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Abstract: The clique transversal problem is a critical concept in graph theory, focused on identifying
a minimum subset of vertices that intersects all maximal cliques in a graph. This problem and
its variations—such as the k-fold clique, {k}-clique, minus clique, and signed clique transversal
problems—have received significant interest due to their theoretical importance and practical applica-
tions. This paper examines the k-fold clique, {k}-clique, minus clique, and signed clique transversal
problems on distance-hereditary graphs. Known for their distinctive structural properties, distance
hereditary graphs provide an ideal framework for studying these problem variants. By exploring
these issues in the context of distance-hereditary graphs, this research enhances the understanding
of the computational challenges and the potential for developing efficient algorithms to address
these problems.

Keywords: clique transversal function; distance-hereditary graph; dynamic programming; PTF-tree;
twin set

1. Introduction

Distance-hereditary graphs were first introduced and studied in the 1970s as part
of the broader exploration of special graph classes characterized by specific structural
properties. A graph is defined as distance-hereditary if the distance between every pair
of vertices in any connected induced subgraph is the same as in the original graph. This
preservation of distances under induced subgraphs has led to distance-hereditary graphs
being considered an important and intriguing class within graph theory.

The concept was formally defined by Howorka in 1977 [1], who provided the initial
characterization and properties of distance-hereditary graphs. This work laid the ground-
work for further research into the structural and algorithmic aspects of these graphs. The
1980s and 1990s saw significant advancements in the study of distance-hereditary graphs,
with researchers exploring various algorithmic applications and characterizations. For
instance, Bandelt and Mulder [2] demonstrated that distance-hereditary graphs could be
recognized efficiently, leading to a surge in interest in their algorithmic properties. The
recognition algorithm for distance-hereditary graphs, which operates in linear time, was a
notable milestone, highlighting the practical feasibility of working with these graphs in
computational contexts.

The study of distance-hereditary graphs continues to be a dynamic and evolving field.
One of the critical aspects of distance-hereditary graphs is the relationship with interval
functions [3]. The interval function IG(u, v) in a connected graph captures the set of vertices
lying on some shortest u, v-path, and, in distance-hereditary graphs, every induced path
is indeed the shortest. This property has allowed for a novel characterization of these
graphs using first-order betweenness axioms and enriching the theoretical framework
surrounding them.

In addition to these foundational aspects, Cicerone et al. introduced and explored
mutual-visibility in distance-hereditary graphs [4]. Mutual-visibility within a graph per-
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tains to the visibility of vertices along the shortest paths, and it has been shown that the
mutual-visibility number can be computed in linear time for distance-hereditary graphs,
providing efficient algorithms for specific graph classes.

Further expanding on the properties of distance-hereditary graphs, Dragan et al. [5]
investigated the eccentricity function, demonstrating that it is almost unimodal within these
graphs. This research offers a complete characterization of the centers of distance-hereditary
graphs and proposes a linear-time algorithm for computing eccentricities, contributing to
the efficient processing of these graphs.

The complexity of graph problems within distance-hereditary graphs has also been
a subject of intense study. For instance, Ducoffe and Popa addressed the fine-grained
complexity of the maximum matching problem in graphs of bounded split-width, including
distance-hereditary graphs [6]. Their work answers an open question and introduces new
tools for the b-matching problem and dynamic programming.

In graph isomorphism, Gavrilyuk et al. showed that the Weisfeiler-Leman algorithm
effectively tests isomorphism for distance-hereditary graphs, reducing the dimension
required for this class from the previously known upper bound [7]. This result enhances
our ability to differentiate between graphs in this class efficiently.

Paired-domination, another key problem in graph theory, has been examined in the
context of distance-hereditary graphs [8]. The work provides an O(n2)-time algorithm for
determining minimum paired-dominating sets.

Moreover, the recognition of distance-hereditary graphs has been explored through
distributed interactive proofs [9]. The protocols for recognizing these graphs, with proof
sizes as small as O(log n) bits, underscore the feasibility of decentralized algorithms in
graph theory.

Finally, the enumeration of distance-hereditary graphs has been advanced by Yamazaki
et al. [10], who developed algorithms that are not only theoretically sound but also practical
to implement. These algorithms have led to the creation of catalogs for graph classes up to
15 vertices, demonstrating the practical utility of these methods.

The clique transversal problem is a fundamental concept in graph theory, involving
the identification of a minimum subset of vertices that intersects all maximal cliques in a
graph. This problem, along with its variations—such as the k-fold clique, {k}-clique, minus
clique, and signed clique transversal problems—has attracted significant attention due to
its practical applications [11–14] and theoretical significance [15–18]. The k-fold clique, {k}-
clique, minus clique, and signed clique transversal problems remain unexplored challenges
for distance-hereditary graphs. This paper aims to investigate the four clique transversal
problems on distance-hereditary graphs. By focusing on these specific problems, this study
aims to deepen the understanding of the computational challenges associated with them
and to explore the potential for developing efficient algorithms to solve them. The insights
gained from this research are expected to contribute significantly to the broader field of
graph theory and to provide practical tools for applications in various domains where
graph-based modeling is essential.

To solve the four clique transversal problems, this paper identifies their common
characteristics and introduces the (p, d, ℓ, b)-clique transversal problem. It demonstrates
that the k-fold clique, k-clique, minus clique, and signed clique transversal problems are
all special cases of the (p, d, ℓ, b)-clique transversal problem. This formulation provides a
unified approach to solving these four problems. We then present a dynamic programming
algorithm specifically designed to solve the (p, d, ℓ, b)-clique transversal problem.

Dynamic programming is a versatile and powerful technique for solving complex
problems by breaking them down into smaller subproblems, solving all the smaller sub-
problems, and storing their results, and then combining their solutions to solve the original
problem. It is particularly effective for optimization problems, where the goal is to find the
best solution among many possible options. The key idea behind dynamic programming
is to store the results of subproblems and reuse them when needed, thereby avoiding
redundant calculations and significantly improving efficiency.
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The development of a dynamic programming algorithm typically involves the follow-
ing steps:

1. Characterize the structure of an optimal solution: Identify how the optimal solution to
the problem can be composed of the solutions to its subproblems. This step involves
understanding the relationship between the original problem and its subproblems
and how to combine the subproblem solutions to form the optimal solution for the
entire problem;

2. Define the recursive formula: Once the structure of the optimal solution is under-
stood, the next step is to define the recursive relationship (or recurrence relation)
that expresses the solution to the original problem in terms of the solutions to its
subproblems. This formula is central to the dynamic programming approach, as it
dictates how the subproblem solutions are combined;

3. Compute the value of an optimal solution in a bottom-up fashion using the recur-
sive formula;

4. Analyze the time complexity: The time complexity is generally proportional to the
number of subproblems multiplied by the time required to solve each subproblem.

For a fundamental understanding of dynamic programming algorithms and their
examples, readers are encouraged to consult Introduction to Algorithms [19]. In this paper,
our dynamic programming algorithm is capable of solving the (p, d, ℓ, b)-clique transver-
sal problem in O(n(ω(G))4) time for a distance-hereditary graph G, where ω(G) is the
cardinality of a maximum clique in the graph G (when the context is clear, we also use
ω interchangeably).

We develop this dynamic programming algorithm by employing binary ordered
decomposition trees—specifically, PTF-trees—of distance-hereditary graphs. The idea is
to leverage the tree decomposition, a structural characterization of distance-hereditary
graphs, to represent the graph as a tree structure where dynamic programming can be
efficiently applied to the nodes. Tree decompositions, which capture the hierarchical nature
of distance-hereditary graphs, facilitate breaking down the problem into smaller, more
manageable subproblems that can be solved iteratively.

For specific examples of dynamic programming algorithms applied to distance-
hereditary graphs, readers can refer to research papers [8,20–23], which address various
optimization problems using similar decomposition-based approaches.

To guide the reader through the contributions of this paper, the rest of the paper is
organized as follows:

- In Section 2, we provide the necessary background and preliminary definitions re-
quired for understanding the subsequent sections. This includes the recursive def-
inition of distance-hereditary graphs and detailed explanations of the four clique
transversal problems. The recursive definition introduces the construction of a binary
ordered decomposition tree, known as a PTF-tree, which is central to the development
of our algorithm;

- Section 3 introduces the (p, d, ℓ, b)-clique transversal problem, details the problem’s
constraints and parameters, and explains how it generalizes the four specific clique
transversal problems;

- In Section 4, we identify how the optimal solution to the (p, d, ℓ, b)-clique transversal
problem can be composed of the solutions to its subproblems and define the recursive
formulas using the recursive definition of distance-hereditary graphs;

- Section 5 presents our dynamic programming algorithm for solving the (p, d, ℓ, b)-
clique transversal problem. We guide the reader through the design of the algorithm,
illustrating how the value of an optimal solution is computed in a bottom-up manner
using the recursive formulas. Additionally, we provide a detailed analysis of the
algorithm’s time complexity.
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2. Preliminaries

This section covers a few fundamental concepts. For a more in-depth exploration,
we recommend referring to standard textbooks or monographs, such as the books of
Cormen et al. [19] and Diestel [24].

A graph G = (V, E) consists of a set of vertices V and a set of edges E. When the
vertices and edges of a graph G are not explicitly specified, they are denoted by V(G) and
E(G), respectively. Typically, a graph is assumed to have n vertices and m edges.

Two graphs G1 = (V1, E1) and G2 = (V2, E2) are disjoint if V1 ∩ V2 = ∅ and E1 ∩ E2 =
∅. The union of G1 and G2 is defined as G1 ∪ G2 = (V1 ∪ V2, E1 ∪ E2). For a nonempty
subset S of the vertices in a graph G, a subgraph of G induced by S, denoted by G[S], is the
graph with vertex set S and edge set {(u, v) ∈ E(G) | u, v ∈ S}. The number of elements in
a set S is called the cardinality (or size) of S, denoted by |S|.

A subset of the vertices in a graph is a clique if it consists of only one vertex or if every
two distinct vertices in the subset are adjacent. A clique in a graph is maximal if it cannot
be contained in any larger maximal clique in the graph. A maximum clique is a maximal
clique with the largest possible cardinality. The clique number of a graph G, denoted by
ω(G), is the cardinality of a maximum clique in G.

A clique transversal set of G is a subset S of the vertices such that |S ∩ C| ≥ 1 for every
maximal clique C ∈ C(G). The clique transversal problem is to find a clique transversal set
of G with minimum cardinality. The minimum cardinality of a clique transversal set of G is
denoted by τC(G).

