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Abstract: This paper presents a novel, multi-objective scatter search algorithm (MOSS) for a bi-
objective, dynamic, multiprocessor open-shop scheduling problem (Bi-DMOSP). The considered
objectives are the minimization of the maximum completion time (makespan) and the minimization
of the mean weighted flow time. Both are particularly important for improving machines’ utilization
and customer satisfaction level in maintenance and healthcare diagnostic systems, in which the
studied Bi-DMOSP is mostly encountered. Since the studied problem is NP-hard for both objectives,
fast algorithms are needed to fulfill the requirements of real-life circumstances. Previous attempts
have included the development of an exact algorithm and two metaheuristic approaches based on
the non-dominated sorting genetic algorithm (NSGA-II) and the multi-objective gray wolf optimizer
(MOGWO). The exact algorithm is limited to small-sized instances; meanwhile, NSGA-II was found
to produce better results compared to MOGWO in both small- and large-sized test instances. The pro-
posed MOSS in this paper attempts to provide more efficient non-dominated solutions for the studied
Bi-DMOSP. This is achievable via its hybridization with a novel, bi-objective tabu search approach
that utilizes a set of efficient neighborhood search functions. Parameter tuning experiments are
conducted first using a subset of small-sized benchmark instances for which the optimal Pareto front
solutions are known. Then, detailed computational experiments on small- and large-sized instances
are conducted. Comparisons with the previously developed NSGA-II metaheuristic demonstrate the
superiority of the proposed MOSS approach for small-sized instances. For large-sized instances, it
proves its capability of producing competitive results for instances with low and medium density.

Keywords: scheduling; metaheuristics; dynamic, multiprocessor open shop; multi-objective scatter
search; tabu search

1. Introduction

Scheduling is the construction of a timetable that encloses the plan for performing
a set of operations on a limited set of non-consumable resources. Scheduling problems
appear in diverse structures and exist in a wide variety of industrial and service systems [1].
The scheduling problem considered in this paper exists in maintenance and healthcare
diagnostic systems in which the dynamic arrivals of jobs (maintenance requests or patients)
are a common characteristic. It is referred to as the dynamic, multiprocessor open-shop
scheduling problem (DMOSP). Dynamic arrivals of jobs require responsive planning for
rescheduling decisions to maintain a smooth execution of schedules for both existing
and arriving jobs while sustaining a high level of performance. Nowadays, responsive
rescheduling is becoming a requirement for the integration of the fourth industrial rev-
olution [2]. This paper presents the elements and processes of an efficient metaheuristic
approach that can be used to provide efficient solutions to this problem.

The studied problem is encountered in a system consisting of workstations that have
technologically different functions. For instance, in a healthcare diagnostic system, the
workstations can perform X-ray, CT scans, and ultrasound. Each workstation consists of
unrelated machines working in parallel and are not necessarily identical. Therefore, they
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may differ in their processing times, which may also depend on the type of the job. Jobs
are constituted of a set of operations. Each operation represents a task that needs to be
performed on a specified workstation in which a machine needs to be selected. Jobs do not
require a mandatory sequence for visiting the workstations and are not compelled to visit
all of them. Machine interruptions due to sudden breakdowns or preventive maintenance
activities are neglected. It is assumed that a machine can process at most one operation at a
time, that operation interruption or preemption is not allowed, and that jobs cannot be split
or processed on multiple machines simultaneously. Jobs differ in their priorities, which
are represented as numerical values. The more important a job is, the higher its assigned
priority value. A mixed-integer linear programming model for the studied problem is
provided in [3].

The rescheduling management system considered herein is as explained by Abdel-
maguid [4], and it is operated as follows. A decision-maker continuously receives jobs
during the execution of a schedule and assigns a numerical value to each job, representing
its priority level. Based on an initial checkup process, the processing requirements for the
operations of each job are determined. Once they become known for a set of arrived jobs,
the decision-maker decides on the time at which this set of jobs will be admitted, which
is referred to as the job release time. At that time, if an existing job has an operation that
is currently running, it is assigned a release time that equals the completion time of that
operation. Its remaining not-yet-started operations are considered in the new schedule.
Otherwise, the release time of the existing job is set to be equal to the release time of the
arrived jobs. Accordingly, we may reasonably assume that the jobs’ release times and the
operations’ processing times on all machines are known and certain. Meanwhile, a machine
may not be ready at the beginning of a rescheduling phase due to a prior allocation of an
existing job. Therefore, each machine has a ready time representing the time at which it
will be available for processing jobs. Machine-ready times are assumed to be deterministic
and known a priori.

This paper considers a bi-objective, dynamic, multiprocessor open-shop scheduling
problem (Bi-DMOSP). Since a single objective is not sufficient to cover the interests of all
the stakeholders in the schedules generated for these systems, two objectives are simultane-
ously considered in this paper. The first one is the minimization of the makespan (Cmax),
which is the maximum time at which all jobs will be completed. The makespan is equivalent
to the maximization of the utilization of the available machines. The second objective is
the minimization of the mean weighted flow time (MWFT). The MWFT is calculated as
the weighted average of all jobs’ flow times, for which the weights are the priority values
assigned to the jobs. The flow time of a job is the difference between its completion time
and its release time. The minimization of the MWFT improves customer satisfaction levels.
We follow an a posteriori approach [5] to solving the Bi-DMOSP, meaning that a set of
non-dominated solutions will be generated and delivered to the decision-maker so that
they can choose one to implement.

The considered problem is NP-hard for both objectives since it is a generalization
of the traditional static, deterministic open-shop scheduling problem (OSP). In the OSP,
all machines are not busy at the beginning of the schedule, at which time all jobs are
released, and the system consists of single-machine workstations. For more than two
machines, the makespan minimization OSP is known to be NP-hard [6], as it is for the
MWFT minimization OSP [7]. Therefore, an efficient metaheuristic is needed to generate
non-dominated solutions that coincide with or are very close to the optimal Pareto front
solutions. This process needs to be done in a practically acceptable computational time.

Despite its frequent occurrence in real-life applications, the literature has rarely ad-
dressed the multi-objective DMOSP. Wang and Chou [8] studied a special case of four
workstations, each containing parallel identical machines. This DMOSP special case is
encountered in chip sorting in light-emitting diode (LED) manufacturing. They considered
the objectives of the minimization of the makespan and the minimization of total weighted
tardiness simultaneously. They proposed two simulated annealing approaches and pro-
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vided minor computational experiments for them. Recently, Abdelmaguid [3] developed a
mixed-integer linear programming model and an exact algorithm based on the ε-constraint
method [5] for the studied Bi-DMOSP. That algorithm can generate optimal Pareto front
solutions for small-sized instances; nevertheless, its computational time is prohibitive for
intermediate and large-sized instances. Consequently, two metaheuristic approaches that
can provide efficient, non-dominated solutions in practically acceptable computational
times for large-sized instances were developed by Abdelmaguid [4]. The first metaheuristic
is an evolutionary algorithm based on NSGA-II [9]. Meanwhile, the second metaheuristic is
a swarm-intelligence one based on the multi-objective gray wolf optimizer (MOGWO) [10].
Both metaheuristics are population-based and represent two different lines of research.
They are both hybridized with a simulated annealing local search heuristic. The computa-
tional results in Abdelmaguid [4] show that NSGA-II outperforms MOGWO.

This paper contributes to the literature as follows:

• It develops a new solution representation scheme (chromosome structure) and a re-
combination operator that can be used by metaheuristics in solving multiprocessor
scheduling problems. This scheme is a tight representation of semi-active sched-
ules that eliminates redundancy, which is a common problem encountered with
permutations-based representations;

• It develops a novel, multi-objective scatter-search algorithm (MOSS) for the Bi-DMOSP.
The proposed MOSS is a population-based metaheuristic that differs from the recently
developed metaheuristics in [4] since it has a population-control mechanism. This
mechanism allows a solution in the reproductive population set, called the reference
set, only if it satisfies specific solution-quality and diversity criteria. This helps reduce
the population size and allows for adopting more efficient local search heuristics;

• It develops a novel bi-objective tabu search (Bi-TS) heuristic, which utilizes efficient
neighborhood search functions.

The rest of this paper starts with a literature review of related work in Section 2.
A detailed description of the developed solution representation scheme, and the devel-
oped MOSS and Bi-TS, is provided in Section 3. This is followed by the definition of
the performance metrics used in the computational experiments in Section 4. The results
of the conducted computational experiments are presented in Section 5. Computational
experiments were conducted first to fine-tune the parameters of the developed MOSS
metaheuristic using a subset of small-sized test instances, followed by computational com-
parisons with the previously developed metaheuristic based on NSGA-II, in which both
small- and large-sized instances were used. Finally, the conclusions and directions for
future research are provided in Section 6.

2. Related Work

The studied problem is a generalization of the OSP, which has received much attention
in the literature since it is encountered in several real-life applications. For the objective
of minimizing the makespan, recently developed construction heuristics are provided
in [11], and many heuristic and metaheuristic approaches are available in the literature [12].
On the other hand, a few approaches have been proposed for the mean flow time or the
total completion time minimization objective. Construction heuristics were developed
by Bräsel et al. [13] and Tang and Bai [14]. Metaheuristic approaches include simulated
annealing by Andresen et al. [15] and a hybrid discrete differential evolution algorithm
by Bai et al. [16].

