleW = adaptScale(max(|l.stats.w.min|,|l.stats.w.max|),s0,range)
 if l.parameters.w then l.parametersFP.w = scale(l.parameters.w,
 imul(s0,l.rescaleP))
 if l.parameters.b then l.parametersFP.b = scale(l.parameters.b,
 imul(s0,reScaleCurrent))
 if layerHasFixedScale(l) then
 if reScaleCurrent ≠ 1 then
 l.scaleX = s0*reScaleCurrent
 l.scaleY = yscale
 l.rescaleX =-reScaleCurrent
 l.rescaleY =1
 reScaleCurrent := 1
 else
 l.scaleX=xscale
 l.scaleY=yscale
 l.rescaleX=1
 l.rescaleY=1
 }
 l.FP = (l,x) => (y=computeFP[l.type](x,l.parametersFP,
 l.scaleW,
 l.rescaleW,
 l.rescaleY,
 l.scaleX,
 l.scaleY)
 y)
predictFooFP = (L,D) =>
 for ∀ d ∈ D do
 x := d
 for ∀ l ∈ L do:
 y := l.FP(l,x)
 x := y
 y

The final MLISA REXA VM code synthesis creates the necessary data storage (input,
intermediate, and output arrays, as well as the parameter arrays). The sharing of arrays is
supported for a chain of 1:1 mapping operations, e.g., application of a transfer function.

Algorithms 2024, 17, 356 24 of 33

Sharing of dynamic data storage (array unions) is difficult to implement if the union would
contain arrays of different lengths. REXA VM arrays always contain a length header at the
beginning, preventing the sharing of different length arrays.

5.3. Unified Model Graph

The previous workflow, consisting of model pre-transformation, analysis, and post-
transformation, is merged in only the meta-graph model, as shown in Definition 2.

Definition 2. Unified model graph merging the original ML model, the USM with its Foo and
FooFP surrogate models, and all transformation parameters.

Algorithms 2024, 17, x FOR PEER REVIEW 26 of 35

The final MLISA REXA VM code synthesis creates the necessary data storage (input,
intermediate, and output arrays, as well as the parameter arrays). The sharing of arrays is
supported for a chain of 1:1 mapping operations, e.g., application of a transfer function.
Sharing of dynamic data storage (array unions) is difficult to implement if the union
would contain arrays of different lengths. REXA VM arrays always contain a length
header at the beginning, preventing the sharing of different length arrays.

5.3. Unified Model Graph
The previous workflow, consisting of model pre-transformation, analysis, and

post-transformation, is merged in only the meta-graph model, as shown in Definition 2.

Definition 2. Unified model graph merging the original ML model, the USM with its Foo and FooFP
surrogate models, and all transformation parameters.
├ type
├ class
├ network : USM network parameters
│ └ layers : layer []
│ ├ layer1
│ │ ├ layer_type : string
│ │ ├ input
│ │ ├ output
│ │ ├ parameters
│ │ │ ├ k
│ │ │ ├ b
│ │ │ ├ n
│ │ │ ├ x
│ │ │ └ y
│ │ ├ stats
│ │ │ ├ x
│ │ │ │ ├ min
│ │ │ │ └ max
│ │ │ ├ y
│ │ │ │ ├ min
│ │ │ │ └ max
│ │ │ ├ k
│ │ │ │ ├ min
│ │ │ │ └ max
│ │ │ └ b
│ │ │ ├ min
│ │ │ └ max
│ │ ├ parametersFP
│ │ │ ├ scale
│ │ │ ├ k
│ │ │ └ b
│ │ ├ f : function (x,l)
│ │ └ fp : function (x,l)
│ ├ layer2
│ ├ layer3 ..
├ trainer : Information about model trainer
├ input : []
├ output : []
└ model : Original model structure (convnet.js)

6. Simulation and Data Set
Sampling of experimental measuring data originating from damaged structures is a

difficult task with respect to parameter variance, i.e., damage position, size, sensor
positions, and so on, and ground truth labeling. Therefore, for this study, we used
simulated GUW time-resolved signal data. The signals were simulated using an extended
version of the SimNDT simulator [16] based on an elasto-dynamic finite integration
technique [18]. A transmission GUW experiment commonly utilizes two transducers, one
generator (pitch signal), and one sensor (catch signal). The generator signal was a sine
wave of base frequency 40 kHz and a Gaussian mask window (5 cycles). The simulation
was carried out with a time step of 0.06 µs, a total of 5000 steps (300 µs), with each tenth
step recorded. In total, 7 × 6 damage positions were simulated. Circular damage (air, 30
mm diameter) placed at a specific center location (x,y) modifies the GUW signals, as

6. Simulation and Data Set

Sampling of experimental measuring data originating from damaged structures is a
difficult task with respect to parameter variance, i.e., damage position, size, sensor positions,
and so on, and ground truth labeling. Therefore, for this study, we used simulated GUW
time-resolved signal data. The signals were simulated using an extended version of the
SimNDT simulator [16] based on an elasto-dynamic finite integration technique [18]. A
transmission GUW experiment commonly utilizes two transducers, one generator (pitch
signal), and one sensor (catch signal). The generator signal was a sine wave of base
frequency 40 kHz and a Gaussian mask window (5 cycles). The simulation was carried
out with a time step of 0.06 µs, a total of 5000 steps (300 µs), with each tenth step recorded.
In total, 7 × 6 damage positions were simulated. Circular damage (air, 30 mm diameter)
placed at a specific center location (x,y) modifies the GUW signals, as shown in Figure 13.
The host material was a plate of 500 × 500 mm with high absorbing damping material at
each plate side (to minimize wave reflections at edges and plate sides).