2.1. Clique Transversal Functions

Given a subset Y of real numbers, let f : X → Y be a function mapping elements from
the domain X to the codomain Y. We define f (X′) as ∑x∈X′ f (x) for any subset X′ ⊆ X.
The weight of f is defined as f (X).

Definition 1 (See [13]). Consider a graph G and a fixed positive integer k. A function f : V(G) →
{0, 1} is a k-fold clique transversal function of G is f (C) ≥ k for every C ∈ C(G). The minimum
weight of a k-fold clique transversal function of G is defined as τk

C(G). The k-fold clique transversal
problem is to find a k-fold clique transversal function of G with minimum weight.

Definition 2 (See [13]). Consider a graph G and a fixed positive integer k. A function f :
V(G) → {0, 1, . . . , k} is a {k}-clique transversal function of G if f (C) ≥ k for every C ∈ C(G).
The minimum weight of a {k}-clique transversal function of G is defined as τ

{k}
C (G). The {k}-clique

transversal problem is to find a {k}-clique transversal function of G with minimum weight.

Definition 3 (See [13]). A function f : V → {−1, 1} is a signed clique transversal function of
a graph G = (V, E) if f (C) ≥ 1 for every C ∈ C(G). The minimum weight of a signed clique
transversal function of G is defined as τs

C(G). The signed clique transversal problem is to find a
signed clique transversal function of G with minimum weight.

Definition 4 (See [13]). A function f : V → {−1, 0, 1} is a minus clique transversal function
of a graph G = (V, E) if f (C) ≥ 1 for every C ∈ C(G). The minimum weight of a minus clique
transversal function of G is defined as τ−

C (G). The minus clique transversal problem is to find a
minus clique transversal function of G with minimum weight.

2.2. Distance-Hereditary Graphs

The distance between two vertices in a graph is the length of the shortest path con-
necting them. This length is measured by the number of edges in the path. If no path
exists between the two vertices, the distance is considered to be infinite. This concept is
fundamental in graph theory and is used to determine how “close” or “far apart” vertices
are within a graph. The diameter is a related concept, measuring the greatest distance
between any two vertices.
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A graph is distance-hereditary if the distance between any two vertices in a connected
induced subgraph is the same as in the original graph. Thus, any induced subgraph of
a distance-hereditary graph is also distance-hereditary. Theorem 1 gives the recursive
definition of distance-hereditary graphs.

Theorem 1 ([20,21]). Distance-hereditary graphs can be defined recursively as follows:

1. A graph G consisting of a single vertex v is distance-hereditary, and the twin set TS(G) =
{v}. Such a graph is called a primitive distance-hereditary graph;

2. Let G1 and G2 be two disjoint distance-hereditary graphs with the twin sets TS(G1) and
TS(G2), respectively. A graph G with |V(G)| ≥ 2, obtained from G1 and G2 through one of
the following three operations, is also a distance-hereditary graph:

(a) False twin operation: The graph G is formed by the union of G1 and G2, with TS(G) =
TS(G1) ∪ TS(G2), and denoted by G = G1

⊙
G2;

(b) True twin operation: The graph G is formed by connecting every vertex of TS(G1)
to all vertices of TS(G2), with TS(G) = TS(G1) ∪ TS(G2), and denoted by G =
G1

⊗
G2;

(c) Pendant vertex operation: The graph G is formed by connecting every vertex of TS(G1)
to all vertices of TS(G2), with TS(G) = TS(G1), and denoted by G = G1

⊕
G2.

By Theorem 1, a distance-hereditary graph G has a twin set TS(G), which is a subset
of V(G) and defined recursively. This theorem also describes the construction of a binary
ordered decomposition tree, known as a PTF-tree, which consists of 2n − 1 nodes and
can be built in linear time. In a PTF-tree, each leaf represents a single-vertex graph, and
each internal node labeled by

⊕
,
⊗

, or
⊙

corresponds to an operation from the theorem.
Figure 1 illustrates a distance-hereditary graph and its PTF-tree.

Figure 1. (a) A distance-hereditary graph G. (b) A PTF-tree of G.

Definition 5. Let C(G) denote the set of all maximal cliques in a distance-hereditary graph G.
Consequently, C(G[TS(G)]) represents the set of all maximal cliques in the subgraph G[TS(G)].
We define CT(G) as the set of maximal cliques in G that are also maximal cliques in G[TS(G)].
Conversely, CT(G) is defined as the set of maximal cliques in G that are not maximal cliques in
G[TS(G)]. Thus, the set of all maximal cliques in G can be expressed as C(G) = CT(G) ∪ CT(G).

Definition 6. Let G1 and G2 be disjoint distance-hereditary graphs. Suppose that G is either
G = G1

⊕
G2 or G = G1

⊗
G2. We define CX(G) as the set {C1 ∪ C2 | C1 ∈ C(G1[TS(G1)]),

and C2 ∈ C(G2[TS(G2)])}.
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Lemma 1 ([22]). Suppose that G is a primitive distance-hereditary graph with the vertex v. Then,
C(G) = C(G[TS(G))]) = CT(G) and CT(G) = ∅.

Lemma 2 ([22]). Let G1 and G2 be disjoint distance-hereditary graphs. If G = G1
⊙

G2, then

1. C(G[TS(G)]) = C(G1[TS(G1)]) ∪ C(G2[TS(G2)]);
2. C(G) = C(G1) ∪ C(G2),;
3. CT(G) = CT(G1) ∪ CT(G2); and
4. CT(G) = CT(G1) ∪ CT(G2).

Lemma 3 ([22]). Let G1 and G2 be disjoint distance-hereditary graphs. If G = G1
⊗

G2, then

1. C(G[TS(G)]) = CX(G);
2. C(G) = CT(G1) ∪ CT(G2) ∪ CX(G);
3. CT(G) = C(G[TS(G)]); and
4. CT(G) = CT(G1) ∪ CT(G2).

Lemma 4 ([22]). Let G1 and G2 be disjoint distance-hereditary graphs. If G = G1
⊕

G2, then

1. C(G[TS(G)]) = C(G1[TS(G1)]);
2. C(G) = CT(G1) ∪ CT(G2) ∪ CX(G);
3. CT(G) = ∅; and
4. CT(G) = C(G).

3. The (p, d, ℓ, b)-Clique Transversal Problem

Let G be a graph and b ∈ Z. Suppose that p ∈ {0,−1} and d, ℓ ∈ Z+ are fixed. A
function f : V(G) → {p, p+ d, . . . , p+ (ℓ− 1) · d} is a (p, d, ℓ, b)-clique transversal function
of G if f (C) ≥ b for every C ∈ C(G). The minimum weight of a (p, d, ℓ, b)-clique transversal
function of G is defined as τC(p, d, ℓ, b)(G). The (p, d, ℓ, b)-clique transversal problem is to
find a (p, d, ℓ, b)-clique transversal function of G with minimum weight.

Remark 1. Suppose that G is a graph and b is an integer. Let p ∈ {0,−1} and d, ℓ ∈ Z+ be
fixed. If b > p + (ℓ− 1) · d) · ω(G), then G has no (p, d, ℓ, b)-clique transversal function. If
b < p · ω(G), then τC(p, d, ℓ, b)(G) = p · |V(G))|.

Lemma 5. Let G be a graph. Then,

1. τk
C(G) = τC(0, 1, 2, k)(G);

2. τ
{k}
C (G) = τC(0, 1, k + 1, k)(G);

3. τs
C(G) = τC(−1, 2, 2, 1)(G); and

4. τ−
C (G) = τC(−1, 1, 3, 1)(G).

Proof. The statements can be easily verified according to their definitions.

Lemma 5 demonstrates that the k-fold clique, {k}-clique, minus clique, and signed
clique transversal problems are particular cases of the (p, d, ℓ, b)-clique transversal problem.
The formulation provides a unified approach to solving these four clique transversal
problems. Additionally, following Remark 1, we focus the problem on a distance-hereditary
graph G for b within the range p · ω(G) ≤ b ≤ (p + (ℓ− 1) · d) · ω(G).

4. Identifying Subproblem Solutions and Defining the Recursive Formulas

This section explores the methodology for addressing the (p, d, ℓ, b)-clique transversal
problem by decomposing it into smaller, more manageable subproblems using the recursive
definition of distance-hereditary graphs. This section demonstrates how the optimal
solution can be systematically constructed by combining the solutions to these subproblems.
It also introduces the recursive formulas that forms the foundation of this approach, guiding
the reader through the step-by-step process of building the complete solution.
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Definition 7. Suppose that G = (V, E) is a distance-hereditary graph and p ∈ {0,−1}. Let
d, ℓ, x, y, z be integers such that d, ℓ ∈ Z+ are fixed, and p · ω(G) ≤ x, y, z ≤ (p + (ℓ− 1) · d) ·
ω(G).

(1) A function f : V(G) → {p, p + d, . . . , p + (ℓ− 1) · d} is a Γd,ℓ
p,0(x, y)-clique transversal

function of G if the following conditions are all satisfied:

(i) CT(G) = ∅ and CT(G) ̸= ∅;
(ii) f (C) ≥ x for every C ∈ CT(G);
(iii) f (C) ≥ y for every C ∈ C(G[TS(G)]).

The minimum weight of a Γd,ℓ
p,0(x, y)-clique transversal function of G is defined as τd,ℓ

p,0(x, y)(G).

If a Γd,ℓ
p,0(x, y)-clique transversal function of G does not exist, then τd,ℓ

p,0(x, y)(G) = ∞;

(2) A function f : V(G) → {p, p + d, . . . , p + (ℓ− 1) · d} is a Γd,ℓ
p,1(x, y)-clique transversal

function of G if the following conditions are all satisfied:

(i) CT(G) ̸= ∅ and CT(G) = ∅;
(ii) f (C) ≥ x for every C ∈ CT(G);
(iii) f (C) ≥ y for every C ∈ C(G[TS(G)]).

The minimum weight of a Γd,ℓ
p,1(x, y)-clique transversal function of G is defined as τd,ℓ

p,1(x, y)(G).

