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Abstract: The discrete cosine transform (DCT) is widely used for image and video compression. Lossy
algorithms such as JPEG, WebP, BPG and many others are based on it. Multiple modifications of DCT
have been developed to improve its performance. One of them is adaptive DCT (ADCT) designed
to deal with heterogeneous image structure and it may be found, for example, in the HEVC video
codec. Adaptivity means that the image is divided into an uneven grid of squares: smaller ones retain
information about details better, while larger squares are efficient for homogeneous backgrounds.
The practical use of adaptive DCT algorithms is complicated by the lack of optimal threshold search
algorithms for image partitioning procedures. In this paper, we propose a novel method for optimal
threshold search in ADCT using a metric based on tonal distribution. We define two thresholds:
pm, the threshold defining solid mean coloring, and ps, defining the quadtree fragment splitting. In
our algorithm, the values of these thresholds are calculated via polynomial functions of the tonal
distribution of a particular image or fragment. The polynomial coefficients are determined using
the dedicated optimization procedure on the dataset containing images from the specific domain,
urban road scenes in our case. In the experimental part of the study, we show that ADCT allows
a higher compression ratio compared to non-adaptive DCT at the same level of quality loss, up to
66% for acceptable quality. The proposed algorithm may be used directly for image compression, or
as a core of video compression framework in traffic-demanding applications, such as urban video
surveillance systems.

Keywords: adaptive discrete cosine transform; optimization; adaptivity; tonal variance thresholds;
transport images

1. Introduction

The smart city is a popular concept in applied computer science. The development of
smart city subsystems requires the integration of multiple information and communication
technologies, including Internet of Things and computer vision, which would support
city infrastructure. Closed-circuit television (CCTV) systems play an important role in the
concept of the smart city, especially considering life safety issues. Ensuring that a city has
full CCTV coverage and high footage quality is fundamental to ensuring safe road networks,
employing unmanned vehicles and reporting road traffic incidents. For example, in cities
with the most developed video surveillance systems, the density exceeds 400–500 cameras
per square kilometer [1]. However, with the increase in the number of video cameras

Algorithms 2024, 17, 366. https://doi.org/10.3390/a17080366 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a17080366
https://doi.org/10.3390/a17080366
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0009-0000-7049-3910
https://orcid.org/0000-0002-5950-7039
https://orcid.org/0000-0003-4022-9742
https://orcid.org/0000-0001-5747-9874
https://orcid.org/0000-0002-9860-8211
https://orcid.org/0000-0003-2614-8735
https://doi.org/10.3390/a17080366
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a17080366?type=check_update&version=1


Algorithms 2024, 17, 366 2 of 19

and other image information sources together with the improvement of video quality
characteristics, problems arise associated with the need to transmit, store and process huge
amounts of data. For example, in the overview observation mode, the camera generates
an average video data stream at a rate of 6 Mbit/s. For 400 cameras, the rate of generated
data is 300 MB/s, i.e., almost 18 GB per minute and over 1 TB per hour. With the need
for transmitting, processing and storing such volumes of video data, it is important to
apply efficient image and video compression methods. Various image compression and
restoration algorithms have been extensively studied by scholars for the last few decades.
Algorithms such as JPEG [2,3], WebP [4,5], BPG [6,7] and FLIF [8] have been developed and
enhanced in the last few decades. When performing compression of the video stream from
CCTV cameras, the following features of video information should be taken into account:

• Most of the frame is often occupied by a static background (sidewalk, buildings,
advertisements, temporary banners, sky, etc.);

• The intensity and density of traffic flows change over time;
• In the absence of movement between frames, there is a high degree of correlation

over time;
• The contrast between objects in video frames and the background is relatively low.

Practical solutions in image compression algorithms suggest that the original image
can be compressed into a power-2 square before applying DCT and then fragmented,
typically into 8 × 8-pixel squares. In standard DCT, after fragmentation, the transformation
is applied separately to each fragment. The authors of [9,10] provide alternative approaches
to interpreting quadtree decomposition. They propose, instead of applying transformation
to the blocks themselves, to take a pixel from each block to form sub-ranges of the original
image and then transform the resulting sub-ranges. This leads to better spectral representa-
tion since each sub-band is essentially a smaller version of the original image and resolves
the problem of blocking artifacts from appearing in the image. However, this approach
affects the natural properties of original images, which typically have smooth transitions
between adjacent pixels, resulting in a convenient quantization of the spectrum that retains
most of the energy at low frequencies.