Little attention has been given to the multi-objective OSP in the literature. Only one
paper has been found to deal with the makespan and the total completion-time minimiza-
tion objectives by Sha et al. [17]. A third objective related to minimizing the total machine
idle time has also been considered. Yet, there is a correlation between the third objective
and the makespan minimization objective. They proposed a metaheuristic approach based
on particle swarm optimization. It is noticeable that researchers have paid more attention
to the minimization of due date-related objectives, along with a completion time-based
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objective. Tavakkoli-Moghaddam et al. [18] and Panahi and Tavakkoli-Moghaddam [19]
studied the OSP while simultaneously minimizing the total tardiness and the makespan.
A solution approach was proposed based on ant colony optimization, hybridized with
simulated annealing. The results were compared with those of NSGA-II. Seraj et al. [20]
studied the OSP with the objective of minimizing total tardiness and the mean completion
time simultaneously. Using a mixed-integer linear programming (MILP) model, a fuzzy
programming method was proposed to find efficient solutions compared with a tabu search
approach. A hybrid immune algorithm was proposed later by Naderi et al. [21] for the total
tardiness and the total completion-time minimization objectives.

The multiprocessor open-shop scheduling problem (MOSP) is a special case of the
DMOSP in which identical parallel machines constitute the workstations. In addition, all
machines are ready at the beginning of the schedule, at which time all jobs are released.
Furthermore, each job must visit all workstations [22]. Different construction heuristics
are proposed for minimizing the makespan of the MOSP in [23–25]. Those heuristics
are linear-time approximation algorithms with proven bounds on their gaps from the
optimal solution. Naderi et al. [26] provided a MILP model and developed a metaheuristic
approach based on a hybrid memetic algorithm with simulated annealing to minimize the
total completion time. In the literature, the MOSP is sometimes referred to as the hybrid
open-shop scheduling problem. Recent algorithmic developments for its multi-objective,
stochastic variant include [27,28].

A more general case of the MOSP was studied by Abdelmaguid [29]; in it, machines
in a workstation need not be identical, and jobs do not have to visit all workstations.
He developed an MILP model and proposed a scatter search with a path-relinking meta-
heuristic, which generates optimal or near-optimal solutions to minimize the makespan.
Recently, Behnamian et al. [30] proposed a scatter-search metaheuristic for the MOSP with
sequence-independent setup times. They considered two objectives simultaneously—the
minimization of both the total tardiness and the makespan. Computational experiments
revealed that their metaheuristic has better performance than a non-dominated-sorting
genetic algorithm approach.

Another related specialization of the MOSP is the proportionate multiprocessor open-
shop scheduling problem (PMOSP), in which the processing times on the workstations do
not vary among jobs. Mathematical programming models and a genetic algorithm (GA) ap-
proach were developed by Matta [31]. Abdelmaguid et al. [32] developed a tabu search (TS)
approach that utilizes neighborhood search rules that move operations along critical blocks.
Such rules do not change machine-selection decisions. Later, Abdelmaguid [33] proposed
a hybrid particle-swarm optimization–tabu search approach in which machine selection
decisions are handled via particle swarm optimization and conducted concurrently with a
local TS search. However, better results in the PMOSP benchmark instances were obtained
using the scatter search with a path-relinking approach developed by Abdelmaguid [29].
To minimize the total completion time, Zhang et al. [34] presented three metaheuristic ap-
proaches based on a genetic algorithm, hybrid particle swarm optimization, and simulated
annealing. Recently, Adak et al. [35] reported competitive results on PMOSP benchmark
instances using an ant-colony optimization algorithm. Their implementation adopts a
solution representation scheme that utilizes implicit permutations on workstations.

For the single-objective DMOSP, Bai et al. [36] addressed a special case in which
workstations contain identical, parallel machines. They proved the asymptotic optimality
for minimizing the makespan using the general dense scheduling algorithm. For moderate-
size instances, they proposed a differential evolution algorithm.

The multi-objective DMOSP has received little attention in the literature, as indicated
earlier. However, there is a growing interest in addressing multi-objective scheduling
problems in the healthcare industry, which is a relevant application domain for the DMOSP.
Recent examples include Ma et al. [37], who developed a brainstorm-optimization algo-
rithm for the home healthcare routing and scheduling problem. Fu et al. [38] suggested an
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alternative solution approach based on an artificial bee colony algorithm that is based on
problem-specific knowledge.

3. Developed Solution Approach

Due to their complex combinatorial nature, designing metaheuristics for multi-objective
scheduling problems is a big challenge. This task generally involves a proper selection of a
solution representation scheme that suits both the structure of the problem and the search
mechanism of a metaheuristic. However, working on the solution representation using
the plain diversification and intensification strategies of a metaheuristic are usually not
sufficient for achieving non-dominated solutions that are close enough to the optimal Pareto
front. Therefore, hybridization with a suitable local search heuristic is usually employed.
Nonetheless, the design of such local search heuristics requires a proper selection of
neighborhood search functions that promote moves towards the optimal Pareto front,
which is another challenge.

Scatter search is a population-based metaheuristic that was introduced by Glover [39].
It utilizes problem-specific neighborhood search and solution-recombination functions,
which provide intensification and diversification mechanisms, to iteratively update a set
of reference solutions, denoted as R. Solution quality and diversity are essential char-
acteristics for solutions to be included in R. In multi-objective optimization problems,
the set R can partially include the non-dominated solutions that are found and updated
throughout iterations. The first application of the scatter search to multi-objective op-
timization problems was for the proctor assignment problem by Martí et al. [40]. For
non-linear optimization problems, early competitive results for multi-objective scatter
search implementations include Nebro et al. [41] and Beausoleil [42].

In the scheduling literature, a multi-objective scatter search (MOSS) was applied
to the no-wait-flow shop-scheduling problem [43] and to the permutation-flow shop-
scheduling problem [44]. In both papers, the MOSS is computationally compared to the
well-established multi-objective evolutionary algorithms. Their results emphasize the
efficiency of the MOSS approach. A more recent application of MOSS for the bi-objective
MOSP was presented by Behnamian et al. [30], who also reported competitive results
compared to NSGA-II. Building on these previous results, this paper develops a novel
implementation of MOSS for the studied Bi-DMOSP.

3.1. Outline of the Developed Metaheuristic

As outlined in Figure 1, the proposed MOSS approach consists of two phases, namely
initialization and improvement. In the initialization phase, the set of reference solutions, R,
is constructed as follows. A random solution is generated using the construction heuristic
described in Section 3.2. This is followed by the application of a local search heuristic based on
tabu search (TS), which is outlined in Section 3.5. The new, improved solution is then checked
for similarity with other solutions that have been added to the set R in previous iterations.
The degree of dissimilarity between two solutions, S1 and S2, is measured using a distance
function, denoted as ∆(S1,S2), which is defined in Section 3.3. The distance between the new,
improved solution and every solution included in R up to the current iteration is evaluated
and checked against a predefined distance threshold value, ∆̄. The new solution will be added
to R only if ∆̄ is exceeded for all solutions currently in that set. If a number of improved
solutions failed to be added to R in nmax

f times, the ∆̄ threshold value is reduced to half of its
value. This is done to ensure that the initialization procedure generates the required number
of solutions in the reference set (Re f SetSize). This construction approach tries to maintain
both the quality and diversity of the initial solutions included in the reference set R.

In the improvement phase, a total of itrmax iterations are conducted. In each iteration,
a set of trial solutions, denoted as T , is constructed. This is done by randomly selecting
two solutions from the reference set R and then generating a new solution by combining
some of their features, as described in Section 3.4. The combined solution is then improved
via TS and used to update the non-dominated set D. Within the steps of TS either during
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the construction or the improvement phase, an incumbent solution is compared with all
found non-dominated solutions that are included in a set denoted as D. If a non-dominated
solution is found, it will be added to that set.

Figure 1. Flow chart of the proposed multi-objective scatter-search metaheuristic.



Algorithms 2024, 17, 371 7 of 28

The newly generated solutions in set T are then used to update the reference set R.
The size of set T is limited to twice the size of the set R, which in turn should not exceed
the specified Re f SetSize. The main idea behind this updating mechanism is to maintain a
set of diverse and high-quality solutions in the set R, which are used in generating new
trial solutions. For the set of non-dominated solutions, no size restriction is imposed. If
the generated solutions in set T do not change the solutions in both sets, R and D, a
diversification procedure is applied, as explained in Section 3.6. The following subsections
explain the algorithmic details of the proposed MOSS metaheuristic’s main components.

3.2. Solution Representation and Construction

The operations-based (OB) representation scheme is commonly used in the applica-
tions of metaheuristic approaches to scheduling problems [4,26,31,45]. It appears in the
form of a permutation that represents the sequence by which operations will be scheduled
according to an interpretation algorithm, which generally chooses the earliest start times
for the operations based on the given sequence. Despite its successful implementations
and reported competitive results in the literature, the OB representation is many-to-one,
meaning that more than one solution representation for a specific instance can result in the
same generated schedule. As indicated by Abdelmaguid [4], such redundancy decreases
the efficiency of the search operators of a metaheuristic. Alternatively, in this paper, we
propose a representation based on vectors of permutations that correspond to the worksta-
tions visiting orders for jobs and the processing sequences on machines. It is referred to
as a vectors of permutations-based (VPB) representation. The proposed representation is
based on the model used in [29] for the MOSP.