If a Γd,ℓ
p,1(x, y)-clique transversal function of G does not exist, then τd,ℓ

p,1(x, y)(G) = ∞;

(3) A function f : V(G) → {p, p + d, . . . , p + (ℓ− 1) · d} is a Γd,ℓ
p,2(x, y, z)-clique transversal

function of G if the following conditions are all satisfied:

(i) CT(G) ̸= ∅ and CT(G) ̸= ∅;
(ii) f (C) ≥ x for every C ∈ CT(G);
(iii) f (C) ≥ y for every C ∈ CT(G);
(iv) f (C) ≥ z for every C ∈ C(G[TS(G)]).

We use τd,ℓ
p,2(x, y, z)(G) to denote the minimum weight of a Γd,ℓ

p,2(x, y, z)-clique transver-

sal function of G. If a Γd,ℓ
p,2(x, y, z)-clique transversal function of G does not exist, then

τd,ℓ
p,2(x, y, z)(G) = ∞.

Theorem 2. Suppose that G is a distance-hereditary graph and b, y, z ∈ Z. Let p ∈ {0,−1} and
d, ℓ ∈ Z+ be fixed. Then, τC(p, d, ℓ, b)(G) can be computed as follows:

(1) If CT(G) = ∅ and CT(G) ̸= ∅, then

τC(p, d, ℓ, b)(G) = min
p·ω(G)≤y≤(p+(ℓ−1)·d)·ω(G)

{τd,ℓ
p,0(b, y)(G)};

(2) If CT(G) ̸= ∅ and CT(G) = ∅, then

τC(p, d, ℓ, b)(G) = min
p·ω(G)≤y≤(p+(ℓ−1)·d)·ω(G)

{τd,ℓ
p,1(b, y)(G)};

(3) If CT(G) ̸= ∅ and CT(G) ̸= ∅, then

τC(p, d, ℓ, b)(G) = min
p·ω(G)≤z≤(p+(ℓ−1)·d)·ω(G)

{τd,ℓ
p,2(b, b, z)(G)}.

Proof. By Definition 5, C(G) = CT(G)∪ CT(G). If CT(G) = ∅ and CT(G) = ∅, then G has
no vertices. Therefore, only three cases need to be considered:

(1) CT(G) = ∅ and CT(G) ̸= ∅;
(2) CT(G) ̸= ∅ and CT(G) = ∅;
(3) CT(G) ̸= ∅ and CT(G) ̸= ∅.

In the following, we only prove the correctness of the statement for Case 3; Statements
(1) and (2) can be proved similarly.
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In this case, CT(G) ̸= ∅ and CT(G) ̸= ∅. By Definition 7, a Γd,ℓ
p,2(b, b, z)-clique transver-

sal function of G is a (p, d, ℓ, b)-clique transversal function of G. Thus,

τC(p, d, ℓ, b)(G) ≤ min
p·ω(G)≤z≤(p+(ℓ−1)·d)·ω(G).

{
τd,ℓ

p,2(b, b, z)(G)
}

.

Conversely, let C ∈ C(G[TS(G)]) and f be a (p, d, ℓ, b)-clique transversal function of
G. Clearly, |C| ≤ ω(G) and p · ω(G) ≤ f (C) ≤ (p + (ℓ− 1) · d) · ω(G). Let f (C) = z. The
function f is a Γd,ℓ

p,2(b, b, z)-clique transversal function of G. Hence,

min
p·ω(G)≤z≤(p+(ℓ−1)·d)·ω(G).

{
τd,ℓ

p,2(b, b, z)(G)
}
≤ τC(p, d, ℓ, b)(G).

Based on the above discussion, Statement (3) therefore holds.

Lemma 6. Suppose that G is a distance-hereditary graph and Gα is a subgraph of G consisting of
only one vertex v. Let p ∈ {0,−1}, and let d, ℓ, x, y, z be integers such that d, ℓ ∈ Z+ are fixed,
and p · ω(G) ≤ x, y, z ≤ (p + (ℓ− 1) · d) · ω(G). Then, τd,ℓ

p,0(x, y)(Gα), τd,ℓ
p,1(x, y)(Gα), and

τd,ℓ
p,2(x, y, z)(Gα) can be computed as follows:

(1) τd,ℓ
p,0(x, y)(Gα) = ∞;

(2) τd,ℓ
p,2(x, y, z)(Gα) = ∞;

(3) Let i = ⌈(max{x, y} − p)/d⌉ · d + p. Then,

τd,ℓ
p,1(x, y)(Gα) =


p if max{x, y} ≤ p,
i if p < max{x, y} ≤ p + (ℓ− 1) · d,
∞ if p + (ℓ− 1) · d < max{x, y}.

Proof. The graph Gα consists of only one vertex v. By Theorem 1, we have TS(Gα) = {v}.
Then, CT(Gα) = ∅, and C(Gα) = CT(Gα) = C(Gα[TS(Gα)]) = {{v}}. By Definition 7, we
obtain τd,ℓ

p,0(x, y)(Gα) = ∞ and τd,ℓ
p,2(x, y, z)(Gα) = ∞. Statements (1) and (2) therefore hold.

We now consider Statement (3). Let f be a Γd,ℓ
p,1(x, y)-clique transversal function

f of Gα. Clearly, f (v) ∈ {p, p + d, . . . , p + (ℓ − 1) · d}. By Definition 7, f (C) ≥ x for
every C ∈ CT(Gα), and f (C) ≥ y for every C ∈ C(Gα[TS(Gα)]). Note that CT(Gα) =
C(Gα[TS(Gα)]) = {{v}}. Therefore, f (v) ≥ max{x, y}. We consider the following cases.
Case 1: max{x, y} ≤ p. Obviously, τd,ℓ

p,1(x, y)(Gα) = f (v) = p.
Case 2: p < max{x, y} ≤ p + (ℓ− 1) · d. Let

i = ⌈(max{x, y} − p)/d⌉ · d + p. Then,

i = ⌈(max{x, y} − p)/d⌉ · d + p
≥ ((max{x, y} − p)/d) · d + p
= (max{x, y} − p) + p
= max{x, y}.

Assume that there exists an integer j < i such that j ∈ {p, p + d, . . . , p + (ℓ− 1) · d} and
j ≥ max{x, y}. However, this leads to a contradiction as follows:

j ≤ i − d
= ⌈(max{x, y} − p)/d⌉ · d + p − d
< ((max{x, y} − p)/d + 1) · d + p − d
= (max{x, y} − p + d) + p − d
= max{x, y}.

Hence, τd,ℓ
p,1(x, y)(Gα) = i = ⌈(max{x, y} − p)/d⌉ · d + p.
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Case 3: p + (ℓ− 1) · d < max{x, y}. Then, f (v) > p + (ℓ− 1) · d. This contradicts the re-
quirement that f (v) ∈ {p, p + d, . . . , p + (ℓ− 1) · d}. Consequently, τd,ℓ

p,1(x, y)(Gα) = ∞.

Lemma 7. Suppose that G is a distance-hereditary graph and Gα = Gα1

⊙
Gα2 is an induced

subgraph of G formed from two disjoint distance-hereditary graphs Gα1 and Gα2 . Let p ∈ {0,−1},
and let d, ℓ, x, y, z be integers such that d, ℓ ∈ Z+ are fixed, and p · ω(G) ≤ x, y, z ≤ (p +

(ℓ− 1) · d) · ω(G). Then, τd,ℓ
p,0(x, y)(Gα), τd,ℓ

p,1(x, y)(Gα), and τd,ℓ
p,2(x, y, z)(Gα) can be computed

as follows:

(1) Assume that CT(Gα) = ∅ and CT(Gα) ̸= ∅;

(1.1) τd,ℓ
p,1(x, y)(Gα) = ∞;

(1.2) τd,ℓ
p,2(x, y, z)(Gα) = ∞;

(1.3) τd,ℓ
p,0(x, y)(Gα) = τd,ℓ

p,0(x, y)(Gα1) + τd,ℓ
p,0(x, y)(Gα2).

(2) Assume that CT(Gα) ̸= ∅ and CT(Gα) = ∅;

(2.1) τd,ℓ
p,0(x, y)(Gα) = ∞;

(2.2) τd,ℓ
p,2(x, y, z)(Gα) = ∞;

(2.3) Let w = max{x, y}. Then, τd,ℓ
p,1(x, y)(Gα) = τd,ℓ

p,1(w, w)(Gα1) + τd,ℓ
p,1(w, w)(Gα2).

(3) Assume that CT(Gα) ̸= ∅ and CT(Gα) ̸= ∅;

(3.1) τd,ℓ
p,0(x, y)(Gα) = ∞;

(3.2) τd,ℓ
p,1(x, y)(Gα) = ∞;

(3.3) Let i ∈ {1, 2}. τd,ℓ
p,2(x, y, z)(Gα) can be computed as follows:

(3.3.1) If CT(Gα1) ̸= ∅ and CT(Gα1) ̸= ∅, and CT(Gα2) ̸= ∅ and CT(Gα2) ̸= ∅, then

τd,ℓ
p,2(x, y, z)(Gα) = τd,ℓ

p,2(x, y, z)(Gα1) + τd,ℓ
p,2(x, y, z)(Gα2);

(3.3.2) If CT(Gαi ) ̸= ∅ and CT(Gαi ) ̸= ∅, and CT(Gα3−i ) = ∅ and CT(Gα3−i ) ̸= ∅, then

τd,ℓ
p,2(x, y, z)(Gα) = min

i∈{1,2}

{
τd,ℓ

p,2(x, y, z)(Gαi ) + τd,ℓ
p,0(x, z)(Gα3−i )

}
;

(3.3.3) If CT(Gαi ) ̸= ∅ and CT(Gαi ) ̸= ∅, and CT(Gα3−i ) ̸= ∅ and CT(Gα3−i ) = ∅, then

τd,ℓ
p,2(x, y, z)(Gα) = min

i∈{1,2}

{
τd,ℓ

p,2(x, y, z)(Gαi ) + τd,ℓ
p,1(y, z)(Gα3−i )

}
;

(3.3.4) If CT(Gαi ) ̸= ∅ and CT(Gαi ) = ∅, and CT(Gα3−i ) = ∅ and CT(Gα3−i ) ̸= ∅, then

τd,ℓ
p,2(x, y, z)(Gα) = min

i∈{1,2}

{
τd,ℓ

p,1(y, z)(Gαi ) + τd,ℓ
p,0(x, z)(Gα3−i )

}
.