After converting the sub-bands, the resulting DCT coefficients are quantized, i.e., di-
vided by a certain number or separated into elements of the quantization matrix. At the
quantization stage, there is a loss of image quality, since some integer DCT coefficients
become equal to zero or different from the original value. However, this allows one to
compress the resulting image more extensively. The stronger the quantization of coefficients
is, the greater the loss of quality will be and the higher the compression level that can
be achieved.

Adaptive discrete cosine transform is a modification of DCT based on the application of
variable-sized tiles to the original image, which is split before performing the transform [11–15].
The sub-band approach described earlier is difficult to implement in ADCT and would
lose many of its benefits such as the elimination of blocking artifacts, so the standard DCT
fragmentation interpretation can be henceforth used. ADCT may imply a limited set of tile
sizes, such as using only a set of 16 × 16-, 8 × 8- or 4 × 4-pixel sizes, or simply recursively
dividing the maximum possible size to 2 × 2 pixels, which is the minimal DCT input.
However, using tiles smaller than 8 × 8 produces poor inefficient results, so in further work
the maximum tile size is considered unlimited, up to the largest power of two that fits in
the image size, and the minimum tile size is 8 × 8, as in JPEG. This means that the goal of
the fragmenting algorithm is to compress the image into the largest tiles possible before
applying the transform.

To assess the need for fragments’ separation, a function is required to determine the
amount of details in the fragment. It should ensure accurate and efficient fragmentation
when performing ADCT. The simplest solution is to convert the image to grayscale and treat
the image fragment as a one-dimensional array of pixels of various brightness. By analyzing
the statistical properties of brightness values, it is possible to estimate the change in
brightness of pixels within a fragment. A naive approach would be to calculate the root
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mean square error (RMSE) or similar statistical metrics for the brightness of the pixels.
A lower RMSE here should mean less variation in tone, closer to a solid color, and therefore
contains less noticeable details, and vice versa. RMSE by definition takes into account the
size of the input data, i.e., the tile size.

However, the straightforward application of RMSE to pixel tones has a major draw-
back: the tonal distribution of the image is sensitive to the changes in the tonal range.
Expanding the tonal distribution of an image, for example, by equalizing the histogram,
does not increase the level of detail, it only enhances its visibility. The same applies to
narrowing the tonal distribution, unless this leads to an overlap of tones and changes in the
shape of the tonal histogram. In this article, we use the value of tonal distribution variance
(TDV) and its inverted value (ITDV) to determine the ADCT thresholds. The thresholds are
between 0 and 1 for any image size and tonal range. This enables convenient fragmentation
during ADCT while preserving its accuracy regardless of the image properties.

Only monochrome, grayscale images are researched in this paper. The proposed
algorithm can also be applied to the colored images by transforming the color channels.
Since the human eye is less sensitive to changes in color compared to the changes in
brightness, the target quality can be even lower for the color channels.

In Table 1, we present a summary of popular existing compression algorithms and
compare the proposed implementation of adaptive discrete cosine transform to them.

Table 1. ADCT compared to other algorithms.

Compression
Algorithm

Core
Transform

Fragment
Size

Adaptive Fragmentation
Technique

Video Com-
pression

Modified
DCT [16]

Cosine 8 × 8 by
default

No Fixed-size grid No

Adaptive
DCT [17]

Cosine 4 × 4–any Yes Comparing tonal
distribution to
thresholds

No

JPEG 2000 Wavelet 64 × 64 by
default

No Fixed-size grid No

AVC
(H.264)

Cosine 4 × 4–
16 × 16

Yes Rate–distortion
optimization

Yes

HEVC
(H.265)

Cosine
and Sine

4 × 4–
64 × 64

Yes Rate–distortion
optimization

Yes

The research into adaptive discrete cosine transformation aims to prove the usefulness
of adaptive elements in existing compression methods, such as JPEG2000, MPEG, etc., com-
paring it with the conventional, non-adaptive transformation that underlies the operation
of most algorithms. Considering the abovementioned statements, the contribution of the
paper is as follows:

• We introduce and analyze adaptive DCT based on two thresholds (named pm and
ps), explained in detail in the paper further, aiming for an optimal tradeoff between
quality and compression. The pm threshold determines averaging the fragment to a
solid color, and the ps threshold sets the criterion for splitting the fragments.