To illustrate the proposed VPB chromosome structure, consider a simple instance of
the studied problem for which the parameters are given in Tables 1–3. In this instance, there
are five workstations, indexed according to w ∈ W = {1, 2, 3, 4, 5}. A machine is labeled as
mw,i, where i is the assigned index of the machine in workstation w. The set of all machines
is denoted as M. Table 1 presents the structure of the system of the sample instance in
terms of the machines that constitute each workstation and the ready times of the machines.
There are six jobs to be scheduled, indexed according to j ∈ J = {A, B, C, D, E, F}. The
assigned priority values for the jobs (pj ∀j ∈ J ), their release times (rj ∀j ∈ J ), and the
sets of required workstations (Wj ⊆ W ∀j ∈ J ) are listed in Table 2. Lastly, the processing
times, denoted as dj,m, for every job j ∈ J and machine m ∈ M, are provided in Table 3.

Table 1. Workstations’ structure and machines’ ready times for the sample DMOSP instance.

Workstation (w) Machine (m) Ready Time (am)

1 m1,1 115
m1,2 0

2 m2,1 0

3 m3,1 64

4 m4,1 0
m4,2 0

5 m5,1 81

Table 2. Jobs’ data for the sample DMOSP instance.

Job (j) Priority (pj) Release Time (rj) Required Workstations (Wj)

A 8 28 {1, 3, 4}
B 3 56 {2, 4, 5}
C 5 43 {2, 3, 5}
D 1 0 {1, 3}
E 10 59 {1, 3, 4, 5}
F 7 0 {1, 3, 5}
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Table 3. Operations’ processing times (dj,m) for the sample DMOSP instance.

Job (j)
Machine (m)

m1,1 m1,2 m2,1 m3,1 m4,1 m4,2 m5,1

A 112 89 36 76 54
B 37 73 57 36
C 32 29 37
D 109 95 30
E 120 105 37 67 51 44
F 118 101 31 51

The proposed VPB chromosome structure, denoted as C = (SJ ,SW ,P), is constituted
of two strings—SJ and SW—and a vector of integer values, denoted as P , representing
locations in the string SW . The two strings are composed of sub-strings of fixed sizes,
and each sub-string is composed of elements that refer to the operations to be scheduled.
Figure 2 represents the chromosome structure of a solution to the considered sample
instance of the studied problem. Each operation is represented by a letter that refers
to its job label, as given in Table 2, followed by a number that refers to its processing
workstation, as provided in Table 1. As shown in Figure 2, the two strings that constitute
the chromosome structure include SJ (the upper string), which corresponds to the orders
by which jobs visit the workstations, and SW (the lower string), which corresponds to the
operations’ processing sequences in the workstations. Meanwhile, the vector P defines
locations for separators that divide the workstations’ sub-strings into divisions representing
the processing sequences on the machines.

Figure 2. Proposed solution representation for a sample solution of the presented sample DMOSP instance.

For SJ , each sub-string corresponds to a job, and its size equals the number of opera-
tions of that job. To facilitate the visual identification of sub-strings, alternating grayscale
colors are used in Figure 2. For instance, for the job labeled with the letter E, there are
four elements in its sub-string. The order of the elements (operations) given in the job
labeled with the letter C, for instance, indicates that job C will visit workstations in the
order of 2, followed by 5, followed by 3. Accordingly, the upper string shown in Figure 2
can be directly interpreted into the vector of permutations expressed as T = (τj : j ∈ J )
= (τA, τB, τC, τD, τE, τF) = (⟨A4 → A3 → A1⟩, ⟨B2 → B4 → B5⟩, ⟨C2 → C5 → C3⟩,
⟨D3 → D1⟩, ⟨E4 → E1 → E3 → E5⟩, ⟨F1 → F5 → F3⟩), as in [29]. Having sub-strings
with fixed sizes in the proposed chromosome structure entails that moves or exchanges
of the elements as part of the search procedure of a metaheuristic will be conducted only
within a sub-string; meanwhile, inter sub-string moves or exchanges are not allowed.

In SW , fixed-size sub-strings are defined to represent the processing sequences of
operations on the machines that belong to workstations. Each sub-string corresponds to a
workstation. Since a workstation may contain more than one machine, these sub-strings
are divided by what is referred to as machine separators, which are defined in the vector
P . If workstation w ∈ W contains the set Mw of machines, there will be |Mw| − 1 machine
separators in its sub-string. The processing sequences of the operations on the machines
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in set Mw are defined using the divisions of the sub-string of workstation w. For instance,
in Figure 2, the first division of the sub-string of workstation 4 contains the operation
E4, which will be processed on the first machine, m4,1. Meanwhile, the second division
contains operation A4, followed by operation B4, which will both be processed on machine
m4,2 in that order. The processing sequences provided in Figure 2 for the sample DMOSP
instance can be easily interpreted with the vector of vectors of permutations expressed
as P = (Πw : w ∈ W) = (Π1, Π2, Π3, Π4, Π5), where Π1 = (πm1,1 , πm1,2) = (⟨E1⟩, ⟨F1 →
A1 → D1⟩), Π2 = (πm2,1) = (⟨C2 → B2⟩), Π3 = (πm3,1) = (⟨A3 → C3 → F3 → D3 → E3⟩),
Π4 = (πm4,1 , πm4,2) = (⟨E4⟩, ⟨A4 → B4⟩), and Π5 = (πm5,1) = (⟨C5 → F5 → B5 → F5⟩), as
in [29]. Similar to the upper string, moves or exchanges as part of the search procedures
of a metaheuristic must be conducted only on elements within a sub-string, and inter
sub-string moves are not allowed. In addition, moves on the machine separators in the
form of changing positions also need to be considered. Such moves allow for changing the
sets of assigned operations for the machines in a workstation.

The decoding procedure of the proposed solution-representation scheme is based on
assigning the earliest start time for each operation based on the given permutations by both
strings. The pseudo-code in Algorithm 1 outlines its main steps.

Algorithm 1 Chromosome decoder for the proposed solution-representation scheme.

1: function VPB CHROMOSOME DECODER
2: Input: DMOSP instance and a VPB chromosome (C = (SJ ,SW ,P))
3: Output: Schedule S
4: Construct T = (τj : j ∈ J ) based on SJ
5: Construct P = (Πw : w ∈ W) based on SW and P , where Πw = (πm : m ∈ Mw)
6: ām = am ∀m ∈ M
7: r̄j = rj ∀j ∈ J
8: ōj = first operation in τj ∀j ∈ J
9: S = empty schedule

10: do
11: bContinue = f lase
12: for every m ∈ M,
13: ϑ̄m = first operation in πm
14: if ϑ̄m ̸= null and ϑ̄m = ōj∗ for j∗ ∈ J then
15: ō = ϑ̄m
16: Set start time of ō, t(ō) = max(ām, r̄j∗)
17: Set completion time of ō, c(ō) = t(ō) + dj∗ ,m
18: Add ō to S
19: ām = r̄j∗ = c(ō)
20: Remove ō from τj∗

21: ōj∗ = first operation in τj∗ or null if τj∗ is empty
22: Remove ō from πm
23: bContinue = true
24: break for loop
25: end if
26: end for
27: while (bContinue = true)
28: if πm is empty ∀m ∈ M return S
29: else return INFEASIBLE SCHEDULE
30: end function

Algorithm 1 starts by converting the given VPB chromosome into a solution pair,
(T,P), as demonstrated earlier. Then, three sets of variables are initialized. For every
machine, m, the variable ām refers to the time at which machine m is ready to process its
next operation. For every job, j, the variable r̄j refers to the time at which the job can start
its next operation, while the variable ōj refers to the job’s next operation to be scheduled,
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based on its given order of visiting the workstations. Then, the main loop of the algorithm
constructs the schedule by iteratively scanning the next operation to be scheduled based on
the processing order for each machine. If the next operation to be scheduled for job j∗ is
found to be the same as the next operation to be scheduled for machine m, that operation is
added to the schedule after its start and completion times are determined, and the values of
its corresponding machine’s ām and job’s r̄j∗ and ōj∗ are updated. The loop continues until
all operations are scheduled. The condition of infeasibility is identified, and no schedule is
returned if the search loop is terminated with remaining unscheduled operations.

Figure 3 shows the Gantt chart of the schedule generated for the solution representation
shown in Figure 2 when Algorithm 1 is applied. Note that a feasible schedule generated
via Algorithm 1 is semi-active, meaning that the start time of an operation cannot be set
earlier without changing the processing order within its assigned machine and/or changing
its job’s visiting order to its required workstations [46]. The set of semi-active schedules
includes optimal solutions for many objective functions, including the ones considered
in this paper. In addition, the following proposition states an important property for the
relationship between the input chromosomes of Algorithm 1 and the generated schedules.

Figure 3. Gantt chart for the generated schedule based on the solution representation shown in
Figure 2 for the presented sample DMOSP instance.