Algorithms 2024, 17, 356 25 of 33

Algorithms 2024, 17, x FOR PEER REVIEW 27 of 35

shown in Figure 13. The host material was a plate of 500 × 500 mm with high absorbing
damping material at each plate side (to minimize wave reflections at edges and plate
sides).

Figure 13. GUW signal simulation using a 2 dim viscoelastic wave propagation model. (Left)
Simulation set-up. (Right) Some example signals with and without damage (blue areas show
damage features).

7. Use Case 1: CNN for Damage Location Regression and Classification
The first use case uses the data delivered by the GUW simulation introduced in the

previous section. In total, there were 43 different data sub-sets, each related to a specific
position of the circular damage in the plate structure, including the baseline
measurement without damage. A classical CNN model was chosen to predict the damage
positions (x,y) and provide binary damage classification. The CNN input was a
down-sampled and low-pass filtered GUW signal (128 data points). The outputs are two
continuous variables, px and py, normalized to the full range of the damage location in the
x- and y-direction with a 10% margin, i.e., the minimum location coordinate corresponds
to 0.1, and the maximum value corresponds to 0.9. If px < 0.1 and py < 0.1, then no damage
was detected (i.e., classification output). The model architecture and its parameters are
shown in Definition 3. The CNN was implemented with the ConvNetJS framework [17]
and trained with the typical 500 epochs at a default learning rate of α = 0.01 using the
adagrad trainer (batch size was chosen as 1 due to the low sample count).

Definition 3. Architecture and parameters of the CNN model (ConvNetJS) using 1 dim convolution and
pooling operations.

Convolutional Neural Network
============================
Classes: undefined
Input: [128,1,1]
Output: [2]
Layers: [L8 P13]
[1] input : out=[128,1,1]
[2] conv : in=[128,1,1] out=[124,1,4] k=[5,1] filters=4 stride=1
[3] relu : out=[124,1,4]
[4] pool : in=[124,1,4] out=[62,1,4] k=[2,1] filters=4 stride=2
[5] conv : in=[62,1,4] out=[60,1,4] k=[3,1] filters=4 stride=1
[6] relu : out=[60,1,4]
[7] pool : in=[60,1,4] out=[30,1,4] k=[2,1] filters=4 stride=2
[8] fc : in=[120] out=[16]
[9] tanh : out=[16]
[10] fc : in=[16] out=[8]
[11] tanh : out=[8]
[12] fc : in=[8] out=[2]
[13] regression : in=[2] out=[2]
Predictors: 128

Figure 13. GUW signal simulation using a 2 dim viscoelastic wave propagation model. (Left) Simulation
set-up. (Right) Some example signals with and without damage (blue areas show damage features).

7. Use Case 1: CNN for Damage Location Regression and Classification

The first use case uses the data delivered by the GUW simulation introduced in the
previous section. In total, there were 43 different data sub-sets, each related to a specific
position of the circular damage in the plate structure, including the baseline measurement
without damage. A classical CNN model was chosen to predict the damage positions
(x,y) and provide binary damage classification. The CNN input was a down-sampled and
low-pass filtered GUW signal (128 data points). The outputs are two continuous variables,
px and py, normalized to the full range of the damage location in the x- and y-direction with
a 10% margin, i.e., the minimum location coordinate corresponds to 0.1, and the maximum
value corresponds to 0.9. If px < 0.1 and py < 0.1, then no damage was detected (i.e.,
classification output). The model architecture and its parameters are shown in Definition
3. The CNN was implemented with the ConvNetJS framework [17] and trained with the
typical 500 epochs at a default learning rate of α = 0.01 using the adagrad trainer (batch
size was chosen as 1 due to the low sample count).

Definition 3. Architecture and parameters of the CNN model (ConvNetJS) using 1 dim convolution
and pooling operations.

Algorithms 2024, 17, x FOR PEER REVIEW 27 of 35

shown in Figure 13. The host material was a plate of 500 × 500 mm with high absorbing
damping material at each plate side (to minimize wave reflections at edges and plate
sides).

Figure 13. GUW signal simulation using a 2 dim viscoelastic wave propagation model. (Left)
Simulation set-up. (Right) Some example signals with and without damage (blue areas show
damage features).

7. Use Case 1: CNN for Damage Location Regression and Classification
The first use case uses the data delivered by the GUW simulation introduced in the

previous section. In total, there were 43 different data sub-sets, each related to a specific
position of the circular damage in the plate structure, including the baseline
measurement without damage. A classical CNN model was chosen to predict the damage
positions (x,y) and provide binary damage classification. The CNN input was a
down-sampled and low-pass filtered GUW signal (128 data points). The outputs are two
continuous variables, px and py, normalized to the full range of the damage location in the
x- and y-direction with a 10% margin, i.e., the minimum location coordinate corresponds
to 0.1, and the maximum value corresponds to 0.9. If px < 0.1 and py < 0.1, then no damage
was detected (i.e., classification output). The model architecture and its parameters are
shown in Definition 3. The CNN was implemented with the ConvNetJS framework [17]
and trained with the typical 500 epochs at a default learning rate of α = 0.01 using the
adagrad trainer (batch size was chosen as 1 due to the low sample count).

Definition 3. Architecture and parameters of the CNN model (ConvNetJS) using 1 dim convolution and
pooling operations.