• We find the optimal pm and ps values corresponding to the target multi-scale structural
similarity index measure (MS-SSIM) and compression ratio. MS-SSIM measures
the perceptual difference between two similar images, i.e., input and decompressed
images, at different scales [18–20].

• We compare the proposed ADCT with standard DCT and find numerical estimates of
the compression ratio improvement.

The rest of the paper is organized as follows. In Section 2, we describe a novel
approach for optimizing the adaptive discrete cosine transform based on the two introduced
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thresholds. The improvement in the image compression ratio value is shown in Section 3.
A summary of the results obtained is given in Section 4. Appendix A contains additional
illustrations, plots and tables obtained during the experiments.

2. Materials and Methods
2.1. Earlier Adaptive DCT

Research on adaptive discrete cosine transformation dates back to the 1980s. The earli-
est implementations of the algorithm achieved bitrates as low as 0.5 bits per pixel while
maintaining the compression practically losslessly [21,22]. The early developments were
primarily dedicated not to the splitting of the images into fragments of variable size but to
the encoding.

In video compression, there are developments dating back to the 20th century as
well. For example, adding variable length to three-dimensional discrete cosine transform
(3D DCT) blocks, implementing temporal adaptivity, has allowed the achievement of an
astonishing 0.1 bit per pixel rate on average for a video without a significant loss in quality
(bottom right frame in Figure 1) [23].

Figure 1. Examples of video compression using 3D DCT, comparing the original video frame and
various compression techniques, with variable-temporal-length 3D DCT implementations in the
bottom row, clearly showing its superiority.

More recent implementations of 3D adaptive DCT claim to be superior to common
compression methods. It is also said to reduce the complexity of the calculations, allowing
them to be implemented easily in hardware [24]. The lack of temporal dimension effi-
ciency of regular 3D DCT is compensated for by adaptivity, such as presented in Figure 2,
and is described as surpassing MPEG in both bitrate and efficiency. Mentions of thresholds
being used in adaptive fragmenting quadtree building are first found in the abovemen-
tioned work.

However, methods to calculate the adaptive fragmenting thresholds have never been
described thoroughly. Our work aims to provide the foundation for implementing adaptiv-
ity techniques in compression methods by describing how to obtain the threshold values.
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Figure 2. Example of adaptive 3D DCT in a video frame, showcasing both fragmenting and replacing
entire fragments with their average tones.

2.2. Proposed Adaptive DCT Algorithm

Let us represent the image as a function g:

IMG = g(x, y), (1)

where x and y are the coordinates of an image pixel. The restored image after compression
with thresholds pm and ps can be defined as follows:

IMG′ = ĝpm,ps(x, y). (2)

Let us introduce an evaluation function f. We will assume that it possesses a local
minimum at certain optimal threshold values pm, ps. Thus, the mathematical definition of
the chosen problem is to find the value

argmin
pm,ps

{ f (g(x, y), ĝpm,ps(x, y))}. (3)

for each image. Then, a data-fitting approximation of arbitrary order is applied to the set of
“original level of image detail–optimal threshold value” pairs for each of the two thresholds.

It should be noted that, when the value of the function f is close to the local minimum,
the value of MS-SSIM approaches 1. The standard SSIM formula is as follows:

SSIM(x,y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
. (4)

where µx is the pixel sample mean of x, µy the pixel sample mean of y, σ2
x the variance of x,

σ2
y the variance of y, σxy the covariance of x and y, c1 = (k1L)2, c2 = (k2L)2 two variables to

stabilize the division with weak denominator, and L the dynamic range of the pixel values,
L = 255, k1 = 0.01 and k2 = 0.03. MS-SSIM is a composition of several SSIM measurements
taken for downscaled versions of the image. The relative importance coefficients for the
5 measurements are default and as such 0.0448, 0.2856, 0.3001, 0.2363 and 0.1333, respec-
tively, for the scales from 1 to 5 [18].

To set up the optimization process, three quality levels were derived. They are different
in the target MS-SSIM (minimum acceptable value during optimization) and quantiza-
tion values:

• High level corresponds to target MS-SSIM = 0.98, quantization value 10 and typically
minor degradation;

• Medium level: target MS-SSIM = 0.90, quantization value 30, noticeable degradation
in quality, but many details are preserved;

• Low level: target MS-SSIM = 0.80, quantization value 100, significant quality degrada-
tion while preserving the most detailed areas.

