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Abstract: The bipartite polarization problem is an optimization problem where the goal is to find the
highest polarized bipartition on a weighted and labeled graph that represents a debate developed
through some social network, where nodes represent user’s opinions and edges agreement or
disagreement between users. This problem can be seen as a generalization of the maxcut problem,
and in previous work, approximate solutions and exact solutions have been obtained for real instances
obtained from Reddit discussions, showing that such real instances seem to be very easy to solve.
In this paper, we further investigate the complexity of this problem by introducing an instance
generation model where a single parameter controls the polarization of the instances in such a way
that this correlates with the average complexity to solve those instances. The average complexity
results we obtain are consistent with our hypothesis: the higher the polarization of the instance, the
easier is to find the corresponding polarized bipartition. In view of the experimental results, it is
computationally feasible to implement transparent mechanisms to monitor polarization on online
discussions and to inform about solutions for creating healthier social media environments.

Keywords: social networks; polarization; combinatorial optimization; experimental results

1. Introduction

Polarization is a segregation process that is based on the construction of a thought
based on the assumptions of confrontation of identities [1]. The polarization process
does not take into account what the people of both groups may have in common, but
the differences, creating a dynamic of rejection that can lead to growing hostility and
discrimination. Ultimately, this could lead to situations in which intolerance gives rise to
hate messages that are produced, in this case, on social media networks, but that can be
reflected in the offline world [2]. Within such an environment, certain groups or individuals
may become radicalized to violent extremism [3].

The sixteenth Sustainable Development Goal [4] promotes peaceful and inclusive
societies, providing access to justice for all and building effective, accountable and inclusive
institutions at all levels. This goal aligns with the broader human rights framework by
promoting societies that respect and uphold individual rights, as well as the right to
privacy, freedom of expression, and access to information. In accordance with this goal, the
emergence of polarization in discussions on social media networks, and the responsibility
of companies in this problem, is a topic that is causing a significant interest in society [5],
although the complete relationship between digital platforms and polarized attitudes
remains unclear [6]. For example, there is some work which indicates that, at least for
polarization in people’s views of political parties, the increased use of social networks and
the internet may not necessarily be increasing polarization [7]. In this sense, a systematic
literature review has been developed by Iandoli et al. in [8]. The results of their analysis
showed that social media contribute to increase polarization, either by amplifying and
escalating social processes that also occur offline, or in specific ways enabled by their design
affordances, which also make these platforms prone to manipulation.
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Additionally, polarizing content is often the target for hoaxes and fake news [9]. Thus,
the ability to detect polarization is essential in the early detection of misinformation. Indeed,
misinformation and disinformation are a threat for society. For example, political disinfor-
mation can interfere with elections in democratic countries, while medical misinformation
can pose a public health threat [10]. For this reason, the European Union is concerned about
the risk of disinformation and misinformation, and has decided to tackle it [11].

Online social networks are platforms for social and communicative interaction. Studies
have shown that polarization varies greatly across platforms [12], with the strength of the
results being a function of how polarization is measured [13]. Previous work has studied
the presence of polarization in different concrete examples, trying to analyze the relevant
characteristics in these cases. For example, the works [14,15] studied the emergence of
so-called echo chambers, where users are found to interact mainly or only with the users
that agree with them, and to have very few interactions with other groups. However, online
discussions in social networks can also show polarization where there are answers with
negative sentiment between different groups, which can be considered the most worrying
situation. For example, ref. [16] studied hyper-partisanship and polarization in Twitter
during the 2018 Brazilian presidential election. Their findings showed that there was more
interaction within each group (pro-/anti-Bolzonaro), but there was also an interaction
between both groups. Actually, there are also cases where the interaction between groups
can be more relevant than those within groups, like in the case studied in [17], where the
analysis of the 2016 U.S. elections on Reddit showed a significant number of interactions
between pro-Trump and pro-Hillary supporters. So, the extent to which bias is due to
inline echo chambers and filter bubbles is also misunderstood, with evidence pointing in
opposite directions [6]. A filter bubble (https://www.techopedia.com/definition/28556/
filter-bubble, accessed on 12 August 2024) is the intellectual isolation that occurs when
websites use artificial intelligence (AI)-driven algorithms to selectively present information
based on user behavior, such as clicks, browsing history, search history, and location. This
can lead to us being exposed to only one side of an issue, which can make it difficult to
form an informed opinion.

A major problem is that divisive content tends to spread widely and quickly on social
media. Posts that express moral outrage [18] or bash one’s outparty [19], for example,
tend to be particularly successful at going viral. This virality may be due, in part, to
the prioritization made by social media algorithms, coupled with some possible people’s
inclination to favor sensational content. As a consequence, it can happen that when some
people log on to social media, they are likely to see content that is divisive and presses
their emotional buttons. In addition, these trends encourage politicians, media outlets,
and potential influencers to publish divisive content, because it is most likely to give the
commitment they desire.

It is worth noting that people exposed to a comments section when reading an online
news article tend to express a more extreme view on the topic than people that read the
same article without being exposed to the comments [20]. Thus, online polarization can
lead to a more polarized population.

