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Abstract: Data-driven models used for predictive classification and regression tasks are commonly
computed using floating-point arithmetic and powerful computers. We address constraints in dis-
tributed sensor networks like the IoT, edge, and material-integrated computing, providing only
low-resource embedded computers with sensor data that are acquired and processed locally. Sensor
networks are characterized by strong heterogeneous systems. This work introduces and evaluates
a virtual machine architecture that provides ML as a service layer (MLaaS) on the node level and
addresses very low-resource distributed embedded computers (with less than 20 kB of RAM). The
VM provides a unified ML instruction set architecture that can be programmed to implement decision
trees, ANN, and CNN model architectures using scaled integer arithmetic only. Models are trained
primarily offline using floating-point arithmetic, finally converted by an iterative scaling and trans-
formation process, demonstrated in this work by two tests based on simulated and synthetic data.
This paper is an extended version of the FedCSIS 2023 conference paper providing new algorithms
and ML applications, including ANN/CNN-based regression and classification tasks studying the
effects of discretization on classification and regression accuracy.

Keywords: Tiny ML; distributed sensor networks; discretization; integer arithmetic

1. Introduction

To address ubiquitous computing, edge computing, and distributed sensor networks,
as well as a significant increase in device density and sensor deployment towards smart and
self-aware sensors, sophisticated and dependable data processing architectures are required.
The field of tiny machine learning (ML) is an emerging field posing challenges that are only
partially addressed [1]. Floating-point arithmetic, with a high dynamic range and sufficient
precision, is frequently used to compute machine learning models. Only integer arithmetic
(8–32 bit) is supported by very low-resource tiny embedded systems, e.g., ARM Cortex
M0-based systems; hence, training with integer arithmetic must be completed directly
on the target device [2] or by model modification and freezing [3]. The computation of
complex deep learning (DL) models is further limited by memory and computing power
constraints of ultra-low-power devices [4]. To overcome software limitations and limited
computability, hardware designs are becoming more popular [5]. We focus on the software
processing of ML models on low-resource and low-power devices by model transformation
fitting of low-resource devices.

The present work addresses virtualization on the programming level in IoT and
sensor networks using very low-resource computers, typically with less than 64 kB of
available RAM, with a particular focus on machine learning (ML) provided as a virtualized
service. Compared with [6], we provide new algorithms and ML applications, includ-
ing ANN/CNN-based regression and classification tasks, with a rigorous evaluation of
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discretization errors. The set of discretized non-linear transfer functions is extended, opti-
mized, and evaluated rigorously. A new unified data set derived from physical simulation
is used to demonstrate the capability and accuracy of the ML VM service, which can be
deployed on any very low-resource micro-controller providing integer arithmetic only, as
well as on desktop computers. We evaluate the VM MLISA and the model transformation
process with respect to constraints and its application in Structural Health Monitoring.

A functional prediction or regression model is composed of linear and non-linear
functions. The most critical part in the transformation and scaling process of ML models
towards integer arithmetic is the non-linear function, e.g., the tanh transfer function. A
chained composition can introduce high non-linearity, which must be handled carefully to
avoid exploding model errors. For this purpose, we will train ANN models with data from
highly non-linear analytical functions for the implementation of surrogate models. There is
an extended evaluation of computational complexity and requirements for most relevant
applications. The advantage of using a textual programming language instead of binary
code is demonstrated by extended examples.

This work focuses on a universal VM suitable for implementation on very low-resource
embedded systems and providing ML as a programmable service. Although “as a service”
is a common cloud-based paradigm, we use this term in terms of virtualization on node
and single computer level.

There is ongoing work to implement the computation of ML models with 8 or less bit
integer arithmetic (and storage data size) on micro-controllers [7,8], commonly called Tiny
ML [9] or ML on commodity devices [1]. We will relax this hard constraint by assuming a
32-bit microprocessor, e.g., the widely used Arm Cortex M series with chip die areas below
0.1 mm2 and power consumption about 10 mW (active mode). Finally, we implement
ML with 16 bit data-size storage (input, intermediate, and output data as well as model
parameters). Overflow issues are relaxed by using 32-bit arithmetic internally. In [9], the
authors outlined the benefits of Tiny ML in the context of sensor networks. Tiny ML enables
the local processing of sensor data without extensive periodic communication to external
serves, especially in the context of real-time capable structural health monitoring (SHM)
systems. In [9], the computation of complex and deep convolutional neural networks
(CNNs) was implemented on the sensor node level, often equipped with digital signal pro-
cessors (DSPs) with optimized vector operations and sometimes floating-point arithmetic
units (FPUs). The authors chose an Arm Cortex M4-based micro-controller, which provides
dedicated DSP and FPU operations and 320 kB of RAM. In [3], the authors presented a
software framework to run lightweight neural networks on micro-controllers based on
both the ARM Cortex-M series and the RISC-V-based parallel ultra-low-power (PULP)
platform, especially addressing energy-efficient computing, which is a high constraint
on self-powered autonomous sensor nodes. The efficient implementation of ML models
using a dedicated model and training library Fast ANN on the Arm Cortex M architecture
is also demonstrated in [10]. They claim that the model computation is still possible on
FPU-less micro-controllers but do not give evaluations for real use cases. In addition, all
these frameworks create static model code, which cannot easily be updated at run-time
(no service).

Instead of performing software model transformations to map a model using arith-
metic A defined by an accuracy, value, and dynamic range, on a model using arithmetic B
with lower accuracy and reduced value and dynamic ranges, the model can be mapped
on a dedicated hardware architecture, providing the elementary core operations of ML
models, as described by [1]. Although this is the most efficient method, this approach
prevents the use of widely used and cheap electronic components and universal and flexible
model computations, as well as update services (of the model and the ML services). This
compromises the deployment of the proposed ML/VM architecture in embedded systems
with limited or no reprogramming capabilities (like material-integrated systems, discussed
in Section 2).
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This paper is organized as follows. A short introduction to material-integrated sensor
nodes for structural health monitoring (SHM) is given to outline the motivation as well as
the communication architecture, defining constraints for the VM and its ML service intro-
duced and used in this work. An extended section describes the REXA VM with a focus
on ML. The transformation process of continuous ML models to discretized integer-scaled
arithmetic models is described in detail, and approximation methodologies and discretiza-
tion errors are discussed for non-linear transfer functions. Two use cases demonstrate the
capability of the transformation process, the REXA VM ML operations, and typical accuracy
losses that can be expected in real applications for regression and classification tasks.

We introduce two different model scaling algorithms (static and dynamic) and evaluate
the effect of discretization on the model accuracy with the two use-case examples. One use
case uses synthetic sensor data created by wave propagation simulation, and the second
uses input data from a mathematical model. The first use case combines classification
and regression tasks into one model, and the second is a pure regression model. The
main focus is on the non-linear activation functions used in neuronal network models
and their discretization errors. The two use cases will demonstrate the quality of the
proposed scaling approach and the simplicity of the VM programming for classification
and regression models, including CNN architectures.