Proof. By definition, an induced subgraph of a distance-hereditary graph is also distance-
hereditary. The graph Gα is distance-hereditary and C(Gα) = CT(Gα) ∪ CT(Gα). If
CT(Gα) = ∅ and CT(Gα) = ∅, then Gα has no vertices. Therefore, only three cases
need to be considered based on their emptiness:

• CT(Gα) = ∅ and CT(Gα) ̸= ∅;
• CT(Gα) ̸= ∅ and CT(Gα) = ∅;
• CT(Gα) ̸= ∅ and CT(Gα) ̸= ∅.

(1) Assume that CT(Gα) = ∅ and CT(Gα) ̸= ∅. By Definition 7, τd,ℓ
p,1(x, y)(Gα) = ∞ and

τd,ℓ
p,2(x, y, z)(Gα) = ∞. Statements (1.1) and (1.2) therefore hold.

Now, let us consider Statement (1.3). Since Gα = Gα1

⊙
Gα2 , by Theorem 1, we have

Gα = Gα1 ∪ Gα2 and TS(Gα) = TS(Gα1) ∪ TS(Gα2). Following Lemma 2, we know that
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• C(Gα[TS(Gα)]) = C(Gα1 [TS(Gα1)]) ∪ C(Gα2 [TS(Gα2)]); and
• CT(Gα) = CT(Gα1) ∪ CT(Gα2).

Let f1 and f2 be Γd,ℓ
p,0(x, y)-clique transversal functions of Gα1 and Gα2 , respectively.

Let f be a function of Gα such that f (v) = f1(v) for every v ∈ V(Gα1), and f (v) = f2(v)
for every v ∈ V(Gα2). For every maximal clique C ∈ CT(Gα), either C ∈ CT(Gα1) or
C ∈ CT(Gα2). Therefore, either f (C) = f1(C) ≥ x or f (C) = f2(C) ≥ x. Similarly, either
f (C) = f1(C) ≥ y or f (C) = f2(C) ≥ y for every C ∈ C(Gα[TS(Gα)]). The function f is a
Γd,ℓ

p,0(x, y)-clique transversal function of Gα. Hence,

τd,ℓ
p,0(x, y)(Gα) ≤ τd,ℓ

p,0(x, y)(Gα1) + τd,ℓ
p,0(x, y)(Gα2).

Conversely, let f be a Γd,ℓ
p,0(x, y)-clique transversal function of Gα. Let f1 be a function

of Gα1 such that f1(v) = f (v) for every v ∈ V(Gα1), and let f2 be a function of Gα2 such
that f2(v) = f (v) for every v ∈ V(Gα2).

For every C ∈ CT(Gα1) (respectively, C ∈ C(Gα1 [TS(Gα1)]), C ∈ CT(Gα) (respectively,
C ∈ C(Gα[TS(Gα)])). Therefore, f1(C) = f (C) ≥ x (respectively, f1(C) ≥ y) for every
C ∈ CT(Gα1) (respectively, C ∈ C(Gα1 [TS(Gα1)])). Similarly, f2(C) = f (C) ≥ x (respec-
tively, f2(C) ≥ y) for every C ∈ CT(Gα2) (respectively, C ∈ C(Gα2 [TS(Gα2)])). Thus, the
functions f1 and f2 are Γd,ℓ

p,0(x, y)-clique transversal functions of Gα1 and Gα2 , respectively.
Consequently,

τd,ℓ
p,0(x, y)(Gα1) + τd,ℓ

p,0(x, y)(Gα2) ≤ τd,ℓ
p,0(x, y)(Gα).

The above discussion shows that τd,ℓ
p,0(x, y)(Gα) = τd,ℓ

p,0(x, y)(Gα1) + τd,ℓ
p,0(x, y)(Gα2).

Statement (1.3) therefore holds.

(2) Assume that CT(Gα) ̸= ∅ and CT(Gα) = ∅. Following Definition 7, we can conclude
that Statements (2.1) and (2.2) are true. We now consider Statement (2.3). Following
Lemma 2, we know that

• C(Gα[TS(Gα)]) = C(Gα1 [TS(Gα1)]) ∪ C(Gα2 [TS(Gα2)]); and
• CT(Gα) = CTGα1) ∪ CT(Gα2).

Recall that Gα = Gα1 ∪ Gα2 and TS(Gα) = TS(Gα1) ∪ TS(Gα2). Since CT(Gα) = ∅,
we have C(Gα) = CT(Gα) = C(Gα[TS(Gα)]). Therefore, CT(Gα1) = C(Gα1 [TS(Gα1)]) and
CT(Gα2) = C(Gα2 [TS(Gα2)]).

Let f1 and f2 be Γd,ℓ
p,1(x, y)-clique transversal functions of Gα1 and Gα2 , respectively.

By Definition 7, f1(C) ≥ x for every C ∈ CT(Gα1), and f (C1) ≥ y for every C ∈
C(Gα1 [TS(Gα1)]). Note that CT(Gα1) = C(Gα1 [TS(Gα1)]). Therefore, f1(C) ≥ max{x, y}
for every C ∈ CT(Gα1) and C ∈ C(Gα1 [TS(Gα1)]). Similarly, f2(C) ≥ max{x, y} for ev-
ery C ∈ CT(Gα2) and C ∈ C(Gα2 [TS(Gα2)]). Let w = max{x, y}. Thus, f1 and f2 are
Γd,ℓ

p,1(w, w)-clique transversal functions of Gα1 and Gα2 , respectively.
Let f be a function of Gα such that f (v) = f1(v) for every v ∈ V(Gα1), and f (v) = f2(v)

for every v ∈ V(Gα2). For every maximal clique C ∈ CT(Gα), either C ∈ CT(Gα1) or
C ∈ CT(Gα2). Hence, either f (C) = f1(C) ≥ w or f (C) = f2(C) ≥ w. Similarly, either
f (C) = f1(C) ≥ w or f (C) = f2(C) ≥ w for every C ∈ C(Gα[TS(Gα)]). The function f is a
Γd,ℓ

p,1(w, w)-clique transversal function of Gα. Consequently,

τd,ℓ
p,1(x, y)(Gα) ≤ τd,ℓ

p,1(w, w)(Gα1) + τd,ℓ
p,1(w, w)(Gα2).

Conversely, let f be a Γd,ℓ
p,1(x, y)-clique transversal function of Gα, and let w = max{x, y}.

By Definition 7, f (C) ≥ x for every C ∈ CT(Gα), and f (C) ≥ y for every C ∈ C(Gα[TS(Gα)]).
Note that CT(Gα) = C(Gα[TS(Gα)]). Therefore, f (C) ≥ max{x, y} for every C ∈ CT(Gα)

and C ∈ C(Gα[TS(Gα)]). The function f is a Γd,ℓ
p,1(w, w)-clique transversal function of Gα.



Algorithms 2024, 17, 359 11 of 21

Let f1 be a function of Gα1 such that f1(v) = f (v) for every v ∈ V(Gα1), and let f2 be a
function of Gα2 such that f2(v) = f (v) for every v ∈ V(Gα2). Recall that

• C(Gα[TS(Gα)]) = C(Gα1 [TS(Gα1)]) ∪ C(Gα2 [TS(Gα2)]); and
• CT(Gα) = CTGα1) ∪ CT(Gα2).

Thus, f1(C) = f (C) ≥ w for every C ∈ CT(Gα1) and C ∈ C(Gα1 [TS(Gα1)]). Similarly,
f2(C) = f (C) ≥ w for every C ∈ CT(Gα2) and C ∈ C(Gα2 [TS(Gα2)]). The functions f1 and
f2 are Γd,ℓ

p,1(w, w)-clique transversal functions of Gα1 and Gα2 , respectively. Consequently,

τd,ℓ
p,1(w, w)(Gα1) + τd,ℓ

p,1(w, w)(Gα2) ≤ τd,ℓ
p,1(x, y)(Gα).

The above discussion shows that τd,ℓ
p,1(x, y)(Gα) = τd,ℓ

p,1(w, w)(Gα1) + τd,ℓ
p,1(w, w)(Gα2).

Statement (2.3) therefore holds.

(3) Assume that CT(Gα) ̸= ∅ and CT(Gα) ̸= ∅. By Definition 7, τd,ℓ
p,0(x, y)(Gα) = ∞

and τd,ℓ
p,1(x, y)(Gα) = ∞. Statements (3.1) and (3.2) therefore hold. Next, we consider the

remaining statements.
Note that CT(Gα) = CT(Gα1) ∪ CT(Gα2) and CT(Gα) = CT(Gα1) ∪ CT(Gα2). Let i =

{1, 2}. Given CT(Gα) ̸= ∅ and CT(Gα) ̸= ∅, we consider four cases:
Case 1: CT(Gα1) ̸= ∅ and CT(Gα1) ̸= ∅; CT(Gα2) ̸= ∅ and CT(Gα2) ̸= ∅;
Case 2: CT(Gαi ) ̸= ∅ and CT(Gαi ) ̸= ∅; CT(Gα3−i ) = ∅ and CT(Gα3−i ) ̸= ∅;
Case 3: CT(Gαi ) ̸= ∅ and CT(Gαi ) ̸= ∅; CT(Gα3−i ) ̸= ∅ and CT(Gα3−i ) = ∅;
Case 4: CT(Gαi ) ̸= ∅ and CT(Gαi ) = ∅; CT(Gα3−i ) = ∅ and CT(Gα3−i ) ̸= ∅.
In the following, we prove the statement for Case 1. The statements for the other cases

can be proven similarly.
Let f1 and f2 be Γd,ℓ

p,2(x, y, z)-clique transversal functions of Gα1 and Gα2 , respectively.
Let f be a function of Gα such that f (v) = f1(v) for every v ∈ V(Gα1), and f (v) = f2(v)
for every v ∈ V(Gα2). For every maximal clique C ∈ CT(Gα), either C ∈ CT(Gα1) or
C ∈ CT(Gα2). Therefore, either f (C) = f1(C) ≥ x or f (C) = f2(C) ≥ x. Similarly, either
f (C) = f1(C) ≥ y or f (C) = f2(C) ≥ y for every maximal clique C ∈ CT(Gα). For each
clique C ∈ C(Gα[TS(Gα)]), either C ∈ C(Gα1 [TS(Gα1)]) or C ∈ C(Gα2 [TS(Gα2)]), and, thus,
either f (C) = f1(C) ≥ z or f (C) = f1(C) ≥ z. The function f is a Γd,ℓ

p,2(x, y, z)-clique
transversal function of Gα. Hence,

τd,ℓ
p,2(x, y, z)(Gα) ≤ τd,ℓ

p,2(x, y, z)(Gα1) + τd,ℓ
p,2(x, y, z)(Gα2).

