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Abstract: The search for information in a system has been a continuous problem for a computer. This
has resulted in the construction of a set of classical algorithms that can search for a set of data. This
is why search systems can be divided into the type of information being searched, the number of
solutions to find, and even the terms used for searching. With the emergence of quantum computing,
new algorithms have been generated for this type of process. An example is the Grover algorithm,
which performs theoretically better than traditional algorithms. This is why there has been research
on optimizing it, applying it to new fields, and making it more accessible to industry users. Even if
the algorithm is a promising alternative, one of the disadvantages of Grover’s algorithm is the use of
an oracle function that must be generated for every set of search data. This review describes three
sets of methodologies for generating quantum circuits that can be applied to constructing this oracle
quantum circuit.

Keywords: Grover’s algorithm; quantum computing; oracle synthesis

1. Introduction

The vast amount of information available on the network requires efficient search
methods [1]. While numerous classical search algorithms have been developed, the in-
creasing volume of data demands innovative approaches to data traversal [2]. Quantum
computing emerges as a promising alternative, offering potential improvements in compu-
tational time and complexity over traditional methods [3]. Current quantum computers
leverage quantum state properties, such as superposition and entanglement, to achieve
these enhancements [4]. These properties have led to the development of a new set of
algorithms that redefine the search problem through a quantum lens [5].

Implementing these algorithms has demonstrated a quadratic improvement in query
complexity for specific cases compared to existing classical algorithms [6]. A notable
example is Grover’s search algorithm, introduced in 1997 [7]. This algorithm utilizes an
oracle, a black box that functions as a unitary operator capable of recognizing the solution
to the search problem [8]. For Grover’s algorithm to function correctly, the oracle must be
explicitly mapped from classical information [9]. Additionally, the performance of quantum
computers executing this oracle is contingent on the number of qubits available and the
number of gates used when making the implementation [9].

The underlying complexity of mapping oracles to functional quantum circuits remains
a significant challenge in applying these algorithms to industrial problems [10]. That is why
this article reviews the current methodologies available for generating quantum oracles for
Grover’s search. It begins with the classical synthesis of reversible quantum circuits [11]
and then explores trends in circuit generation, such as metaheuristic methods [12] and the
generation of quantum circuits using neural networks [13]. This article provides insights
into the methodologies for generating quantum circuits, their current limitations, and
the efforts to bridge the gap between practical applications of quantum algorithms and
traditional software [10].
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2. Background
2.1. Quantum Computing

Quantum computing is a field that relies on the principles of quantum mechanics to
solve problems more efficiently than classical computers [4]. Unlike classical computers,
where information is represented by the binary states 1 and 0, quantum mechanics allows
the extension of classical systems by using the superposition of these two states. This new
representation receives the name of qubit, the fundamental unit of information in quantum
computing [14].

The qubit representation can be described using the Dirac notation; two vectors
represent the binary states |0⟩ and |1⟩, as seen in Equation (1).

|0⟩ =
[

1
0

]
; |1⟩ =

[
0
1

]
(1)

The linear combination of these two vectors can produce a new vector ψ, defined as
a new quantum state in an arbitrarily unknown state using the quantum superposition
principle [15]. The complex coefficients accompanying this expression are α and β, as
shown in Equation (2).

|ψ⟩ = α|0⟩+ β|1⟩ (2)

The superposition principle states that the linear combination of two or more state
vectors is another state vector in the same Hilbert space and describes another system
state [16]. This is why every quantum circuit corresponds to a particular unitary operator
U in the Hilbert space that transforms an initial quantum state into another quantum state,
meeting the criteria shown in Equation (3) for maintaining the superposition principle [15].

U†U = UU† = 1 (3)

In addition to the superposition principle, the Born rule states that the modulus square
of the amplitude of a state is the probability of that state’s resulting after measurement [16].
This implies that the coefficient present in Equation (2) can be operated to obtain the
likelihood of the states |0⟩ and |1⟩, and because all the possible states are present in
Equation (2), they must meet a normality condition where the sum of the probabilities of
the states is equal to 1, as shown in Equation (4).

|α|2 + |β|2 = 1 (4)

Then, based on the definition of the quantum circuit as U matrix, we can decompose
this matrix into smaller matrices representing part of the circuit, called quantum gates.
These gates can interact with a single qubit, as in the case of the X gate that is shown in
Equation (5).