2. Sensor Node Architecture for SHM and Communication Architecture

The virtualization and deployment of VMs onto tiny micro-controllers was inspired
by the wireless material-integrated sensor node [11,12], which is embedded between
two layers of a fiber–metal laminate plate and developed in the DFG research group 3022 for
automated diagnostics of hidden damages in fiber–metal laminates using guided ultrasonic
waves (GUW). The sensor node is supplied with power via RFID/NFC communication
technology only [13]. The energy harvester is able to deliver up to 15 mW of continuous
power, significantly constraining the selection and operation of the electronic parts, as
shown in Figure 1. After the sensor node is integrated into the plate, no software updates
or maintenance can be applied. The communication with the micro-controller takes place
only via the NFC tag. The communication is bidirectional, originally via the NFC tag’s
EEPROM (code and data). Alternatively, wireless communication can be realized directly
with a write-through mode (because the lifetime of the EEPROM is limited to about
1000–10,000 write cycles), writing message data directly to the micro-controller. The sensor
node uses an ARM Cortex STM32 L031 device, an NFC tag with a power supply, and
a pre-amplifier for piezoelectric sensors. The features are summarized in Table 1. More
details and descriptions of the sensor node can be found in [12].

Table 1. Features of the material-integrated wireless sensor node.

Feature Value

Size 17 × 17 mm (without antenna and sensor)

Sensors Piezoelectric transducer, MEMS sensor, temperature, radio
field strength

Components
ADC (1 MSPS, 8–12 bit resolution), pre-amplifier, power regulator, NFC
tag, ARM Cortex M0 STM32L031 micro-controller with 8 kB RAM and
32 kB ROM

Communication Wireless, NFC (13.56 MHz), up to 100 kb/s
Energy Energy harvesting by NFC tag, up to 15 mW continuous power
Software REXA VM (CS = 1024, DS = 512, RS/FS = 32, only single-precision data)
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Figure 1. ARM Cortex M0-based sensor node (STM32L031) implementing the REXA VM for material-
integrated GUW sensing with NFC for energy transfer and bidirectional communication with only
8 kB of RAM and 32 kB of ROM.

Although this work focuses on the design and implementation of a universal VM
suitable for implementation on very low-resource embedded systems and providing ML as
a programmable service, communication aspects are relevant and must be considered as
constraints, both for the design and operation of the VM and the communication design.
Communication with material-integrated sensor nodes is commonly performed by using
wireless technologies, but in the presence of metals and dielectric materials, wireless
communication is a challenge. Low- and mid-frequency RFID technologies are widely used.
In this work, it is assumed that the REXA VM is accessible by RFID/NFC communication,
as shown in Figure 2. Sensor nodes communicate wirelessly via RFID/NFC tag circuits
with a reader, which is connected short-range to a “remote” VM instance. The reader nodes
are connected long-range (wired or wireless) to establish a distributed network. The reader
nodes are communication end-points and message routers.
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The communication capabilities have an impact on the ML models that can be imple-
mented with respect to the code and data size. It can be expected that the typical message
size will not exceed 1k Bytes. The transfer of 1k Byte of payload data requires about
one second of transfer time, including packet fragmentation. ML models, including the
forward prediction functions, are submitted to the VM via text, including the fixed model
parameters. In the use-case section, the text and code + data sizes are measured, showing
that small and moderate complex models, including CNNs, can be transferred by such a
resource-constraint communication channel.

3. REXA VM Architecture and Programming Language

The REXA VM is the core component for implementing and virtualizing ML on low-
resource computers using a programmable approach. The next sub-sections describe the
VM architecture briefly to aid in understanding the implementation details of the following
use cases.

3.1. Architecture

The real-time capable and extensible architecture (REXA) VM is a full-featured script
engine based on a stack processor architecture. A detailed description can be found
in [11,14]. Although any programming language can be used, we implemented a modified
subset of the stack-based Forth programming language [15]. Any ISA can be implemented
by addressing stack-based computation, but Forth is a well-known and long-standing
programming language that is firstly a high- and low-level language, secondly can be
implemented efficiently on low-resource systems, thirdly is extensible (e.g., by the MLISA
introduced in this work), and fourthly requires only simple compilers. In contrast, C/C++
is a compiled language not intended for script execution as intended in this work, and
C/C++ compilers are complex, whereas Forth compilers are not.

The full version embeds a text-to-byte-code compiler that translates Forth programs
into byte-code. A dialect of the Forth programming language provides high-level constructs
like loops and functions (words in the Forth terminology), as well as the compactness of
the VM implementation, including a hand-written language parser and an incremental
direct compiler producing VM code. One main feature is the binding of data and code in
frames without the necessity of a free-used memory block list-driven dynamic memory
management. All dynamic run-time data are stored on multiple data stacks. Such binary
byte-code frames with embedded data can be exchanged among different processors and
sensor nodes. The compilation, as well as the code execution, can be performed under
soft real-time constraints. The run-time can be estimated in advance, e.g., offline, by a VM
twin with check-pointing, tracing, and monitoring capabilities. The REXA VM is written in
plain C and is highly portable. Alternatively, the REXA VM can be implemented in other
programming languages like JavaScript to support embedding in UI applications.

The REXA VM was designed especially for deployment on low-resource micro-
controllers with less than 64 kB RAM and low clock frequencies below 50 MHz. It utilizes a
freely programmable ISA, but the ISA of the VM used in this work is closely related to the
Forth programming language [15]. The VM is a pure stack processor, i.e., most operations
process data via multiple stack memories with a zero-operand instruction format. There
is support for arrays and access to external buffers via the DIOS (see below). The VM
instruction loop processes byte-code programs stored in a code segment (CS).

Figure 3 shows the architecture design of the REXA VM and its interoperability with
the closely coupled just-in-time (JIT) compiler. The JIT compiler depends on the VM ISA,
which can be freely defined, although this work is strongly related to the Forth programing
language. The architecture details depend on the configuration (single- or multi-tasking,
number of stacks, and customized extensions and accelerators). The principle architecture
is equal for software and hardware implementations. Profiling is an optional feature used
for predictive real-time scheduling, as well as the energy-aware real-time scheduler.
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The code segment (CS) is the central storage for source code, byte-code, and embedded
data. The CS is partitioned into dynamically sized code frames, commonly assigned to a
task (depending on the scheduling model), as shown in Figure 4. Assuming a 16-bit VM, the
CS is limited to 32k Bytes in size. The scheduler controls and monitors the byte-code loop
(vmloop). Code operations can suspend task execution by waiting for events handled by
an event table. The input–output system (IOS, similar to the widely used foreign function
interface (FFI), extends the code and data space of the VM) is the central bridge between the
core VM and the host application. The VM architecture is optimized for resource sharing,
e.g., using an ADC sample buffer for computations from the VM programming level.

Temporary (short lifetime) data are stored and manipulated directly on fixed-size
stack memories:

1. The data stack (DS) holds most of the processing data and instruction operands;
2. The return stack (RS) used for function calls (not accessible from the programming

level for security reasons);
3. Optional loop stack (FS) used for loop counters and secondary user data (can be

merged with RS for memory efficiency).