Proposition 1. For any instance of the DMOSP, a schedule generated via Algorithm 1 has one and
only one input VPB chromosome.

Proof. The proof follows from the observation that a given chromosome (S0
J ,S0

W ,P0) is
interpreted to one and only one solution pair, (T0,P0) since, as demonstrated in Figure 2,
the divisions of S0

J directly correspond to the order by which jobs visit workstations, which
results in one and only one T0, and the divisions of S0

W , as defined according to the set
of positions P0, directly represent the processing sequences of operations on machines,
which results in one and only one P0. Therefore, any change in S0

J , S0
W or P0 will result in

a solution pair, (T1,P1) ̸= (T0,P0). Let schedules S0 and S1 be generated via Algorithm 1
from solution pairs (T0,P0) and (T1,P1), respectively, where (T0,P0) ̸= (T1,P1). Since
Algorithm 1 is a semi-active schedule generator that schedules operations in their orders
provided in a solution pair using the earliest start time for each operation, as stated in
step 16, and by definition, any operation in a semi-active schedule cannot start earlier with-
out changing the sequence to process the operations [46], S0 ̸= S1. Therefore, a schedule
generated via Algorithm 1 cannot have more than one input VPB chromosome.

The property stated in Proposition 1 represents an advantage of the proposed VPB
chromosome structure compared to the OB one in terms of eliminating redundancy from the
chromosome domain to the solution space. Theoretically, this can help enhance the search
efficiency by avoiding search moves that change the chromosome but do not change the
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solution. However, some guidance is needed for the search moves of the VPB representation
to avoid generating chromosomes that result in infeasible solutions.

To construct solutions to be used within the proposed MOSS, the construction heuristic
developed in [4] is used as is. That heuristic is based on applying different rules for selecting
machines and selecting jobs to be scheduled at each iteration. Such scheduling rules tend
to either improve the makespan or improve the MWFT. In addition, a random selection
rule is used to allow some variability in the generated initial population. The encoding of
a generated solution to its corresponding VPB chromosome is straightforward since the
processing orders of operations of each job and on each machine and the jobs’ visiting order
to their required workstations are clearly defined in every schedule.

3.3. Measuring Dissimilarity between Two Solutions

An essential characteristic of the scatter search metaheuristic is maintaining diversity
among the solutions in the reference set R along with their quality throughout both the ini-
tialization and the improvement phases. Accordingly, before a solution to set R is added, its
dissimilarity with existing solutions in this set is checked. This is done here by measuring
the degree of dissimilarity, which is defined for any two solutions S1 and S2 using a distance
function denoted as ∆(S1,S2), which is provided in Abdelmaguid [29]. A solution can be added
only when its evaluated distances with all existing solutions in set R exceed a predefined limit.

The distance function ∆(S1,S2) is based on comparing the vectors of permutations
of the two solutions, S1 and S2, and counting the minimum number of moves that are
needed to convert one solution to another. To illustrate how the distance function ∆(S1,S2)
is evaluated, consider the two sample solutions shown in Figure 4 for the Bi-DMOSP
instance described in Section 3.2. Determining the minimum number of moves required to
convert the two strings of the second solution’s chromosome involves the determination
of the common sub-strings in both chromosomes and then choosing the moves that will
result in the minimal number of common sub-strings in the resulting strings. Details are
provided in [29] for a computationally efficient algorithm that can be used for that task.
Figure 5 illustrates the minimal moves that are required to convert the chromosome of
the second solution into the first one’s. The first move (labeled with the circled number 1
in Figure 5) corresponds to exchanging the positions of operations D1 and D3 in the jobs’
string. Meanwhile, the move labeled with the number 3 corresponds to moving operation
F1 after the position of the machine separator while shifting operation E1 backward in the
workstations’ string. Such a move changes the sequence of processing for the operations
of the machines of the workstation, and it changes the machine assignment for operation
F1. Other moves are conducted similarly. As a result of the illustrated minimal moves, the
distance between both solutions equals 5 in this case.

Figure 4. Chromosomes of two sample solutions to the sample DMOSP instance presented in
Section 3.2: (a) first solution and (b) second solution.
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Figure 5. Illustration of the minimal moves needed to convert the second solution in Figure 4b to the
first solution in Figure 4a. The numbers 1 through 5 correspond to the conducted five moves.

This distance function’s advantage is that it does not depend on the objective functions’
values, enabling the search procedures to explore diverse areas in the search space. To
explain, consider the two sample solutions presented in Figure 4. The objective functions’
values for the first solution, S1, are C1

max = 327 and MWFT1 = 1134, and for the second
solution, S2, they are C2

max = 353 and MWFT2 = 1372.33. Accordingly, the differences
between the objective functions’ values for both solutions are not a small quantity compared
to the value of ∆(S1,S2) = 5. Therefore, if the distance based on the differences between
the objective functions’ values is utilized, both solutions would have been added to the
reference set. Nevertheless, in this case, one of the solutions would easily reach the same
structure as the other one in a few neighborhood search moves. Therefore, using the value
of ∆(S1,S2) will ensure true diversity as related to the neighborhood search moves that are
utilized in the local search procedure based on tabu search.

3.4. Solution Recombination

Solution recombination is an essential operator in the search procedures of modern
metaheuristics. It combines some features from parent solutions to generate a new child
solution. This operator helps explore more regions in the search space between or even
beyond the parent solutions. This operator appears in evolutionary metaheuristics under
the name of a crossover operator [47]. In swarm-intelligence metaheuristics, the mechanism
of solution recombination is conducted via position-update functions [48]. Path relinking is
another form of solution-recombination operators [39].

In the current implementation of the scatter-search metaheuristic, the solution-recombination
operator works as follows. First, two different parent solutions are selected randomly from
the reference set, where all solutions have equal probabilities of being selected. One selected
parent is labeled the leader (L), and the other is labeled the follower (F ). These labels are
used to identify the order by which genes will be inherited through the child solution (C).

Figure 6 demonstrates the gene-inheriting mechanism using solutions for the sample
instance presented in Section 3.2. In this mechanism, genes are inherited for each sub-
string independently for both strings constituting each chromosome. For each sub-string, a
number, UX ∈ [0, 1], is randomly generated from a uniform distribution. If UX is greater
than a predefined recombination threshold value, denoted as ΘX , the genes from the leader
parent’s sub-string will be copied as-is to the child solution.

When UX ≤ ΘX, genes in the child solution’s sub-string are inherited from both
parents’ sub-strings as follows. First, an integer number, pX ∈ {1, 2, . . . ℓ}, is randomly
generated from a discrete uniform distribution, where ℓ is the length (number of genes)
of the sub-string. Figure 6 represents the randomly generated positions using a small
arrow underneath the sub-strings. Then, genes from the leader solution’s sub-string are
copied to the child solution’s sub-string, starting from the first gene up to the gene in
location pX − 1. Afterward, starting from location pX, the remaining genes are inherited
from the follower parent using the same sequence they appear in that parent. Positions
of the machine separators are inherited as-is from the parent having the larger number
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of inherited genes in the corresponding workstation’s sub-string, where tie-breaking is
done randomly.

Figure 6. Solution-recombination process.

Since the resultant child solution can be infeasible, the recombination operator is
applied a maximum of five times on the same selected parent solutions until a feasible child
solution is generated. If no feasible solution is obtained after these five iterations, either
the leader or the follower solution is copied to the child solution. In this case, both parents
have equal copying probabilities.

3.5. A Novel Bi-Objective Tabu Search

Local improvements to solutions generated during the initialization and the improve-
ment phases are conducted using a proposed novel bi-objective tabu search (Bi-TS) ap-
proach. This Bi-TS utilizes the two neighborhood search functions developed by Abdel-
maguid [29] to improve the makespan, denoted as N1 and N2. To improve the MWFT,
two similar neighborhood search functions, denoted as N3 and N4, are introduced here.

The neighborhood search function N1 implements moves of operations within τj
permutations. It performs moves on critical operations that, by definition, cannot be moved
from their current positions in the permutations without affecting the current makespan [46].
Accordingly, a critical path is defined as a sequence of consecutive critical operations from
start to finish. First, N1 selects an operation belonging to the critical path, and then it
investigates possible moves within the processing sequence of the job to which the selected
operation belongs. The feasibility of a move and the quality of the resultant solution are
derived by employing simple mathematical relationships. These relationships reduce the
required computational time by avoiding the detailed evaluations of the operations’ exact
start and finish times. Similarly, the neighborhood search function N2 implements moves
of critical operations within and between πm permutations for the machines belonging to
the same workstation.

The new functions N3 and N4 follow the same structure of operation removal-reinsertion
mechanism, as in N1 and N2, respectively. This similarity allows for a unified tabu structure
and tabu list for all neighborhood search moves. In N3 and N4, the feasibility conditions
proven by Abdelmaguid [29] for moves conducted in N1 and N2 are employed. Unlike
N1 and N2, they are applied to critical and non-critical operations. The MWFT objective
values as a result of applying N3 and N4 are calculated by modifying the solution’s
network representation, which was provided in Abdelmaguid [29]. Since this is a time-
consuming process, non-critical operations that belong to the first half of a job or machine
sequence are excluded from the search. This exclusion is decided after it is noticed that the
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value of MWFT generally does not improve by moving operations scheduled early in a
given solution.