To try to mitigate the factors that may be helping the spread of divisive content, for
instance, Facebook has launched some initiatives [21], even if this kind of content may
be the type that produces the maximum attention of their users, thus also being the type
producing maximum economic benefit.

Another approach to the analysis of polarization is proposed in the works of Auletta
et al. [22] and Candogan et al. [23], which consider, in an analytical way, the effect of the
social media algorithm on the opinions of members. On the one hand, in [22], the authors
studied how the strength of the influence of the social media and the homophily ratio affect
the probability of users reaching a consensus, and how these factors can determine the
type of consensus reached. The homophily ratio aims at measuring how much individuals
weigh in their similar or alike population compared to others. In particular, they showed
that when the homophily ratio is large, social media has a very low capacity of determining

https://www.techopedia.com/definition/28556/filter-bubble
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the outcome of the opinion dynamics. However, when the homophily ratio is low, the
social media influence can have an important role on the dynamics, either by making
harder to reach a consensus, or inducing it on extreme opinions. On the other hand,
in [23], the authors defined an opinion dynamics model where social network users update
their opinions based on their neighbors’ opinions and on the content shown to them by
the platform. Specifically, they showed that users’ opinions approximately converge to
some limiting opinion, which is either consensus, where all users agree, or persistent
disagreement, where users’ opinions differ.

Because each online social network company can have its own personal interest
regarding how and when to control anomalous and extremist behaviors, one fundamental
aspect is to define more transparent ways to monitor such possible non-desirable behaviors,
so that we can inform solutions for creating healthier social media environments. From our
point of view, the goal to be achieved in this direction is to provide mechanisms that allow
us to detect situations where one can deduce that polarization is taking place within an
online debate, and to a certain level of severity, because there is some criterion that can be
quantified and measured.

With this goal in mind, and given that Reddit turned out to be a decisive political
debate platform in different elections in the United States, such as those of 2016, in a
research work, we introduced a problem [24] of finding the highest polarized bipartition
on a weighted and labeled graph that represents a Reddit debate, where nodes represent
user’s opinions and edges agreement or disagreement between users.

To find the highest polarized bipartition of a Reddit debate, our model considers
the premise that, in a debate, we can have interactions in two ways: within groups and
between groups. Then, an important aspect of our polarization measure is that it allows us
to quantify the relevance of the kinds of interactions within the debate, and the polarization
degree of the bipartition, which are based on how homogeneous each partition is, and how
negative the interactions are between both partitions.

Our measure does not try to prove a correlation between the polarization of a particular
online debate and the true opinions of their users. That is, the measure takes only into
account the specific comments expressed in a particular debate.

Also, in [24], we showed that finding this target bipartition is an optimization problem
that can be seen as a generalization of the maxcut problem, and we introduced a basic
local search algorithm to find approximate solutions of the problem. Later on, in [25], we
also studied the complexity of solving real instances from Reddit discussions with both
complete and approximate algorithms. These results on real Reddit instances showed that
solving those instances could be performed with little computational cost as the size of the
instances increased, and that all the instances, obtained from different subreddits, tended
to show polarization values away from neutral discussions, although without reaching the
case of extreme polarization.

Our aim in this paper is to further investigate the complexity of this problem by intro-
ducing an instance generation model, where a single parameter controls the polarization of
the instances in such a way that this correlates with the average complexity to solve those
instances. The average complexity results we obtain are consistent with our hypothesis:
the higher the polarization of the instance, the easier is to find the corresponding polarized
bipartition. Although one can consider other alternative ways to measure the polarization
in online social networks, we believe that our generation model could be used to easily
check other measures. The results obtained with our generation model, together with
the previous results on real instances from Reddit discussions, seem to indicate that, in
practice, it may be feasible to compute the polarization of online discussions, at least with a
polarization measure like the one we use here.

Therefore, in view of the experimental results, checking polarization with this measure
seems to only be difficult in unrealistic cases. Clearly, it is advantageous to offer algorithms
for monitoring polarization in online social networks.
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The structure of the rest of the paper is as follows. In Section 2, we present both the
model for weighted and labeled graphs that represents an online debate, and the measure to
quantify the polarization in such debate graphs, studied and developed in [24]. In Section 3,
we prove that the computation of such a measure is NP-hard. In Section 4, we describe
the algorithms that we use to solve the bipartite polarization problem. In Section 5, we
introduce our random generation model for user debate graphs based on a main parameter,
called α, to control the polarization of the instances. In Section 6, we characterize a case of
the bipartite polarization problem that can be solved in linear time. Finally, in Section 7,
we perform an empirical evaluation to study how the complexity of solving the typical
instances obtained with our random model changes as we modify the parameter α, and
how this, at the same time, affects to the polarization of the instances.

2. Problem Definition

Polarization corresponds to the social process whereby a group of persons is divided
into two opposing subgroups having conflicting and contrasting positions, goals, and view-
points, with few individuals remaining neutral or holding an intermediate position [26].
The model we consider in this work is inspired by the model defined in [27] to identify
supporting or opposing opinions in online debates, based on finding a maximum cut in
a graph that models the interactions between users. Moreover, as we are interested in
quantifying polarization, we consider a model that is based on a weighted graph and with
labeled edges, where node weights represent the side of the user in the debate, and edge
labels represent the overall sentiment between two users. Then, given a bipartition of
this graph, the polarization degree of the bipartition is based on how homogeneous each
partition is, and how negative the interactions are between both partitions. Finally, the
measure of debate polarization is based on the maximum polarization obtained in all the
possible bipartitions of the graph.