All non-temporary data are either embedded in the code frames or provided by the
host application via the data input–output system layer (DIOS) API or by providing Io
functions using the function input–output system layer (FIOS) API. All MLISA operations
are attached to the VM using the FIOS; ADC buffers are attached by the DIOS.

The data width of the stack cell is always 16 bit (single word width). The REXA
VM also supports double-word operations (as a configurable option). Double words are
composed of two single data words (word order depends on the native byte order of the
underlying processor). The VM can read and write double words directly from and to
stacks (single memory access). The access time of multiplexed single and double word
access to the stacks by memory pointer casting is commonly identical (assuming 32-bit
microprocessors). The push and pop operations involved in most of the VM instruction
code words modify stack pointers (dstop, rstop, fstop). For security reasons, the return
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stack (which holds code pointers on function calls) should not be accessed directly by
program code.

Besides hardcore stacks implemented inside the VM, soft-core stacks can be imple-
mented on the programming level in data arrays (embedded in code frames). Push and
pop operations are provided by the core instruction word set:
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The compiler translates the source code text into byte-code instructions. It is a just-
in-time (JIT) compiler that can compile code incrementally and on demand. Since the ISA
of stack processors consists mostly of zero-operand instructions, it supports fine-grained
compilation at the token level, including ML models. The source text can be directly stored
in the code segment referenced by a code frame (or any other data buffer, alternatively).
Most instruction words can be directly mapped to a consecutively numbered operation
code. Therefore, the compiler translates the source code into byte-code in place, i.e., by
replacing the text with binary byte-code, saving additional target memory buffers. An
instruction word consists of at least one character and thus can always be replaced by the
op-code (one byte). Although a literal value can consist of only one digit and the data of a
single word value occupies two bytes, there is always a space or newline character after
a literal value, providing the required data space. Extension of the current code frame
at the end is always possible (as long as there is free space in the CS). One exception is a
double-word literal value requiring at least two characters and the suffix “l”, followed by
an obligatory separator character and the space, providing four bytes of data space in total.

Data are either stored on the stacks during run-time or embedded in the code frame
during translation. Scalar variables and initialized arrays can always be embedded in place.
Non-initialized arrays are appended to the end of the compiled code frame (placing id
delayed until the code frame is compiled).

3.2. Programming Language

The programming language consists of the Forth core set, which is mainly zero-
operand words. A word is either a numerical or string value storing this value on the
data stack or an instruction word like arithmetic or control flow operations. Zero-operand
instructions get their operands from the stacks and store results on the stack again. User
functions (words) can be defined by using the operator, as shown in Example 1. Because



Algorithms 2024, 17, 356 8 of 33

user words, as well as core words, get their operands via the stack and store results on
the stack, a comment in the form LHS -- RHS is commonly used to specify the input and
output function interface. The left-hand side specifies the input arguments (right is the top
of the stack), and the right-hand side specifies the output (if any).

A typical REXA VM program for ML consists of a head section defining initialized and
non-initialized arrays, and words computing data, as shown in Example 1 and discussed in
detail in the MLISA Section 4.
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array X 3 
array P { 1 2 3 } 
array Y 3 
( n -- sum ) 
: productsum 
  0 ( sum ) 
  swap 
  ( n ) 0 do 
    X i cell+ ! ( X[i] ) 
    P i cellü ! ( P[i] ) 
    * ( X[i]*P[i] ) 
    + ( +sum ) 
  loop 
  ( sum ) 
; 
3 productsum 
Y 1 cell+ @ ( Y[1]=sum  ) 

  
Example 1. REXA Forth program sketch.

4. ML Instruction Set Architecture

The extensible REXA VM is a stack-based process that provides ML as a programmable
service via its input–output system bridge. To enable and support efficient processing of
ML models, a set of basic ML operations are added to the ISA of the VM. This ISA can
be extended at any time. The ML instruction set architecture extension MLISA provides
universal ML micro-service operations (ML and MLISA as a service, MLaaS). A code frame
describes the ML model structure and defines an inference function that evaluates a specific
model by applying the following ML core and vector operations to the input data, e.g., a
measured time-resolved sensor signal. There are primarily three classes of ML models
supported by the MLISA:

1. Decision trees (DT);
2. Fully connected artificial neural networks (FC-ANNs);
3. Convolutional neural networks (CNNs).

An ML task consists of the prior training phase using example data and the post-
application inference phase using new unknown data. Actually, we only support the online
and on-site inference of already offline-trained models. The following MLISA provides
only operations for the applications of mathematical models based on discrete integer
arithmetic. The original models were trained with standard numerical methods using
floating point arithmetic transformed to integer-scaled models. Training using classical
error back-propagation methods is currently not supported due to the requirement of
storing a suitable training and test data set on the device, which is not available on very
low-resource microcontrollers.

4.1. ML Core Operations

ANN and CNN computations require efficient and generic vector operations crucial to
implementing ML on microcontrollers, at least for model inference. The REXA VM provides
a unified core set of vector operations that can be used for the iterative computation of
ANN and CNN models. It is assumed that the integer data width of the models is N-bit
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and that there is 2N-bit arithmetic. In our case, we have 16-bit model data and 32-bit native
integer arithmetic. The set of basic operations needed to implement ANN and CNN models
and perform forward activation computations consists of the following:

1. Element-wise vector operations, i.e., addition and multiplication, vecmul: op1vec op2vec
dstvec scalevec;

2. Dot-product operations performing a sum of product data fusion (vecprod: veca vecb scale
→ number);

3. A folding operation for node layer computations (vecfold: invec wgtvec outvec scalevec);
4. A convolution operation for CNN computations (vecconv: invec wgtvec outvec scale in-

width kwidth stride pad);
5. A pooling operation for CNN computations reusing the vecconv operation. The second

argument combines the kernel height and a pooling function index (max, min, and
so on) if the kernel width argument is negative (vecconv: invec kheight + poolfun out-
vec scale inwidth -kwidth stride pad);

6. A mapping operation applying a function elementwise (vecmap: srcvec dstvec func scalvec);
7. A reduction operation applying a function to all elements returning an aggregate value

(vecred: vec vecoff veclen op) with the supported functions min, max, sum, and average;
8. A vector reshape operation shrinking or expanding a vector (vecshape: srcvec dstvec scale);
9. A generic scaling operation (vecscale: srcvec dstvec scalevec).

Vector operations commonly operate on arrays embedded in code frames, as shown in
Definition 1. Scaling is typically applied after an aggregation operation, e.g., after comput-
ing a vector dot product sum of products (using 2N arithmetic), to avoid overflow. Some
operations use one scaling factor for all elements, as discussed in the following section.

Definition 1. Initialized arrays embedded in place in code frames and non-initialized arrays stored
at the end of the compiled code frame.
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4.2. Vector Operations

The dynamic ranges of different integer (fixed point) and floating-point coding are
shown in Table 2.

Table 2. Dynamic ranges of different integer (fixed point) and floating-point codings.