Convolutional Neural Network
============================
Classes: undefined
Input: [128,1,1]
Output: [2]
Layers: [L8 P13]
[1] input : out=[128,1,1]
[2] conv : in=[128,1,1] out=[124,1,4] k=[5,1] filters=4 stride=1
[3] relu : out=[124,1,4]
[4] pool : in=[124,1,4] out=[62,1,4] k=[2,1] filters=4 stride=2
[5] conv : in=[62,1,4] out=[60,1,4] k=[3,1] filters=4 stride=1
[6] relu : out=[60,1,4]
[7] pool : in=[60,1,4] out=[30,1,4] k=[2,1] filters=4 stride=2
[8] fc : in=[120] out=[16]
[9] tanh : out=[16]
[10] fc : in=[16] out=[8]
[11] tanh : out=[8]
[12] fc : in=[8] out=[2]
[13] regression : in=[2] out=[2]
Predictors: 128

A typical GUW signal and its low-pass-filtered and down-sampled version are shown
in Figure 14. The low-pass filter was a simple exponential filter with a filter coefficient
of k = 0.2.

Algorithms 2024, 17, 356 26 of 33

Algorithms 2024, 17, x FOR PEER REVIEW 28 of 35

A typical GUW signal and its low-pass-filtered and down-sampled version are
shown in Figure 14. The low-pass filter was a simple exponential filter with a filter
coefficient of k = 0.2.

Figure 14. Down-sampled GUW signal from simulation and low-pass-filtered rectified (envelope
approximation) signal as input for the CNN (damage at position x = 100, y = 100).

To capture training variations, the original model was trained 100 times, each
training starting with a randomly initialized model but always with the same training
and test data set. Figure 15 shows the comparison of the prediction results of the
continuous Foo and discretized and scaled FooFP model for the regression tasks. The
prediction delivers the damage position coordinates, and a non-damage detection is
given by a (0,0) value pair (or close to). The RMSE and maximal position prediction errors
are computed. Results for static and dynamic scaling were compared. The summary of
results is as follows:
1. The total value range of all input, output, intermediate, and parameter values

depends on the particular training of the original model but is mostly in the range
[−4, 4] (see Figure 15, V column). Therefore, a static or preset scaling of s0 is in the
range [3000, 10,000].

2. The discretization error of integer arithmetic is neglectable for all linear operations
but depends slightly on the discretization parameters of the non-linear functions
(FP1/FP2/FP5 in Figure 15 represents LUT resolution with 1/ΔX = 1/2/5).

3. The dynamic scaling, compared with static scaling, shows no significant
improvement in the model accuracy (maximal 5%) but is unexpected with a larger
variance (see Figure 15).

4. The overall discretization error depends on a particular model parameter set, i.e.,
with nearly the same floating-point accuracy, the integer model accuracy can differ
significantly (RMSE and Emax). Multiple trained models should be analyzed with
respect to the final discretization error, selecting the best model.

5. The prediction error of the discretized model (RMSE and Emax) differs only slightly.
6. There is no increase in the classification error compared with the continuous model,

showing an overall stable prediction behavior.
To conclude, the discretization, even with a moderate static scaling, does not

degrade the prediction accuracy.

Figure 14. Down-sampled GUW signal from simulation and low-pass-filtered rectified (envelope
approximation) signal as input for the CNN (damage at position x = 100, y = 100).

To capture training variations, the original model was trained 100 times, each training
starting with a randomly initialized model but always with the same training and test data
set. Figure 15 shows the comparison of the prediction results of the continuous Foo and
discretized and scaled FooFP model for the regression tasks. The prediction delivers the
damage position coordinates, and a non-damage detection is given by a (0,0) value pair
(or close to). The RMSE and maximal position prediction errors are computed. Results for
static and dynamic scaling were compared. The summary of results is as follows:

1. The total value range of all input, output, intermediate, and parameter values de-
pends on the particular training of the original model but is mostly in the range
[−4, 4] (see Figure 15, V column). Therefore, a static or preset scaling of s0 is in the
range [3000, 10,000].

2. The discretization error of integer arithmetic is neglectable for all linear operations
but depends slightly on the discretization parameters of the non-linear functions
(FP1/FP2/FP5 in Figure 15 represents LUT resolution with 1/∆X = 1/2/5).

3. The dynamic scaling, compared with static scaling, shows no significant improve-
ment in the model accuracy (maximal 5%) but is unexpected with a larger variance
(see Figure 15).

4. The overall discretization error depends on a particular model parameter set, i.e., with
nearly the same floating-point accuracy, the integer model accuracy can differ signifi-
cantly (RMSE and Emax). Multiple trained models should be analyzed with respect to
the final discretization error, selecting the best model.

5. The prediction error of the discretized model (RMSE and Emax) differs only slightly.
6. There is no increase in the classification error compared with the continuous model,

showing an overall stable prediction behavior.

To conclude, the discretization, even with a moderate static scaling, does not degrade
the prediction accuracy.

Algorithms 2024, 17, 356 27 of 33
Algorithms 2024, 17, x FOR PEER REVIEW 29 of 35

Figure 15. Foo/FooFP model analysis of the GUW regression CNN model. The classification error
was always zero.

The MLISA REXA VM Forth program of the discretized model is shown in
Appendix A in Algorithm A1. The model code occupies 1746 dynamic and 2166 static
words in the CS (i.e., occupying about 8k Bytes of RAM). The entire textural code size is
18,452 Bytes. The forward computation requires the execution of 1280 words, which is
equivalent to 85 ms / MHz (assuming 15k/words/s/MHz [11]).