An example of adaptive DCT is shown in Figure 3.
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(a) (b) (c)

Figure 3. Example of adaptive discrete cosine transform: (a) original image; (b) quadtree grid on the
image, yellow color marks the solid color fragments; (c) adaptive discrete cosine transform spectrum
of the image (brightened up for clarity).

Figure 3 shows the basic principles of constructing an image quadtree via the pro-
posed method.

In this study, we will not use RMSE to determine ADCT thresholds and instead use the
values of TDV and ITDV, because expanding the tonal distribution of an image increases
tone visibility and does not directly affect detail while changing the RMSE value. Vice versa,
narrowing the tonal range does not increase detail, yet it changes the RMSE value as well.
Examples of tonal histograms of images are shown in Figure 4.

(a) (b) (c) (d)

Figure 4. Examples of image histograms: (a) histogram of the original image; (b) histogram after increasing
the brightness by 40%; (c) histogram after normalization, i.e., extending it to the entire 0–255 spectrum
width; (d) histogram after multiplying the brightness by 2, resulting in a “whiteout” (overexposure).

One can see that the amount of detail cannot be measured by calculation using ac-
tual tone values: the RMSE will change as the histogram changes. However, the image
histogram can be used for its original purpose, namely visualizing the tonal distribution.
Making an array out of pixel brightness values associated with a histogram results in an
array of 256 elements, each one corresponding to a pixel brightness value. Each element is
then assigned the number of corresponding pixels of the image. The order of these elements
does not affect the calculation of the mean value and the variance, so changes in brightness
or histogram normalization also do not affect the calculations.
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The root mean square error can be calculated for this distribution of 256 tone values.
However, a more elegant and efficient approach by calculating tonal distribution variance
is illustrated further.

For an input image or image fragment consisting of N × N pixels, the average tonal
distribution (TD) value is N × N/256, since the tonal values of the N × N pixels are
arbitrarily distributed among the 256 elements.

Therefore, the variance can be calculated as follows:

TDV =
255

∑
i=0

((TD[i]− (L/256))2)/256, (5)

where i is the pixel tone index, L = N × N is the total number of pixels in the image or
fragment and TD is the tonal distribution array, consisting of 256 counts of pixels of specific
brightness. For example, TD[0] is the number of black pixels and TD[255] is the number of
white pixels in the fragment or image. Examples of this distribution can be observed in
Figure 4.

Thus, the variance will be sensitive to the input size since there are more pixel hue
values in the distribution. However, by instead dividing the sum of squared errors by
L(L − L/256), a normalized value between 0 and 1 is obtained, regardless of the value of L.
A value of 0 means zero variance in the distribution, indicating a completely uniform tonal
distribution, and 1 corresponds to the maximum possible variance, where one solid tone
fills one tonal distribution array element and leaves other elements empty.

Let us prove the abovementioned statement. If L/256 is the mean TD value, there is
only one tone array element filled with L pixels and the rest are empty. Then, the sum of
squared errors is

(L − L/256)2 + 255 ∗ (L/256)2, (6)

where the first term is the squared error between the mean and the maximum value of the
diapason and the second term is the squared error between the mean and the zeros for the
remaining 255 out of 256 tones.

This expression is equal to

L2 − 2 ∗ (L2/256) + (L2/2562) + 255 ∗ (L2/2562) = L2 − 2 ∗ (L2/256) + (L2/256) (7)

= L2 − (L2/256) = L ∗ (L − L/256) = (255/256) ∗ L2. (8)

Therefore, dividing the squared errors’ sum by

(255/256) ∗ L2, (9)

instead of 256 provides a more practically applicable and generalized value. This lies
between 0 and 1 and is derived from a sum of squared values. To make the distribution
practical and gradual we take a square root from the quotient, without changing the
properties of the normalized value. Since the value correlates to variance, we call it tonal
distribution variance (TDV). The resulting formula is as follows:

TDV =

√√√√255

∑
i=0

(TD[i]− (L/256))2

(255/256) ∗ L2 . (10)

For comparison, the RMSE of an image fragment can be calculated with the
following formula:

RMSE =

√√√√ L

∑
i=0

(TD[i]− ∑L
j=0

TD[j]
L )2

L
. (11)
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Tonal distribution variance directly correlates with RMSE up to a constant multiplier.
However, multiplying or dividing pixel brightness values changes the tonal range and,
consequently, the RMSE value. However, the TDV remains constant unless the multipli-
cation makes pixels reach maximum brightness or a division forces individual brightness
values to 1. This clearly demonstrates that TDV is more versatile than RMSE due to being
independent of the tonal range of the image.