X =

[
0 1
1 0

]
(5)

This gate is a unary gate that is responsible for flipping the states of a single qubit, as
it is shown in Equation (6).

X|0⟩ = |1⟩; X|1⟩ = |0⟩ (6)

There also exist gates that can interact with multiple qubits at the same time. One of
them is the CX (CNOT) Gate, shown in Equation (7), where an X gate is applied depending
on the value of a control qubit.

CX =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (7)
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A quantum circuit can compromise multiple gates for its construction, as shown in
Figure 1. Each horizontal line represents a qubit, and the symbols on the lines represent the
basic operations applied to that qubit. The circuit is organized chronologically from left
to right.
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2.2. Grover’s Algorithm

Based on quantum circuits and amplitude amplification, Grover’s search algorithm
was proposed in 1997 to search an unstructured dataset faster than any known classical
algorithm [15]. The algorithm consists of three steps:

• Superposition of the initial state.
• Oracle that marks the desired state.
• Diffusion operation that amplifies the desired state.

The superposition step represents all the search elements as a linear combination with
equal probabilities [17]. After having a superposition step, the oracle marks the desired
state of the search problem, which the diffusion operator later amplifies. A measurement
procedure is conducted after a series of iterations, making the probability of collapsing
the superposition to our desired result higher [16]. In this case, at most, we must iterate
π
4

√
N times [18], where N is the number of search terms available, to obtain a better

approximation of the desired search state. The general structure of the Grover algorithm is
shown in Figure 2.
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The main section of the algorithm is the oracle. It is a subcircuit used in quantum
computing to introduce an instance of a mathematical function into a bijective function
that is then represented as a quantum circuit [19]. They represent the “black box” function
f (x) [10]. This applies to Grover’s algorithm and multiple quantum algorithms that can
have oracles to represent one of their sections.

In the case of Grover’s algorithm, the oracle represents a function f (x) = 1 where x is
the term searched those outputs 1 when used in the function. A quantum representation
of the function is shown in Equation (8). Where operation U f is the Grover’s oracle, | s⟩
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represents the current state of the qubits, and ω is the desired state (the searched element).
These representations allow inverting the phases only on the desired output state.

U f | s⟩ =
{
| s⟩ s ̸= ω
−| s⟩ s = ω

(8)

The main problem with this representation is that it requires the construction of an
algorithm that does the work of the oracle [Bernhardt], and the user is responsible for
generating the oracle circuit. This poses multiple challenges that compromise the quadratic
improvement reported by the algorithm [9], such as:

• The oracle is not optimized.
• The oracle depends on the data input, generating it each time.
• The oracle circuit generation is not a direct task.

Due to these problems, multiple approaches have been developed to make the oracle’s
logical synthesis more approachable, optimized, and automated. Three main groups
of methodologies have been identified: classical synthesis, metaheuristics, and neural
networks.

3. Methodology

This review methodology is based on the framework proposed by Levac [20]. Follow-
ing is the set of steps used to obtain and summarize the relevant data.

3.1. Identification of the Research Question

As described in Section 2.2, the problem was identified before starting the research
process. The research question was generated about the possible available methodologies
for synthesizing oracles, specifically Grover’s oracles.

3.2. Identify Relevant Studies

The second step was identifying studies related to the topic. For this, targeted search
phrases were employed in academic databases like Arxiv, Science Direct, IEEE Xplore,
Google Scholar, and Scopus. The starting targeted search phrases were Grover’s oracle
synthesis, design automation Grover’s search, and quantum circuit oracle synthesis. The
keywords used for the search were Grover’s algorithm, oracle synthesis, quantum circuit
generation, quantum oracle transpilation, and compile quantum circuits.

This search was limited depending on the database used, and because of the topic’s
novelty, the data range was limited from 2000 to 2024.

3.3. Study Selection

Due to the quantity of available data, a filtering process was completed for the available
studies. The criteria used for selecting the studies were the following:

• Relevance: The article’s main topic was the synthesis of quantum oracles. Articles on
principles of hardware, physics, and layout synthesis were excluded. The selected
articles emphasized Grover’s algorithm as their primary research topic or as a way of
verifying the viability of the stated methodology.

• Credibility: The article was published in a reputable journal.
• Methodology: The article described a proper proof or methodology for validating the

oracle synthesis. The articles that contained experimental data were presented clearly
and supported by the described process.

