f_f algorithms

Article

Minimizing the Density of Switch—Controller Latencies over
Total Latency for Software-Defined Networks

Andres Viveros {7, Pablo Adasme *(, Ali Dehghan Firoozabadi >*

check for
updates

Citation: Viveros, A.; Adasme, P,;
Dehghan Firoozabadi, A.; San Juan, E.
Minimizing the Density of Switch—
Controller Latencies over Total
Latency for Software-Defined
Networks. Algorithms 2024, 17, 393.
https:/ /doi.org/10.3390/a17090393

Academic Editor: Roberto Montemanni

Received: 25 July 2024
Revised: 19 August 2024
Accepted: 2 September 2024
Published: 5 September 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Enrique San Juan !

Department of Electrical Engineering, Universidad de Santiago de Chile, Avenida Victor Jara N° 3519,
Santiago 9170124, Chile; andres.viverosll@usach.cl (A.V.); enrique.sanjuan@usach.cl (E.S.].)
Department of Electricity, Universidad Tecnolégica Metropolitana, Av. Jose Pedro Alessandri 1242,
Santiago 7800003, Chile

* Correspondence: pablo.adasme@usach.cl (P.A.); adehghanfirouzabadi@utem.cl (A.D.F.)

Abstract: This study examines the problem of minimizing the amount and distribution of time delays
or latencies experienced by data as they travel from one point to another within a software-defined
network (SDN). For this purpose, a model is proposed that seeks to represent the minimization of the
distances between network switches in proportion to the total nodes in a network. The highlights of
this study are the proposal of two mixed-integer quadratic models from a fractional initial version.
The first is obtained by transforming (from the original fractional model) the objective function into
equivalent constraints. The second one is obtained by splitting each term of the fraction with an
additional variable. The two developed models have a relationship between switches and controllers
with quadratic terms. For this reason, an algorithm is proposed that can solve these problems in a
shorter CPU time than the proposed models. In the development of this research work, we used
real benchmarks and randomly generated networks, which were to be solved by all the proposed
models. In addition, a few additional random networks that are larger in size were considered to
better evaluate the performance of the proposed algorithm. All these instances are evaluated for
different density scenarios. More precisely, we impose a constraint on the number of controllers for
each network. All tests were performed using our models and the computational power of the Gurobi
solver to find the optimal solutions for most of the instances. To the best of our knowledge, this
work represents a novel mathematical representation of the latency density management problem
in an SDN to measure the efficiency of the network. A detailed analysis of the test results shows
that the effectiveness of the proposed models is closely related to the size of the studied networks.
Furthermore, it can be noticed that the performance of the second model compared to the first one
presents better behavior in terms of CPU times, the optimal solutions obtained, and the reduced
Mipgaps obtained using the solver. These findings provide a deep understanding of how the models
operate and how the optimization dynamics contribute to improving the efficiency and performance
of SDNE.

Keywords: latency density; mixed-integer programming; software-defined networking; models and
algorithms approaches

1. Introduction

In the current context, wireless networks face complex challenges due to the high
expectations of users and the diversity of their needs [1]. This represents a significant
obstacle for network administrators who must ensure an optimal service that meets these
demands. In this scenario, SDNs stand out as a smart solution. These architectures separate
the control and data transmission functions within the network, similar to a team with
specific roles for decision-making and task execution. This structure enhances system
flexibility, allowing for agile adjustments and immediate adaptations to changes in the
environment. Essentially, SDNs provide an adaptable framework that evolves effectively

Algorithms 2024, 17, 393. https:/ /doi.org/10.3390/a17090393

https:/ /www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a17090393
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0003-4917-6798
https://orcid.org/0000-0003-2500-3294
https://orcid.org/0000-0002-6391-6863
https://orcid.org/0000-0001-7155-8501
https://doi.org/10.3390/a17090393
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a17090393?type=check_update&version=2