Thus, using this metric allows one to safely set the thresholds inside the 0–1 range for
arbitrary image size and tonal range.

The first threshold ps (split) determines whether the image fragment should be further
split into four quadrants. If the TDV of a fragment is below ps, then the tonal distribution of
the fragment is supposed to be less uniform, contain more tones and, probably, more details,
so it is logical to split it to preserve details after performing a discrete cosine transform.

The second threshold pm (mean) determines whether the fragment appears monochro-
matic enough (if TDV is above pm) to be replaced by a single average value of its brightness.
The result is the highest possible level of compression since there is only one non-zero
DCT coefficient left in the spectrum. Having mean-value tiles does not detract too much
from image quality as long as they are small enough not to affect valuable details. For our
purposes, it is acceptable to paint unimportant details, like road surface or sky, in solid
color, as long as the resulting quality is sufficient. Solid color fragments are demonstrated
in Figure 5.

(a) (b) (c)

Figure 5. Example of solid color fragments: (a) processed image; (b) processed image: solid color
fragments are marked with yellow; (c) close-ups of the sky and the road surface demonstrate little
impact on the overall perception unless zoomed in.

When constructing a quadtree using the abovementioned thresholds, the fragment is
first tested with the threshold pm and only then checked for further fragmentation. This
means that for each fragment there are three possible outcomes:

• Replacing with a solid color if its TDV is higher than pm;
• Leaving as is if its TDV is between pm and ps;
• Splitting into four sub-fragments if its TDV is below ps.

Tonal distribution variance appeared to be in the range between 1/15 and 1/10 for
many of the traffic images in our experiments. Meanwhile, there are cases where completely
solid color frames possess a TDV equal to 1. For convenience and visibility, further on we
used the inversion of TDV, called ITDV, to display the distribution of frames with more
convenient numbers instead of fractions:

ITDV =
1

TDV
. (12)

The majority of the frames are then found in the 10–15 ITDV range.
We introduce an optimization process consisting of the following steps: choosing pairs

of threshold ADCT values, constructing quadtrees using them, performing discrete cosine
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transform on their fragments and checking whether the results satisfy certain requirements.
The threshold values are optimized for images with various original ITDVs, i.e., the tonal
distribution variance is calculated for the entire original image, as we assume it is an accept-
able measure of image detail. Optimal thresholds should provide maximum compression
efficiency while preserving a certain level of image quality.

The example shown in Figure 6 illustrates a quality comparison of compressed images
with three distinct levels.

(a) (b) (c) (d)

Figure 6. Image quality comparison: (a) the original images; (b) high-quality ADCT; (c) medium-
quality ADCT; (d) low-quality ADCT.

For simplicity, the compression ratio is calculated here as a ratio between non-zero DCT
coefficients and the total number of coefficients. It does not necessarily portray the actual
compression ratio of the stored file, but we consider it sufficiently suitable for this study.
Given the appropriate data compression methods for the pixel information, such as run-
length encoding, the chosen compression ratio metric allows for good relative comparison
between methods. This frees us from the burden of describing a full-scale compression
method to implement and measure bits per pixel metric or similar. For example, to compare
the performance of ADCT with regular JPEG, one can set appropriate thresholds to split
the image into 8 × 8 tiles without creating solid color fragments, mimicking regular DCT,
and then compare the resulting ratios.

The optimization process consists of three levels of optimal value search for the ps and
pm thresholds. Given that TDV is normalized between 0 and 1, we can evaluate the result
of compression with different pairs of threshold values from this diapason, increasing the
precision of the search step by step.

At the first level of optimization, pairs of threshold values are evaluated with 0.1 accu-
racy (0.05:0.05, 0.05:0.15, ..., 0.95:0.95). For each pair, a quadtree is constructed for the tested
image and ADCT is performed to obtain the compression ratio and MS-SSIM between
the result and the original image since the latter must be above the minimal threshold for
the chosen compression quality. Then, a pair with the best resulting compression ratio is
chosen for the next level of search with higher accuracy (0.01, then 0.001). New values are
searched for in the vicinity of the previous optimal values. As a result, optimal values are
obtained with an accuracy of 3 decimal digits.