• Detail: The article provided concise coverage of the topic, including background on
the relevance of these procedures to quantum computing.

• Replicability: The articles exposed code or a detailed step-by-step process that allows
future replication and verification of the methodology by other peers.

Based on these criteria, the studies were selected by initial fast filtering of the articles
based on the summary proposed and later a detailed review of the topic covered in the
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remaining ones. The involvement of different approaches to the solution of generating
oracles for quantum computing was considered, leaving us with ten articles.

3.4. Summarizing and Charting the Data

A summarizing process was conducted with the filtered set of studies, which is
exposed in Section 4. Based on the search and selection of the studies used for oracle
synthesis, they were classified into three main groups. The three groups found were as
follows:

• Classical with an abbreviation of [c]. It comprises articles that deal with mapping
functions or compilers for translating a Boolean function to a quantum oracle.

• Metaheuristics with an abbreviation of [mh]. It comprises methodologies that use
heuristic algorithms to generate and optimize quantum oracles.

• Neural networks with an abbreviation of [nn]. It comprises methodologies that use
a computational model inspired by the human brain and the connection of neurons
for generating quantum oracles. The neural network can be a classical or quantum
implementation representing the oracle.

Finally, depending on the available information for each study. The systematic review
was visually represented in Table 1 and in the knowledge graph in Figure 3. Table 1 includes
the methods for generating the oracle, the programming language, and the different
metrics used to evaluate the performance concerning other methodologies. The knowledge
graph visually shows the summary of the found information, and the color represents the
methodology used by each study. Green is used for classical [c] methodologies, yellow for
metaheuristics [mh], and purple for neural networks [nn].

Table 1. Summary of oracle generation methodologies.

Study Method Languages Libraries Techniques Cost Functions

Bogdanov [21] [c] - - Zhegalkin
Polynomial Number of qubits

Schmitt [22] [c] Python;
C++

Tweedledum;
Caterpillar;

Qiskit

ESOP;
XAG n1q + 10 · n2q

Meuli [23] [c] C++ Caterpillar ROS Number of qubits;
Number of gates;

Seidel [11] [c] Python Qiskit;
Tweedledum

Gray;
PTS

Number of qubits;
CNOT Gates;

U Gates

Sanchez-Rivero
[17] [c] Python Qiskit Arithmetic

Oracle
Circuit depth;

Number of qubits

Li [24] [c] COQ;
Haskell

Quipper;
DDSIM;

SQIR
Custom compiler -

Velasquez [25] [c] - - Symbolic maps;
QUASH Number of 2-qubit gates

Atkinson [12] [mh] - - Ant Colony MSF

Massey [26] [mh] C++ Q-PACE;
GALib

Genetic
Algorithm f = h + c + e

Ding [27] [mh] - - Genetic Algorithm AS; ST

Abdelmoiz [28] [mh] Python Qiskit Cellular GA -

Swaddle [29] [nn] Python TensorFlow Matrix to circuit Euclidean distance

Murakami [13] [nn] - - Input-output
Network Two qubit gates

Cruz-Benito [30] [nn] Python Pytorch;
Open QASM Seq2seq Network Accuracy
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4. State of the Art

As described in Section 2.2, oracle generation represents a challenge, so multiple meth-
ods have emerged that are directly or indirectly applied to Grover’s algorithm. The current
section classifies these studies into three main sets depending on the methodology used.

4.1. Classical Synthesis Methodologies

Classical synthesis methodologies start with a Boolean function as its main component
for representing an oracle. This function is later transformed into a quantum circuit.
The types of transformations depend on the methodology. The studies that include this
methodology can be divided into two subgroups: one that uses a direct approach for
converting the Boolean function in a circuit and one that uses a framework, like a compiler,
for setting the transformation and can include more complex operations.

For example, Bogdanov’s initial approach [21] starts with a function representing the
expected output of the circuit as shown in Table 2, where x represents an input bit and fi a
Boolean function acting on x.

Table 2. Truth table for one bit.

x f 0 f 1 f 2 f 3

0 0 0 1 1
1 0 1 0 1

Bogdanov proposes the construction of the desired output based on a vector space,
the bases of which depend on the number of qubits used. The vector bases for one qubit
are shown in Equation (9), where ⊕ represents a vector sum done in binary base, and I

represents the vector
[

1
1

]
.