Adapting from [24], an online debate Γ on a root comment r is a non-empty set of
comments that were originated as successive answers to a root comment r. An online
debate is modeled as a two-sided debate tree, where nodes are labeled with a binary value
that denotes whether the comment is in agreement (1) or in disagreement (−1) with the
root comment. Notice that in [24], we introduced this model specifically for Reddit debates.
However, it is clearly a model suitable for other, similar social networks.

Definition 1 (Two-Sided Debate Tree). Let Γ be an online debate on a root comment r. A
Two-Sided Debate Tree (SDebT) for Γ is a tuple TS = ⟨C, r, E, W, S⟩, defined as follows:

• For every comment ci in Γ, there is a node ci in C.
• Node r ∈ C is the root node of T .
• If a comment c1 ∈ C answers another comment c2 ∈ C, there is a directed edge (c1, c2) in E.
• W is a labeling function of answers (edges) W : E → [−2, 2], where the value assigned to

an edge (c1, c2) ∈ E denotes the sentiment of the answer c1 with respect to c2, from highly
negative (−2) to highly positive (2).

• S is a labeling function of comments (nodes) S : C → {−1, 1}, where the value assigned to a
node ci ∈ C denotes whether the comment ci is in agreement (1) or in disagreement (−1) with
the root comment r, and it is defined as follows:

- S(r) = 1;
- For all nodes c1 ̸= r in C, S(c1) = 1 if, for some node c2 ∈ C, (c1, c2) ∈ E and

either S(c2) = 1 and W(c1, c2) > 0, or S(c2) = −1 and W(c1, c2) ≤ 0; otherwise,
S(c1) = −1.

Only the nodes and edges obtained by applying this process belong to C and E, respectively.

Next, we present the formalization of a User Debate Graph based on a Two-Sided
Debate Tree, where now all the comments of the same user are aggregated into a single
node that represents the user’s opinion.
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Definition 2 (User Debate Graph). Let Γ be a online debate on a root comment r with users’
identifiers U = {u1, . . . , um}, and let TS = ⟨C, r, E, W, S⟩ be a SDebT for Γ. A User Debate
Graph (UDebG) for TS is a tuple G = ⟨C, E ,S ,W⟩, where:

• C is the set of nodes of G, defined as the set of users’ opinions {C1, . . . , Cm}, i.e., C =
{C1, . . . , Cm} with Ci = {c ∈ Γ | c ̸= r and user(c) = ui}, for all users ui ∈ U.

• E ⊆ C × C is the set of edges of G, defined as the set of interactions between different users
in the debate, i.e., there is an edge (Ci, Cj) ∈ E , with Ci, Cj ∈ C and i ̸= j, if and only if, for
some (c1, c2) ∈ E, we have that c1 ∈ Ci and c2 ∈ Cj.

• S is an opinion weighting scheme for C that expresses the side of users in the debate based on
the side of their comments. We define S as the mapping S : C → [−1, 1] that assigns to every
node Ci ∈ C the value

S(Ci) =
∑c∈Ci

S(ci)

|Ci|
in the real interval [−1, 1], which expresses the side of the user ui with respect to the root
comment, from strictly disagreement (−1) to strictly agreement (1), going through undecided
opinions (0).

• W is an interaction weighting scheme for E that expresses the overall sentiment between
users by combining the individual sentiment values assigned to the responses between their
comments.
We define W as the mapping W : E → [−2, 2] that assigns to every edge (Ci, Cj) ∈ E a
value w ∈ [−2, 2], defined as follows:

w = ∑
{(c1,c2)∈E∩(Ci×Cj)}

W(c1, c2)/|{(c1, c2) ∈ E ∩ (Ci × Cj)}|

where w expresses the overall sentiment of the user ui regarding the comments of the user uj,
from highly negative (−2) to highly positive (2).

Only the nodes and edges obtained by applying this process belong to C and E , respectively.

Given a User Debate Graph G = ⟨C, E ,S ,W⟩, a model to measure the level of po-
larization in the debate between its users was also introduced in [24]. It is based on two
characteristics that a polarization measure should capture. First, a polarized debate should
contain a bipartition of C into two sets (L, R), such that the set L contains mainly users in
disagreement, the set R contains mainly users in agreement, and both sets should be similar
in size. The second ingredient is the sentiment between users of L and R. A polarized
discussion should contain most of the negative interactions between users of L and users
of R, whereas the positive interactions, if any, should be mainly within the users of L and
within the users of R.

To capture these two characteristics with a single value, two different measures are
combined in a final one, referred to as the bipartite polarization.

Definition 3 (Bipartite polarization). Given a User Debate Graph G = ⟨C, E ,S ,W⟩ and a
bipartition (L, R) of C, we define:

• The level of consistency and balance of (L, R) is a real value in [0, 0.25], defined as follows:

SC(L, R,G) = LC(L,G) · RC(R,G)

with

LC(L,G) =
∑ Ci∈L,
S(Ci)≤0

−S(Ci)

|C|
and

RC(R,G) =
∑ Ci∈R,
S(Ci)>0

S(Ci)

|C| .
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• The sentiment of the interactions between users of different sides is a real value in [0, 4], defined
as follows:

SWeight(L, R,G) =
∑ (i,j)∈E∩
((L×R)∪(R×L))

−W(i, j)

|E | + 2.