A visual representation of the search algorithm is shown in Figure 7. The grid repre-
sents the pairs of threshold values. The colors, from blue to red, represent the resulting
compression ratio value after ADCT: blue represents the minimum value on the search
level and red represents the maximum value. Black represents invalid threshold value pairs
or that resulting MS-SSIM is below the target value for the chosen quality. A threshold
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value pair with the biggest compression ratio on one level is searched through at higher
precision at the next level, with 3 levels of precision in total. If there are threshold value
pairs with similar compression ratios, one with the best MS-SSIM is chosen. However,
an equal compression ratio usually means equal quadtree structure and equal MS-SSIM;
the first pair by order is chosen then.

The image illustrates the search process on all three levels: first the 0.25:0.35 pair
is chosen out of the 0.05:0.05 (top left) to 0.95:0.95 (bottom right) field, then 0.27:0.31 is
chosen from the 0.21:0.31–0.30:0.40 field, then the leftmost red cell representing 0.267:0.306
is chosen from the 0.266:0.306–0.275:0.315 field.

Figure 7. Flowchart of the optimization process; the grid is the search area; each grid cell is a pair of
threshold values.

3. Results and Discussion

To process the experimental data and search for optimal ADCT thresholds, we
developed a software implementation of the corresponding algorithm written in C++.
The quadtree division algorithm is deterministic by nature because no random values are
used, meaning the quadtree will not change if the same parameters and inputs are used.
The discrete cosine transform is implemented using the row–column method, which de-
composes the original two-dimensional transform into a sequence of two one-dimensional
transforms, greatly reducing the complexity of the algorithm. Since the optimization is
performed independently for each image in the set, the process can be defined as parallel,
allowing parallel computation to be easily implemented using the OpenMP interface and
greatly speeding up the calculations.

To evaluate the experimental results quantitatively, we define the approximate com-
pression ratio (CR), calculated by the following formula:

CR =
Total Elements Count

Non-zero Elements Count
. (13)

Every fragment of the compressed image consists of a DC (so-called direct current)
coefficient—the first coefficient responsible for the mean color part of the fragment, practi-
cally always the biggest, non-zero AC (alternating current) coefficients usually responsible
for low cosine frequencies, and zero AC coefficients that have been reduced or rounded to
zero, usually those responsible for high frequencies. Removing the high-frequency coeffi-
cients leads to losing information on details but also provides most of the compression.

The DC coefficient is always present and requires a constant number of bits for
encoding, depending on the quantization factor. Zero AC coefficients can be encoded with
run-length encoding using the zigzag pattern with just a single number—the number of
these zero coefficients. Thus, the amount of non-zero AC coefficients arguably plays the
most important role in the resulting bitrate, since it requires a variable amount of encoding
instances, unlike the two previous categories of DCT coefficients. Apart from the DC
coefficient, the run-length encoding of the zero coefficients and a technique to encode the
structure of the quadtree, we consider the ratio between the non-zero coefficients and their
total amount a fitting metric to express the quantity of compression. If all the techniques
employed in existing algorithms such as JPEG, e.g., Huffman coding, are applied to ADCT,
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the resulting bits per pixel metric will mostly depend on the difference between the regular
DCT’s and the adaptive DCT’s compression ratios.

As a second quantitative quality metric apart from MS-SSIM, we use peak signal-to-
noise ratio (PSNR) for compressed images against the original ones.

It is important to note that, since ADCT results in the construction of a quadtree from
power-2-sized fragments, the source images must also be power-2-sized or padded to fit
into the required dimensions.

The optimization results are presented in the figures below, where each subplot
corresponds to a certain level of image quality.

The results of calculating the optimal threshold values for images with different
original ITDVs are shown in Figure 8.

Figure 8. Optimal threshold values for different original ITDV values of the images.

The resulting distribution for each quality level can be approximated. We tested fitting
a linear function and a third-order curve using the least squares method implemented in
MATLAB. The threshold searching program was modified to use the resulting threshold
functions instead of performing optimization. It outputs MS-SSIM values between the
original and compressed image and compares the compression ratios for the linear and the
third-order curves. The experimental verification with a test dataset is explained further.
As one can see, a decrease in target compression quality not only lowers the thresholds but
also creates a gap between them. A decrease in quality also allows less detailed images
(with lower original ITDV) to be covered in solid color.