The search structure of the developed Bi-TS approach is demonstrated via the pseudo-
code in Algorithm 2. It starts in steps 4 to 7 by initializing the search and iteration variables.

Algorithm 2 Bi-objective Tabu search for the Bi-DMOSP

1: function BI-TS(S)
2: Input: MOSP solution: S
3: Output: Improved solution: Ŝ
4: Start with empty tabu list
5: Ŝ = S, Ĉ = Cmax(S), F̂ = MWFT(S)
6: nC

imp = nF
imp = 1

7: itr = itrno_imp = itrrand = 0
8: while itr < nTS

maxitr do

9: probNS =
nF

imp

nC
imp+nF

imp

10: If f lip(probNS) then BestMoves = ordered list of at most nbest_moves

non-tabu neighborhood moves from all possible applications of N1
and N2 on S resulting in—and ordered according to—the lowest Cmax estimates

11: Else BestMoves = ordered list of at most nbest_moves non-tabu
neighborhood moves from all possible applications of N3
and N4 on S resulting in—and ordered according to—the lowest MWFT estimates

12: If itrno_imp = nno_imp
maxitr then itrrand = nrand_moves and itrno_imp = 0

13: If itrrand ̸= 0 then NSMove = randomly selected move from BestMoves
14: and itrrand = itrrand − 1
15: Else NSMove = the first (best) move from BestMoves
16: S′ = resultant solution of applying NSMove to S
17: NSMove inv = inverse of NSMove that is needed to transform S′ back to S
18: If NSMove inv is not tabu, then update the tabu list by adding NSMove inv

19: Else update the tabu list by adding NSMove
20: δC = sign(Ĉ − Cmax(S′))
21: δF = sign(F̂ − MWFT(S′))
22: If (δC > 0 and δF ≥ 0) or (δF > 0 and δC ≥ 0) then

Ŝ = S′, Ĉ = Cmax(Ŝ), F̂ = MWFT(Ŝ), itrno_imp = −1
Check and update set D based on Ŝ

23: Else If (δC > 0 and δF < 0) or (δF > 0 and δC < 0)
Check and update set D based on S′
If S′ is added to set D then

Ŝ = S′, Ĉ = Cmax(Ŝ), F̂ = MWFT(Ŝ), itrno_imp = −1
End If

24: End If
25: If δC > 0 then nC

imp = nC
imp + 1

26: If δF > 0 then nF
imp = nF

imp + 1

27: S = S′, itrno_imp = itrno_imp + 1, itr = itr + 1
28: end while
29: return Ŝ
30: end function

Within the main loop, the algorithm keeps a record of the number of times each
objective value is improved as a result of applying the neighborhood search functions.
This is done by updating two variables, nC

imp and nF
imp, for recording improvements in the

makespan and the MWFT objective values, respectively. These two variables are used to
probabilistically determine which set of neighborhood search functions will be applied
in each iteration: either {N1,N2} or {N3,N4}. This is done in step 10 by calling the
f lip(p) function, which is a Boolean function that returns true if a randomly generated
number within the range from 0 to 1 is found to be less than the passed value p and
returns f alse otherwise. Accordingly, the ordered list BestMoves is used to store the best
non-tabu neighborhood moves based on the current solution S. The maximum number of
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neighborhood moves that can be stored in the BestMoves list is denoted nbest_moves, which
is one of the control parameters of the developed Bi-TS.

From the BestMoves list, either the first (best) neighborhood move or a random one
is selected. Random move selection is permitted to allow for a more diversified search
whenever the repeated selection of the best moves does not improve the dominance of the
incumbent solution for nno_imp

maxitr iterations. If a random selection of moves is decided, it is
repeated for at least nrand_moves consecutive iterations of the Bi-TS until an improvement
occurs. Accordingly, this diversification mechanism is controlled via the two parameters
nno_imp

maxitr and nrand_moves.
The tabu list is updated in step 18 by adding the inverse of the selected move, which is

the move that will bring the solution back to its original structure before applying the selected
move. If the inverse move is already included in the tabu list, the best move itself is added
instead, as shown in step 19. The tabu list has a fixed size, denoted as TabuSize, which cannot
be exceeded. If the tabu list has TabuSize moves included, the oldest move is removed.

The dominance of the incumbent solution is checked starting at step 20, when the sign
function is applied to the difference between the objective values of the best found and the
incumbent solutions. The sign function returns -1, 0, or +1, depending on the sign of the
passed argument. If the incumbent solution is found to dominate the best found solution,
a replacement is made, as shown in step 22. In such a case, the global non-dominated
set of solutions, D, is checked for an update. Otherwise, in step 23, if the incumbent and
best found solutions do not dominate each other, set D is checked for an update via an
investigation of the dominance of the incumbent solution with all the solutions therein. If
the incumbent solution is added to set D, it will replace the current best found solution.

3.6. Updating and Diversifying Solutions in the Reference Set

During the improvement phase of the developed MOSS, the set T is used to update
the reference set R such that |R| does not exceed the specified fixed value of the parameter
Re f SetSize. This is done by first removing all solutions from set R and adding them to set T .
Then, an ordered list, T̂ , is generated based on solutions in T in which solutions are ordered
based on their dominance relations. That is, if S1 dominates S2, S1 will be ordered first, and
vice versa. If the two solutions do not dominate each other, their order will be arbitrary.

In the given solutions’ order in T̂ , solutions are iteratively added to set R until its
size reaches Re f SetSize. To maintain the diversity of the solutions in set R, before a
solution is added, its distance from every already added solution is evaluated as described
in Section 3.3. This distance must exceed the predefined distance threshold value (∆̄).
Otherwise, the solution will not be added. After all solutions in T̂ are examined, if the
size of the resultant set R is found to be less than Re f SetSize, additional solutions will be
generated and added to it using the same procedure described in the construction process,
as in Section 3.2.

The developed reference set-updating procedure aims to maintain both solution
quality and diversity throughout iterations. Furthermore, to avoid long-term entrapment
in local optimal solutions, a diversification strategy is annexed to the reference set-updating
process. In this strategy, the percentage changes in the summations of the values of the
makespan and the MWFT for all solutions in set R are evaluated before and after every
improvement cycle. If these percentage changes are found to be less than 2%, and the
set of non-dominated solutions (set D) has not been changed by adding new solutions
during the improvement cycle, the solutions in the reference set R will be diversified. The
diversification is achieved by replacing one-quarter of the solutions with newly constructed
ones using the construction procedure described in Section 3.2. New randomly constructed
solutions are improved using tabu search, as usual. In addition, at most one-quarter of the
solutions in the reference set R are replaced with solutions selected arbitrarily from the
non-dominated set D.
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4. Performance Metrics

Many metrics have been proposed in the literature to assess the performance of
multi-objective optimization algorithms [49]. The simplest of them is the number of non-
dominated solutions that a metaheuristic generates (|D|). This metric is an indication of the
capability of a metaheuristic to generate alternative non-dominated solutions. However,
it does not provide any clue about their quality. Whenever the set of optimal Pareto
front solutions (P) is known for an instance, the gravitational distance (GD) and the
inverted gravitational distance (IGD) can be used to assess the quality of the generated
non-dominated solutions via a heuristic (D) with respect to the solutions in set P . These
metrics are evaluated using Equations (1) and (2) below.

GD(D) =
1
|D|

√
∑

s∈D
min
q∈P

{∆OF(s, q)} (1)

IGD(D) =
1
|P|

√
∑

q∈P
min
s∈D

{∆OF(s, q)} (2)

where,

∆OF(s, q) = (Cmax(s)− Cmax(q))
2 + (MWFT(s)− MWFT(q))2

Both metrics are suitable for the studied DMOSP since it is a discrete optimization
problem characterized by a small number of non-dominated solutions for the considered
objectives [3,4]. Small values for both metrics are favorable, and zero values for both
indicate that D = P . The main difference between GD and IGD is that the former indicates
how successful the heuristic is in reaching solutions close to a subset of the solutions in set
P . However, it fails to indicate whether or not a heuristic can find solutions with proximity
to all solutions in set P (i.e., covering all optimal Pareto front solutions). Meanwhile, the
latter metric measures the closeness of solutions in set P to their nearest ones in set D. This
inherently checks for the ability of a heuristic to cover all solutions in set P . However,
unlike GD, it fails to account for the negative effect of inferior non-dominated solutions in
set D that can be quite far from the optimal Pareto front. This paper proposes a combined
metric, the total gravitational distance (TGD), calculated as TGD(D) = GD(D) + IGD(D).
The TGD attempts to combine the benefits of GD and IGD metrics and subdue their
shortcomings. As a result, small values for TGD indicate that the heuristic results in
solutions close to the Pareto front with good coverage.