Notice that according to [25], each edge label (i, j) can incorporate a correction factor that is
used to modify the final weight used in the SWeight function. However, to simplify the model
notation, in this work we will consider that the interaction weighting scheme W(i, j) already
reflects this factor.

Then, the bipartite polarization of G on a bipartition (L, R) is the value in the real interval [0, 1],
defined as follows:

BipPol(L, R,G) = SC(L, R,G) · SWeight(L, R,G).

Finally, the bipartite polarization of G is the maximum value of BipPol(L, R,G) among all possible
bipartitions (L, R).

3. Worst-Case Complexity of the Bipartite Polarization Problem

Proposition 1. The UDebG bipartite polarization problem is NP-hard.

Proof. We prove that the simple maxcut problem, which it is NP-hard even for graphs with
bounded degree ≤ 3 [28], can be reduced to the UDebG bipartite polarization problem in
polynomial time. Consider an undirected graph instance G = (V, E) of the simple maxcut
problem. Then, we build an instance G = ⟨C, E ,S ,W⟩ of the bipartite polarization problem,
such that:

1. The set of vertices C is equal to V ∪ {u−, u+}.
2. For S , we have that ∀v ∈ V,S(v) = 0 and S(u−) = −1,S(u+) = +1.
3. The set of edges E is defined only for those vertices that have an edge in the input graph:

E = {(v1, v2), (v2, v1) | {v1, v2} ∈ E}.

4. For any e ∈ E , we have that W(e) = −1/2.

Then, assume G = (V, E) has a bipartition (L, R) with total weight (number of edges
between L and R) equal to W. Consider the bipartition (L ∪ {u−}, R ∪ {u+}) for the
instance G obtained by the reduction. Clearly,

BipPol(L ∪ {u−}, R ∪ {u+},G)) = −(−1)
|C|

1
|C|

(
W
|E| + 2

)
.

Next, assume G = ⟨C, E ,S ,W⟩ has a bipartition (L′, R′) with a bipartite polarization
value equal to BPol. Then, as all the nodes have S(v) = 0, except for S(u−) = −1,
S(u+) = +1 , we have that if BipPol > 0, then u− will be in L′ and u+ will be in R′, so the
BipPol value will be of the same form as before:

BipPol(L′, R′,G)) = −(−1)
|C|

1
|C|

(
W
|E| + 2

)
,

where W will be equal to half the number of edges between L′ and R′ in G, as for any
undirected edge in the input graph G, we have two directed edges in G, each one with
W(e) = −1/2. But this implies that (L′ \ {u−}, R′ \ {u+}) is a bipartition for the input
graph G with value W. For the case BPol = 0, this could only happen because the vertices
u− or u+ are in the wrong side. But we can always transform any bipartition (L′, R′) to
one in which u− and u+ are in the right side, and so derive the value of W from the value
of BPol.
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As a consequence, (L, R) is a simple maximum cut for G = (V, E) if and only if
(L ∪ {u−}, R ∪ {u+}) is a bipartition for G = ⟨C, E ,S ,W⟩ with maximum BipPol value.

This reduction shows two interesting facts about our problem. First, we can have
instances that are as hard to solve as the Maxcut problem when almost all the users have
S(v) = 0. But at the same time, observe that we need to have at least one user with a
negative value and another one with a positive value. This is because if strictly all the
users have S(v) = 0, then the BipPol(L, R,G) value is equal to zero for any bipartition
(L, R), and then it becomes trivial to solve the problem. These facts, together with the
experimental results in [25] with real instances from Reddit discussions, where instances
with polarization values away from neutral, were very easy to solve on average, which
makes us present the following hypothesis.

Hypothesis 1. On the one hand, the closer the maximum bipartite polarization of a UDebG
instance is to zero, the more difficult it is to find such bipartition, as many possible bipartitions will
have a bipartite polarization very close to the optimum. On the other hand, the closer the maximum
bipartite polarization of a UDebG instance is to one, the easier is to find such bipartition, as any
user i will tend to have values for S(i) and W(i, j) that are correlated, and users will tend to have
only negative sentiment answers to the users of the other side in the optimal bipartition.

The random generator model we present in Section 5 will be used in the experimental
section (Section 7) to try to check this hypothesis, at least with the synthetic instances
generated with our random generator model.

4. Solving the Bipartite Polarization Problem

To solve the bipartite polarization problem, we use two approaches: one based on a
complete algorithm to find the exact polarization, and another one based on a local search
algorithm that finds an approximate solution.