Algorithms 2024, 17, 393

20f19

to address diverse circumstances. Within this environment, latency density is an important
factor in ensuring the minimum latency levels required by specific users, allowing service
operators to guarantee the viability of technologies such as telemedicine and autonomous
driving. In the case of telemedicine, where communication between doctors and patients
depends on the instantaneous transmission of critical medical data, a low latency density
ensures that consultations are carried out smoothly and effectively, without delays that
could compromise medical care [2]. On the other hand, in the field of autonomous driving,
low latency density is critical for instantaneous communication between vehicles and
centralized control systems. This enables autonomous vehicles to make fast and accurate
decisions based on real-time data, improving road safety and transportation efficiency.
In short, optimized latency density provides service operators with the confidence that
advanced technologies such as telemedicine and autonomous driving can be deployed
effectively and safely, meeting the demanding response time requirements for these critical
applications [3]. The following is a summary of related work supporting these approaches.

One known problem in software-defined networks is referred to as the controller
placement problem. This problem involves figuring out the best locations for controllers to
ensure the network runs smoothly, scales well, and stays reliable. The goal is to reduce de-
lays between controllers and switches, balance the workload, and ensure that the network
remains available even if some controllers fail. It also needs to consider costs and network
policies. Solving this problem involves using mathematical models, simulations, and opti-
mization techniques to find the best controller locations for the network’s needs. This study
introduces two new models for solving a variant of the aforementioned SDN problem,
starting from an initial complex model. The first derived model is obtained by changing
the original problem objective into constraints. The second one is stated by breaking down
each part of the complex problem using extra variables, leading to a bi-linear nonconvex
problem. Both models involve quadratic terms related to switches and controllers, and they
are NP-Hard problems that are difficult to solve optimally. In order to solve them faster,
this study proposes new models and a novel meta-heuristic algorithm. The research uses
both real and randomly generated networks to test the models. It also uses larger random
networks to better assess the performance of the algorithm. The models are tested under
different conditions, particularly by setting limits on the number of controllers in each
network. All tests are conducted using the Gurobi solver [4] to find the optimal solutions.
This work constitutes a new approach to the management of latency in SDNSs, particularly
when measuring network efficiency. The results show that the model’s effectiveness de-
pends on the size of the networks being studied. The second model performs better than the
first one, with faster solution times and smaller gaps between the best solutions obtained
and the lower bounds given by the Gurobi solver. These findings help us understand how
the models contribute to improving SDN performance.

This study is divided into several sections to help readers understand the research
thoroughly. Section 2 examines the previous studies and approaches relevant to the topic.
Section 3 provides a feasible solution and the mathematical formulations used to address
the problem. Section 4 explores the algorithmic approach used to solve these models
effectively, discussing the methodologies and strategies applied. In Section 5, detailed and
substantial computational experiments are presented to validate the models and algorithms
through the specific scenarios tested, and the numerical results are reported. By focusing on
analyzing and discussing the outcomes of these experiments, we highlight the key findings
and insights gained from the study. Finally, Section 6 summarizes the conclusions drawn
from the research findings, outlining their implications for the field. This section also
suggests potential areas for future research and development based on the study outcomes
and identified limitations.

2. Related Work

Some published works related to SDN networks, latency management, and other
quality of service (QoS) parameters, which are closely related to this study, can be described