Coding Dynamic Range

Int8 48 dB
Int16 96 dB
Int32 192 dB
Int64 385 dB

float16 180 dB
float32 1529 dB
float64 12,318 dB

The core set of vector operations provided by the REXA VM supporting (16-bit)
integer arithmetic ANN and CNN computations are summarized in Tables 3 and 4. These
operations are the primary part of the MLISA.
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Table 3. Part 1 of the basic vector ANN functions operating on embedded or external array data
(e.g., the sample buffer).

Vector Operation
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Vector operations always operate on single data words (16 bit), but internally, 32-bit
arithmetic is used to avoid over- and underflows. To scale to a signed 16 bit integer, some of
the operations use a scale factor or scale factor vector (negative scale values reduce, positive
expand the values by the scale factor) to avoid overflows or underflows in following
computations, similar to scaled tensors in [7,8]. Vector operations can access arrays stored
in code frames or provided externally by the host application (e.g., a signal buffer).

The computation of these operations is defined by the following formulas:

vecmul
(
→
a ,

→
b
)
= (a1b1, a2b2, .., anbn)

T

dotprod
(
→
a ,

→
b
)
=

→
a ·

→
b =

n
∑

i=1
aibi

f old
(→

a , ĉ
)
=

(
n
∑

i=1
aici,1,

n
∑

i=1
aici,2, ..,

n
∑

i=1
aici,n

)T

conv
(→

a ,
→
c
)
=

(→
a [1 : cn] ·→c ,

→
a [s : s + cn] ·→c ,

→
a [2s : 2s + cn] ·→c , ..

)
map

(→
a , f

)
= ( f (a1), f (a2), .., f (an))

T

n =
∣∣∣→a ∣∣∣ = ∣∣∣∣→b ∣∣∣∣

(1)

with cn as the kernel size (width multiplied by height) and s as the striding value (de-
fault is one).

The vecconv operation can be used for convolutional and pooling layers (pooling
is used if wgtwidth is negative and the wgtvec value contains the weight matrix height
combined with the pooling function selector). An activation function must be applied
separately using the vecmap operation, e.g., by applying a sigmoid function to all elements
of a vector.
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The vecsumn function is required for sliced convolution. In this case (see architectural
description), a partial convolution is performed for one input array and stored in an
accumulator array. After all partial convolutions are calculated, the sum of all vectors must
be calculated (with final scaling). This can be done in principle with the vecadd operation,
but due to the accumulator (single word size), overflows can occur before final scaling.

Table 4. Part 2 of the basic vector ANN functions operating on embedded or external array data
(e.g., the sample buffer).

Vector Operation
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4.3. Activation Functions

Besides the vector operations that can be simply implemented in closed form with
integer arithmetic, transfer functions with non-linear behavior are the most critical part of
the integer computation of ML models. There are different transfers (activation) that are
used in ANN and CNN models; the most prominent examples are:

• Linear function (linear) without x- and y-limits;
• Logistic or sigmoid function (sigmoid) with y-limit = [−1, 1];
• Hyperbolic tangent function (tanh) with y-limit = [−1, 1];
• Rectifying linear unit (relu) with one-side open y-limit = [0, ∞).

sigmoid(x) = 1
1+e−x

tanh(x) = ex−e−x

ex+e−x
(2)

The linear and relu functions can be directly implemented with integer arithmetic
without loss of accuracy (except due to the integer discretization). The highly non-linear
sigmoid and tanh functions require an approximation by using a hybrid approach combining
a (compacted) look-up table (LUT) and an interpolation function. The tanh function can be
neglected since it can be replaced, in most cases, by the sigmoid function without loss of
generalization (of course, prior to training).

Trigonometric functions and functions composed of trigonometric functions are imple-
mented with piecewise linear and non-linear look-up tables. The approximated discretized
sigmoid function algorithm is shown in Algorithm 1. For example, the error of the dis-
cretized sigmoid function is always less than 1% or below 10 digital values while only
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requiring 30 bytes of LUT space and less than 10 unit operations (in addition to the LUT
size of the fplog10 function). These software functions can be immediately implemented
in hardware, too. The LUTs are computed with Algorithm 2. The approximation of the
tanh function is much more complex and computationally intensive as it involves the
computation of two exponential terms, posing exploding behavior for larger negative and
positive x values, as shown in Figure 5. The exploding functional behavior is relaxed for
the sigmoid function by computing the sigmoid function only for positive x-values and
using a logarithmic base function, finally mirroring and flipping the result for negative
x-values, which does not prevent exploding gradients in the case of the tanh function.
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Figure 5. Exploding output values for negative x-values (e−x term) and positive x-values (ex term) of
the exponential function.

tanh can be rewritten as shown in the following Eq., computing the discretized tanh
using the same approach as used for the sigmoid function:

tanh(x) = sgn(x)
(

1 − 2
e2|x| + 1

)
(3)

The LUT table can be computed with a stretched x distribution as follows, assuming
∆x = 1, 2, 3, ...:

log10lut =
{

int
(

log10

(
i

10

)
100

)
: i ∈ I, 10 ≤ i < 100 ∧ (i − 10)%∆x = 0

}
(4)

with % as the modulo operation that creates an equidistant series of values. The log10lut
table size is 90/∆x with an unsigned byte data type. The accuracy (relative error) of the
sigmoid approximation is plotted in Figure 6 with an input and output scaling factor of 10
for different LUT sizes. The LUT sizes were 90, 45, and 23, respectively. Using ∆x larger
than 1 results in a significantly increased approximation error for small x-values (20%), but
the average relative error rises only from 1% to 3%.
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Algorithm 1. Range-segmented and LUT-based implementation of the sigmoid and hyperbolic
tangent functions with less than 1% approximation error for a wide range of x-values (using
approximated LUT-based log10 function). Shown is the C program code. The data types are in the
format: s = signed or u = unsigned, b = byte, and the number gives the number of bytes.
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 10 100 : ,10 100 10 % 0
10

i
log10lut int log i i i x

            
   

  (4)

The fpsigmoid function LUTs are computed iteratively using the fplog10 function for
LUT index stretching, described by the following pseudo-code in Algorithm 2. The sym-
metry of the sigmoid function is exploited by just computing the positive normalized
x-range and applying mirroring and flipping for negative values. The positive function
is approximated by four segments. The normalized x-range [0, 1] is handled by a linear
function directly computable in the range [0, RA], followed by the first highly non-linear
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segment in the range (RA, RB), and the converging segment in the range (RB, RC), and
finally a constant segment (x ≥ RC).
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computation. The log10 function is used to stretch the x distribution in the LUTs. 
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OA := int(fplog10(int(x*1000/5))/2) 
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done 

Figure 6. Relative discretization error of integer-scaled LUT-based approximation of the log10 function
for different ∆x values (1,2,4) and LUT sizes of 90, 45, and 23, respectively.