Threshold value approximation equations depending on quality (original image ITDV)
are presented in Tables 2 and 3. Table 2 considers equations of the linear approximation.
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Table 2. First-order threshold value approximation equations.

ps pm

High 0.3509 + 0.0051 × ITDV 0.6233 − 0.0043 × ITDV

Medium 0.1277 + 0.0105 × ITDV 0.4559 − 0.0117 × ITDV

Low 0.2302 − 0.0101 × ITDV 0.0226 + 0.0359 × ITDV

Table 3 presents equations of the third order.

Table 3. Third-order threshold value approximation equations.

ps pm

High 0.0691+ 0.0882× ITDV − 0.0075×
ITDV2 + 0.00021 × ITDV3

0.6358+ 0.0455× ITDV − 0.0097×
ITDV2 + 0.00045 × ITDV3

Medium 0.1703− 0.0301× ITDV + 0.0065×
ITDV2 − 0.00028 × ITDV3

0.5508 − 0.0281 × ITDV +
0.00008 × ITDV2 + 0.00005 ×
ITDV3

Low
−0.1073 + 0.0923 × ITDV −
0.0089 × ITDV2 + 0.00026 ×
ITDV3

0.4708 − 0.0407 × ITDV +
0.00037 × ITDV2 + 0.00023 ×
ITDV3

For experimental verification of our approach, we used a different test dataset of
600 video frames of size 256 × 256 pixels obtained from real highway video footage
(Figure 9). The ITDV distribution of the chosen dataset’s frames is shown in Figure 10.

Figure 9. Examples of the test dataset frames.

The obtained results were compared to the non-adaptive discrete cosine transform
such as used in the JPEG algorithm. The graphs in Figure 11 illustrate the dependence
between MS-SSIM and the compression ratio of adaptive DCT (ADCT) and conventional
DCT (DCT), respectively.

As we can see from Table 4, lower target quality allows adaptive DCT to better
express its advantages. High-quality compression slightly improves the compression
ratio over regular DCT (3% higher on average) while preserving the quality (1% lower
MS-SSIM on average). Meanwhile, low-quality compression with ADCT on average
provides a 66% higher compression ratio with an 8.4% MS-SSIM loss when using the
first-order approximation for the threshold values. We can also observe that first-order
linear approximation demonstrates higher stability than the third-order curve and provides
better results. At low quality, third-order approximation led to ADCT splitting without
solid color fragments just like non-adaptive DCT, hence the match in MS-SSIM and CR
values. The optimal threshold equations have been tested using the frames from the testing
dataset as well as on other images, mainly highway imagery. The comparison between
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adaptive and non-adaptive DCT is presented for images with various compression qualities
in Appendix A.

Figure 10. Distribution of ITDV values through all images of the considered dataset.

Figure 11. Comparison of resulting MS-SSIM and compression ratio after ADCT and non-adaptive
DCT for ITDV values from 9 to 16.

We approximated the resulting bitrate (bits per pixel) of the images compressed with
ADCT and regular DCT and compared this bitrate against MS-SSIM for both methods. We
demonstrate this in Figure 12. As we can see, adaptive DCT becomes more efficient at
lower bitrates. It still trades quality for compression but can quickly reach lower bits per
pixel values and better compression.
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Table 4. Summary of the ADCT improvements over regular DCT from graphs above.

Quality Approximation
Equation Order

MS-SSIM
(ADCT/DCT) CR (ADCT/DCT)

High 1st 0.988 1.039

High 3rd 0.989 1.032

Medium 1st 0.981 1.157

Medium 3rd 0.982 1.147

Low 1st 0.916 1.662

Low 3rd 0.958 1.526

Figure 12. Graphical comparison of proposed ADCT with non-adaptive DCT in terms of approxi-
mated bit rate vs. MS-SSIM.

Using this data, we compared our algorithm to other existing methods [25] and
demonstrate it in Figure 13. The comparison does not account for only using static images
in H.264. We believe that without motion compensation techniques our algorithm can
compete with the existing methods.

Additionally, the qualitative assessment of ADCT vs. DCT performance through-
out the experiment is shown in the tables in Appendix A. An example of better com-
pression of an image using the obtained ADCT threshold values over regular 8 × 8
DCT is shown in Figure 14. A comparison of image compression metrics is shown in
Table 5. The threshold values for ADCT are derived from the obtained first-order equa-
tions and are as follows: given the original ITDV equals 11.666, with low target quality,
ps = 0.112, pm = 0.441.

Table 5. Quantitative comparison of image compression in Figure 14.