8. Use Case 2: ANN Polynomial Models
Based on the previous use case evaluation indicating non-linear functions as the

primary source for approximation errors, we want to force high non-linearity in an ML
surrogate model for a polynomial of degree n:

() 2 3
0 1 2 3

n
nF x k k x k x k x k x= + + + +…+ (8)

The ANN model architecture for the implementation of such a surrogate model is
shown in Definition 4. It consists of only 17 neurons. A polynomial of degree 4 was
chosen with the following parameters:

[]

0

1

2

3

4

100
0.5
1
0.5
0.1

0,10

k
k
k
k
k
x

=
=
=
= −
= −

=

 (9)

The model was trained using the polynomial model (500 epochs); 100 independent
models were trained using the same training data with 1000 randomly selected function
samples. After model training, the Foo transformation process and a model analysis were
performed.

Figure 15. Foo/FooFP model analysis of the GUW regression CNN model. The classification error
was always zero.

The MLISA REXA VM Forth program of the discretized model is shown in Appendix A
in Algorithm A1. The model code occupies 1746 dynamic and 2166 static words in the
CS (i.e., occupying about 8k Bytes of RAM). The entire textural code size is 18,452 Bytes.
The forward computation requires the execution of 1280 words, which is equivalent to
85 ms/MHz (assuming 15k/words/s/MHz [11]).

8. Use Case 2: ANN Polynomial Models

Based on the previous use case evaluation indicating non-linear functions as the
primary source for approximation errors, we want to force high non-linearity in an ML
surrogate model for a polynomial of degree n:

F(x) = k0 + k1x + k2x2 + k3x3 + . . . + knxn (8)

The ANN model architecture for the implementation of such a surrogate model is
shown in Definition 4. It consists of only 17 neurons. A polynomial of degree 4 was chosen
with the following parameters:

k0 = 100
k1 = 0.5
k2 = 1
k3 = −0.5
k4 = −0.1
x = [0, 10]

(9)

The model was trained using the polynomial model (500 epochs); 100 independent
models were trained using the same training data with 1000 randomly selected function
samples. After model training, the Foo transformation process and a model analysis
were performed.

Definition 4. Architecture and parameters of the ANN model (ConvNetJS) as a surrogate regression
model for highly non-linear analytical model functions.

Algorithms 2024, 17, 356 28 of 33

Algorithms 2024, 17, x FOR PEER REVIEW 30 of 35

Definition 4. Architecture and parameters of the ANN model (ConvNetJS) as a surrogate regression model
for highly non-linear analytical model functions.

Artificial Neural Network
============================
Classes: undefined
Input: [1,1,1]
Output: [1]
Layers: [L5 P9]
[1] input : out=[1]
[2] fc : in=[1] out=[4]
[3] tanh : out=[4]
[4] fc : in=[4] out=[8]
[5] tanh : out=[8]
[6] fc : in=[8] out=[4]
[7] tanh : out=[4]
[8] fc : in=[4] out=[1]
[9] regression : in=[1] out=[1]
Predictors: 1

The following discretization parameters for the activation function were chosen, as
shown in Table 6.

Table 6. Different discretization parameters chosen for the activation functions.

Nr. 1/Δx RA RB RC

1 1 0.5 3 7

2 3 0.5 3 7

3 5 0.5 3 7

4 7 0.5 3 7

5 10 0.5 3 7

6 10 0.7 3 7

The statistical analysis of the prediction results of the continuous Foo and the
discretized FooFP model is shown in Figure 16. The summary of the results is as follows:
1. The prediction errors of the discretized model (RMSE and Emax) are significantly

higher compared to the continuous model.
2. The discretization error results from the non-linear tanh function, which is clearly

highlighted if a scaled float-point alternative is used in the discretized model, with
errors similar to the continuous model.

3. Choosing the tanh and underlying log10 discretization parameters leads to the
prediction error. Modification of the LUT partitioning and interval coefficients can
improve the RMSE as well as the maximum error Emax.

4. Dynamic scaling shows no significant improvement in the model accuracy (maximal
5%).

5. As shown at the bottom of Figure 16, the discretization error is not constant; instead,
it introduces discontinuity.

The following discretization parameters for the activation function were chosen, as
shown in Table 6.

Table 6. Different discretization parameters chosen for the activation functions.

Nr. 1/∆x RA RB RC

1 1 0.5 3 7
2 3 0.5 3 7
3 5 0.5 3 7
4 7 0.5 3 7
5 10 0.5 3 7
6 10 0.7 3 7

The statistical analysis of the prediction results of the continuous Foo and the dis-
cretized FooFP model is shown in Figure 16. The summary of the results is as follows:

1. The prediction errors of the discretized model (RMSE and Emax) are significantly
higher compared to the continuous model.

2. The discretization error results from the non-linear tanh function, which is clearly
highlighted if a scaled float-point alternative is used in the discretized model, with
errors similar to the continuous model.

3. Choosing the tanh and underlying log10 discretization parameters leads to the predic-
tion error. Modification of the LUT partitioning and interval coefficients can improve
the RMSE as well as the maximum error Emax.

4. Dynamic scaling shows no significant improvement in the model accuracy (maxi-
mal 5%).

5. As shown at the bottom of Figure 16, the discretization error is not constant; instead,
it introduces discontinuity.

The MLISA REXA VM Forth program of this model is shown in Appendix A in
Algorithm A2. The model code occupies 18 dynamic and 89 static words in the CS. The
entire textural code size is 921 Bytes. The forward computation requires the execution of
70 words, which is equivalent to 5 ms/MHz.

Algorithms 2024, 17, 356 29 of 33
Algorithms 2024, 17, x FOR PEER REVIEW 31 of 35

Figure 16. (Top) Analysis of the ANN FP and DS models comparing RMSE and Emax values for
different configurations of the activation function approximation, including an FPU replacement.
(Bottom) Selected prediction results are shown with discontinuities in the top plot using ActDS
configuration 5 and without using the FPU replacement for the tanh function.