Conversely, let f be a Γd,ℓ
p,2(x, y, z)-clique transversal function of Gα. Let f1 be a function

of Gα1 such that f1(v) = f (v) for every v ∈ V(Gα1), and let f2 be a function of Gα2 such
that f2(v) = f (v) for every v ∈ V(Gα2). Consider the function f1. It is straightforward that
C ∈ CT(Gα) (respectively, C ∈ CT(Gα) and C ∈ C(Gα[TS(Gα)])) for every C ∈ CT(Gα1)
(respectively, C ∈ CT(Gα1) and C ∈ C(Gα1 [TS(Gα1)]). Therefore, f1(C) = f (C) ≥ x
(respectively, f1(C) = f (C) ≥ y and f1(C) = f (C) ≥ z) for every C ∈ CT(Gα1) (respec-
tively, C ∈ CT(Gα1) and C ∈ C(Gα1 [TS(Gα1)])). Similarly, f2(C) = f (C) ≥ x (respec-
tively, f2(C) = f (C) ≥ y and f2(C) = f (C) ≥ z) for every C ∈ CT(Gα2) (respectively,
C ∈ CT(Gα2) and C ∈ C(Gα2 [TS(Gα2)])). Thus, the functions f1 and f2 are Γd,ℓ

p,2(x, y, z)-
clique transversal functions of Gα1 and Gα2 , respectively. We have

τd,ℓ
p,2(x, y, z)(Gα1) + τd,ℓ

p,2(x, y, z)(Gα2) ≤ τd,ℓ
p,2(x, y, z)(Gα).

The above discussion shows that τd,ℓ
p,2(x, y, z)(Gα) = τd,ℓ

p,2(x, y, z)(Gα1)+ τd,ℓ
p,2(x, y, z)(Gα2).

Statement (3.3.1) therefore holds.
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Lemma 8. Suppose that G is a distance-hereditary graph and Gα = Gα1

⊗
Gα2 is an induced

subgraph of G formed from two disjoint distance-hereditary graphs Gα1 and Gα2 . Let p ∈ {0,−1},
and let d, ℓ, x, y, z be integers such that d, ℓ ∈ Z+ are fixed, and p · ω(G) ≤ x, y, z ≤ (p + (ℓ−
1) · d) · ω(G). Then, τd,ℓ

p,0(x, y)(Gα), τd,ℓ
p,1(x, y)(Gα), and τd,ℓ

p,2(x, y, z)(Gα) can be computed as
follows:

(1) Assume that CT(G) ̸= ∅ and CT(G) = ∅;

(1.1) τd,ℓ
p,0(x, y)(Gα) = ∞;

(1.2) τd,ℓ
p,2(x, y, z)(Gα) = ∞;

(1.3) Let w = max{x, y}, wmin = p · ω(G), and wmax = (p + (ℓ− 1) · d) · ω(G). Then,
τd,ℓ

p,1(x, y)(Gα) = τd,ℓ
p,1(w, w)(Gα) and

τd,ℓ
p,1(w, w)(Gα) = min

w1,w2∈Z
w1+w2=w

wmin≤w1,w2≤wmax

{
τd,ℓ

p,1(w1, w1)(Gα1) + τd,ℓ
p,1(w2, w2)(Gα2)

}
.

(2) Assume that CT(G) ̸= ∅ and CT(G) ̸= ∅;

(2.1) τd,ℓ
p,0(x, y)(Gα) = ∞;

(2.2) τd,ℓ
p,1(x, y)(Gα) = ∞;

(2.3) Let i ∈ {1, 2}. Let w = max{x, y}, wmin = p · ω(G), and wmax = (p + (ℓ− 1) ·
d) · ω(G). Then, τd,ℓ

p,2(x, y, z)(Gα) = τd,ℓ
p,2(x, w, w)(Gα). τd,ℓ

p,2(x, w, w)(Gα) can be
computed as follows:

(2.3.1) If CT(Gα1) ̸= ∅ and CT(Gα1) ̸= ∅, and CT(Gα2) ̸= ∅ and CT(Gα2) ̸= ∅, then

τd,ℓ
p,2(x, w, w) = min

w1,w2∈Z
w1+w2=w,

wmin≤w1,w2≤wmax

{
τd,ℓ

p,2(x, w1, w1)(Gα1) + τd,ℓ
p,2(x, w2, w2)(Gα2)

}
;

(2.3.2) If CT(Gαi ) ̸= ∅ and CT(Gαi ) ̸= ∅, and CT(Gα3−i ) = ∅ and CT(Gα3−i ) ̸= ∅, then

τd,ℓ
p,2(x, w, w) = min

i∈{1,2}
w1,w2∈Z

w1+w2=w,
wmin≤w1,w2≤wmax

{
τd,ℓ

p,2(x, w1, w1)(Gαi ) + τd,ℓ
p,0(x, w2)(Gα3−i )

}
;

(2.3.3) If CT(Gαi ) ̸= ∅ and CT(Gαi ) ̸= ∅, and CT(Gα3−i ) ̸= ∅ and CT(Gα3−i ) = ∅, then

τd,ℓ
p,2(x, w, w) = min

i∈{1,2}
w1,w2∈Z

w1+w2=w,
wmin≤w1,w2≤wmax

{
τd,ℓ

p,2(x, w1, w1)(Gαi ) + τd,ℓ
p,1(w2, w2)(Gα3−i )

}
;

(2.3.4) If CT(Gαi ) ̸= ∅ and CT(Gαi ) = ∅, and CT(Gα3−i ) = ∅ and CT(Gα3−i ) ̸= ∅, then

τd,ℓ
p,2(x, w, w) = min

i∈{1,2}
w1,w2∈Z

w1+w2=w,
wmin≤w1,w2≤wmax

{
τd,ℓ

p,1(w1, w1)(Gαi ) + τd,ℓ
p,0(x, w2)(Gα3−i )

}
.

Proof. By Theorem 1, Gα is a distance-hereditary graph formed by connecting every vertex
of TS(Gα1) to all vertices of TS(Gα2), and TS(Gα) = TS(Gα1) ∪ TS(Gα2). The union of
a maximal clique of Gα1 [TS(Gα1)] and a maximal clique of Gα1 [TS(Gα1)] is a maximal
clique in Gα. Furthermore, CT(Gα) = C(Gα[TS(Gα)]) = CX(Gα) by Lemma 3. Therefore,
CT(Gα) ̸= ∅. There are two cases to consider:

• CT(Gα) ̸= ∅ and CT(Gα) = ∅;
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• CT(Gα) ̸= ∅ and CT(Gα) ̸= ∅.

(1) Assume that CT(Gα) ̸= ∅ and CT(Gα) = ∅. By Definition 7, Statements (1.1) and (1.2)
are true.

Let f be a Γd,ℓ
p,1(x, y)-clique transversal function of Gα, and let w = max{x, y}. By

Definition 7, f (C) ≥ x for every C ∈ CT(Gα), and f (C) ≥ y for every C ∈ C(Gα[TS(Gα)]).
Note that CT(Gα) = C(Gα[TS(Gα)]). Therefore, f (C) ≥ max{x, y} for every C ∈ CT(Gα)

and C ∈ C(Gα[TS(Gα)]). The function f is a Γd,ℓ
p,1(w, w)-clique transversal function of Gα.

We have
τd,ℓ

p,1(w, w)(Gα) ≤ τd,ℓ
p,1(x, y)(Gα).

Conversely, let f be a Γd,ℓ
p,1(w, w)-clique transversal function of Gα. By Definition 7,

we obtain that f (C) ≥ w ≥ x for every C ∈ CT(Gα), and f (C) ≥ w ≥ y for every
C ∈ C(Gα[TS(Gα)]). The function f is a Γd,ℓ

p,1(x, y)-clique transversal function of Gα. Thus,

τd,ℓ
p,1(x, y)(Gα) ≤ τd,ℓ

p,1(w, w)(Gα).

Following the discussion above, we know that τd,ℓ
p,1(x, y)(Gα) = τd,ℓ

p,1(w, w)(Gα). Next,

let us consider the equation for τd,ℓ
p,1(w, w)(Gα).

Let wmin = p · ω(G), and wmax = (p + (ℓ− 1) · d) · ω(G). Let w1 and w2 be integers
such that wmin ≤ w1, w2 ≤ wmax, and w1 +w2 = w. Let f1 be Γd,ℓ

p,1(w1, w1)-clique transversal

function of Gα1 and f2 be Γd,ℓ
p,1(w2, w2)-clique transversal function of Gα2 . By Definition 7,

f1(C) ≥ w1 for every C ∈ CT(Gα1) and C ∈ C(Gα1 [TS(Gα1)]). Similarly, f2(C) ≥ w2 for
every C ∈ CT(Gα2) and C ∈ C(Gα2 [TS(Gα2)]).

Let f be a function of Gα such that f (v) = f1(v) for every v ∈ V(Gα1), and f (v) = f2(v)
for every v ∈ V(Gα2). A maximal clique C ∈ CT(Gα) is the union of a clique C1 ∈
C(Gα1 [TS(Gα1)]) and a clique C2 ∈ C(Gα2 [TS(Gα2)]). Hence, f (C) = f1(C1) + f2(C2) ≥
w1 + w2 = w. Note that CT(Gα) = C(Gα[TS(Gα)]). We obtain f (C) = f1(C1) + f2(C2) ≥
w1 +w2 = w for every C ∈ C(Gα[TS(Gα)]). The function f is a Γd,ℓ

p,1(w, w)-clique transversal
function of Gα. Consequently,

τd,ℓ
p,1(w, w)(Gα) ≤ τd,ℓ

p,1(w1, w1)(Gα1) + τd,ℓ
p,1(w2, w2)(Gα2).

Conversely, let f be a Γd,ℓ
p,1(w, w)-clique transversal function of Gα. Let f1 be a function

of Gα1 such that f1(v) = f (v) for every v ∈ V(Gα1), and let f2 be a function of Gα2 such
that f2(v) = f (v) for every v ∈ V(Gα2). Recall that CT(Gα) = C(Gα[TS(Gα)]) = CX(Gα).
We know that CT(Gα1) = C(Gα1 [TS(Gα1)]) and CT(Gα2) = C(Gα2 [TS(Gα2)]). Furthermore,
a maximal clique C ∈ CT(Gα) is the union of a maximal clique C1 of Gα1 [TS(Gα1)] and a
maximal clique C2 of Gα2 [TS(Gα2)]. Thus, f1(C1) + f2(C2) = f (C1) + f (C2) = f (C) ≥ w.