For large-sized instances with unknown Pareto front solutions, the performance of a
multi-objective optimization algorithm can be compared to benchmark algorithms using
hypervolume (HV), which was introduced by [50]. The reference point used here to calculate
the hypervolume is arbitrarily selected as Cmax = 1.5× LBCmax and MWFT = 1.8× LBMWFT,
where LBCmax and LBMWFT are the lower bounds for the makespan and the MWFT of a
DMOSP instance, respectively. The evaluation formulas for the lower bounds are provided
in [4]. In this paper, the percentage hypervolume measure (HV%) introduced by [4] is used to
compare the performance of the developed MOSS with the previously developed NSGA-
II approach. The HV% is a relative measure in which the value of HV(D) is divided
by the area of the rectangle defined according to the two vertexes (Cmax, MWFT) and
(LBCmax , LBMWFT), as expressed in Equation (3).

HV%(D) =
HV(D)

0.5LBCmax × 0.8LBMWFT
× 100 (3)

When comparing two multi-objective optimization algorithms, a higher HV%(D)
value signifies better performance. Whenever set P is known for an instance, the percentage
hypervolume deviation, defined in Equation (4), can be used as an alternative assessment
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metric. A low H(D) value indicates good performance, and whenever H(D) = 0, it means
D = P .

H(D) = HV%(P)− HV%(D) (4)

5. Computational Experiments, Results, and Discussion

The developed MOSS was programmed using the C++ programming language. Like
the previously developed NSGA-II approach in Abdelmaguid [4], the Embarcadero 32-bit
C++ compiler, version 6.2, was used to generate the executable code. Computational
experiments were conducted using a desktop computer with Intel Core i3-7100 dual-core
processor running at a clock speed of 3.90 GHz, with a physical memory of 8 GB, that
operated on Windows 10. Firstly, fine-tuning computational experiments were used to
guide the selection of the parameters of the developed MOSS. Secondly, computational
experiments were conducted to assess its performance by comparing its generated non-
dominated solutions with exact Pareto front solutions obtained for small-sized instances
and solutions obtained using the previously developed NSGA-II approach for small- and
large-sized instances.

5.1. Tuning MOSS Parameters

Before conducting performance assessment experiments for the developed MOSS, tun-
ing experiments were performed to guide the selection of the best values of its parameters.
This was done here using selected small-sized test instances for which the optimal Pareto
front solutions were known. These instances were selected from the testbed provided in Ab-
delmaguid [3], for which the ε-constraint method was used in finding the optimal Pareto
front solutions. Six small instances from the thirty instances provided in Abdelmaguid [3]
were selected for the tuning experiments. They were selected such that there was diversity
in their |P| values, which equal 2, 4, 8, 11, 14, and 17. This diversity was the result of
variation in the structures of these six instances that was necessary to avoid biased results.
The MOSS parameters included in the tuning experiments and their selected levels are
listed in Table 4.

Table 4. Factors considered in the parameter-tuning experiments and their levels.

Parameter Selected Levels

Re f SetSize 10, 20, 30
ΘX 0.2, 0.5. 0.8
TabuSize 10, 20, 40
nTS

maxitr 20, 50, 100
nno_imp

maxitr
5, 10, 20

nbest_moves 5, 10, 20
nrand_moves 5, 10, 20

Another MOSS parameter is ∆̄, which defines the distance limit that must be exceeded
by a solution to be added to the reference set. This parameter is problem-specific and
determined using the formula provided in Abdelmaguid [29], as provided in Equation (5).
The value of the constant A was set to 3 for small-sized instances and 5 for large-size ones.
A small instance was arbitrarily identified with a total number of operations less than 50.

∆̄ =

⌈
∑

w∈W

|Jw|
A

+ ∑
j∈J

∣∣Wj
∣∣

A

⌉
(5)

Three independent runs were conducted for each treatment combination. Therefore,
a total of 3 × 6 × 37 = 39,366 independent runs were conducted in a random order. For
each run, itrmax = 100, and there was no time limit. For each run, the values of TGD(D),
H(D) and the computational time (CT) were recorded. Since the number of iterations was
fixed for all runs, the reported average total computational time for a treatment combination
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allowed for estimating the average computational time requirement at the selected levels of
the MOSS parameters.

Figure 7a shows the main effect plots for H(D). It was noticed that the main effects
plots for TGD(D) demonstrated the same behavior; therefore, they were not included
here. Meanwhile, Figure 7b shows the main effects plots for the computational time.
Based on these plots and the analysis of variance (ANOVA) results at 95% confidence
level, the levels of the variables that will result in the lowest average H(D) and TGD(D),
such that they do not affect the average computational time, were selected as follows:
ΘX = 0.5, TabuSize = 10, nno_imp

maxitr = 20, nbest_moves = 5, and nrand_moves = 5. There is an
apparent tradeoff between the solution quality and the computational time requirement
for the remaining two parameters, Re f SetSize and nTS

maxitr. This means that, if there is a
computational time limit, the selected levels of both parameters, which resulted in low-
quality solutions yet low computational times in these tuning experiments, can result
in good-quality solutions because they allow the algorithm to conduct a larger number
of iterations. Therefore, additional tuning experiments were conducted to help select
appropriate levels for these two parameters.

(a) (b)

Figure 7. Main effect plots from the first MOSS-tuning experiments. (a) Main effect plots for H(D).
(b) Main effect plots for the computational time.

In the additional tuning experiments, there was no limit on the number of iterations,
and the computational time was restricted to 120 s. The values of TGD(D) and H(D) were
recorded at the end of the initialization phase and every 30 s afterward. The selected levels
in the additional tuning experiments focused on the values of 15, 20, 25, 30, 35, and 40
for Re f SetSize and the values of 40, 50, 80, 100, 150, and 200 for nTS

maxitr. Lower values for
both parameters were excluded, as their results in the former tuning experiments showed
deficient performance. Using the same set of small-sized instances with six values for |P|,
and conducting 30 independent runs for each treatment combination, revealed a total of
30 × 6 × 62 = 6480 independent runs that were conducted in random order.

Figure 8 summarizes the average computational performance for the second MOSS-
tuning experiments throughout the improvement phase. It is evident that the quality of the
solutions at the end of the initialization phase increased with the increase in both Re f SetSize
and nTS

maxitr. However, this characteristic was quickly reversed, as the developed MOSS,
after 30 s, produced better results with low values for both parameters. This continued as
time proceeded. For the average H(D), the effect of nTS

maxitr is evident in Figure 8b, while
the effect of Re f SetSize is apparently lower, as shown in Figure 8a. The same behavior
can be noticed for the average TGD(D), as shown in Figure 8c,d. These results suggest
that low values for Re f SetSize at 15 or 20 and low values of nTS

maxitr at 40 or 50 can produce
good-quality solutions in short computational times.
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(c) (d)

Figure 8. Progress of average performance over computational time in the second MOSS-tuning
experiments. (a) Mean H(D) at different Re f SetSize values. (b) Mean H(D) at different nTS

maxitr values.
(c) Mean TGD(D) at different Re f SetSize values. (d) Mean TGD(D) at different nTS

maxitr values.

In addition to the conclusions about the preferred levels of the MOSS parameters, there
was an important phenomenon involving the TGD(D) measure that is worth mentioning
here. Figure 8c,d show that, unlike H(D), which is monotone non-increasing with respect to
the computational time, the value of TGD(D) can increase despite the improvement in the
solutions in set D. This increase is apparent in Figure 8c,d after 90 s of computational time.
The reason behind this phenomenon is that the evaluation of the performance measures
is based only on the found set of non-dominated solutions at any given time. If better
non-dominated solutions are found, other solutions that were non-dominated in a previous
iteration and become now dominated are removed from set D, and therefore, they are no
longer used in evaluating the performance measures. When the TGD(D) is evaluated,
there could be a non-dominated solution that is close to one of the optimal Pareto front
solutions in a previous iteration, which is then dominated by another solution that is
far from that Pareto optimal solution. This phenomenon indicates that the gravitational
distance measures do not have the consistency of the hypervolume-based measures.

5.2. Results for Small-Sized Instances

In this section, computational experiments on small-sized instances are conducted to
compare the performance of the developed MOSS with the best metaheuristic found in
the literature for the DMOSP, which is based on NSGA-II [4], along with the comparison

Figure 8. Progress of average performance over computational time in the second MOSS-tuning
experiments. (a) Mean H(D) at different Re f SetSize values. (b) Mean H(D) at different nTS

maxitr values.
(c) Mean TGD(D) at different Re f SetSize values. (d) Mean TGD(D) at different nTS

maxitr values.

In addition to the conclusions about the preferred levels of the MOSS parameters, there
was an important phenomenon involving the TGD(D) measure that is worth mentioning
here. Figure 8c,d show that, unlike H(D), which is monotone non-increasing with respect to
the computational time, the value of TGD(D) can increase despite the improvement in the
solutions in set D. This increase is apparent in Figure 8c,d after 90 s of computational time.
The reason behind this phenomenon is that the evaluation of the performance measures
is based only on the found set of non-dominated solutions at any given time. If better
non-dominated solutions are found, other solutions that were non-dominated in a previous
iteration and become now dominated are removed from set D, and therefore, they are no
longer used in evaluating the performance measures. When the TGD(D) is evaluated,
there could be a non-dominated solution that is close to one of the optimal Pareto front
solutions in a previous iteration, which is then dominated by another solution that is
far from that Pareto optimal solution. This phenomenon indicates that the gravitational
distance measures do not have the consistency of the hypervolume-based measures.