Algorithm 2. Computation of the segmented LUTs A/B for the integer-scaled sigmoid and
hyperbolic tangent functions. F is the real-valued generator function for sigmoid or tanh LUT
computation. The log10 function is used to stretch the x distribution in the LUTs.
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The accuracy (relative error) of the sigmoid approximation is ploĴed in Figure 7 
with an input and output scaling factor of 10,000 (i.e., 1:10,000). For x > −3, the error is 
below 5% and decreases to 1% on average. For x < −3, the relative error increases 
significantly due to the integer discretization error. The error increases in some x-ranges 
for lower fplog10 resolution (smaller LUT sizes, Δx = 4) but can be improved if the 
sigmoid interval ranges R are shifted towards larger values (increasing the sigmoid LUT, 
too). The red and green areas show lowered or increased accuracy. The accuracy of the 
transfer function itself is not a measure of the accuracy of ML models using this function, 
especially if post-trained (adapted) using the discretized function instead of the 
continuous function. For the segment ranges R = [A = 1, B = 3, C = 10], the sizes of the LUTs 
are |sglutA| = 24 and |sglutB| = 6, for R = [1, 7, 15], the sizes are |sglutA| = 43 and |sglutB| 
= 8, approximately |sglutA| ≈ 6(B − A + 1) and |sglutB| ≈ C − B, in addition to the LUT size 
of the fplog10 function (90/Δx), requiring in total 6(B − A + 1) + C − B + 90/Δx Bytes of static 
storage. 
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The accuracy (relative error) of the sigmoid approximation is plotted in Figure 7 with
an input and output scaling factor of 10,000 (i.e., 1:10,000). For x > −3, the error is below 5%
and decreases to 1% on average. For x < −3, the relative error increases significantly due
to the integer discretization error. The error increases in some x-ranges for lower fplog10
resolution (smaller LUT sizes, ∆x = 4) but can be improved if the sigmoid interval ranges
R are shifted towards larger values (increasing the sigmoid LUT, too). The red and green
areas show lowered or increased accuracy. The accuracy of the transfer function itself is
not a measure of the accuracy of ML models using this function, especially if post-trained
(adapted) using the discretized function instead of the continuous function. For the segment
ranges R = [A = 1, B = 3, C = 10], the sizes of the LUTs are |sglutA| = 24 and |sglutB| = 6,
for R = [1, 7, 15], the sizes are |sglutA| = 43 and |sglutB| = 8, approximately |sglutA|
≈ 6(B − A + 1) and |sglutB| ≈ C − B, in addition to the LUT size of the fplog10 function
(90/∆x), requiring in total 6(B − A + 1) + C − B + 90/∆x Bytes of static storage.
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Figure 7. Relative discretization error of integer-scaled LUT-interpolated approximation of the sigmoid
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sigmoid segment ranges R. The small error plots show only positive x values.

The implementation of the integer version of the tanh function requires extended
LUTs due to the higher gradient in the x-range [0, 1], i.e., choosing RA < 1. Typical results
compared with the real-valued function are shown in Figure 8. Selected error statistics of
the fpsigmoid and fptanh functions are shown in Table 5. The median error is mostly below
1%. Higher errors commonly occur with small y values as a result of integer discretization
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and not the approximation itself. The LUT sizes vary between 20 and 50 elements and are
small enough to be stored in very low-resource micro-controllers, even if a 16-bit data word
size is required.

Table 5. Relative discretization error (in %) of the fpsigmoid and fptanh functions for different parameter
settings (only for x > 0). Storage types: B = Byte (8-bit), W = Word (16-bit).

F ∆x RA RB RC LUTL LUTA LUTB Min Mean Median Max

fpsigmoid 0.5 1 3 10 179B 24B 6B 0.04 0.55 0.34 2.32
fpsigmoid 1 1 3 10 90B 24B 6B 0.04 0.55 0.34 2.32
fpsigmoid 4 1 3 10 23B 24B 6B 0.05 0.78 0.39 5.13
fpsigmoid 1 1 5 10 90B 35W 4B 0.05 0.40 0.20 2.32
fpsigmoid 1 1 5 7 90B 35W 3B 0.004 0.38 0.20 2.32
fpsigmoid 0.5 1 5 7 90B 50W 3B 0.004 0.42 0.21 2.32
fptanh 0.5 0.5 3 10 179B 39W 6B 0.04 0.61 0.10 9.52
fptanh 0.5 1 3 10 179B 24B 6B 0.05 1.00 0.10 17.13
fptanh 0.5 0.5 3 7 179B 39W 5B 0.00 0.59 0.10 9.52
fptanh 1 1 3 10 79B 24B 6B 0.05 0.61 0.10 9.52
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To summarize, the accurate approximation of the highly non-linear and widely used
sigmoid and tanh functions is possible with a segmented LUT approach. The computational
complexity is low (less than 20 unit operations are required for one function evaluation),
and the storage requirement is low (about 200 Bytes for each function). The average relative
error is below 1%, except for small integer values limited by the discretization error.

5. Transformation Process

In the following, we introduce the transformation process of a floating-point arithmetic
model to a scaled fixed-point (FP) integer arithmetic model. For historical reasons, we call
the floating-point model Foo and the fixed-point integer-scaled model FooFP, and the same
is true for the activation function, Act and ActFP, respectively. The transformation process
can be summarized as follows:

1. Training of model using floating-point arithmetic using a generic ML software frame-
works like Neataptic [16] or ConvNetJS [17];

2. Validation of model using test data to estimate model accuracy;
3. Transformation of original model in an annotated unified surrogate Foo model for

later analysis and FooFP transformation and model comparison;
4. Restructuring and refactoring of Foo model (layer expansion, i.e., mapping three-

dimensional tensors on vectors suitable for vector operations);
5. Statistical analysis (value boundary scans) of data flow in the Foo model using the

entire data set;
6. Calculation of scaling factors (static or dynamic scaling);



Algorithms 2024, 17, 356 17 of 33

7. Transformation of the unified Foo model to a surrogate FooFP model using integer-
scaled arithmetic;

8. Test of FooFP using discretized and scaled test data and comparison with results from
Foo model with respect to overflow (should not occur) and model accuracy deviation;

9. Transforming layers into a sequence of MLISA vector operations;
10. Test MLISA integer model using the (simulated) VM and with the integer data set and

validate with Foo/FooFP models.

For the sake of simplicity and modifiability, we use two JavaScript-based ML frameworks:

1. Neataptic primarily for pure ANN models [16];
2. ConvNetJS for CNN models (including ANN) [17].

Both frameworks provide direct access to the network layers, the forward and back-
ward functions, and enable easy modification to support the model transformation process
and perform statistical analysis. Our approach can be used with other frameworks, e.g., Py-
Torch and Tensorflow, although it is more difficult to implement our algorithms.

There are three phases in the model transformation:

1. Mapping the internal framework model (e.g., ConvNetJS) to an annotated functional
unified standard model (USM) aligned to the operational vector semantics of the VM
MLISA and refactoring if necessary (see Figure 9);

2. Annotation of the USM with statistics derived from analysis of model parameters,
input, intermediate, and output data;

3. Calculation of scale factors based on the statistical analysis and replacement of floating-
point vector operations with integer-scaled vector operations (for simulation), ar-
ranged in a sequential list of MLISA vector and scale operations.
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Figure 9. Phase 1 transformation (CNN). (Top) Transformation of 3-dim tensors into multiple vectors
for convolutional and pooling layers and flattening of multiple vectors from last convolutional or
pooling layer into one vector for the input of a fully connected neuronal layer. (Bottom) Convolutional
and pooling operations factorized into sequential and accumulated vector operations.