The MLISA REXA VM Forth program of this model is shown in Appendix A in
Algorithm A2. The model code occupies 18 dynamic and 89 static words in the CS. The
entire textural code size is 921 Bytes. The forward computation requires the execution of
70 words, which is equivalent to 5 ms/MHz.

9. Discussion
The two use cases clearly showed the benefit of the proposed scaling approach and

the simplicity of the VM programming for classification and regression models,
including CNN architectures. The results can be summarized as follows:
1. The prediction error of the discretized model compared with the continuous model

is comparable if there is no high non-linearity (use case 1) but significantly higher if
there is a higher degree of non-linearity (use case 2).

2. Dynamic scaling compared to static scaling shows no significant improvement, only
for very low default s0 scaling factors.

3. Model optimization with respect to the average classification or RMSE and peak
regression errors is possible via the optimization of the non-linear
piecewise-segmented and LUT-based activity functions (sigmoid, tanh). The
optimization requires the modification of function approximation parameters, but
these functions are statically built into the VM (as a service).

4. Even if the micro-controller provides an FPU, the VM should continue using 16-bit
integer arithmetic to satisfy the still remaining hard memory limits. Moreover, the
JIT run-time compiler translates text-to-byte-code in place. For instance, a constant
value “0” can always be replaced by a binary 16 Bit container since tokens are
separated by space or newline characters. A 32-bit engine using the FPU would

Figure 16. (Top) Analysis of the ANN FP and DS models comparing RMSE and Emax values for
different configurations of the activation function approximation, including an FPU replacement.
(Bottom) Selected prediction results are shown with discontinuities in the top plot using ActDS
configuration 5 and without using the FPU replacement for the tanh function.

9. Discussion

The two use cases clearly showed the benefit of the proposed scaling approach and
the simplicity of the VM programming for classification and regression models, including
CNN architectures. The results can be summarized as follows:

1. The prediction error of the discretized model compared with the continuous model
is comparable if there is no high non-linearity (use case 1) but significantly higher if
there is a higher degree of non-linearity (use case 2).

2. Dynamic scaling compared to static scaling shows no significant improvement, only
for very low default s0 scaling factors.

3. Model optimization with respect to the average classification or RMSE and peak re-
gression errors is possible via the optimization of the non-linear piecewise-segmented
and LUT-based activity functions (sigmoid, tanh). The optimization requires the modi-
fication of function approximation parameters, but these functions are statically built
into the VM (as a service).

4. Even if the micro-controller provides an FPU, the VM should continue using 16-bit
integer arithmetic to satisfy the still remaining hard memory limits. Moreover, the JIT
run-time compiler translates text-to-byte-code in place. For instance, a constant value
“0” can always be replaced by a binary 16 Bit container since tokens are separated
by space or newline characters. A 32-bit engine using the FPU would make this

Algorithms 2024, 17, 356 30 of 33

approach impossible, and the memory footprint would increase significantly (doubles
at maximum).

5. The REXA VM implementation of the discretized models requires typical code sizes
(including data) of about 1–20k Bytes, which can be transferred using (RFID) wireless
communication. Even more complex models can be processed by a 16-bit VM with a
code segment size limit of 32k Bytes.

6. The average computation times of models with the REXA VM range from 1 to
100 ms, which is fully sufficient even for ad-hoc remotely powered sensor nodes
via RFID fields.

10. Conclusions

In previous work [6], we investigated the effect of ML model discretization in only
classification tasks. This work investigated the effect of integer-scaled discretization for
regression tasks with two use cases as well and presented the model transformation and
scaling algorithms in detail. The first use case considers time-dependent ultrasonic signals
as an input for a damage location regression model. The second use case uses synthetic data
from a highly non-linear polynomial function to investigate the impact of discretization
of the non-linear activation functions. Static (one scaling factor for the entire model) was
surprisingly fully sufficient, and dynamic fine-grained scaling of different stages of the
model does not improve the overall prediction accuracy of the model. The highest impact
on the model accuracy is the discretization and step-wise approximation of non-linear
(activation) functions. As an outlook, the model activation functions could be generated for
a specific model at run-time by the VM based on parameters provided by the transformed
model. However, the generation of the approximated functions requires floating-point
versions of at least the log and e functions, optimally by the floating-point version of the
activation functions. If floating-point functions are available, the non-linear activation
functions could be directly calculated without approximation and discretization errors
(at least significantly lower errors). One solution could be generic activation function
templates that can use different LUTs transferred separately to the VM. Finally, the impact
of integer discretization on the accuracy of recurrent state-based neural networks should
be investigated.

Funding: The authors expressly acknowledge the financial support of the research work on this
article within the Research Unit 3022 “Ultrasonic Monitoring of Fibre Metal Laminates Using In-
tegrated Sensors” (Project number: 418311604) by the German Research Foundation (Deutsche
Forschungsgemeinschaft (DFG)).

Data Availability Statement: There is no experimental data used in this work. The code is published
and referenced in the paper.

Conflicts of Interest: There are no conflicts of interest.

Appendix A

Appendix A.1 Abbreviations

Algorithms 2024, 17, x FOR PEER REVIEW 32 of 35

make this approach impossible, and the memory footprint would increase
significantly (doubles at maximum).

5. The REXA VM implementation of the discretized models requires typical code sizes
(including data) of about 1–20k Bytes, which can be transferred using (RFID)
wireless communication. Even more complex models can be processed by a 16-bit
VM with a code segment size limit of 32k Bytes.