E1 = x =

[
0
1

]
, e0 = x

⊕
I =

[
1
0

]
(9)
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Based on these vector bases, a new polynomial vector can be written for e0 in terms

of the input x, as is shown in Equation (10). Where x0 represents a column vector
[

1
1

]
,

x1 represents
[

0
1

]
and the e0 value is equivalent to f2(x) in Table 2. This is known as a

Zhegalkin polynomial and is the main component used by Bogdanov for obtaining the
quantum circuit [21].

E0 = f2(x) = 1 · x0
⊕

1 · x1 (10)

If the coefficients of variable x are represented as a column vector
[

1
1

]
of name p0, each

of the values of vector p0 represents a quantum gate that can be mapped on a quantum
circuit. This is shown in Figure 4, where the first qubit represents x and the second qubit
represents the output of the function f2(x).
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This procedure can be amplified to multiple inputs and outputs, which is Bogdanov’s
main proposition. The main advantage of this approach is that it considers the reversibility
of the quantum circuit. This fundamental property is inherited from the unitary matrices
that represent the operations. On the other hand, this approach limits the number of qubits
used because it involves adding a qubit for each function output. The input qubits are only
used as operation resources.

Similar problems happen with Schmitt’s proposition [22]. He uses the problem stated
in the 2019 IBM hackathon, called the Zed City problem. The problem consists of a graph
representing the distribution of districts in a specific place; the objective is to assign a color
to each place, avoiding having adjacent vertices with the same color. Schmitt proposed
representing the problem as a Boolean function that describes the search scope of viable
solutions to a specific layout. Then, this function would be processed with Grover’s
algorithm to obtain a viable layout [22].

The process was performed by implementing a Python function that represents the
Boolean scope of search. This function was the input to the Tweedledum [31] library;
this C++ library has several tasks for synthesizing and optimizing quantum circuits. The
specific function used was based on the ESOP-based technique. This technique works
similarly to the Zeghalkin polynomials, decomposing the function into an expression that
can be later transformed into a particular type of gate, the Toffoli gates. The main advantage
of this technique is that it does not require a previous status of reversibility for the Boolean
function. Still, it is only performant to small circuits, and it increases the required number
of qubits quickly.

To solve this problem, a method of hierarchical synthesis was implemented. It divides
the Boolean function into intermediate computations that can be later run with specific
synthesis techniques, such as ESOP. For this purpose, the library Caterpillar [32] was
used. This library has multiple techniques for implementing hierarchical synthesis. The
one implemented was XAG-based, which uses the AND and XOR gates for dividing
the circuit.

This type of implementation has the number of qubits defined by n + 1 + a, where
n represents the number of qubits required by the search function, and a represents the
number of temporary ancilla qubits used to store the intermediate results. Finally, the
Boolean function that defines the system can be represented by Equation (11). The main
difference between this methodology and Bogdanov’s is that apart from the input and
output qubits required for a quantum circuit, ancilla qubits a appear and serve as an
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anchor point to additional calculations and divisions of the quantum circuit that allow
more complex procedures.

| x⟩|y⟩
∣∣0⟩a → | x⟩|y ⊕ f (x)⟩

∣∣0⟩a (11)

Finally, Schmitt implemented the circuit in Qiskit, a Python library created by IBM
to simulate and run the quantum circuits. He took the winning implementation for the
challenge and compared it to the obtained results from their procedure. The cost function
used for evaluation was cost = n1q + 10 · n2q, where n1q represents the number of one-qubit
gates and n2q represents the number of two-qubit gates. The circuit optimization was
performed manually, and they concluded that their approach had better results than the
ones given on the challenge after optimization. The main limitations of this approach
were the number of qubits used due to the necessity of a division of circuits that can
manage reversible Boolean functions and the manual process of optimization for obtaining
comparable results [22].

A similar approach is the one conducted by Meuli [23]. It consists of using the XAG
graphs as a representation of the quantum circuit that can then be divided into smaller
circuits, with the main difference of implementing an optimizer for the division of the
graphs based on the number of qubits required and the number of gates. This methodology
allows for a reduction in the number of ancilla qubits used to store the intermediate results
in qubits of the operation without affecting the reversibility of the unitary matrices. This
algorithm was evaluated using Grover’s algorithm search of functionally different graphs,
finding a reduction of 30% in the number of gates used and a 2% reduction in the qubits
needed.