For the complete algorithm, we can find the polarization of a debate by solving the
integer nonlinear programming formulation (MINLP) defined in [25]. Thus, we can find
the bipartite polarization of a User Debate Graph G = ⟨C, E ,S ,W⟩ by solving the following
MINLP of it, where each node Ci from C is associated with an integer variable xi, such that
xi = −1 represents that Ci is in the L partition and xi = +1 represents that Ci is in R:

maxx

 1
|C|2 ∑ (xi ,xj) with

S(Ci)≤0,S(Cj)>0

−S(Ci)S(Cj)(1 − xi)(1 + xj)/4.0

∗(
2 + 1

|E | ∑(i,j)∈E −c(p(i, j)) · w(i, j) ∗ (1 − xi ∗ xj)/2.0
)

subject to: x2
i = 1 ∀Ci ∈ C

(1)

Observe that the first summatory in the objective function represents the term SC(L, R,G),
and the second one the term SWeight(L, R,G). Then, we use the branch-and-bound solver [29]
of the SCIP Optimization suite (version 8.0) [30] to optimally solve problem instances with
this MINLP formulation.

For the approximate approach, we use the local search solver developed in [24], which
is inspired by an algorithm for the maxcut problem [31]. The solver uses a greedy approach
based on a steepest ascent hill climbing strategy plus restarts to escape from local minima.
The number of steps of the local search algorithm is bounded by the number of nodes,
and the number of restarts is set to 10. So, the worst case running time of the local search
approach is linear in the number of nodes.

The initial bipartition (L, R) in the local search solver is randomly generated as follows.
We place each user’s opinion Ci in L with probability PL = (1 − S(Ci))/2 and in R with
probability 1 − PL. That is, the closer S(Ci) is to −1, the higher the probability to be
placed initially in L. As we will see in Section 6, this initial bipartition can be very close to
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the optimum solution for at least the polynomial time case of the problem we present in
that section.

5. A Random Generator Model for UDebG Instances

We present a random generator of UDebG instances, where the goal is to control the
expected bipartite polarization of the instance by means of a single parameter α, that lies in
the range (0, 1], and where the number of nodes (users) is given by a parameter m. Note
that, for α = 0, all the nodes would have S(Ci) = 0. This extreme case corresponds to the
trivial problem where the bipartite polarization is zero for any bipartition. For this reason,
α = 0 is not considered in our random generator.

The generation process consists of the two following steps:

1. Generation of the set of nodes C with their S(Ci) value. Each node Ci is generated
with a value S(Ci) from [−α, α], obtained with a bimodal distribution that arises
as a mixture of two different truncated normal distributions TN(−α, 0, µ1, σ1) and
TN(0, α, µ2, σ2). The first distribution is defined on the interval [−α, 0] with mean µ1
and standard deviation σ1 equal to:

µ1 = −α, σ1 =
1

1 + 20α
.

And, analogously for the second distribution, but now defined on the interval [0, α],
and with values:

µ2 = α, σ2 =
1

1 + 20α
.

So, with this bimodal distribution, the values are concentrated around the two modes
(−α and α), but how tightly they concentrate is inversely proportional to α, so the
higher the value of α, the smaller the standard deviation.

2. Generation of the set of edges E with their W(i, j) value. For each node i, we ran-
domly select a set of k target vertices {j1, j2, . . . , jk}, with k randomly selected from
[1, ⌈log10(m)⌉], to build outgoing edges from i to those vertices. The value of W(i, j)
is generated with a truncated normal distribution on the interval [−2, 2] with µ and σ
that depend on the values of S(Ci) and S(Cj) as follows:

µ =

{
2 · |S(Ci)| − |S(Ci)− S(Cj)|, if Ci and Cj are on the same side
−|S(Ci)| · |S(Ci)− S(Cj)|, if Ci and Cj are on different side

σ =
2

3 + 10|µ| .

So, when the users Ci and Cj are on the same side (S(Ci) and S(Cj) are both either
positive or ≤0), the mean of the distribution will be positive, and the more similar the
values S(Ci) and S(Cj) are, and the closer |S(Ci)| is to 1, the closer µ will be to 2. By
contrast, when the users Ci and Cj are on different sides, the more different the values
S(Ci) and S(Cj) are, and the closer |S(Ci)| is to 1, the closer µ will be to −2. Observe
that the sign of µ depends on the sign of users i and j.
Regarding the absolute value |µ|, it depends on both S(Ci) and S(Cj), but more on
the first one. This is because, in principle, the overall sentiment W(i, j) (answers from
user i to user j) is not necessarily equal to W(j, i), although it is natural to think that
there will be some positive correlation between them. In any case, we think that it
makes sense to force the sign of the mean to be the same when generating W(i, j) and
W(j, i). As for the absolute value, it is natural that users with stronger opinions (those
with |S(Ci)| closer to 1) have stronger sentiments towards the rest of the users.

The overall intention of this way to select the values of S(Ci) and W(i, j) is to move
from a UDebG instance corresponding to a clearly neutral discussion when α approaches 0
to one corresponding to a highly polarized discussion when α approaches 1. We control
this by making the expected values of both S(Ci) and W(i, j) approach the neutral value 0
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as α approaches 0. Observe, however, that even in the case when µ = 0 for the generation
of W(i, j), the standard deviation is 2/3. This allows for the generation of some negative
and positive values around the mean, to ensure a more realistic generation of users where
not all the answers to any user are strictly neutral. Then, as α approaches 1, the expected
value for S(Ci) tends to be more tightly concentrated around −1 or 1 due to the standard
deviation tending to 1/21, and the expected value for W(i, j) is more concentrated around
the extreme values −2 and 2, due to the standard deviation tending to 2/13.