6. The average computation times of models with the REXA VM range from 1 to 100
ms, which is fully sufficient even for ad-hoc remotely powered sensor nodes via
RFID fields.

10. Conclusions
In previous work [6], we investigated the effect of ML model discretization in only

classification tasks. This work investigated the effect of integer-scaled discretization for
regression tasks with two use cases as well and presented the model transformation and
scaling algorithms in detail. The first use case considers time-dependent ultrasonic
signals as an input for a damage location regression model. The second use case uses
synthetic data from a highly non-linear polynomial function to investigate the impact of
discretization of the non-linear activation functions. Static (one scaling factor for the
entire model) was surprisingly fully sufficient, and dynamic fine-grained scaling of
different stages of the model does not improve the overall prediction accuracy of the
model. The highest impact on the model accuracy is the discretization and step-wise
approximation of non-linear (activation) functions. As an outlook, the model activation
functions could be generated for a specific model at run-time by the VM based on
parameters provided by the transformed model. However, the generation of the
approximated functions requires floating-point versions of at least the log and e
functions, optimally by the floating-point version of the activation functions. If
floating-point functions are available, the non-linear activation functions could be
directly calculated without approximation and discretization errors (at least significantly
lower errors). One solution could be generic activation function templates that can use
different LUTs transferred separately to the VM. Finally, the impact of integer
discretization on the accuracy of recurrent state-based neural networks should be
investigated.

Funding: The authors expressly acknowledge the financial support of the research work on this
article within the Research Unit 3022 “Ultrasonic Monitoring of Fibre Metal Laminates Using
Integrated Sensors” (Project number: 418311604) by the German Research Foundation (Deutsche
Forschungsgemeinschaft (DFG)).

Data Availability Statement: There is no experimental data used in this work. The code is
published and referenced in the paper.

Conflicts of Interest: There are no conflicts of interest.

Appendix A
Appendix A.1. Abbreviations
Act Activation and transfer function (using floating point arithmetic)

ActFP
Discretized and scaled activation function for fixed-point integer
arithmetic

FooFP Discretized and scaled Model for integer arithmetic
Foo Floating point model
Forth Stack-based programming language with reverse polish notation
GUW Guided Ultrasonic Waves (Lamb wave)
MLISA Machine Learning Instruction Set Architecture
REXA Real-time capable and Extensible Architecture
SHM Structural Health Monitoring
VM Virtual Machine

Algorithms 2024, 17, 356 31 of 33

Appendix A.2 MLISA Code

Algorithm A1. Shortened MLISA code of discretized regression GUW CNN model (use case 1)

Algorithms 2024, 17, x FOR PEER REVIEW 34 of 36

Appendix A.2. MLISA Code

Algorithm A1. Shortened MLISA code of discretized regression GUW CNN model (use
case 1)
(Layer 1 input)
array xL0 128
(Layer 2 conv)
array yL1N0 124 array yL1N1 124 array yL1N2 124 array yL1N3 124
array bL1 { 1129 ..(3) }
array wL1N0 { 1299 ..(4) } array wL1N1 { -5119 ..(4) }
array wL1N2 { 2334 ..(4) } array wL1N3 { -4736 ..(4) }
(Layer 3 relu)
(Layer 4 pool)
array yL3N0 62 array yL3N1 62
array yL3N2 62 array yL3N3 62
array aL3 124
(Layer 5 conv)
array yL4N0 60 ...
array bL4 { 1159 ..(3) }
array aL4S0 60 array aL4S1 60
array aL4S2 60 array aL4S3 60
array wL4N0S0 { -750 ..(2) } ...
...
(Layer 8 fc)
array yL7 16
array bL7 { 939 ..(15) }
array aL7S0 16 array aL7S1 16
array aL7S2 16 array aL7S3 16
array wL7N0S0 { -407 ..(29) }
...
(Layer 9 tanh)
(Layer 10 fc)
array yL9 8
array bL9 { 103 ..(7) }
array wL9 { 3962 ..(127) }
(Layer 11 tanh)
(Layer 12 fc)
array yL11 2
array bL11 { -355 ..(1) }
array wL11 { -1915 ..(15) }
(Layer 13 regression)
: forward
 (Layer 1 input)
 (Layer 2 conv)
 xL0 wL1N0 yL1N0 -5000 128 5 1 0 vecconv
 xL0 wL1N1 yL1N1 -5000 128 5 1 0 vecconv
 xL0 wL1N2 yL1N2 -5000 128 5 1 0 vecconv
 xL0 wL1N3 yL1N3 -5000 128 5 1 0 vecconv
 (Layer 3 relu)
 yL1N0 yL1N0 $ relu 0 vecmap
 ...
 (Layer 4 pool)
 yL2N0 1 aL3 -5000 124 -2 2 0 vecconv
 aL3 1 aL3 -5000 124 -2 2 0 vecconv
 aL3 1 aL3 -5000 124 -2 2 0 vecconv
 aL3 1 yL3N0 -5000 124 -2 2 0 vecconv
 yL2N0 1 aL3 -5000 124 -2 2 0 vecconv
 aL3 1 aL3 -5000 124 -2 2 0 vecconv
 aL3 1 aL3 -5000 124 -2 2 0 vecconv
 aL3 1 yL3N1 -5000 124 -2 2 0 vecconv
 ...
 (Layer 5 conv)
 yL3N0 wL4N0S0 aL4S0 -5000 62 3 1 0 vecconv
 yL3N1 wL4N0S1 aL4S1 -5000 62 3 1 0 vecconv
 yL3N2 wL4N0S2 aL4S2 -5000 62 3 1 0 vecconv
 yL3N3 wL4N0S3 aL4S3 -5000 62 3 1 0 vecconv

Algorithms 2024, 17, 356 32 of 33

Algorithm A1. Cont.