Method MS-SSIM Compression Ratio PSNR, dB

DCT 0.9122 28.693 27.585

ADCT 0.9003 43.201 27.296

One can see that an improvement, big or small, in the compression ratio can be
observed in all cases. The biggest improvement in compression is seen at the low-quality
level for less detailed images. The explanation is that the considered images tend to have
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larger areas suitable for fitting large fragments of solid color. However, the use of optimal
ADCT threshold values can lead to slight drops in the quality measures and overall look
of the frame, which would require additional research with a larger dataset and, possibly,
additional metrics.

Figure 13. Comparison [25] with the existing algorithms.

(a) (b) (c)

Figure 14. Advantage in low target quality compression of ADCT over DCT and preservation of
information about vehicles in the scene: (a) original image; (b) fragmentation quadtree of ADCT and grid
of DCT (yellow fragments are solid color); (c) resulting images (details about car positions are preserved).
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4. Conclusions

In this paper, we presented a novel image compression method based on adaptive
discrete cosine transform (DCT) with two quadtree fragmentation thresholds. The superior
compression ratio of the optimized method over non-adaptive DCT has been experimentally
demonstrated. In particular, we found that the adaptive DCT is most effective when it
produces larger fragments of solid color and the target quality is not high, expecting to
trade details for compression. By adjusting the defined thresholds, the algorithm finds a
sufficient balance between the level of image compression and the retained detail quality,
as was measured by the MS-SSIM metric.

The key relations were found between the compression ratio and the quality estimates
of the compressed images, such as the amount of detail in the image. In the case of medium
compression quality, the increase in the compression ratio reaches 15% on average, which
we established by examining a dataset containing 600 images with road traffic scenes.
When the image quality is low, the compression ratio of the adaptive DCT outperforms the
corresponding value of the conventional DCT by 66%.

Using an equivalent distribution metric for frame temporal correlation could allow
extending the proposed adaptive algorithm to the time dimension, improving the compres-
sion of the video stream. The implementation of adaptive DCT to video compression is the
goal of future research.
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Appendix A

(a) (b) (c) (d)

Figure A1. Highway footage frame test: (a) The original image. (b) High-quality ADCT and DCT.
(c) Medium-quality ADCT and DCT. (d) Low-quality ADCT and DCT.
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Table A1. Highway footage frame, original ITDV = 11.63851.

Quality MS-SSIM
(ADCT/DCT) CR (ADCT/DCT) PSNR, dB

(ADCT/DCT)

High 0.986/0.995 8.350/7.483 39.675/43.559

Medium 0.939/0.976 25.807/18.663 33.086/37.150

Low 0.782/0.899 151.661/45.369 24.494/31.211

(a) (b) (c) (d)

Figure A2. Recorder footage frame test: (a) The original image. (b) High-quality ADCT and DCT.
(c) Medium-quality ADCT and DCT. (d) Low-quality ADCT and DCT.

Table A2. Recorder footage frame, original ITDV = 13.24893.

Quality MS-SSIM
(ADCT/DCT) CR (ADCT/DCT) PSNR, dB

(ADCT/DCT)

High 0.987/0.989 4.727/4.571 40.967/41.978

Medium 0.947/0.955 12.393/11.161 33.620/34.908

Low 0.846/0.8507 53.781/36.818 28.738/28.842

Table A3. Dark highway photo, original ITDV = 12.14221.

Quality MS-SSIM
(ADCT/DCT) CR (ADCT/DCT) PSNR, dB

(ADCT/DCT)

High 0.989/0.997 3.897/3.735 37.495/41.521

Medium 0.955/0.987 9.519/8.803 31.913/34.188

Low 0.887/0.936 37.186/27.635 27.045/27.787

Table A4. Sunny highway photo, original ITDV = 14.02255.

Quality MS-SSIM
(ADCT/DCT) CR (ADCT/DCT) PSNR, dB

(ADCT/DCT)

High 0.982/0.997 2.746/2.644 34.892/41.004

Medium 0.951/0.988 5.406/5.066 28.827/32.762

Low 0.911/0.923 20.140/16.801 25.053/25.388
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(a) (b) (c) (d)

Figure A3. Dark highway photo test: (a) The original image. (b) High-quality ADCT and DCT.
(c) Medium-quality ADCT and DCT. (d) Low-quality ADCT and DCT.

(a) (b) (c) (d)

Figure A4. Sunny highway photo test: (a) The original image. (b) High-quality ADCT and DCT.
(c) Medium-quality ADCT and DCT. (d) Low-quality ADCT and DCT.
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