Another approach that tries to tackle the number of qubits problems is the one con-
ducted by Seidel [11]. He proposes two alternatives for optimizing the oracle synthesis
for Grover’s algorithm. The first proposition is to search for similarity instead of equality,
which means searching for a distance between the required field and the desired output.
This type of procedure can be conducted with a quantum function T that represents the
distance between the desired output and the evaluated qubits. This type of search also
reduces the number of CX gates that the search procedure requires but has the cost of
requiring a more precise number of iterations for the oracle and the diffusion operator [11].

The second alternative he proposes is a Phase-Tolerant Synthesis. This type of synthesis
considers that the phase inversion of a state is not required for it to be applied to Grover’s
algorithm since it does not change the result obtained. For example, the state shown in
Equation (12) represents the desired state of the synthesis method, where x represents the
input, T(x) the distance to the desired output, Xx garbage phases, and n the number of
inputs. This expression has additional phase terms Xx that can be eliminated from the
synthesis process.

2n−1

∑
x=0

exp(iχx)| x⟩|T(x)⟩ (12)

This procedure significantly reduces the gates required for constructing the quantum
circuit. Seidel assessed this implementation with a database search. He encrypted the data
in a quantum circuit. Then, he used the Gray synthesis method from the Tweedledum
library and the Phase Tolerant Synthesis to construct an oracle that can search for a regis-
ter [11]. After the implementation, he iterated thirty times for different database sizes and
measured the average CNOT gates, U rotation gates that were happening and the number
of qubits used. The experiment concluded that the metrics scaled linearly with the database
being searched independent of the method used. The limitations of this approach are that
the number of qubits is very dependent on the database being used in the search process,
the hash algorithm limits the similarity search, and the involvement of a logic synthesis
increases the computational complexity compared to the classical search.

Li [24] took another approach to synthesizing Oracles. This approach is similar to
the one proposed by Sanchez-Rivero [17], where instead of generating oracles based on a
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Boolean function, an initial set of quantum circuits is defined for performing specific arithmetic
operators. In the case of Sanchez-Rivero [17], this is conducted with a less-than operation and
a search of numbers that are less than a specific value with Grover’s algorithm.

Li uses this concept to define a compilation framework [24]. He proposes a language
with a series of steps that transform a function into an oracle that can be used on a quantum
circuit. The process starts with the OQIMP, a predefined language that allows the expression
of oracles in terms of a series of operations already available. The representation of an
Oracle in OQIMP language is then translated to OQASM, a quantum assembly language,
throughout a series of predefined circuits and gates that do not have an entanglement due
to a language restriction. The quantum circuit is then translated to a Quantum Computer
or simulator for testing.

Besides the primary process, Li has designed a test suite to verify the compatibility of
the circuits [24]. This verification consists of a formal automated tester set programmed
in COQ; additionally, with a randomized test suite PBT, this last one allows testing the
process based on random inputs and expected outputs. This methodology has a predefined
reduction in the number of qubits and the depth of the circuit.

Li implemented an oracle to evaluate the implementation and find matching registers
in a hash function (ChaCha20). This oracle was later used in Grover’s algorithm to assess
its validity, but its performance was not evaluated. The main limitation of this approach
is that it is restricted to the language being used, properties like the entanglement are not
an option for the qubits available, and the optimization process is performed after the
circuit’s construction.

A similar approach was implemented by Velasquez [25], establishing a limited set of
symbolic mapping between the input of the gates and the outputs. With this set of symbolic
mappings, a symbolic search procedure denoted as QUASH could be implemented to
search the set gates that apply to the constraints of the desired input and output. The
procedure was evaluated using the number of 2-qubit gates used in constructing the
circuit. This approach has the limitation of restricting the type of gates to the set initially
defined and the required runtime of the synthesis procedure, which does not enable the
implementation of Grover’s algorithm with an extensive search scope [25].

Having an overview of the classical methodologies, it can be deduced that they have
the following limitations: they require the construction of a Boolean function, which
sometimes is not easy depending on the problem; they can introduce additional qubits for
managing the computation; and some of them don’t take advantage of the entanglement
for doing synthesis processes.

4.2. Metaheuristics Methodologies

Metaheuristic methods are another methodology that uses metaheuristic optimization
algorithms to generate quantum circuits. These algorithms seek to optimize the output
using metrics established for each problem domain [12].