Algorithms 2024, 17, 393

30f19

as follows. In [5], by using an artificial intelligence approach applied to software-defined
networking architecture, challenges in underwater things (IoUT), such as load balancing
and QoS, are addressed. The study aims to enhance network performance, flexibility,
and scalability, using a balancing strategy multi-controller (CASM). Additionally, an adap-
tive routing protocol (SQAR) using reinforcement learning is proposed to select paths for
different services while optimizing network QoS. The results show that the balancing strat-
egy improves migration and achieves efficient load-balancing, benefiting SQAR directly.
SQAR has highlights in terms of energy efficiency, convergence, and QoS when compared
to other established protocols. Overall, the proposed framework achieves significant and
effective rates in both QoS and load balancing. In [6], a methodology is introduced to en-
able the dynamic creation and adjustment of network segments to meet the varying needs
of different user applications. This approach focuses on efficiently allocating resources,
such as bandwidth and energy, ensuring optimal performance and adequate QoS in fu-
ture 5G networks. In [7], two quadratic programming models and their linear equivalent
counterparts are proposed. These models address the problem of user assignment in a
software-defined network while aiming to minimize the connectivity costs and connec-
tion latencies between controllers and switches. The results show that the linear models
have shorter processing times than the quadratic models for obtaining optimal solutions.
The study compares user connection strategies, and the findings suggest that users should
connect to switches. In [8], by using reinforcement learning with constraints, a model is
proposed to optimize resource user segmentation while also meeting the requirements of
existing users and applications in the network. In [9], methods such as Controller adaption
and migration decision (CAMD) and dynamic and adaptive load-balancing (DALB) are
used to address load imbalance in an SDN network. The results show that CAMD is the
most efficient method. This algorithm utilizes the inherent variance in controller load status
to identify under-utilized controllers, optimizing the migration process to balance network
load. The performance metrics considered include response time, migration space, con-
troller throughput, and packet loss. CAMD outperforms controller adaption and migration
decisions, with average improvements of 7.4% in controller throughput, 6.4% in packet
loss, 5.6% in migration space, and 5.7% in response time. In [10], the authors analyze an
overview of the evolution of SDN controllers. Here, the authors develop advancements in
architecture, protocol, and key features. In [11,12], the problem of latency minimization
in an SDN is addressed. The first article focuses on the controller placement problem in a
software-defined network to minimize the maximum latency for switches and controllers
as well as communication between controllers. Additionally, it considers reducing the
number of controllers needed for network operation, taking into account a fixed instal-
lation cost for each located controller. The second study proposes mathematical models
to minimize latency in SDN networks. Both articles [11,12] aim to improve performance
and quality of service by reducing network latency and managing messages between each
pair of nodes for the existing arcs, considering the controllers. In [13], an approach for
the cost-effective and efficient placement of switches and controllers in a hybrid SDN is
proposed. Elements of QoS and implementation costs are considered to determine the
optimal placement, maximizing QoS, and minimizing infrastructure deployment costs.
In [14], the growing energy consumption of communication technologies, such as 5G and
beyond, is addressed. The existing proposals for energy savings and how network manage-
ment technologies could lead to undesired energy consequences, such as load balancing
or link saturation problems, are evaluated. The conflicting nature of energy-saving and
load-balancing objectives makes simultaneous optimization a challenge. In order to tackle
this task, an energy-efficient and load-balanced online flow routing framework based on
software-defined networking is proposed, followed by an optimization problem to balance
energy savings and load. A route-updating algorithm that is flexible to changes in flow
scheduling is also proposed. The experimental results demonstrate the superiority of the
proposed algorithm over benchmarks in energy savings, load balancing, and reducing link
congestion risks.

Algorithms 2024, 17, 393

40f19

In [15], the study examines how Boolean algebra concepts can be used to solve prob-
lems in operations research. This technique helps transform complex binary quadratic
problems into simpler linear ones. In [16], the migration of a traditional corporate network
to the SDN architecture is studied to demonstrate the advantages of an SDN network
compared to a conventional network. For this purpose, a classic corporate network was
simulated, and then the simulation was migrated to an SDN architecture. The network
simulation was carried out using a virtual environment (MININET). By comparing the
implementation process of these two networks, the simplicity of the SDN network imple-
mentation compared to the classic network was shown. In order to study the complexity of
maintenance, two scenarios were used: the migration from one virtual local area network
(VLAN) to two VLANSs and the evolution of routing rules in both networks. In [17], in re-
sponse to the slow but steady adoption of SDN architectures and the current solutions to
manage them, this work proposes a new efficient SDN architecture based on a flat multi-
controller multi-domain network that provides efficient load balancing in the network. Its
performance was demonstrated and verified through simulations in a Mininet environment
with Ryu controllers.