Let Ĉ1 ∈ C(Gα1 [TS(Gα1)]) and Ĉ2 ∈ C(Gα2 [TS(Gα2)]) such that f (Ĉ1) and f (Ĉ2) are
the smallest values in { f (C1) | C1 ∈ C(Gα1 [TS(Gα1)])} and { f (C2) | C2 ∈ C(Gα2 [TS(Gα2)])},
respectively. Then, the clique Ĉ = Ĉ1 ∪ Ĉ2 is a maximal clique in Gα.

Let f (Ĉ1) = x1 and f (C2) = x2. Then, f1(Ĉ1) + f2(Ĉ2) = f (Ĉ1) + f (Ĉ2) = f (Ĉ) =
x1 + x2 ≥ w. Since |Ĉ1| and |Ĉ2| are no more than ω(G), wmin ≤ x1, x2 ≤ wmax. If
x1 + x2 > w, then there exist two integers w1 and w2 such that

(i) wmin ≤ w1, w2 ≤ wmax;
(ii) w1 + w2 = w;
(iii) w1 ≤ x1, and w2 ≤ x2.

If x1 + x2 = w, let w1 = x1 and w2 = x2. Therefore, there exist two integer w1 and w2
such that w1 + w2 = w, f1(C1) ≥ w1 for every C1 ∈ C(Gα1 [TS(Gα1)]), and f2(C2) ≥ w2
for every C2 ∈ C(Gα2 [TS(Gα2)]). Obviously, wmin ≤ w1, w2 ≤ wmax. The function f1 is a
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Γd,ℓ
p,1(w1, w1)-clique transversal function of Gα1 , and f2 is a Γd,ℓ

p,1(w2, w2)-clique transversal
function of Gα2 . Consequently,

τd,ℓ
p,1(w1, w1)(Gα1) + τd,ℓ

p,1(w2, w2)(Gα2) ≤ τd,ℓ
p,1(w, w)(Gα).

Hence, τd,ℓ
p,1(w, w)(Gα) = τd,ℓ

p,1(w1, w1)(Gα1) + τd,ℓ
p,1(w2, w2)(Gα2). Statement (1.3) there-

fore holds.

(2) Assume that CT(Gα) ̸= ∅ and CT(Gα) ̸= ∅. By Definition 7, τd,ℓ
p,0(x, y)(Gα) = ∞ and

τd,ℓ
p,1(x, y)(Gα) = ∞. Statements (2.1) and (2.2) therefore hold.

Let w = max{x, y}. Using arguments similar to those for proving τd,ℓ
p,1(x, y)(Gα) =

τd,ℓ
p,1(w, w)(Gα) when CT(Gα) ̸= ∅ and CT(Gα) = ∅, we can prove τd,ℓ

p,2(x, y, z)(Gα) =

τd,ℓ
p,2(x, w, w)(Gα). We now consider the equation for τd,ℓ

p,2(x, w, w)(Gα).
Note that CT(Gα) = CT(Gα1) ∪ CT(Gα2) and CT(Gα) = CT(Gα1) ∪ CT(Gα2). Let i =

{1, 2}. Given CT(Gα) ̸= ∅ and CT(Gα) ̸= ∅, we consider the following:
Case 1: CT(Gα1) ̸= ∅ and CT(Gα1) ̸= ∅, and CT(Gα2) ̸= ∅ and CT(Gα2) ̸= ∅;
Case 2: CT(Gαi ) ̸= ∅ and CT(Gαi ) ̸= ∅, and CT(Gα3−i ) = ∅ and CT(Gα3−i ) ̸= ∅;
Case 3: CT(Gαi ) ̸= ∅ and CT(Gαi ) ̸= ∅, and CT(Gα3−i ) ̸= ∅ and CT(Gα3−i ) = ∅;
Case 4: CT(Gαi ) ̸= ∅ and CT(Gαi ) = ∅, and CT(Gα3−i ) = ∅ and CT(Gα3−i ) ̸= ∅.
In the following, we prove the statement for Case 1. The statements for the other cases

can be proven similarly.
Let wmin = p · ω(G) and wmax = (p + (ℓ− 1) · d) · ω(G). Let w1 and w2 be integers

such that wmin ≤ w1, w2 ≤ wmax and w1 + w2 = w. Let f1 be a Γd,ℓ
p,2(x, w1, w1)-clique

transversal function of Gα1 and f2 be a Γd,ℓ
p,2(x, w2, w2)-clique transversal function of Gα2 .

By Definition 7, f1(C) ≥ w1 for every C ∈ CT(Gα1) and C ∈ C(Gα1 [TS(Gα1)]). Similarly,
f2(C) ≥ w2 for every C ∈ CT(Gα2) and C ∈ C(Gα2 [TS(Gα2)]).

Let f be a function of Gα such that f (v) = f1(v) for every v ∈ V(Gα1), and f (v) = f2(v)
for every v ∈ V(Gα2). By Lemma 3, CT(Gα) = CT(Gα1) ∪ CT(Gα2). For every maximal
clique C ∈ CT(Gα), either C ∈ CT(Gα1) or C ∈ CT(Gα2). Therefore, f (C) = f1(C) ≥ x for
every C ∈ CT(Gα1), and f (C) = f2(C) ≥ x for C ∈ CT(Gα2) .

For each maximal clique C ∈ CT(Gα), C is also a maximal clique of Gα[TS(Gα)] and
it is the union of a clique C1 ∈ C(Gα1 [TS(Gα1)]) and a clique C2 ∈ C(Gα2 [TS(Gα2)]). Thus,
f (C) = f (C1) + f (C2) = f1(C1) + f2(C2) ≥ w1 + w2 = w. The function f is a Γd,ℓ

p,2(x, w, w)-
clique transversal function of Gα. Hence,

τd,ℓ
p,2(x, w, w)(Gα) ≤ τd,ℓ

p,2(x, w1, w1)(Gα1) + τd,ℓ
p,2(x, w2, w2)(Gα2).

Conversely, let f be a Γd,ℓ
p,2(x, w, w)-clique transversal function of Gα. Let f1 be a

function of Gα1 such that f1(v) = f (v) for every v ∈ V(Gα1), and let f2 be a function of Gα2

such that f2(v) = f (v) for every v ∈ V(Gα2).
By Lemma 3, CT(Gα) = CT(Gα1) ∪ CT(Gα2). For each maximal clique C ∈ CT(Gα),

either C ∈ CT(Gα1) or C ∈ CT(Gα2). Therefore, f1(C) = f (C) ≥ x for every C ∈ CT(Gα1),
and f2(C) = f (C) ≥ x for every C ∈ CT(Gα2).

By Lemma 3, CT(Gα) = CX(Gα). For each maximal clique C ∈ CT(Gα), C is the union
of a clique C1 ∈ C(Gα1 [TS(Gα1)]) and a clique C2 ∈ C(Gα2 [TS(Gα2)]). Then, f1(C1) +
f2(C2) = f (C1) + f (C2) = f (C) ≥ w. By applying arguments similar to those used in
proving Statement (1.3), there exist two integers w1 and w2 such that w1 +w2 = w, f1(C1) ≥
w1 for every C1 ∈ C(Gα1 [TS(Gα1)]), and f2(C2) ≥ w2 for every C2 ∈ C(Gα2 [TS(Gα2)]).
Clearly, wmin ≤ w1, w2 ≤ wmax. By definition, CT(Gα1) ⊆ C(Gα1 [TS(Gα1)]) and CT(Gα2) ⊆
C(Gα2 [TS(Gα2)]). Then, f1(Ĉ) ≥ w1 for every Ĉ ∈ CT(Gα1), and f2(Ĉ) ≥ w2 for every
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Ĉ ∈ C(Gα2). Thus, f1 is a Γd,ℓ
p,2(x, w1, w1)-clique transversal function of Gα1 , and f2 is a

Γd,ℓ
p,2(x, w2, w2)-clique transversal function of Gα2 . Hence,

τd,ℓ
p,2(x, w1, w1)(Gα1) + τd,ℓ

p,2(x, w2, w2)(Gα2) ≤ τd,ℓ
p,2(x, w, w)(Gα).

We have τd,ℓ
p,2(x, w, w)(Gα) = τd,ℓ

p,2(x, w1, w1)(Gα1) + τd,ℓ
p,2(x, w2, w2)(Gα2). Statement

(2.3.1) therefore holds.

Lemma 9. Suppose that G is a distance-hereditary graph and Gα = Gα1

⊕
Gα2 is an induced

subgraph of G formed from two disjoint distance-hereditary graphs Gα1 and Gα2 . Let p ∈ {0,−1},
and let d, ℓ, x, y, z be integers such that d, ℓ ∈ Z+ are fixed, and p · ω(G) ≤ x, y, z ≤ (p + (ℓ−
1) · d) · ω(G). Then, τd,ℓ

p,0(x, y)(Gα), τd,ℓ
p,1(x, y)(Gα), and τd,ℓ

p,2(x, y, z)(Gα) can be computed as
follows:

(1) τd,ℓ
p,1(x, y)(Gα) = ∞;

(2) τd,ℓ
p,2(x, y, z)(Gα) = ∞;

(3) Let wmin = p ·ω(G), and wmax = (p+(ℓ− 1) · d) ·ω(G). τd,ℓ
p,0(x, y)(Gα) can be computed

as follows:
(3.1) Assume that CT(Gα1) ̸= ∅ and CT(Gα1) ̸= ∅;

(3.1.1) If CT(Gα2) ̸= ∅ and CT(Gα2) ̸= ∅, then

τd,ℓ
p,0(x, y)(Gα) = min

x1,x2∈Z
x1+x2=x

y≤x1≤wmax
wmin≤x2≤x−y

{
τd,ℓ

p,2(x, x1, x1)(Gα1) + τd,ℓ
p,2(x, x2, x2)(Gα2)

}
;

(3.1.2) If CT(Gα2) = ∅ and CT(Gα2) ̸= ∅, then

τd,ℓ
p,0(x, y)(Gα) = min

x1,x2∈Z
x1+x2=x

y≤x1≤wmax
wmin≤x2≤x−y

{
τd,ℓ

p,2(x, x1, x1)(Gα1) + τd,ℓ
p,0(x, x2)(Gα2)