Algorithms 2024, 17, x FOR PEER REVIEW 35 of 36

 aL4S0 aL4S1 aL4S2 aL4S3 yL4N0 0 4 vecsumn
 ...
 (Layer 6 relu)
 yL4N0 yL4N0 $ relu 0 vecmap
 ...
 (Layer 7 pool)
 yL5N0 1 aL6 -5000 60 -2 2 0 vecconv
 aL6 1 aL6 -5000 60 -2 2 0 vecconv
 aL6 1 aL6 -5000 60 -2 2 0 vecconv
 aL6 1 yL6N0 -5000 60 -2 2 0 vecconv
 ...
 (Layer 8 fc)
 yL6N0 aL7S0 wL7N0S0 0 vecfold
 yL6N1 aL7S1 wL7N0S1 0 vecfold
 yL6N2 aL7S2 wL7N0S2 0 vecfold
 yL6N3 aL7S3 wL7N0S3 0 vecfold
 aL7S0 aL7S1 aL7S2 aL7S3 yL7N0 -5000 4 vecsumn
 ...
 (Layer 9 tanh)
 yL7 yL7 $ tanh 0 vecmap
 (Layer 10 fc)
 yL8 yL9 wL9 -5000 vecfold
 yL9 yL9 bL9 0 vecadd
 (Layer 11 tanh)
 yL9 yL9 $ tanh 0 vecmap
 (Layer 12 fc)
 yL10 yL11 wL11 -5000 vecfold
 yL11 yL11 bL11 0 vecadd
 (Layer 13 regression)
;

Algroithm A2. MLISA code of discretized Poly4 ANN model
array xL0 1 array yL1 4
array bL1 [-281 ..(3)] array wL1 [-1875 ..(3)]
array yL3 8
array bL3 [-1016 ..(7)] array wL3 [1537 ..(31)]
array yL5 4
array bL5 [701 ..(3)] array wL5 [324 ..(31)]
array yL7 1
array bL7 [-655 ..(0)] array wL7 [-906 ..(3)]
: forward
 xL0 yL1 wL1 -5000 vecfold
 yL1 yL1 bL1 0 vecadd
 yL1 yL1 $ tanh 0 vecmap
 yL2 yL3 wL3 -5000 vecfold
 yL3 yL3 bL3 0 vecadd
 yL3 yL3 $ tanh 0 vecmap
 yL4 yL5 wL5 -5000 vecfold
 yL5 yL5 bL5 0 vecadd
 yL5 yL5 $ tanh 0 vecmap
 yL6 yL7 wL7 -5000 vecfold
 yL7 yL7 bL7 0 vecadd
;

Algroithm A2. MLISA code of discretized Poly4 ANN model

Algorithms 2024, 17, x FOR PEER REVIEW 35 of 36

 aL4S0 aL4S1 aL4S2 aL4S3 yL4N0 0 4 vecsumn
 ...
 (Layer 6 relu)
 yL4N0 yL4N0 $ relu 0 vecmap
 ...
 (Layer 7 pool)
 yL5N0 1 aL6 -5000 60 -2 2 0 vecconv
 aL6 1 aL6 -5000 60 -2 2 0 vecconv
 aL6 1 aL6 -5000 60 -2 2 0 vecconv
 aL6 1 yL6N0 -5000 60 -2 2 0 vecconv
 ...
 (Layer 8 fc)
 yL6N0 aL7S0 wL7N0S0 0 vecfold
 yL6N1 aL7S1 wL7N0S1 0 vecfold
 yL6N2 aL7S2 wL7N0S2 0 vecfold
 yL6N3 aL7S3 wL7N0S3 0 vecfold
 aL7S0 aL7S1 aL7S2 aL7S3 yL7N0 -5000 4 vecsumn
 ...
 (Layer 9 tanh)
 yL7 yL7 $ tanh 0 vecmap
 (Layer 10 fc)
 yL8 yL9 wL9 -5000 vecfold
 yL9 yL9 bL9 0 vecadd
 (Layer 11 tanh)
 yL9 yL9 $ tanh 0 vecmap
 (Layer 12 fc)
 yL10 yL11 wL11 -5000 vecfold
 yL11 yL11 bL11 0 vecadd
 (Layer 13 regression)
;

Algroithm A2. MLISA code of discretized Poly4 ANN model
array xL0 1 array yL1 4
array bL1 [-281 ..(3)] array wL1 [-1875 ..(3)]
array yL3 8
array bL3 [-1016 ..(7)] array wL3 [1537 ..(31)]
array yL5 4
array bL5 [701 ..(3)] array wL5 [324 ..(31)]
array yL7 1
array bL7 [-655 ..(0)] array wL7 [-906 ..(3)]
: forward
 xL0 yL1 wL1 -5000 vecfold
 yL1 yL1 bL1 0 vecadd
 yL1 yL1 $ tanh 0 vecmap
 yL2 yL3 wL3 -5000 vecfold
 yL3 yL3 bL3 0 vecadd
 yL3 yL3 $ tanh 0 vecmap
 yL4 yL5 wL5 -5000 vecfold
 yL5 yL5 bL5 0 vecadd
 yL5 yL5 $ tanh 0 vecmap
 yL6 yL7 wL7 -5000 vecfold
 yL7 yL7 bL7 0 vecadd
;