In [18], the authors introduce a solution designed to improve load balancing in SDNs
with multiple controllers, thereby enhancing network performance. It uses a greedy ap-
proach to migrate switches from overloaded controllers to underloaded ones based on devi-
ations in controller loads from the average. This ensures each controller has a balanced load
with minimal switch migrations. The algorithm’s effectiveness is demonstrated through the
analysis of time and space complexities, along with simulations and experimental studies
showing superior performance in terms of switch migrations, response time, throughput,
and delay compared to traditional methods. In [19], as data flows, industrial applications
grow exponentially, achieving low-latency and reliable data transmission simultaneously
poses a challenge. Time-sensitive software-defined networking (TSSDN) has emerged as
a technology for combining the real-time network configuration capabilities from SDN
with deterministic flow delivery from time-sensitive networking (TSN), which is ideal for
industrial internet of things (IloT) applications. In order to address this challenge, a frame
replication and elimination for reliability (FRER) mechanism is proposed for TSSDN-based
IIoT systems. However, FRER introduces stress on already limited network resources by
creating redundant paths. In order to tackle this concern, an end-to-end delay-bound model
and reliability model are proposed for analysis. An optimization problem is formulated to
maximize overall system utility while meeting commercial flow transmission requirements
and hardware resource constraints. Numerical simulations validate the effectiveness and
performance superiority of the proposed approach over existing methods. Reference [20]
explores the management of users across various segments within an SDN, aiming to
minimize the latency among switches, controllers, and user access nodes. It introduces
two mathematical models and a heuristic algorithm. This study represents a pioneering
effort in integrating network slicing into SDN, enhancing network management efficiency
and security to accommodate services based on specific segment needs. The models and
algorithm proposed contribute to significant advancements in handling user connections
to controller or switch-type nodes based on their segment affiliation, ensuring robust and
adaptive network deployment.

3. A Feasible Solution and the Mathematical Formulations

In this section, we start by introducing the optimization problem for network planning
that we are investigating. We include an example of an input graph network along with
its corresponding optimal solution. Then, we proceed to detail and explain each of the
proposed models.

3.1. A Feasible Solution to the Problem

Figure 1 displays an output of a feasible solution to the problem. Indeed, it is the
optimal solution. It corresponds to the instance known as Internet2 OS3E. In the left figure,

Algorithms 2024, 17, 393

50f19

the green lines indicate the arcs that can be used to connect network nodes. Switches are
represented by purple circles, and network controllers are shown as blue squares. On the
right side of Figure 1, the connections between switches and controllers are depicted with
red lines. It is important to note that the entire network is connected, but for the sake of
clarity, the communications between controllers in the backbone are not shown in the figure.

s Q\?’”

Figure 1. Representation of the Internet2 OS3E instance, which is divided into the input graph
and separation between the switch and controller nodes on the left side of the figure. The graph of
network Internet2 OS3E shows purple dots for the network switches, blue squares for the network
controllers, and green lines for the installed network links. The right figure represents the connections
between switches and controllers in the network solution. In particular, purple dots denote the
network switches, the blue squares denote the network controllers, and the red lines, the connections
between the switches and controllers, which are indirect and follow the shortest path according to
the installed network.

3.2. Mathematical Formulations

We consider a network composed of switches and controllers (nodes), where these
nodes are represented using a graph denoted by G = (V, A), with V representing the set
of nodes of the network and A the set of arcs in the network. The connection rules for
the networks under study are as follows: switches can only connect to a single controller,
and communications between controllers form a single network component that spans the
entire graph. The networks are evaluated under different scenarios considering that the
number of controllers varies according to the following percentages {20%, 30%, and 40%} of
the total network nodes. In each scenario, the goal is to minimize the latency of connections
between switches and controllers relative to the total active connections in the network.

In order to mathematically represent the aforementioned elements, the following
parameters and variables are introduced.

3.2.1. Parameters

* D;;: The shortest path distance between nodes i and j € V in the network. Notice
that matrix D = (D;;) is symmetric, and its diagonal has only zero values. Moreover,
notice that these distances are computed using Dijkstra’s algorithm [21].

3.2.2. Variables

e x;: Thisis a binary variable that is equal to one if node i € V is assigned to controller
j € V; otherwise, x;; equals zero.

¢ y;: Thisis a binary variable that equals one if node i € V acts as a controller node in
the backbone SDN, and it equals zero otherwise.