5.2. Results for Small-Sized Instances

In this section, computational experiments on small-sized instances are conducted to
compare the performance of the developed MOSS with the best metaheuristic found in
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the literature for the DMOSP, which is based on NSGA-II [4], along with the comparison
with the optimal Pareto front solutions obtained using the ε-constraint method [3]. These
experiments utilized a set of 30 small-sized instances with |P| that ranged from 1 to 23.
Based on the results of the tuning experiments in the previous section, the levels of the
MOSS parameters were chosen as ΘX = 0.5, TabuSize = 10, nno_imp

maxitr = 20, nbest_moves = 5,
nrand_moves = 5, Re f SetSize = 15, and nTS

maxitr = 40. Both NSGA-II and MOSS were run
with a computational time limit of 60 s.

For each DMOSP small instance, the average performance metrics, namely the mode of
|D| (|̂D|), its average (|D|), the average total gravitational distance (TGD), and the average
percentage hypervolume deviation (H), were calculated based on the thirty independent
runs conducted using each metaheuristic. Table 5 lists these values. It is important to
note that there are minor differences in the NSGA-II results reported here compared
to Abdelmaguid [4] since the computational time limit here was 60 s instead of 30 s. Boldface
is used in Table 5 to highlight the best value for each metric when both metaheuristics’
results are compared.

When comparing the two measures of the resultant number of non-dominated solu-
tions (|D|), namely the mode |̂D| and the average |D|, as reported in Table 5, it is evident
that the developed MOSS is capable of producing a larger number of non-dominated
solutions in 18 instances, versus only 3 for the NSGA-II based on the mode. Meanwhile, for
the average, MOSS resulted in better values in 24 instances versus 5 for NSGA-II. Therefore,
it can be concluded that the developed MOSS has better search capability that enables it to
find more non-dominated solutions compared to NSGA-II.

As illustrated in Table 5, the developed MOSS resulted in better TGD in 25 instances.
Similarly, for H, MOSS resulted in better values in 25 instances. For both metrics combined,
MOSS resulted in better values in 23 instances versus only 3 for NSGA-II. As an overall
average performance for the 30 instances, the average TGD of MOSS was 12.84, compared
to 18.90 for NSGA-II, and the average percentage hypervolume deviation of MOSS was
1.83, as opposed to 2.74 for NSGA-II. To statistically compare these results, a paired t-
test was conducted on TGD and H. The paired t-test was suitable for this comparison
since the experiments were conducted on the same group of MOSS instances, and the
calculated averages were approximately normally distributed due to the central limit
theorem. Figure 9 shows the box-and-whisker plots for the mean differences of both
metrics, along with the confidence interval at a 95% confidence level of the null hypothesis
(Ho). Here, Ho is stated as the difference of the means equaling zero.

(a) (b)

Figure 9. Box-and-whisker plots and confidence intervals for the average difference in TGD and H,
based on the results of a paired t-test for the computational experiments on small-sized instances at
a 95% confidence level. (a) Results for total gravitational distances. (b) Results for the percentage
hypervolume deviations.
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Table 5. Summary of computational results statistics for small benchmark instances of both NSGA-II
and MOSS.

Instance |P| HV%(P)
NSGA-II MOSS

|̂D| |D| TGD H |̂D| |D| TGD H

DMOSP-S-1 8 64.66 5 5.8 6.459 1.10 7 7.7 1.499 0.06
DMOSP-S-2 4 87.41 3 3.4 5.967 0.78 2 2.7 5.672 0.93
DMOSP-S-3 4 73.90 3 3.3 4.425 0.50 4 4.0 3.823 0.10
DMOSP-S-4 14 68.45 12 10.1 18.107 3.42 12 13.0 14.510 2.42
DMOSP-S-5 1 50.85 1 1.0 0.000 0.00 1 1.0 2.213 0.31
DMOSP-S-6 4 61.64 1 1.9 35.633 2.97 3 2.4 20.846 1.87
DMOSP-S-7 2 62.35 2 2.2 35.462 4.12 4 3.6 29.367 2.95
DMOSP-S-8 7 27.05 5 4.8 1.304 0.05 5 5.1 1.349 0.06
DMOSP-S-9 7 88.42 4 4.9 39.315 5.16 7 7.2 23.246 3.73
DMOSP-S-10 4 48.97 4 3.9 45.843 3.90 2 3.0 28.774 2.43
DMOSP-S-11 10 60.05 4 5.0 15.560 2.79 8 7.2 10.890 2.17
DMOSP-S-12 7 74.91 3 3.3 32.193 5.30 6 5.3 16.456 2.88
DMOSP-S-13 16 45.03 7 8.3 14.125 2.00 16 13.7 9.219 0.76
DMOSP-S-14 8 61.48 3 2.8 19.027 5.21 3 3.9 13.685 3.75
DMOSP-S-15 17 60.08 10 10.2 17.895 4.70 11 11.6 19.774 4.18
DMOSP-S-16 3 56.52 1 1.6 33.655 3.82 2 1.7 13.275 1.75
DMOSP-S-17 11 44.01 6 6.8 25.253 2.81 10 9.4 20.979 1.44
DMOSP-S-18 6 81.37 3 3.0 8.609 1.89 4 4.6 5.159 0.71
DMOSP-S-19 3 17.89 3 3.4 14.222 0.48 3 3.0 14.829 0.39
DMOSP-S-20 2 95.26 2 1.7 3.544 0.41 2 1.8 2.452 0.29
DMOSP-S-21 11 74.69 6 7.5 17.498 5.76 11 8.8 9.765 3.03
DMOSP-S-22 23 72.09 7 8.9 17.346 6.21 13 13.5 15.906 5.90
DMOSP-S-23 1 59.50 1 1.3 17.666 1.23 1 1.1 15.108 1.05
DMOSP-S-24 8 57.47 2 2.5 14.885 4.91 3 2.8 14.049 5.16
DMOSP-S-25 5 64.32 5 4.8 16.416 4.04 8 6.6 8.074 1.46
DMOSP-S-26 5 62.65 1 1.7 9.124 2.30 3 3.2 5.993 1.28
DMOSP-S-27 2 93.03 2 2.0 27.869 1.59 3 2.5 24.542 1.54
DMOSP-S-28 2 72.14 3 2.4 22.213 2.06 2 3.4 8.526 0.75
DMOSP-S-29 2 96.87 2 2.0 1.856 0.14 2 2.2 2.028 0.26
DMOSP-S-30 1 47.76 1 1.4 45.561 2.55 1 1.2 23.204 1.36

Boldface highlights the best result.

Statistical results show that the mean value of TGDNSGA−I I − TGDMOSS was 6.06 with
a 95% confidence interval of [3.50,8.62]. Meanwhile, the mean value of HNSGA−I I −HMOSS
was 0.908 with a 95% confidence interval of [0.593, 1.223]. These means (labeled as x̄) and
confidence intervals are presented in Figure 9 using blue-colored lines. Based on these
results, it can be concluded that, at a 95% confidence level, the metrics of the developed
MOSS are significantly better than those of NSGA-II.

To illustrate detailed results for the small-sized test instances, Figure 10 shows the
generated set of non-dominated solutions by both metaheuristics for six selected instances,
along with their optimal Pareto front solutions. The Figure 10a–f are ordered in ascending
order for the number of optimal Pareto front solutions of the instance, as reported in Table 5.
Even though these results were recorded for only one run of each metaheuristic with a
computational time limit of 120 s, they reflect the true performance of both metaheuristics
that complies with the reported mean results in Table 5 and Figure 9. Based on Figure 10, it
is evident that the developed MOSS can generate efficient, non-dominated solutions that
are very close to the optimal Pareto front with a better spread and better quality compared
to the previously developed NSGA-II.
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Figure 10. Pareto fronts and generated non-dominated solutions of both NSGA-II and MOSS for
selected small-sized instances. (a) DMOSP-S-7. (b) DMOSP-S-6. (c) DMOSP-S-24. (d) DMOSP-S-17.
(e) DMOSP-S-4. (f) DMOSP-S-15.

5.3. Results for Large-Sized Instances

The purpose of the computational experiments conducted using large-sized instances
was to compare the performance of both MOSS and NSGA-II at different levels of the prob-
lem parameters. The main problem parameters that define its structure include the number
of workstations (|W|), the number of jobs (|J |), the loading level (LL), the percentage of
late-arriving jobs (PLJ), and the percentage of busy machines (PBM). As defined in [3], LL
is used during the instance generation to determine whether a job requires processing in a
workstation randomly. This is done by generating a uniform random number (u) between
0 and 1 and comparing it to the value of LL. If u < LL, the job will require processing in
the workstation. During the instance-generation procedure, this process is repeated for all
jobs and workstations. The value of LL is between 0 and 1, and the higher the value of LL,
the more dense the schedule will be.

Since the studied DMOSP is characterized by a subset of jobs with non-zero arrival
times, the PLJ parameter was used in instance generation to account for this characteristic.
The value of PLJ was defined as a decimal number between 0 and 100. During the release
time generation of an instance, a uniform random number, p ∈ [0%, 100%], was generated,
and its value was compared to PLJ. Whenever p > PLJ, zero release time was assigned to

Figure 10. Pareto fronts and generated non-dominated solutions of both NSGA-II and MOSS for
selected small-sized instances. (a) DMOSP-S-7. (b) DMOSP-S-6. (c) DMOSP-S-24. (d) DMOSP-S-17.
(e) DMOSP-S-4. (f) DMOSP-S-15.