}
;

(3.1.3) If CT(Gα2) ̸= ∅ and CT(Gα2) = ∅, then

τd,ℓ
p,0(x, y)(Gα) = min

x1,x2∈Z
x1+x2=x

y≤x1≤wmax
wmin≤x2≤x−y

{
τd,ℓ

p,2(x, x1, x1)(Gα1) + τd,ℓ
p,1(x2, x2)(Gα2)

}
;

(3.2) Assume that CT(Gα1) ̸= ∅ and CT(Gα1) = ∅;

(3.2.1) If CT(Gα2) ̸= ∅ and CT(Gα2) ̸= ∅, then

τd,ℓ
p,0(x, y)(Gα) = min

x1,x2∈Z
x1+x2=x

y≤x1≤wmax
wmin≤x2≤x−y

{
τd,ℓ

p,1(x1, x1)(Gα1) + τd,ℓ
p,2(x, x2, x2)(Gα2)

}
;

(3.2.2) If CT(Gα2) = ∅ and CT(Gα2) ̸= ∅, then

τd,ℓ
p,0(x, y)(Gα) = min

x1,x2∈Z
x1+x2=x

y≤x1≤wmax
wmin≤x2≤x−y

{
τd,ℓ

p,1(x1, x1)(Gα1) + τd,ℓ
p,0(x, x2)(Gα2)

}
;
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(3.2.3) If CT(Gα2) ̸= ∅ and CT(Gα2) = ∅, then

τd,ℓ
p,0(x, y)(Gα) = min

x1,x2∈Z
x1+x2=x

y≤x1≤wmax
wmin≤x2≤x−y

{
τd,ℓ

p,1(x1, x1)(Gα1) + τd,ℓ
p,1(x2, x2)(Gα2)

}
;

(3.3) Assume that CT(Gα1) = ∅ and CT(Gα1) ̸= ∅;

(3.3.1) If CT(Gα2) ̸= ∅ and CT(Gα2) ̸= ∅, then

τd,ℓ
p,0(x, y)(Gα) = min

x1,x2∈Z
x1+x2=x

y≤x1≤wmax
wmin≤x2≤x−y

{
τd,ℓ

p,0(x, x1)(Gα1) + τd,ℓ
p,2(x, x2, x2)(Gα2)

}
;

(3.3.2) If CT(Gα2) = ∅ and CT(Gα2) ̸= ∅, then

τd,ℓ
p,0(x, y)(Gα) = min

x1,x2∈Z
x1+x2=x

y≤x1≤wmax
wmin≤x2≤x−y

{
τd,ℓ

p,0(x, x1)(Gα1) + τd,ℓ
p,0(x, x2)(Gα2)

}
;

(3.3.3) If CT(Gα2) ̸= ∅ and CT(Gα2) = ∅, then

τd,ℓ
p,0(x, y)(Gα) = min

x1,x2∈Z
x1+x2=x

y≤x1≤wmax
wmin≤x2≤x−y

{
τd,ℓ

p,0(x, x1)(Gα1) + τd,ℓ
p,1(x2, x2)(Gα2)

}
.

Proof. The graph Gα is obtained by connecting every vertex of TS(Gα1) to all vertices
of TS(Gα2), and TS(Gα) = TS(Gα1). By Lemma 4, we have CT(Gα) = ∅ and C(Gα) =
CT(Gα) = CT(Gα1) ∪ CT(Gα2) ∪ CX(Gα). By Definition 7, Statements (1) and (2) are true.

We now consider the following three cases for computing the equation for τd,ℓ
p,0(x, y)(Gα).

Let i = {1, 2}. If CT(Gα1) = ∅ and CT(Gα1) = ∅, then Gα1 has no vertices. Therefore, only
three cases need to be considered based on their emptiness:

Case 1: CT(Gα1) ̸= ∅ and CT(Gα1) ̸= ∅;
Case 2: CT(Gα1) ̸= ∅ and CT(Gα1) = ∅;
Case 3: CT(Gα1) = ∅ and CT(Gα1) ̸= ∅.
Each case above has three subcases. Below, we prove the statements for Case 1 and its

subcases. The statements for the other cases and their subcases can be proven similarly.

Case 1: CT(Gα1) ̸= ∅ and CT(Gα1) ̸= ∅. Let wmin = p · ω(G) and wmax = (p + (ℓ− 1) ·
d) · ω(G).
Case 1.1: CT(Gα2) ̸= ∅ and CT(Gα2) ̸= ∅. Let x1 and x2 be integers such that x1 + x2 = x,
y ≤ x1 ≤ wmax, and wmin ≤ x2 ≤ x − y.

Let f1 be a Γd,ℓ
p,2(x, x1, x1)-clique transversal function of Gα1 and f2 be a Γd,ℓ

p,2(x, x2, x2)-
clique transversal function of Gα2 . By Definition 7, f1(C) ≥ x1 for every C ∈ CT(Gα1)
or every C ∈ C(Gα1 [TS(Gα1)]). Similarly, f2(C) ≥ x2 for every C ∈ CT(Gα2) or every
C ∈ C(Gα2 [TS(Gα2)]). Furthermore, f1(C) ≥ x for every C ∈ CT(Gα1) and f2(C) ≥ x for
every C ∈ CT(Gα1).

Let f be a function of Gα such that f (v) = f1(v) for every v ∈ V(Gα1), and f (v) = f2(v)
for every v ∈ V(Gα2). By Lemma 4, CT(Gα) = ∅ and CT(Gα) = CT(Gα1) ∪ CT(Gα2) ∪
CX(Gα).

Let C ∈ CT(Gα). If C ∈ CT(Gα1) or C ∈ CT(Gα2), then f (C) = f1(C) ≥ x for every C ∈
CT(Gα1), and f (C) = f2(C) ≥ x for every C ∈ CT(Gα2). If C ∈ CX(Gα), then there exist two
cliques C1 and C2 such that C = C1 ∪C2, C1 ∈ C(Gα1 [TS(Gα1)]), and C2 ∈ C(Gα2 [TS(Gα2)]).
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Therefore, f (C) = f (C1) + f (C2) = f1(C1) + f2(C2) ≥ x1 + x2 = x. We obtain f (C) ≥ x
for every C ∈ CT(Gα). Let C ∈ C(Gα[TS(Gα)]). In this case, TS(Gα) = TS(Gα1). Thus,
f (C) = f1(C1) ≥ x1 ≥ y. The function f is a Γd,ℓ

p,0(x, y)-clique transversal function of Gα.
Consequently,

τd,ℓ
p,0(x, y)(Gα) ≤ τd,ℓ

p,2(x, x1, x1)(Gα1) + τd,ℓ
p,2(x, x2, x2)(Gα2).

Conversely, let f be a Γd,ℓ
p,0(x, y)-clique transversal function of Gα. Let f1 be a function

of Gα1 such that f1(v) = f (v) for every v ∈ V(Gα1), and let f2 be a function of Gα2 such
that f2(v) = f (v) for every v ∈ V(Gα2).

By Lemma 4, CT(Gα) = ∅ and CT(Gα) = CT(Gα1) ∪ CT(Gα2) ∪ CX(Gα). Let C ∈
CT(Gα1) ∪ CT(Gα2). Then, C ∈ CT . Therefore, f1(C) = f (C) ≥ x for every C ∈ CT(Gα1),
and f2(C) = f (C) ≥ x for every CT(Gα2).

Let C1 ∈ C(Gα1 [TS(Gα1)]) and C2 ∈ C(Gα2 [TS(Gα2)]). The clique C = C1 ∪ C2 is a
maximal clique in CT(Gα). We have

f1(C1) + f2(C2) = f (C1) + f (C2) = f (C) ≥ x.

In this case, TS(Gα) = TS(Gα1). Then, C1 ∈ C(Gα[TS(Gα)]) and f1(C1) = f (C1) ≥ y.
It is not difficult to see that f1(C1) ∈ {y, y + 1, . . . , wmax} and f2(C2) ∈ {x − y, x − y −
1, . . . , wmin}. Consequently, there exist two integers x1 and x2 such that

(i) y ≤ x1 ≤ wmax;
(ii) wmin ≤ x2 ≤ x − y;
(iii) x1 + x2 = x;
(iv) f1(C1) ≥ x1 for every C1 ∈ C(Gα1 [TS(Gα1)]); and
(v) f2(C2) ≥ x2 for every C2 ∈ C(Gα1 [TS(Gα1)]).

Note that CT(Gα1) ⊆ C(Gα1 [TS(Gα1)]) and CT(Gα2) ⊆ C(Gα2 [TS(Gα2)]). Thus, f1(C1) ≥ x1
for every C1 ∈ CT(Gα1), and f2(C2) ≥ x2 for every C2 ∈ CT(Gα2). The function f1 is a
Γd,ℓ

p,2(x, x1, x1)-clique transversal function of Gα1 , and f2 is a Γd,ℓ
p,2(x, x2, x2)-clique transversal

function of Gα2 . We obtain

τd,ℓ
p,2(x, x1, x1)(Gα1) + τd,ℓ

p,2(x, x2, x2)(Gα2) ≤ τd,ℓ
p,0(x, y)(Gα).

Consequently, τd,ℓ
p,0(x, y)(Gα) = τd,ℓ

p,2(x, x1, x1)(Gα1) + τd,ℓ
p,2(x, x2, x2)(Gα2). Statement

(3.1.1) therefore holds.

Case 1.2: CT(Gα2) = ∅ and CT(Gα2) ̸= ∅. Let x1 and x2 be integers such that x1 + x2 = x,
y ≤ x1 ≤ wmax, and wmin ≤ x2 ≤ x − y.

Let f1 be a Γd,ℓ
p,2(x, x1, x1)-clique transversal function of Gα1 and f2 be a Γd,ℓ

p,0(x, x2)-
clique transversal function of Gα2 . By Definition 7, f1(C) ≥ x1 for every C ∈ CT(Gα1) or
every C ∈ C(Gα1 [TS(Gα1)]), and f2(C) ≥ x2 for every C ∈ C(Gα2 [TS(Gα2)]). Furthermore,
f1(C) ≥ x for every C ∈ CT(Gα1) and f2(C) ≥ x for every C ∈ CT(Gα1).

Let f be a function of Gα such that f (v) = f1(v) for every v ∈ V(Gα1), and f (v) = f2(v)
for every v ∈ V(Gα2). By Lemma 4, CT(Gα) = ∅ and CT(Gα) = CT(Gα1) ∪ CT(Gα2) ∪
CX(Gα).