Algorithms 2024, 17, 393 6 0f 19

3.3. Mathematical Formulations

The fractional mixed-integer nonlinear model can, thus, be written as follows

Yijev Dijxij
. (i#))
F; : min 1
b Yijev Dijxij + L jev Dijyiy,; @
(i#]) (i<j)
st: Y oxij+yi=1, VieV,(i#]))
jev
Y yi=K 3)
jev
Xjj <= Yjr Vl,] eV, (l 7&]) (4)
x,-]- <=1- yi]/j/ \V/l,] eV, (l 7&]) (5)
xe {0,117 y e {0,1}IV] 6)

It should be noted that we are referring to a fractional programming model (1) that is
very hard to deal with. As such, we cannot solve it directly, but we can transform it to
derive two quadratic models. The aim is to minimize the latency between the connections
between switches and controllers concerning the latency of all connections in the network.
In constraint (2), it is allowed that the connection of a node, i € V, can only be assigned to
a single node, j € V, provided that i # j, with the only exception being when that node is a
controller without connections. Constraint (3) ensures that the number of controllers equals
K. Constraints (4) impose that the connections can only occur if the destination node of that
link is a controller. In constraint (5), it is ensured that two controllers cannot communicate
directly. Finally, constraint (6) denotes the domains of the decision variables.

Now, the transformation of the fractional model (1)-(6) into the intermediate
model (7)—(9) can be derived by imposing an upper bound variable, ¢, in the constraint (8).
Furthermore, the domain definition of the variable, ¢, is added in constraint (9).

min t (7)
{xy.t}
Yijev Dijxij
(i)
st: <t 8
Yijev Dijxij + Yijev Dijyiy; — ®)
(i#)) (i<j)
inj-‘ryi:l, ViEV,(i;éj)
jev
Y yi=K
jev
Xjj <= Yis VZ,] ev, (l 7&])
x e {0,1}1VF,y e {0,1}IV], £ € [0,00) 9)

The first equivalent model that we consider and evaluate by using the benchmark and
random instances is presented below. Compared to the previous intermediate model,
constraint (8) is replaced by constraints in (11) and (12). In addition to removing the
fractional part of (8), the quadratic term y;y; is also replaced using variable z;; for all
i,j € V,(i < j). This is carried out to avoid having a cubic term in the third sum of
constraint (11). Finally, the domain of the decision variable z is included in constraint (13).

Algorithms 2024, 17, 393 7 of 19

M : min t (10
{xy,t,z}
st : Z Di]-xl-]- — Z D,-jtxij — Z Di]'tZi]' <0 (11)
i,jev ijev i,jev
(i#)) (i#)) (i<j)
in]‘-i-yi =1, VieV,(i 75])
jev
Y vi=K
jev
Xjj <= Yis \V/l,] ev, (l 7é])
Zij = yiyj/ VZ,] eV, (l <]) (12)
Xij <= 1 — YiYj \V/l,] ev, (l #])
xe {0, 1}VP y e {01}V, t € [0,00),z € {0,1} "2 (13)

Another variant of the fractional model is also presented below, where constraint (11) is
replaced by the constraints (15)—-(17), and the domain definitions of variables z1,z; are
added in constraint (22).

My : min t (14)
{xytz1,22}
st: zZ1 = E Di]-xi]- (15)
ijev
(i#))
2=) Dyxij+) Diyiy (16)
ijev i,jev
(i#) (i<j)
tzp = 21 (17)
Y xijt+yi=1, VieV,(i#]) (18)
jev
jev
xXij <=vyj, Vi,jeV,(i#]) (20)
xj <=1l-yy;, VijeV,(i#]) (21)
x € {0,1}‘V|2,y € {0,131V, t,2,20 € [0, 00) (22)

Finally, to analyze the relevance of model M,, we weigh the latency of switch—controller
connections versus the latencies of controller—controller links. For this purpose, the fol-
lowing variant is introduced, which modifies constraints (15) and (16) using parameter
a € [0;1] to weigh the switch—controller communication latencies and (1 — «) scales the
latencies between controllers.

Observation 1. Note that when o = 1, constraint (24) eliminates the consideration of connections
between controllers. Similarly, when « = 0, we eliminate the switch—controller connections in
constraint (24).