The sliced and sequential accumulated convolution, pooling, and product-sum calcula-
tion of fully connected neuronal layers is required to match the MLISA vector operations
provided by the REXA VM, as shown principally in Algorithm 3. If a previous layer has a
depth (z) ordering, i.e., a result of a multi-filter convolution operation, the following layer
must process the output for each z-layer independently using slicing and accumulators and,
finally, fusion by the vecsumn operation. Each slice has its own weight or filter coefficient set.
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Algorithm 3. Principle factorization of sliced accumulated operations
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the secure value range of a signed 16-bit integer value to [−10,000, 10,000]. If an ML model 

The statistical analysis is split into a static and a dynamic analysis. The dynamic
analysis applies the phase-1 transformed Foo ML model (still floating-point arithmetic) to
all training and test data samples. The fivenum statistics (minimum, maximum, median,
and first and third quantiles) are recorded for the input vectors x of a layer, the output
vectors y, and intermediate values like the sum output of a neuron. Additionally, statistics
of static parameters like weights and biases are recorded.

5.1. Scaling

The floating-point numbers must be scaled for the target data type range, e.g., N = 16 bit
signed integer. The set of values consists of input, output, and intermediate data, convolutional
filter coefficients, and weight parameters. The following three significant issues arise:

1. Discretization error (relative and absolute);
2. Underflow (zero);
3. Overflow (modulo N or clipped to max(N)).

To avoid overflows, the scaling factor should be lowered such that the maximum
value does not exceed about 0.7 max(N), i.e., introducing a safety margin, e.g., limiting the
secure value range of a signed 16-bit integer value to [−10,000, 10,000]. If an ML model is
applied to new unknown input data, this secure range can be left without exceeding the
real value range of any input, intermediate, and output variables. If the model poses (high)
non-linearity, the behavior is unpredictable for unknown data (layer accumulative over-
or underflow errors). To avoid increased discretization and underflow errors, the scaling
should be lifted, especially between layers, but with some constraints discussed later on.
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The idealistic scaling function is:

ax = min(x)
kx =

xi,max
max(x)−min(x)

xi = (xr − ax) · kx

(5)

with xi as the target scaled (fixed point) integer value and xr as the original real (floating
point) value. This scaling would exploit the full integer value range (including the safety
margin), but accumulative (sum) or sign-dependent operations like relu would fail due to
the origin shift. An improved origin and sign-preserving scaling is then:

mx =

{
|min(x)| if |min(x)| > |max(x)|
|max(x)| if |max(x)| > |min(x)|

kx =
xi,max

mx
xi = xr · kx

(6)

The scaling is not part of the values. Instead, the scaling factors are static parameters
of the model.

Different scaling architectures for functional nodes (neurons) and convolution and
pooling nodes are shown in Figure 10. There is symmetric scaling with the same input
and output scaling and asymmetric scaling with different scaling factors on the input
and output. The activation function expects a specific input and output scaling, therefore
requiring intermediate re-scaling to meet this constraint. For instance, the fpsigmoid and
fptanh functions discussed in Section 4.3 expect a static x- and y-scaling of 1000. The weights
of neuronal nodes and the kernel coefficients of convolutional nodes are scaled based on
the model analysis (minimum and maximum). The bias scaling is the same as for the
weights. A convolutional layer applies n different filters to the input data, which can be one
linear vector or multiple vectors from a previous convolutional layer. The filter dimension
can be considered an additional data depth dimension. A neuronal network layer always
flattens the depth dimension. The processing of one convolutional operation involves an
accumulator that sums the results of the filter application to all input (depth) vectors, as
shown in Figure 10 (Bottom).

The dynamic and adaptive re-scaling of intermediate variables and parameters has no
effect if a following layer is a discretized LUT-based function (e.g., tanh) but can have an
effect if there is a non-LUT-based function or if another accumulative (FC/CONV) function
is applied.

Things become more difficult if we assume different (optimized) scaling of inter-
mediate values. The finest granularity of dynamic scaling is one vector, e.g., the entire
output of a neural node layer or one (depth) output vector of a convolutional or pooling
layer gets the same scaling. The following operation processes multiple input vectors
sequentially by using an accumulator. If different input vectors have different scaling
(fractional to normalized scaling), the scaling must be corrected before summing up the
results in the accumulator. Convolutional and neuronal node operations are always
product–sum operations, as shown in Figure 11. A scaled product–sum is then given by
the following re-scaling:

σ = Σisxxiswwi = sxswΣixiwi
σ | s = σ sσ

swsx

(7)

To evaluate the dynamic fine-grained scaling, we compare these models with a globally
statically scaled model, i.e., applying a fixed scaling factor to all values, e.g., s0 = 10,000
for 16-bit signed integer values if the statistical analysis returned a value range within the
limits [−1, 1] for all model parameters, input, intermediate, and output values. Therefore, a
best guess static scaling is given by range/max(M), where max(M) is the maximum absolute
value of any parameter and any value of the input, intermediate, and output data.
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Figure 11. Accumulative scaled convolution or multi-vector input (flattening) neural network
operation based on a product–sum calculation. Each accumulative iteration uses a different input
scaling sd normalization with respect to the output scaling s.

Any product–sum calculation with scaled weights (scaling factor sw) requires a down-
scaling of 1/sw afterward, performed directly with the MLISA vector operations, as shown
in Algorithm 4.
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Algorithm 4. Downscaling of MLISA vector functions assuming a weight scale factor of 5000. The
X/Y scaling is not relevant here and must not be adjusted.
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5.2. Workflow

The transformation of the continuous floating-point arithmetic model into scaled
discrete integer arithmetic is an iterative process and depends on the specific use case and
the training data.

The entire workflow and model processing pipeline is shown in Figure 12. The USM is
basically a layer table providing relevant information for each layer L, the layer parameters
(weights w and bias b), layer-specific statistical data analysis S, including each layer latent
variable output z, a layer surrogate function F using floating-point arithmetic, scaling factors
S for each layer and node of a layer (for weight and bias parameters w and b, input and
output scaling for each layer, zin and zout, respectively), and finally the integer-scaled and
transformed surrogate function FP. The functions F and FP are used for model simulation,
under- and overflow analysis, and model error analysis. The MLISA vector operations are
derived from the L, P, and S information. Tensor flattening and layer node restructuring
are conducted in the first USM transformation phase.

The statistical analysis, as shown in Algorithm 5, must provide value distributions of
all model parameters and average statistics of input, intermediate, and output nodes based
on the available training (including validation) data. Under- and overflow of integer arith-
metic operations must be prevented by choosing the scaling factors with a safety margin.
Discretization and rounding errors using integer-scaled arithmetic are accumulative across
model layers, requiring a simulation of the scaled model to detect range violations.