References
1. Guo, S.; Zhou, Q. Machine Learning on Commodity Tiny Devices; Taylor & Francis: Boca Raton, FL, USA, 2023.
2. Ray, P.P. A review on TinyML: State-of-the-art and prospects. J. King Saud Univ.-Comput. Inf. Sci. 2021, 34, 1595–1623. [CrossRef]
3. Wang, X.; Magno, M.; Cavigelli, L.; Benini, L. FANN-on-MCU: An Open-Source Toolkit for Energy-Efficient Neural Network

Inference at the Edge of the Internet of Things. arXiv 2022, arXiv:1911.03314. [CrossRef]
4. Alajlan, N.N.; Ibrahim, D.M. TinyML: Enabling of Inference Deep Learning Models on Ultra-Low-Power IoT Edge Devices for AI

Applications. Micromechanics 2022, 13, 851. [CrossRef] [PubMed]
5. Jain, V.; Giraldo, S.; Roose, J.D.; Mei, B.B.L.; Verhelst, M. TinyVers: A Tiny Versatile System-on-chip with State-Retentive eMRAM

for ML Inference at the Extreme Edge. arXiv, 2023, arXiv:2301.03537.

https://doi.org/10.1016/j.jksuci.2021.11.019
https://doi.org/10.1109/JIOT.2020.2976702
https://doi.org/10.3390/mi13060851
https://www.ncbi.nlm.nih.gov/pubmed/35744466

Algorithms 2024, 17, 356 33 of 33

6. Bosse, S. IoT and Edge Computing using virtualized low-resource integer Machine Learning with support for CNN, ANN, and
Decision Trees, IoT-ECAW. In Proceedings of the 18th Conference on Computer Science and Intelligence Systems FedCSIS 2023
(IEEE #57573), Warsaw, Poland, 17–20 September 2023.

7. Banner, R.; Hubara, I.; Hoffer, E.; Soudry, D. Scalable Methods for 8-bit Training of Neural Networks. arXiv 2018, arXiv:1805.11046.
8. Ghaffari, A.; Tahaei, M.S.; Tayaranian, M.; Asgharian, M.; Vahid, P.N. Is Integer Arithmetic Enough for Deep Learning Training?

Adv. Neural Inf. Process. Syst. 2022, 35, 27402–27413.
9. Donati, G.; Zonzini, F.; Marchi, L.D. Tiny Deep Learning Architectures Enabling Sensor-Near Acoustic Data Processing and

Defect Localization. Computers 2023, 12, 129. [CrossRef]
10. Magno, M.; Cavigelli, L.; Mayer, P.; von Hagen, F.; Benini, L. FANNCortexM: An Open Source Toolkit for Deployment of

Multi-layer Neural Networks on ARM Cortex-M Family Microcontrollers. In Proceedings of the IEEE 5th World Forum on
Internet of Things (WF-IoT), Limerick, Ireland, 15–18 April 2019.

11. Bosse, S.; Bornemann, S.; Lüssem, B. Virtualization of Tiny Embedded Systems with a robust real-time capable and extensible
Stack Virtual Machine REXAVM supporting Material-integrated Intelligent Systems and Tiny Machine Learning. arXiv 2023,
arXiv:2302.09002.

12. Bornemann, S.; Lang, W. Considerations and Limits of Embedding Sensor Nodes for Structural Health Monitoring into Fiber
Metal Laminates. Sensors 2022, 22, 4511. [CrossRef] [PubMed]

13. Finkenzeller, K. RFID Handbook: Fundamentals and Applications in Contactless Smart Cards, Radio Frequency Identification and
Near-Field Communication; John Wiley & Sons: New York, NY, USA, 2010.

14. Bosse, S.; Polle, C. Tiny Machine Learning Virtualization for IoT and Edge Computing using the REXA VM. In Proceedings of the
10th International Conference on Future Internet of Things and Cloud (FiCloud 2023), Marrakesh, Marroco, 14–16 August 2023;
IEEE Catalog Number: CFP23FIC-ART. ISBN 979-8-3503-1635-3.

15. Hayes, J.R.; Fraeman, M.E.; Williams, R.L.; Zaremba, T. An architecture for the direct execution of the Forth programming
language. ACM SIGARCH Comput. Archit. News 1987, 15, 42–49. [CrossRef]

16. Neataptic. Available online: https://wagenaartje.github.io/neataptic/ (accessed on 1 July 2024).
17. ConvNetJS. Available online: https://cs.stanford.edu/people/karpathy/convnetjs/ (accessed on 1 July 2024).
18. Molero-Armenta, M.; Iturrarán-Viveros, U.; Aparicio, S.; Hernández, M.G. Optimized OpenCL implementation of the Elastody-

namic Finite Integration Technique for viscoelastic media. Comput. Phys. Comm. 2014, 185, 2683–2696. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/computers12070129
https://doi.org/10.3390/s22124511
https://www.ncbi.nlm.nih.gov/pubmed/35746291
https://doi.org/10.1145/36177.36182
https://wagenaartje.github.io/neataptic/
https://cs.stanford.edu/people/karpathy/convnetjs/
https://doi.org/10.1016/j.cpc.2014.05.016

	Introduction
	Sensor Node Architecture for SHM and Communication Architecture
	REXA VM Architecture and Programming Language
	Architecture
	Programming Language

	ML Instruction Set Architecture
	ML Core Operations
	Vector Operations
	Activation Functions

	Transformation Process
	Scaling
	Workflow
	Unified Model Graph

	Simulation and Data Set
	Use Case 1: CNN for Damage Location Regression and Classification
	Use Case 2: ANN Polynomial Models
	Discussion
	Conclusions
	Appendix A
	Abbreviations
	MLISA Code

	References