Algorithms 2024, 17, 393 8 0of 19
M3 : min t
{x’y'trzlfzz}
st: 21 =« Z Dl']‘xij (23)
ijeVvV
(i#))
m=a) Djxj+(1—a)) Dy, (24)
ijev ijev
(i#)) (i<j)
tzp = 29
Yoxijtyi=1, VieV,(i#]))
jev
2 v =K
jev

xij <= y], Vl,] eV, (Z 75])
xij <=1-yy; VijevV, (i#7)
X € {0,1}‘V|2,y € 0,1}V t,2,2, € [0,0)

Notice that all the proposed models are NP-hard and, thus, are difficult to solve in polyno-
mial time. In the next section, we present a meta-heuristic algorithm that uses model (M)
to obtain approximate solutions in a short CPU time.

4. Algorithmic Approaches

In this section, an algorithm is introduced that decomposes the models into two parts.
An auxiliary linear programming model is initially solved to obtain a first solution, y;,
for all i € V. For this purpose, we randomly generate an initial input vector, ¢;, for all
i € V that acts as the coefficients for the objective function of the following auxiliary
optimization problem.

MAl : min Z CiYi (25)
{y} iev

st : Y yi=K (26)
jev

y e {0,1}VI 27)

Notice that solving M 4 is trivial since it is a linear programming problem. Additionally,
notice that we impose a predefined number of controllers, K, in the output solution of the
problem. Once we have obtained the output vector, y, we introduce it as an input parameter
in the following optimization problem. This parameter is denoted by :

M, : min Y Dijxjj (28)
{x} icv
(i=j)
st: in]‘-l-]]i:l, ViEV,(i#j) (29)
jev
Xij <= 1-—]71‘]7]'/ Vi,jeV, (l #]) (31)
ye {01}V (32)

Observe that model M 45, which is linear now, is a decomposed version of model M. This
model aims to minimize the latency of connections between switch—controller pairs based
on the given set of controllers obtained using M 41. By performing iterative swaps with the
values of the input vector, ¢, to solve model M 41, Algorithm 1 can be written:

Algorithms 2024, 17, 393

90f19

Algorithm 1: Proposed Local Search Meta-heuristic algorithm.

Data: An instance SDN input graph network.

Iter = 0, IterMax = MaxValue, MinGlobal = oo

Result: A feasible solution and its objective function value are obtained for the
SDN network.

Randomly generate the vector c that weights each controller.

while (Iter < IterMax) do
Randomly generate two different positions in vector ¢ and denote them by

posl and pos2, respectively.
aux = c[pos1]
c[posl] = c[pos2]
c[pos2] = aux
Solve the reduced model (25)-(27) to generate a feasible solution y.
Solve the reduced model (28)—(32) to obtain a feasible solution x.
Compute the objective function of F; using y and x. Denote it by Objy,,.
if (MinGlobal > Obj,,) then

Y6 =Y
MinGlobal = Objy,
Xg =X
Cc=c
else
| c=Cg

L Iter = Iter +1
Return the best feasible solution obtained and its objective function value.

The algorithm starts by initializing iteration counters and setting a maximum number
of iterations. It randomly generates a vector “c” that weights controllers in the network.

“u_

In each iteration, two positions in “c” are randomly selected and swapped. The algorithm
then solves two models to produce feasible solutions: “y” and “x”. The objective function
value, denoted as “Objm”, is calculated. If “Objm” is lower than the current global mini-
mum, “MinGlobal”, the best solutions and associated parameters are updated. If not, the
vector “c” is reverted to its previous best configuration. The process continues until the
maximum number of iterations is reached, at which point the best solution is found, and
its objective value is returned. Finally, it is mentioned that Algorithm 1 has polynomial
solving complexity in the order of O(IterMax * r) to O(IterMax * r*log(r)) since we solve

two linear programming subproblems [22].