The scaled transformation can be static using one fixed model scaling factor s0 based on
the absolute maximum value calculated from all (x,w,b,z,y) values, as shown in Algorithm 6,
or dynamically adapting each layer scaling independently to fill the available integer value
range optimally (reduced by the safety margin), as shown in Algorithm 7. This is completed
by using layer-specific re-scaling factors applied to the global preset factor s0.

Note that layer parameters are vectors of vectors (i.e., a matrix). One vector is associ-
ated with one node of a layer, e.g., a neuron function (vector of weights) or one convolution
operation of a convolutional layer (vector of kernel coefficients).

Algorithm 5. Static and dynamic analysis of the pre-transformed continuous USM/Foo model.
The layer-specific F function is a surrogate and simulation function using floating-point arithmetic
that also performs statistical collection on calling. The compute table implements all layer-specific
computations, e.g., convolution or application of activation functions. Finally, the global model
statistics stats = (min,max) of all values and parameters are computed
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Algorithm 6. Static scaling algorithm transforming a continuous into a discrete model. 
The layer-specific FP function is a surrogate and simulation function using bit-accurate 
integer-scaled arithmetic. The default scale is s0, applied to all model parameters and 
input values. The default range includes a safety margin, e.g., for 16-bit integer, it could 
be range = 10,000 (but maximal about 30,000) 

s0 = range / max(|L.stats.max|,|L.stats.min|)   
for ∀ l ∈ L do 
  if l.parameters.w then l.parametersFP.w = scale(l.parameters.w,s0) 
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Algorithm 6. Static scaling algorithm transforming a continuous into a discrete model. The
layer-specific FP function is a surrogate and simulation function using bit-accurate integer-scaled
arithmetic. The default scale is s0, applied to all model parameters and input values. The default
range includes a safety margin, e.g., for 16-bit integer, it could be range = 10,000 (but maximal
about 30,000)
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Algorithm 7. Simplified dynamic scaling algorithm transforming a continuous into a discrete
model. The layer-specific FP function is a surrogate and simulation function using bit-accurate
integer-scaled arithmetic. The default scale is s0, applied to all model parameters and input
values, but re-scaling factors can modify the default scale, including input and output scaling of
layer functions. It is important to keep track of the current layer input and output re-scaling
(reScaleCurrent).
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The final MLISA REXA VM code synthesis creates the necessary data storage (input,
intermediate, and output arrays, as well as the parameter arrays). The sharing of arrays is
supported for a chain of 1:1 mapping operations, e.g., application of a transfer function.
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Sharing of dynamic data storage (array unions) is difficult to implement if the union would
contain arrays of different lengths. REXA VM arrays always contain a length header at the
beginning, preventing the sharing of different length arrays.

5.3. Unified Model Graph

The previous workflow, consisting of model pre-transformation, analysis, and post-
transformation, is merged in only the meta-graph model, as shown in Definition 2.

Definition 2. Unified model graph merging the original ML model, the USM with its Foo and
FooFP surrogate models, and all transformation parameters.
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6. Simulation and Data Set

Sampling of experimental measuring data originating from damaged structures is a
difficult task with respect to parameter variance, i.e., damage position, size, sensor positions,
and so on, and ground truth labeling. Therefore, for this study, we used simulated GUW
time-resolved signal data. The signals were simulated using an extended version of the
SimNDT simulator [16] based on an elasto-dynamic finite integration technique [18]. A
transmission GUW experiment commonly utilizes two transducers, one generator (pitch
signal), and one sensor (catch signal). The generator signal was a sine wave of base
frequency 40 kHz and a Gaussian mask window (5 cycles). The simulation was carried
out with a time step of 0.06 µs, a total of 5000 steps (300 µs), with each tenth step recorded.
In total, 7 × 6 damage positions were simulated. Circular damage (air, 30 mm diameter)
placed at a specific center location (x,y) modifies the GUW signals, as shown in Figure 13.
The host material was a plate of 500 × 500 mm with high absorbing damping material at
each plate side (to minimize wave reflections at edges and plate sides).
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Figure 13. GUW signal simulation using a 2 dim viscoelastic wave propagation model. (Left) Simulation
set-up. (Right) Some example signals with and without damage (blue areas show damage features).

7. Use Case 1: CNN for Damage Location Regression and Classification

The first use case uses the data delivered by the GUW simulation introduced in the
previous section. In total, there were 43 different data sub-sets, each related to a specific
position of the circular damage in the plate structure, including the baseline measurement
without damage. A classical CNN model was chosen to predict the damage positions
(x,y) and provide binary damage classification. The CNN input was a down-sampled and
low-pass filtered GUW signal (128 data points). The outputs are two continuous variables,
px and py, normalized to the full range of the damage location in the x- and y-direction with
a 10% margin, i.e., the minimum location coordinate corresponds to 0.1, and the maximum
value corresponds to 0.9. If px < 0.1 and py < 0.1, then no damage was detected (i.e.,
classification output). The model architecture and its parameters are shown in Definition
3. The CNN was implemented with the ConvNetJS framework [17] and trained with the
typical 500 epochs at a default learning rate of α = 0.01 using the adagrad trainer (batch
size was chosen as 1 due to the low sample count).

Definition 3. Architecture and parameters of the CNN model (ConvNetJS) using 1 dim convolution
and pooling operations.
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A typical GUW signal and its low-pass-filtered and down-sampled version are shown
in Figure 14. The low-pass filter was a simple exponential filter with a filter coefficient
of k = 0.2.
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Figure 14. Down-sampled GUW signal from simulation and low-pass-filtered rectified (envelope
approximation) signal as input for the CNN (damage at position x = 100, y = 100).

To capture training variations, the original model was trained 100 times, each training
starting with a randomly initialized model but always with the same training and test data
set. Figure 15 shows the comparison of the prediction results of the continuous Foo and
discretized and scaled FooFP model for the regression tasks. The prediction delivers the
damage position coordinates, and a non-damage detection is given by a (0,0) value pair
(or close to). The RMSE and maximal position prediction errors are computed. Results for
static and dynamic scaling were compared. The summary of results is as follows:

1. The total value range of all input, output, intermediate, and parameter values de-
pends on the particular training of the original model but is mostly in the range
[−4, 4] (see Figure 15, V column). Therefore, a static or preset scaling of s0 is in the
range [3000, 10,000].

2. The discretization error of integer arithmetic is neglectable for all linear operations
but depends slightly on the discretization parameters of the non-linear functions
(FP1/FP2/FP5 in Figure 15 represents LUT resolution with 1/∆X = 1/2/5).

3. The dynamic scaling, compared with static scaling, shows no significant improve-
ment in the model accuracy (maximal 5%) but is unexpected with a larger variance
(see Figure 15).

4. The overall discretization error depends on a particular model parameter set, i.e., with
nearly the same floating-point accuracy, the integer model accuracy can differ signifi-
cantly (RMSE and Emax). Multiple trained models should be analyzed with respect to
the final discretization error, selecting the best model.