We set that, for α = 1, the standard deviation for the generation of S(Ci) and W(i, j)
is not 0, but very low, because we do not believe that, in practice, one encounters real
discussions with such extreme polarization value of 1. So, we have preferred instead to
move towards a zone of high polarization, but without reaching the extreme case. However,
it is very easy to expand the range of possible polarizations by simply using other values to
move the standard deviation of both distributions closer to 0 as α approaches 1.

To select the number of out edges for each node, we use the function ⌈log10(m)⌉ as
the maximum number of out edges per node. Once more, we use this function as we
believe this better represents the number of interactions of real debates in social networks.
If we compute the maximum out degree and mean out degree of each instance used
in [25] (instances obtained from the authors of the paper), we obtain that the mean of the
maximum out degree of all the instances is 4.05, and the mean of the mean out degree of all
the instances is 0.89, where the instances have a median number of nodes around 50. Notice
that there are some nodes (users) that only answer to the root node. As the answers to the
root node are not considered for the UDebG, they do not have out edges, so it is possible to
have a mean out degree below 1 in the UDebG. With those numbers in mind, the log10(m)
function allows us to limit the maximum out degree to a realistic number of edges as m
increases and, at the same time, keep a low mean value.

6. A P-Time Solvable Case

In this section, we present a simple case of the bipartite polarization problem that
can be trivially solved in linear time. It is an interesting case because the characteristics
of the instances of this case are clearly more present in the random generator model we
have presented in the previous section as parameter α tends to 1. So, the fact that this case
can be solved in polynomial time can be considered as an argument for supporting the
experimental results that we show in the next section, where the higher the value of α, the
lower the typical complexity to solve the instances of the random generator.

The instances G of this case satisfy the following restriction:

∀(i, j) ∈ E :
{

W(i, j) ≤ 0 if Ci and Cj are on different side
W(i, j) > 0 if Ci and Cj are on the same side

So, observe that this case represents those instances where the only negative interac-
tions are between users in opposite sides, and the only positive ones are between users in
the same side. Observe that this case does not only contain the extreme case of bipartite
polarization equal to one, as it also contains instances where the number of users with
positive S(Ci) can be as different, as we want with respect to the number of users with
negative S(Ci).

Then, it turns out that a solution for the BipPol problem (an optimal bipartition) for
any such instance G is simply:

(V1, V2), with V1 = {v|S(Cv) ≤ 0}, V2 = {v|S(Cv) > 0}.

Because any other different bipartition (V′
1, V′

2) satisfies:

BipPol(V′
1, V′

2,G) ≤ BipPol(V1, V2,G).
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To see why, consider the two following sets that define the differences between (V1, V2) and
(V′

1, V′
2):

Neg1→2 = V1 \ V′
1, Pos2→1 = V2 \ V′

2.

In short, Neg1→2 contains the nodes with negative (or 0) S(Cv) that are not in V′
1 but in V′

2;
similarly, Pos2→1 contains the nodes with positive S(Cv) that are not in V′

2, but in V′
1.

Given these differences between (V1, V2) and (V′
1, V′

2), it turns out that:

1. Regarding the value of SC(V′
1, V′

2,G), we have that:

SC(V′
1, V′

2,G) = LC(V′
1,G) · RC(V′

2,G) =


∑ Ci∈V′

1,
S(Ci)≤0

−S(Ci)

|C|

 ·


∑ Ci∈V′

2,
S(Ci)>0

S(Ci)

|C|


=

(
∑Ci∈V1

−S(Ci)− ∑Ci∈Neg1→2
−S(Ci)

|C|

)
·
(

∑Ci∈V2
S(Ci)− ∑Ci∈Pos2→1

S(Ci)

|C|

)

=

(
LC(V1,G)−

∑Ci∈Neg1→2
−S(Ci)

|C|

)
·
(

RC(V2,G)−
∑Ci∈Pos2→1

S(Ci)

|C|

)
(2)

Then, if (V1, V2) ̸= (V′
1, V′

2), that means that at least one the sets Neg1→2 and Pos2→1
is not empty, so SC(V′

1, V′
2,G) will be smaller than or equal to SC(V1, V2,G). Observe

that it will be equal when Pos2→1 is empty, and any vertex v in Neg1→2 has S(Cv) = 0.
2. Regarding the value of SWeight(V′

1, V′
2,G), this value can be equal to or smaller than

the value SWeight(V1, V2,G). It will be equal when

SWeight′(Neg1→2, V2 \ Pos2→1,G) = 0,

SWeight′(Pos2→1, V1 \ Neg1→2,G) = 0,

SWeight′(Neg1→2, V1 \ Neg1→2,G) = 0,

SWeight′(Pos2→1, V2 \ Pos2→1,G) = 0,

(3)

where SWeight′(S1, S2,G) = SWeight(S1, S2,G) − 2. That is, when all the negative
edges between V1 and V2 are also present between V′

1 and V′
2, when all the positive

edges between vertices within V1 are also present within V′
1, and all the positive edges

between vertices within V2 are also present within V′
2.