5. Results and Discussion

In this section, we conduct a series of computational experiments to compare the
performance of all the proposed models and algorithms. Initially, we evaluated 13 real
instances of the benchmark networks obtained from (https://www.topology-zoo.org/
(accessed on 4 June 2024)). They range from networks with n = 4 to n = 87 nodes.
In total, we considered 31 connected networks, including randomly generated ones. Notice
that the benchmark network from https:/ /www.topology-zoo.org/ (accessed on 4 June
2024)). has been used in references [23,24]. A random network is created with random
co-ordinates within 1 km?. A randomly generated network is a type of network or graph
that is created using a process that includes some element of randomness. Instead of
following a fixed pattern, the connections (or edges) between the points (or nodes) in
the network are established according to certain probabilities. For example, in a simple,
randomly generated network, each possible connection between two nodes might be
added with a certain probability, like flipping a coin for each pair of nodes to decide
whether they are connected or not. This randomness makes the structure of the network
unpredictable and can result in a wide variety of different shapes and connection patterns.
We consider only connected random networks. After generating the co-ordinates for
each node, we connect the network either sparsely or fully. A sparse network means it

https://www.topology-zoo.org/
https://www.topology-zoo.org/

Algorithms 2024, 17, 393

10 of 19

is connected, but not every pair of nodes is linked directly, whereas a fully connected
network means every pair of nodes is connected directly. Random networks are useful
in various scenarios, including disaster situations where the exact node positions are
initially unknown. The parameters used in Algorithm 1 are as follows. IterMax and
MinGlobal are initially set to the values of 50 and co. Next, the entries of vector “c” are
drawn randomly from the interval (0;1). We implement a Python program using the
Gurobi Solver version 11.0.1. Gurobi solver is a powerful optimization tool widely used in
mathematical optimization. It is capable of solving a broad range of problems, including
linear programming, mixed-integer programming, quadratic programming, quadratic
constraints programming, and mixed-integer quadratic programming. Recognized for its
efficiency and speed, Gurobi employs advanced algorithms and optimization techniques
to solve complex problems quickly and effectively [4]. Because it is designed to enhance
modern computational architectures, it is well-suited for large-scale optimization tasks.

Substantial numerical experiments were conducted to compare the performance of
the proposed models M;, M, and M3 and the proposed algorithm. Python code was
implemented using the Gurobi solver for this purpose. The maximum CPU time allowed
is limited to 1 h. Hence, if an objective value reported takes 3600 s or more, it means the
solver is reporting the best solution obtained within 1 h. Otherwise, it corresponds to an
optimal solution to the problem.

The experiments were conducted on a Mac with the following technical specifications:
8 GB of RAM, dual-core Intel Core i5 processor running at 1.8 GHz, and operating system
Mac OS Monterey 12.7.5. The experiments involved 13 real benchmark networks with
known latitude and longitude locations, where the distance matrix, D, corresponds to the
Dijkstra distance between these locations. Additionally, 18 randomly generated networks
were created as fully connected graphs. Each node and user co-ordinate was generated
within a square area of 1 km? using a uniform distribution function. Consequently, each
entry in the input distance matrix, D, was computed using these co-ordinates. The experi-
ments were evaluated under three scenarios, with each obtained while varying the density
of controllers in the network. The densities used were computed as 20%, 30%, and finally,
40% of the total nodes of the network using the ceiling function.

In Table 1, we describe each of the benchmark networks under study. More precisely,
we displayed the name of each network in each column. The first, second, and third
rows show the number of nodes, the number of edges, and the density of each network,
respectively. The density is calculated by dividing the total number of edges in the network
by the total amount of edges in the graph as if it were a fully connected graph. Finally,
the fourth row indicates the number of users to be connected to the SDN network.

Table 1. Real benchmark networks (https://www.topology-zoo.org/ accessed on 4 June 2024).

Network Name Nl Nz N3 N4 N5 N6 N7 Ng Ng NlO N11 N12 N13
Nodes 4 11 13 18 20 21 27 33 33 34 34 35 87
Edges 4 14 24 50 30 22 28 48 38 41 52 39 89
Density (%) 66.7 25.5 30.8 32.7 15.8 10.5 8 9.1 7.2 7.3 9.3 6.6 24
Users 24 66 78 108 120 126 162 198 198 204 204 210 522

The terms Ny, N», N3, Ny, N5, Ng, N7, Ng, Ng, N1p, N11, N12, and Ni3 represent the
following networks: Arpanet196912, Abiline, Aarnet, Ans, HurricaneElectric, Atmnet,
Bbnplanet, Bics, CrlINetworkServices, Internet20OS3E, Geant2009, NetworkUsa, and Vtl-
Wavenet2008, respectively.