Let C ∈ CT(Gα). If C ∈ CT(Gα1) or C ∈ CT(Gα2), then f (C) = f1(C) ≥ x for every C ∈
CT(Gα1), and f (C) = f2(C) ≥ x for every C ∈ CT(Gα2). If C ∈ CX(Gα), then there exist two
cliques C1 and C2 such that C = C1 ∪C2, C1 ∈ C(Gα1 [TS(Gα1)]), and C2 ∈ C(Gα2 [TS(Gα2)]).
Therefore, f (C) = f (C1) + f (C2) = f1(C1) + f2(C2) ≥ x1 + x2 = x. We obtain f (C) ≥ x
for every C ∈ CT(Gα). Let C ∈ C(Gα[TS(Gα)]). In this case, TS(Gα) = TS(Gα1). Thus,
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f (C) = f1(C1) ≥ x1 ≥ y. The function f is a Γd,ℓ
p,0(x, y)-clique transversal function of Gα.

Consequently,

τd,ℓ
p,0(x, y)(Gα) ≤ τd,ℓ

p,2(x, x1, x1)(Gα1) + τd,ℓ
p,0(x, x2)(Gα2).

Conversely, let f be a Γd,ℓ
p,0(x, y)-clique transversal function of Gα. Let f1 be a function

of Gα1 such that f1(v) = f (v) for every v ∈ V(Gα1), and let f2 be a function of Gα2 such
that f2(v) = f (v) for every v ∈ V(Gα2).

By Lemma 4, CT(Gα) = ∅ and CT(Gα) = CT(Gα1) ∪ CT(Gα2) ∪ CX(Gα). Let C ∈
CT(Gα1) ∪ CT(Gα2). Then, C ∈ CT . Therefore, f1(C) = f (C) ≥ x for every C ∈ CT(Gα1),
and f2(C) = f (C) ≥ x for every CT(Gα2).

Let C1 ∈ C(Gα1 [TS(Gα1)]) and C2 ∈ C(Gα2 [TS(Gα2)]). The clique C = C1 ∪ C2 is a
maximal clique in CT(Gα). We have

f1(C1) + f2(C2) = f (C1) + f (C2) = f (C) ≥ x.

In this case, TS(Gα) = TS(Gα1). Then, C1 ∈ C(Gα[TS(Gα)]) and f1(C1) = f (C1) ≥ y.
It is not difficult to see that f1(C1) ∈ {y, y + 1, . . . , wmax} and f2(C2) ∈ {x − y, x − y −
1, . . . , wmin}. Consequently, there exist two integers x1 and x2 such that

(i) y ≤ x1 ≤ wmax;
(ii) wmin ≤ x2 ≤ x − y;
(iii) x1 + x2 = x;
(iv) f1(C1) ≥ x1 for every C1 ∈ C(Gα1 [TS(Gα1)]); and
(v) f2(C2) ≥ x2 for every C2 ∈ C(Gα1 [TS(Gα1)]).

Note that CT(Gα1) ⊆ C(Gα1 [TS(Gα1)]). Thus, f1(C1) ≥ x1 for every C1 ∈ CT(Gα1). The
function f1 is a Γd,ℓ

p,2(x, x1, x1)-clique transversal function of Gα1 , and f2 is a Γd,ℓ
p,0(x, x2)-clique

transversal function of Gα2 . Hence,

τd,ℓ
p,2(x, x1, x1)(Gα1) + τd,ℓ

p,0(x, x2)(Gα2) ≤ τd,ℓ
p,0(x, y)(Gα).

We obtain τd,ℓ
p,0(x, y)(Gα) = τd,ℓ

p,2(x, x1, x1)(Gα1) + τd,ℓ
p,0(x, x2)(Gα2). Statement (3.1.2)

therefore holds.

Case 1.3: CT(Gα2) ̸= ∅ and CT(Gα2) = ∅. Following the arguments similar to those for
proving Case 1.2, we can prove that Statement (3.1.3) is true.

5. The Algorithm

By Lemmas 1–9 and Theorem 2, we introduce Algorithm 1 to compute τC(p, d, ℓ, b)(G)
for a distance-hereditary graph G using dynamic programming. The algorithm uses
an input PTF-tree T of G rooted at r to break down the graph into smaller subproblems
represented by nodes and traverses the tree in post order, ensuring that all children of a node
are processed before the node itself. At each node, the algorithm solves the subproblem
using results from its children, applying dynamic programming principles, and combines
solutions from the child nodes to solve the parent node’s problem, storing results to avoid
redundant calculations. The root node contains the solution to the original problem after
all nodes are processed.

For each node α of T, let Tα be the subtree of T rooted at node α. The algorithm uses
Gα to represent the subgraph of G induced by the leaves of Tα. Thus, α represents a vertex
or a subgraph Gα formed by operations on its children. If α is not a leaf, α1 and α2 are its
left and right child nodes, respectively.

For each visited node α, we compute τd,ℓ
p,0(x, y)(Gα), τd,ℓ

p,1(x, y)(Gα), and τd,ℓ
p,2(x, y, z)(Gα)

for p · ω(G) ≤ x, y, z ≤ (p + (ℓ− 1) · d) · ω(G) based on Lemmas 1–9 and Theorem 2. We
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assume that the root of T is node r, so G = Gr. Note that there are 2n − 1 nodes in a
PTF-tree. See Algorithm 1 for further details.

Algorithm 1:
Input: (1) A PTF-tree T of a distance-hereditary graph G with |V(G)| > 1, (2) the

clique number ω of G, (3) two integers p and b, where p ∈ {0,−1}, and (4)
fixed positive integers d and ℓ.

Output: τC(p, d, ℓ, b)(G).
Sort the nodes of T in the post order of the tree traversal;
Let wmin = p · ω and wmax = (p + (ℓ− 1) · d) · ω;
for α = 1 to 2n − 1 do

if node α is a leaf node of T which corresponds to vertex v then
for x, y, z ∈ {wmin, wmin + 1, . . . , wmax} do

Compute τd,ℓ
p,0(x, y)(Gα), τd,ℓ

p,1(x, y)(Gα), and τd,ℓ
p,2(x, y, z)(Gα) by

Lemma 6;
end

end
if node α is labeled by “

⊙
” then

for x, y, z ∈ {wmin, wmin + 1, . . . , wmax} do
Compute τd,ℓ

p,0(x, y)(Gα), τd,ℓ
p,1(x, y)(Gα), and τd,ℓ

p,2(x, y, z)(Gα) by

Lemmas 2 and 7;
end

end
if node α is labeled by “

⊗
” then

for x, y, z ∈ {wmin, wmin + 1, . . . , wmax} do
Compute τd,ℓ

p,0(x, y)(Gα), τd,ℓ
p,1(x, y)(Gα), and τd,ℓ

p,2(x, y, z)(Gα) by

Lemmas 3 and 8;
end

end
if node α is labeled by “

⊕
” then

for x, y, z ∈ {wmin, wmin + 1, . . . , wmax} do
Compute τd,ℓ

p,0(x, y)(Gα), τd,ℓ
p,1(x, y)(Gα), and τd,ℓ

p,2(x, y, z)(Gα) by

Lemmas 4 and 7;
end

end
end
Compute τC(p, d, ℓ, b)(G) by Lemmas 1–4 and Theorem 2;
Output the value of τC(p, d, ℓ, b)(G);

Theorem 3. Suppose that G is a distance-hereditary graph with the clique number ω. Let p ∈
{0,−1}, and let d, ℓ, x, y, z be integers such that d, ℓ ∈ Z+ are fixed, and p · ω(G) ≤ x, y, z ≤
(p + (ℓ− 1) · d) · ω(G). Algorithm 1 computes τC(p, d, ℓ, b)(G) in O(nω4) time.

Proof. The correctness of Algorithm 1 can be verified by Lemmas 1–9 and Theorem 2. To
analyze the running time, we proceed as follows:

1. Initialization:

• Sorting the nodes of the PTF-tree T in post-order takes O(n) time;
• Computing the clique number ω for a distance-hereditary graph also takes O(n)

time [23]. Therefore, computing wmin and wmax takes O(n) time if the clique
number is not given as an input;

2. Main Loop:
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• The algorithm processes 2n − 1 nodes of the tree;
• For each node, it iterates over all combinations of x, y, z within the range

{wmin, wm+1, . . . , wm+1}, where wmin = p · ω and wmax = (p + (ℓ− 1) · d) · ω;
• The total number of combinations is O(ω3);

3. Inner Loop Computation:

• For each node combination of x, y, z, the algorithm computes τd,ℓ
p,0(x, y)(Gα),

τd,ℓ
p,1(x, y)(Gα), and τd,ℓ

p,2(x, y, z)(Gα) by the specified lemmas. Each computation
is O(ω);

4. Complexity Per Node:

• The computations for each node result in the time complexity of O(ω4);

5. Total Complexity:

• The final two steps are to compute τC(p, d, ℓ, b)(Gr) by Lemmas 1–4 and Theo-
rem 2, and output the result. They take O(ω) time;

• Since there are 2n − 1 nodes in the tree, the total running time is O(nω4).

6. Conclusions

This study presents a significant advancement in understanding and applying clique
transversal problems within distance-hereditary graphs by introducing the (p, d, ℓ, b)-clique
problem. The framework proposed herein offers a unified approach to addressing various
clique-related problems, enhancing both the theoretical foundations and practical imple-
mentations in this domain. One of the key contributions is the development of a dynamic
programming algorithm with the complexity of O(nω4), which is efficient for distance-
hereditary graphs. This algorithm not only streamlines the process of solving these complex
problems but also sets the stage for its potential application to other graph classes. The
efficiency and practicality of the algorithm make it a valuable tool for researchers and prac-
titioners working with large-scale graphs where clique problems are prevalent. Moreover,
this work has broader implications in graph theory, offering new insights into the structure
and behavior of distance-hereditary graphs. By providing a comprehensive framework and
a powerful algorithmic tool, this paper opens up new avenues for research and application
in related fields, such as network analysis, bioinformatics, and social network modeling.
Future research could build upon these findings by extending the proposed methods to
other graph classes. Further optimization of the dynamic programming algorithm could
enhance its performance, making it applicable to even larger and more complex graph
structures. Such advancements would not only broaden the scope of this work but also
significantly contribute to the overall body of knowledge in algorithmic graph theory.
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