Then, it will be smaller when there are some negative edges between Neg1→2 and
V2 \ Pos2→1, or between Pos2→1 and V1 \ Neg1→2, so these negative edges are not
present between V′

1 and V′
2. Or, it will also be smaller when there are positive edges

between vertices within V1 or within V2 that are present between V′
1 and V′

2.

So, the value of BipPol(V′
1, V′

2,G) = SC(V′
1, V′

2,G) · SWeight(V′
1, V′

2,G) will be smaller
than or equal to the value of BipPol(V1, V2,G). Then, as it can be checked in linear time
whether an input instance G satisfies the restrictions of this class, this class can be solved in
polynomial time.

Even though none of the solving algorithms presented in Section 4 try to explicitly
check for this case, it turns out that the random way to initialize the bipartition in the local
search algorithm creates a bipartition that is very close to the optimal bipartition for this
case when the values for S(Ci) are close to the extreme values −1 and 1. Therefore, at
least for the instances generated by our random generator when α tends to 1, it is highly
likely that the initial bipartition generated in the local search algorithm is very close to the
optimal one for the instances of this case.

7. Experimental Results

In this section, we present an empirical evaluation of the complexity to solve the
instances obtained with our random generator for different values of the parameter α and
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increasing the number of nodes (users) of the instances. Our main interest is to understand
how the complexity of the exact algorithm based on integer programming changes as α
moves from almost 0 to 1. As a second goal, we want also to compare the quality of the
approximate polarization value returned by the algorithm based on local search. The results
reported in [25] indicate that, for real instances coming from Reddit discussions, the median
time complexity was always very low and that the approximation of the polarization value
given by the local search algorithm was always almost identical to the exact value. The
experiments were performed on an Intel® Core® i5-6400 CPU at 2.70 GHz with 16 GB of
RAM memory.

The results of the median time to solve instances with

α ∈ {0.05, 0.08, 0.11, 0.14, 0.4, 0.7, 1.0}

and
m ∈ {25, 30, 35, 40}

as well as the bipartite polarization of the instances, are shown in Figure 1. For each
combination of α and m, the median value shown on the figure is obtained from a set of
50 instances obtained with our random generator. We have used close values of α up to 0.14
because, as one can observe, the median time to solve the instances increases quickly as m
increases for very low values of α, but as we move away from 0 the median time decreases
abruptly. At the same time, the median bipartite polarization of the instances increases
slowly for low values of α, but then it starts to increase more quickly as α increases. So,
these results are consistent with our hypothesis about the relation between polarization
and complexity to solve the instances.

Figure 1. CPU time needed to solve the instances (left plot) and polarization of the solution (right
plot) as we increase the alpha value for instances with nodes ranging from 25 to 40.

If we compare these results with the ones with real instances from Reddit in [25], which
have a median number of nodes of around 50, we observe that they are also consistent, in
the sense that in the Reddit discussions used in that paper, the median polarization of the
instances was around 0.5, and the median time was around 2 s, using the same hardware
used here. To make a more complete comparison of the complexity, we have also computed
the median number of nodes performed by the exact algorithm based on the SCIP solver
(the same one used in that previous paper), given that in our previous paper, we also
showed the median number of nodes of the SCIP search tree. Figure 2 shows the median
number of nodes for the same instances of Figure 1. As we can observe, the number of
nodes of the SCIP search tree follows the same qualitative behavior as the time, and for
instances with median polarization around 0.5 (which have α > 0.7), the median number
of nodes would be around 1 (by interpolating between our cases α = 0.7 and α = 1.0), as
happens in the results of our previous paper with the Reddit instances.
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Figure 2. Number of nodes of the SCIP search tree needed to solve the instances as we increase the
alpha value for instances with nodes ranging from 25 to 40.

Although our choice of the value ⌈log10(m)⌉ as the value for the maximum number of
out edges for each node in our random generator is consistent with the characteristics of
the Reddit instances solved in [25], we wanted to check if the complexity patterns we have
observed in the previous experiments were not a result of a too low value for the number
of out edges. This is something relevant, as the NP-hardness results for maxcut in [28], and
the problem we have used to show NP-hardness of our problem, are valid for graphs with
bounded degree 3, but the average degree of the graphs generated for the experiments in
Figures 1 and 2 have an average degree around 1, given the maximum value used for m
(40). So, in order to eliminate the possibility of easy instances due to low degree graphs, we
have generated a second set of instances of larger size, with m ranging from 40 to 90, and
where the maximum out degree of the instances is now equal to 3⌈log10(m)⌉, now giving
the value 6 as the maximum out degree for vertices, and 3.5 being the average degree.

Figure 3 shows the same plots as Figure 1, but obtained with these new instances with
higher vertex degrees. Notice that the plots now start at α = 0.4, since the complexity of
solving these instances for lower values of α is expected to be greater than in the previous
experiments, given the higher values for m. In the left plot, we can observe that the
complexity in CPU time increases as we lower the α value, but this increase does not seem
exponential, at least for α ≥ 0.5. The right plot shows the median bipartite polarization of
the instances, and we can see that its behavior is very similar to the one of the previous
experiment. So, these results confirm that even increasing the vertex degree, the typical
complexity of solving the instances seems to be tightly correlated with the value of α, such
that the exponential time increase seems more clear for low values of α (α ≤ 0.4), but not
for higher values that show a much slow increase in the typical complexity.