5.3. Results for Large-Sized Instances

The purpose of the computational experiments conducted using large-sized instances
was to compare the performance of both MOSS and NSGA-II at different levels of the prob-
lem parameters. The main problem parameters that define its structure include the number
of workstations (|W|), the number of jobs (|J |), the loading level (LL), the percentage of
late-arriving jobs (PLJ), and the percentage of busy machines (PBM). As defined in [3], LL
is used during the instance generation to determine whether a job requires processing in a
workstation randomly. This is done by generating a uniform random number (u) between
0 and 1 and comparing it to the value of LL. If u < LL, the job will require processing in
the workstation. During the instance-generation procedure, this process is repeated for all
jobs and workstations. The value of LL is between 0 and 1, and the higher the value of LL,
the more dense the schedule will be.

Since the studied DMOSP is characterized by a subset of jobs with non-zero arrival
times, the PLJ parameter was used in instance generation to account for this characteristic.
The value of PLJ was defined as a decimal number between 0 and 100. During the release
time generation of an instance, a uniform random number, p ∈ [0%, 100%], was generated,
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and its value was compared to PLJ. Whenever p > PLJ, zero release time was assigned to
that job. Otherwise, a non-zero release time was randomly generated. Similarly, a machine
can be busy at the beginning of a rescheduling phase and, therefore, have a non-zero
available time. This is represented using the PBM parameter, which is used similarly as
PLJ in the instance-generation process.

The chosen levels for the mentioned problem structural parameters are shown in
Table 6. All values of the processing times of jobs on machines, job arrival times, and
machines’ available times were randomly generated for each instance using the procedure
described in [3].

Table 6. Selected levels of the structural parameters used in generating large DMOSP instances.

Factor Selected Levels

|W| 10, 20
|J | 20, 40
LL 0.5, 0.9
PLJ 30%, 50%
PBM 30%, 50%

Based on a consideration of five structural parameters with two levels each, a 25−1
V

fractional factorial design was used. This experimental design was suitable for the re-
quirements of the current comparison since more than two-factor interactions were not
of concern. At each treatment combination, 10 instances were randomly generated. For
each instance, there were 30 independent runs conducted using each metaheuristic. This
resulted in a total of 4800 independent runs for each metaheuristic. The computational
time of a run was limited to 0.6 × |W| × |J | × LL seconds. For NSGA-II runs, the best
parameters determined in [4] were utilized. The algorithmic parameters used for small
instances were used for the developed MOSS, except that the value of Re f SetSize was set
to 10. As reported earlier in the parameter-tuning experiments, this was not expected to
reduce the quality of generated solutions, yet it reduced the computational effort needed.

For each randomly generated instance, the average of the 30 HV%(D) values obtained
via a metaheuristic was calculated and denoted HV%. Accordingly, the difference between
the MOSS result (HV%MOSS) and the NSGA-II result (HV%NSGA−I I) was denoted and
evaluated as ∆HV% = HV%MOSS − HV%NSGA−I I . The values of ∆HV% at all treatment
combinations were used as the response in comparing the results of both metaheuristics.
Clearly, positive values of ∆HV% indicate the better performance of MOSS over NSGA-II.

For ∆HV%, Figure 11 shows the main effects plots, while Figure 12 shows the inter-
action plots. As shown in Figure 11, the mean value of ∆HV% became slightly below 0
at higher |J | and LL values. Meanwhile, the effect of the other three factors remained in
the positive domain despite being significant at 95% confidence, based on the analysis of
variance (ANOVA) results. Meanwhile, the interaction plots of Figure 12 show that higher
values of |W| combined with higher values of |J |, as well as higher values of LL combined
with higher values of |J |, resulted in larger negative values for the response. Accordingly,
it can be concluded that the developed MOSS demonstrated better performance compared
to NSGA-II for cases with low and intermediate density, while this situation was reversed
for more dense cases.
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Figure 11. Main effect plots for ∆HV%.

Figure 12. Interaction plots for ∆HV%.

6. Conclusions and Future Research

In this paper, a novel metaheuristic approach based on scatter search was developed
to provide efficient, non-dominated solutions to a bi-objective, dynamic, multi-processor
open-shop scheduling problem (Bi-DMOSP). This problem is frequently encountered in
maintenance and healthcare diagnostic applications, and therefore, providing efficient
solutions is particularly important to effectively manage these systems. The two objectives
considered in this paper were the minimization of the makespan and the minimization
of the mean weighted flow time (MWFT). The former objective targets maximizing the
utilization of the available machines, while the latter aims to improve customer satisfaction.

Since the studied problem is known to be NP-hard for both objectives, their simulta-
neous consideration represents a challenge in designing efficient algorithmic approaches.
This paper adopted a multi-objective scatter-search (MOSS) approach combined with an
efficient novel bi-objective tabu search for local improvements. It is intended to reduce
the computational burden caused by the large size of the solution set and the redundant
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local search moves found in a formerly developed metaheuristic based on NSGA-II. The
developed metaheuristic in this paper utilizes a small set of reference solutions to generate
a new set of test solutions in every iteration, combined with an efficient bi-objective tabu
search that targets improving both objectives. With an efficient updating mechanism for the
reference and non-dominated solutions throughout iterations, the developed metaheuristic
can effectively achieve the stated quest of finding efficient non-dominated solutions.

Computational experiments were conducted on randomly generated small and large
instances of the studied Bi-DMOSP. Thirty small-sized benchmark instances were used
to fine-tune the metaheuristic parameters and compare their performance against the
formerly developed NSGA-II and an exact algorithm based on the ε-constraint method.
Three performance metrics were used in the comparisons: the number of generated non-
dominated solutions, the total gravitational distance, and the percentage hypervolume
deviation. The last two performance metrics were developed in this paper to represent
deviations from the known optimal Pareto front, obtained earlier using the ε-constraint
method. Computational results revealed the superiority of the developed MOSS compared
to NSGA-II, resulting in better metrics in 23 instances versus only three instances for
NSGA-II. Meanwhile, at a 95% confidence level, the developed MOSS’s overall average
performance was significantly better. Furthermore, the average percentage hypervolume
deviation of the developed MOSS was found to be only 1.83% versus 2.74% for NSGA-II,
which reflects its capability of generating non-dominated solutions that are very close to
the optimal Pareto front and its superiority over NSGA-II.

The large-sized instances are randomly generated at different levels of selected prob-
lem parameters representing its structure. These parameters include the number of work-
stations, the number of jobs, the loading level (percentage of workstations needed for a job),
and two parameters representing the job release and machine-ready times. Computational
results reveal that the difference between the developed MOSS and NSGA-II in terms of
their percentage hypervolumes is mainly affected by the first three parameters. It was
found that the developed MOSS can produce competitive results in cases of low density,
which are measured by the loading level, combined with the number of jobs. Meanwhile,
this was reversed in the cases with large densities.

The studied Bi-DMOSP is, undoubtedly, an important problem in maintenance and
healthcare applications. Providing efficient Pareto front solutions to this problem is of
utmost importance for efficiently managing such systems. The results presented in this
paper provide some insights that can guide managerial decisions regarding the solution
algorithm to be implemented in a specific situation. If the problem size is small (five jobs
and five workstations), obtaining an optimal Pareto front can possibly be done in a rea-
sonable computational time using the exact algorithm presented in [3]. For larger cases,
the developed hybrid metaheuristic approach presented in this paper is a competitive
candidate that can be used to generate efficient non-dominated solutions that are very close
to the unknown optimal Pareto front for medium and large cases with low density. An
alternative NSGA-II approach, as presented in [4], can provide efficient solutions for large
cases with high density levels.

Since the studied Bi-DMOSP is NP-hard, its future algorithmic development will
remain open for more efficient approaches. Some algorithmic techniques developed in
this paper, especially the local search mechanism, can be further refined and extended
by incorporating more efficient neighborhood search functions. More specifically, the
suggested neighborhood search functions used for improving the MWFT are at a different
speed than those used for improving the makespan, since they require reconstructing
the whole network representation of the problem to evaluate the objective value. Quicker
methods for estimating the effect of the neighborhood moves on the MWFT can significantly
reduce the computational time. This could improve the results of the developed MOSS
for large-sized dense cases. Another direction for future algorithmic development is
the consideration of an automated parameter-tuning approach, such as irace [51], which
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attempts to optimize the algorithm parameters as an integrated part of its execution. They
can be compared with the static parameter-tuning approach followed in this paper.

Other future research extensions can include the customization of the developed MOSS
approach for more general cases of the studied problem, as well as similar multiprocessor
shop-scheduling problems. For instance, the developed MOSS approach can be applied
to multi-processor-flow shop-scheduling and flexible-job shop-scheduling problems. The
structure of the studied Bi-DMOSP can be extended to include the cases of sequence-
dependent setup times, planned maintenance activities, and the scheduling of material
handling equipment.
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