One of these methodologies is the one proposed by Atkinson [12]. The methodology
is called Quantum Ant Programming (QAP) and is based on the Ant Colony Optimization
metaheuristic for generating quantum circuits. Its principle is based on a graph; the ants
chose a path for this graph, generating a subgraph that represents the desired circuit. The
ants create a trail of pheromones to reinforce the gates they should use to obtain the desired
results, and the evaporation metric is added to avoid bias in the process. Based on the trail
the ants went, a circuit can be created to obtain the results based on the inputs.

Atkinson noticed various problems with the standard way of measuring the perfor-
mance of this model, so he proposed a new metric for measuring the system’s performance
and used it in the optimization process. The metric is called the Fidelity of Means Squared
to calculate the difference between the obtained states and the desired ones, considering
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the phase of the result as shown in Equation (13), where |y⟩ represents the expected output
of the system and | x⟩ the input state of the system.

F (|y⟩, | x⟩) = |⟨y|x⟩| (13)

The mean square fidelity can be calculated as is shown in Equation (14), where A
represents the realized quantum circuit expressed as a unitary matrix, X represents the set
of all input states of the quantum circuit, and Y represents all expected output states of
the circuit.

MSF (A, X, Y) =
∑
|X|
i=1 F (|y⟩, A| x⟩)2

|X| (14)

With this metric, each algorithm was run one hundred times in a predefined test
versus a random generation procedure for generating quantum circuits. This approach
obtains better results than random generators but has bad fidelity scores for big circuits. It
has the limitation of needing more generalization for more extensive circuits and requiring
an expensive run procedure each time a new circuit is needed.

Another approach is the one proposed by Massey [26]. He uses genetic programming
to generate the oracles required for Grover. The algorithm uses a tree structure to represent
each circuit and tries to insert, delete, or replace the subtree structure at each iteration. Some
constraints are imposed on the mutation operators to ensure syntactically valid quantum
programs as individuals [26].

The fitness function used for generating these circuits is reported in Equation (15),
where h represents the total number of fitness cases used minus the number of fitness cases
where the program produces the correct answer.

f = h + c + e (15)

The c term represents the correctness component and is shown in Equation (16),
where the error term represents a threshold applied to not take into consideration more
minor errors.

C =
∑n

i=1 max(0, errori − 0.48)
max(h, 1)

(16)

The last term, e, represents efficiency, which means the number of gates in the final
solution divided by a large constant. This allows the circuit generation to center on giving
satisfactory results and then optimizing the circuit length based on those results.

Massey finally does not use the output as a whole but uses small functions that make
the process more scalable to obtain the average of the fitness functions for each result and
maximize the desired output. This approach is assessed with small circuits but needs to be
escalated for more extensive circuits.

Another approach to generating quantum oracles as unitary matrices based on evolu-
tionary algorithms was the one proposed by Ding [27]. It consists of encoding the quantum
gates as integers and the quantum circuit output as a string of 0–1 bits, which could be
expediently operated by evolutionary algorithms [27]. The effectiveness of the procedure
was measured by generating some goal circuits with the algorithm and calculating the
average generation of success (AS) and the number of successes in twenty tests (ST ). The
problem with this approach is that it requires an already defined set of gates to be operated
with, a previously specified number in the quantity of qubits, and the time used in matrix
multiplications for doing the training is time-consuming [27].

In a similar study, Abdelmoiz [28] proposes a variant of the genetic cellular algorithm
to generate quantum circuits, where a d-dimensional mesh represents the entire population
and each node represents an individual. The goal is to find some neighbor parents to an
individual and generate a breeding process between them that can be later evaluated using
an objective function given by the problem. Abdelmoiz uses rotation gates as the basis for
the implementation.



Algorithms 2024, 17, 382 11 of 14

The circuits are assessed on a fifteen-qubit quantum computer using a Qiskit frame-
work, and they outperform existing circuits in terms of solution quality and convergence
time [28].

Despite the results reported, the method of generating quantum circuits from meta-
heuristic algorithms does not grow linearly with the problems, and its interaction with
larger-scale issues needs to be further studied [22].

4.3. Neural Network Methodologies

Classical neural networks have also been explored for generating quantum circuits by
using these networks as classical encoding and decoding systems of the result obtained by
a quantum circuit, taking care of the preprocessing and post-processing process in a hybrid
algorithm [13]. This implies that starting from a quantum algorithm such as Grover’s, a set
of neural networks with a limited number of layers can be used to define or generate parts
of the quantum circuit, such as the oracle, as well as being able to perform error mitigation
through an implementation of a classical neural network at the output of the quantum
circuit [33].