Finally, we were also interested in comparing the quality of the approximation pro-
vided by the local search approach, presented in Section 4, with the one of the exact
algorithm. Table 1 shows, for each combination of number of nodes and value of α, the min-
imum, median and maximum value for the polarization obtained in each set of instances
with the exact algorithm (columns labeled with SCIP BipPol). Observe that for higher values
of α, we observe more variations in the polarization of the instances (difference between
the min and the max values). Then, in the next three columns we show for the same three
instances of the previous columns (instance with minimum polarization, with median one,
and with maximum one) the ratio of the approximate polarization computed by the local
search solver to the exact polarization of the instance (LS ratio). As we observe, the quality
of the solutions computed by the local search algorithm is perfect for instances with α ≥ 0.4
(that are precisely the ones that are easily solved by the exact algorithm) and for lower
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values of α we observe only a tiny relative error. Overall, we can say that the quality of the
solution provided by the local search algorithm is always satisfactory with the advantage
that its computational complexity is always linear with respect to the number of nodes, so
there is no hard region for the local search approach.

Figure 3. CPU time needed to solve the instances (left plot) and polarization of the solution (right
plot) as we increase the alpha value (starting from 0.4) for instances with nodes ranging from 40 to 90
and with average degree equal to 3.5.

Table 1. Comparison of the quality of the solutions between SCIP and LS solvers for different α

values and number of nodes in the range 25–40.

SCIP BipPol LS Ratio
m α Min. Median Max. Min. Median Max.

25

0.05 0.0001 0.0003 0.0005 1 0.998 1
0.08 0.0004 0.0008 0.0013 1 0.9995 0.9999
0.11 0.0007 0.0015 0.0025 1 0.9998 1
0.14 0.0013 0.0025 0.0042 1 1 0.9999
0.4 0.0359 0.0497 0.0611 1 1 1
0.7 0.1907 0.2487 0.2786 1 1 1
1.0 0.4834 0.6631 0.7446 1 1 1

30

0.05 0.0002 0.0003 0.0005 0.9963 0.9985 0.9989
0.08 0.0005 0.0008 0.0012 0.9989 0.9995 0.9992
0.11 0.0010 0.0015 0.0023 0.9997 0.9997 1
0.14 0.0017 0.0025 0.0038 0.9998 0.9999 0.9999
0.4 0.0424 0.0505 0.0597 1 1 1
0.7 0.2046 0.2492 0.2724 1 1 1
1.0 0.5289 0.6657 0.7459 1 1 1

35

0.05 0.0002 0.0003 0.0005 1 0.9991 1
0.08 0.0006 0.0008 0.0012 1 0.9996 1
0.11 0.0011 0.0015 0.0022 0.9996 0.9999 1
0.14 0.0018 0.0025 0.0037 0.9998 1 1
0.4 0.0432 0.0503 0.0588 1 1 1
0.7 0.2150 0.2482 0.2697 1 1 1
1.0 0.5530 0.6590 0.7490 1 1 1

40

0.05 0.0002 0.0003 0.0004 1 1 0.9983
0.08 0.0006 0.0008 0.0011 0.9994 1 0.9989
0.11 0.0011 0.0015 0.0021 0.9996 0.9995 0.9995
0.14 0.0018 0.0025 0.0035 0.9995 0.9999 0.9999
0.4 0.0423 0.0507 0.0574 1 1 1
0.7 0.2113 0.2481 0.2679 1 1 1
1.0 0.5491 0.6553 0.7400 1 1 1
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8. Conclusions

We have presented a random generator of User Debate Graph instances, where a
parameter α is introduced to control the expected bipartite polarization of the instances.
As previous results with real instances seemed to indicate that instances with polarization
away from neutral (0) were easy to solve on average, we wanted to check if this was still
the case when working with instances with a more wide set of polarization values.

On the one hand, the results obtained are consistent with the ones obtained with
real instances, but show that hard to solve instances are possible in principle, at least for
very low polarization values, something that is consistent with the fact that the problem is
NP-hard. On the other hand, the results also show that the verification of polarization with
this measurement seems difficult only in unrealistic cases, so that it can be used to monitor
polarization in online debates with the final goal to inform solutions for creating healthier
social media environments.

Despite the existence of hard instances, they are tightly concentrated around a very
thin region with very low polarization (which, we could argue, represents a zone of
uncommon real instances) and, in any case, the results in terms of the quality of the
solutions obtained with the efficient local search approach indicates that it is a good
approach to make the computation of the polarization feasible. Of course, it could be that
some specific characteristics of instances coming from some social networks could be not
significantly present in our random generator model, or that other measures of polarization
could present a different behavior to the one of the measure used in this work. So, as a
future work, we could consider the validation of our model with respect to other social
networks, and consider alternative measures for the polarization that could make sense in
some settings, as the polarization metric introduced in [32] to analyze opinions expressed
on the gun control issue in Twitter. Another possible future work may be to use a fuzzy
logic approach where, instead of two-sided debate trees, agreement is treated as a fuzzy set
with a continuous membership function. This will capture the idea that user comments
seldom exhibit extremely polarized opinions.
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