5. The prediction error of the discretized model (RMSE and Emax) differs only slightly.
6. There is no increase in the classification error compared with the continuous model,

showing an overall stable prediction behavior.

To conclude, the discretization, even with a moderate static scaling, does not degrade
the prediction accuracy.
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Figure 15. Foo/FooFP model analysis of the GUW regression CNN model. The classification error
was always zero.

The MLISA REXA VM Forth program of the discretized model is shown in Appendix A
in Algorithm A1. The model code occupies 1746 dynamic and 2166 static words in the
CS (i.e., occupying about 8k Bytes of RAM). The entire textural code size is 18,452 Bytes.
The forward computation requires the execution of 1280 words, which is equivalent to
85 ms/MHz (assuming 15k/words/s/MHz [11]).

8. Use Case 2: ANN Polynomial Models

Based on the previous use case evaluation indicating non-linear functions as the
primary source for approximation errors, we want to force high non-linearity in an ML
surrogate model for a polynomial of degree n:

F(x) = k0 + k1x + k2x2 + k3x3 + . . . + knxn (8)

The ANN model architecture for the implementation of such a surrogate model is
shown in Definition 4. It consists of only 17 neurons. A polynomial of degree 4 was chosen
with the following parameters:

k0 = 100
k1 = 0.5
k2 = 1
k3 = −0.5
k4 = −0.1
x = [0, 10]

(9)

The model was trained using the polynomial model (500 epochs); 100 independent
models were trained using the same training data with 1000 randomly selected function
samples. After model training, the Foo transformation process and a model analysis
were performed.

Definition 4. Architecture and parameters of the ANN model (ConvNetJS) as a surrogate regression
model for highly non-linear analytical model functions.
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The following discretization parameters for the activation function were chosen, as
shown in Table 6.

Table 6. Different discretization parameters chosen for the activation functions.

Nr. 1/∆x RA RB RC

1 1 0.5 3 7
2 3 0.5 3 7
3 5 0.5 3 7
4 7 0.5 3 7
5 10 0.5 3 7
6 10 0.7 3 7

The statistical analysis of the prediction results of the continuous Foo and the dis-
cretized FooFP model is shown in Figure 16. The summary of the results is as follows:

1. The prediction errors of the discretized model (RMSE and Emax) are significantly
higher compared to the continuous model.

2. The discretization error results from the non-linear tanh function, which is clearly
highlighted if a scaled float-point alternative is used in the discretized model, with
errors similar to the continuous model.

3. Choosing the tanh and underlying log10 discretization parameters leads to the predic-
tion error. Modification of the LUT partitioning and interval coefficients can improve
the RMSE as well as the maximum error Emax.

4. Dynamic scaling shows no significant improvement in the model accuracy (maxi-
mal 5%).

5. As shown at the bottom of Figure 16, the discretization error is not constant; instead,
it introduces discontinuity.

The MLISA REXA VM Forth program of this model is shown in Appendix A in
Algorithm A2. The model code occupies 18 dynamic and 89 static words in the CS. The
entire textural code size is 921 Bytes. The forward computation requires the execution of
70 words, which is equivalent to 5 ms/MHz.
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9. Discussion

The two use cases clearly showed the benefit of the proposed scaling approach and
the simplicity of the VM programming for classification and regression models, including
CNN architectures. The results can be summarized as follows:

1. The prediction error of the discretized model compared with the continuous model
is comparable if there is no high non-linearity (use case 1) but significantly higher if
there is a higher degree of non-linearity (use case 2).

2. Dynamic scaling compared to static scaling shows no significant improvement, only
for very low default s0 scaling factors.

3. Model optimization with respect to the average classification or RMSE and peak re-
gression errors is possible via the optimization of the non-linear piecewise-segmented
and LUT-based activity functions (sigmoid, tanh). The optimization requires the modi-
fication of function approximation parameters, but these functions are statically built
into the VM (as a service).

4. Even if the micro-controller provides an FPU, the VM should continue using 16-bit
integer arithmetic to satisfy the still remaining hard memory limits. Moreover, the JIT
run-time compiler translates text-to-byte-code in place. For instance, a constant value
“0” can always be replaced by a binary 16 Bit container since tokens are separated
by space or newline characters. A 32-bit engine using the FPU would make this
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approach impossible, and the memory footprint would increase significantly (doubles
at maximum).

5. The REXA VM implementation of the discretized models requires typical code sizes
(including data) of about 1–20k Bytes, which can be transferred using (RFID) wireless
communication. Even more complex models can be processed by a 16-bit VM with a
code segment size limit of 32k Bytes.

6. The average computation times of models with the REXA VM range from 1 to
100 ms, which is fully sufficient even for ad-hoc remotely powered sensor nodes
via RFID fields.

10. Conclusions

In previous work [6], we investigated the effect of ML model discretization in only
classification tasks. This work investigated the effect of integer-scaled discretization for
regression tasks with two use cases as well and presented the model transformation and
scaling algorithms in detail. The first use case considers time-dependent ultrasonic signals
as an input for a damage location regression model. The second use case uses synthetic data
from a highly non-linear polynomial function to investigate the impact of discretization
of the non-linear activation functions. Static (one scaling factor for the entire model) was
surprisingly fully sufficient, and dynamic fine-grained scaling of different stages of the
model does not improve the overall prediction accuracy of the model. The highest impact
on the model accuracy is the discretization and step-wise approximation of non-linear
(activation) functions. As an outlook, the model activation functions could be generated for
a specific model at run-time by the VM based on parameters provided by the transformed
model. However, the generation of the approximated functions requires floating-point
versions of at least the log and e functions, optimally by the floating-point version of the
activation functions. If floating-point functions are available, the non-linear activation
functions could be directly calculated without approximation and discretization errors
(at least significantly lower errors). One solution could be generic activation function
templates that can use different LUTs transferred separately to the VM. Finally, the impact
of integer discretization on the accuracy of recurrent state-based neural networks should
be investigated.

Funding: The authors expressly acknowledge the financial support of the research work on this
article within the Research Unit 3022 “Ultrasonic Monitoring of Fibre Metal Laminates Using In-
tegrated Sensors” (Project number: 418311604) by the German Research Foundation (Deutsche
Forschungsgemeinschaft (DFG)).

Data Availability Statement: There is no experimental data used in this work. The code is published
and referenced in the paper.
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Appendix A 
Appendix A.1. Abbreviations 
Act Activation and transfer function (using floating point arithmetic) 

ActFP 
Discretized and scaled activation function for fixed-point integer 
arithmetic 

FooFP Discretized and scaled Model for integer arithmetic 
Foo Floating point model 
Forth Stack-based programming language with reverse polish notation 
GUW Guided Ultrasonic Waves (Lamb wave) 
MLISA Machine Learning Instruction Set Architecture 
REXA Real-time capable and Extensible Architecture 
SHM Structural Health Monitoring 
VM Virtual Machine 
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Appendix A.2 MLISA Code

Algorithm A1. Shortened MLISA code of discretized regression GUW CNN model (use case 1)
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