Swaddle has a proposition for generating quantum oracles based on neural networks.
He starts from a unitary matrix that defines the oracle to be applied and uses two sets of
neural networks to transform the matrix into trackable circuits [29]. The first step consists
of taking a matrix, U, and decomposing it into simpler matrices, as shown in Equation (17).
This step is conducted with a GRU network where each input represents a row in the
matrix, and the output is the rows of the simplified matrix.

U ≈ U1U2 . . . Uj . . . UN (17)

The second network is a RELU network with two layers of 2000 neurons. These layers
take as input the values of one of the simplified matrices, Uj, and obtain a list of coefficients,
c, representing the exponential operations that construct the matrix in consideration, as
is shown in Equation (18). These coefficients determine the lie algebra that can be easily
translated to quantum gates [29].

Uj ≈ exp
(

cj
1τ1

)
. . . exp

(
cj

mτm

)
(18)

In this case, Swaddle measures the viability of this approach with an implementation
in Python and TensorFlow (a neural network library) using the Euclidean distance between
the expected and obtained results. He took five thousand pairs of training sets, of which
five hundred were used as validation. The reported error of this approach was 0.16.

The limitations of this approach are that the problem of generating the oracle is only
taken into consideration from the matrix to quantum translation, and the scalability of this
network is not great, which is why it was only evaluated for three qubits.

Another approach to the oracle construction of neural networks was completed by
Murakami [13]. He proposed a way of decomposing a unitary operation in a set of quantum
gates from a universal set. He starts with a circuit, as is shown in Figure 5, and defines the
input of the neural network as the desired inputs and outputs of the circuit because the
neural network is going to try to obtain the gates that receive output Oi based on the inputs
A and B.
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Then, they define a set of gates that will operate on the circuit, like the ones shown in
Equation (19).

CV(0, 3), CV(1, 3), CX(0, 2), CX(1, 2) (19)

A probability vector was created using the operation set as a starting point, as shown
in Equation (20). The idea of the neural network was to assign a probability to the most
relevant gate for generating the circuit. That way, we can reverse the operation and obtain
the desired input.

P = (CV(0, 3), CV(1, 3), CX(0, 2), CX(1, 2)) (20)

This approach was simulated using ten complex neural network layers and two fully
connected layers. The implementation was evaluated on 1.13 million input-output pairs
using batch sizes of 64 and epochs of 40. Finally, the number of two-qubit gates used in the
quantum circuit measured the resulting quantum circuits.

The results from this approach give better performance in terms of the quantum gates
used than other work conducted using a random approach to circuit search. It is important
to consider that this approach is limited to the desired input and output pairs, but it gives
better performance than the approach to U matrix generation given by Swaddle.

Another option that used natural language processing for obtaining a quantum circuit
was the one proposed by Cruz-Benito [30]. The procedure consists of using an encoder-
decoder neural network, in this case, the seq2seq neural network, and adapting it to
receiving and predicting the construction of quantum circuits. Since the quantum circuits
are currently constructed throughout programming languages such as Open QASM, a
neural network can be trained in a set of oracles that have already been created to produce
a network that can generate and optimize quantum circuits based on a text prompt. This
approach has the advantage of optimizing and converting in a single step but depends on
the set of already-defined circuits used for the training [30].

The neural network methodology is a good option that adapts to several types of
input and output requirements and requires more exploration. However, we must consider
the following limitations: it depends on the number of data we have available for the
construction of the network; sometimes, the results are not determined; and multiple
training processes must be performed to obtain a better adjustment.

5. Conclusions

This review focuses on raising awareness of the relevance of oracle generation in
bridging the gap between software production and the use of quantum computing. For
this reason, a series of methodologies for generating quantum circuits are presented.

Each set of methodologies has a specific type of limitation that must be considered.
Classical methodologies depend on a Boolean function that is not always available. Meta-
heuristic algorithms can be expensive to generate. The same happens with the neural
network approach, which requires data for training and can introduce an additional error
source to the circuit’s output.

This contribution emphasizes the necessity of balancing the limitations presented by
current methodologies and creating new interfaces that allow quantum computing to be
applied more efficiently for generating Grover’s algorithm oracles. This will further close
the breach between quantum computing and current classical solutions. This research may
have future training implications for research focused on using quantum search algorithms.
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