In Table 2, numerical results are reported for models M; and M, across the three
proposed scenarios using real benchmark networks. The first column of the table lists the
names of the studied networks. From the second to the seventh column, the following
information is presented: the objective value of model M, the best bound, the MipGap,
the processing time in seconds, the number of controllers (NC), and finally, the number of
nodes from the branch and bound (B&B) method, respectively. Similarly, from the eighth

https://www.topology-zoo.org/

Algorithms 2024, 17, 393

11 of 19

to the thirteenth column, the same information is listed as in columns two to seven, but for
the M, model.

Table 2. Numerical results for the real benchmark networks obtained with models M; and M, across
the three density scenarios.

Network Name

M; with 20% Controllers Density M, with 20% Controllers Density

Solution Best Bound MipGap CPU NC B&BNodes Solution BestBound MipGap CPU NC Bé&B Nodes
Arpanet196912 1 1 0 0.03 1 1 1 1 0 0.01 1
Abiline 0.4 0.4 0 0.33 3 1 0.4 0.4 0 0.16 3 1
Aarnet 0.48 0.48 0 0.72 3 304 0.48 0.48 0 0.29 3 1
Ans 0.25 0.25 0 1.16 4 1 0.25 0.25 0 0.56 4 1
HurricaneElectric 0.18 0.18 0 1 4 1 0.18 0.18 0 0.21 4 1
Atmnet 0.25 0.25 0 3.93 5 544 0.25 0.25 0 1.68 5 131
Bbnplanet 0.16 0.16 0 524 6 61 0.16 0.16 0 8.88 6 1385
Bics 0.19 0.19 0 58.55 7 1904 0.19 0.19 0 16.36 7 1645
CriNetworkServices 0.11 0.11 0 12.99 7 1 0.11 0.11 0 13.98 7 1339
Internet2 OS3E 0.17 0.17 0 28.66 7 683 0.17 0.17 0 26.95 7 1025
Geant2009 0.21 0.21 0 25.13 7 585 0.21 0.21 0 14.52 7 1618
NetworkUsa 0.18 0.18 0 41.19 7 1075 0.18 0.18 0 56.45 7 1033
VtlWavenet2008 0.02 0 0.93 3600.08 18 1148 0.02 0 091 3600.01 18 2202

M with 30% controllers density M, with 30% controllers density

Network Name

Solution Bestbound = MipGap CPU NC B&Bnodes Solution Bestbound MipGap CPU NC B&Bnodes
Arpanet196912 0.27 0.27 0 0.01 2 1 0.27 0.27 0 0 2 1
Abiline 0.22 0.22 0 0.36 4 1 0.22 0.22 0 0.17 4 1
Aarnet 0.26 0.26 0 0.58 4 212 0.26 0.26 0 0.26 4 1
Ans 0.09 0.09 0 0.97 6 1 0.09 0.09 0 0.23 6 136
HurricaneElectric 0.04 0.04 0 0.99 6 1 0.04 0.04 0 0.16 6 1
Atmnet 0.1 0.1 0 6.2 7 782 0.1 0.1 0 2.71 7 2165
Bbnplanet 0.04 0.04 0 3.57 9 1 0.04 0.04 0 2.03 9 709
Bics 0.07 0.07 0 34.37 10 693 0.07 0.07 0 13.74 10 1601
CriNetworkServices 0.04 0.04 0 50.95 10 1385 0.04 0.04 0 31.23 10 8093
Internet2 OS3E 0.05 0.05 0 141.51 11 3363 0.05 0.05 0 27.48 11 1113
Geant2009 0.05 0.05 0 10.22 11 1 0.05 0.05 0 8.39 11 404
NetworkUsa 0.05 0.05 0 176.59 11 4353 0.05 0.05 0 19.99 11 1074
VtlWavenet2008 0.01 0 0.88 3600.03 27 804 0.01 0 0.79 3600.03 27 1302

M, with 40% controllers density M, with 40% controllers density

Network Name

Solution = Bestbound = MipGap CPU NC B&B nodes Solution =~ Bestbound = MipGap CPU NC B&B nodes
Arpanet196912 0.269 0.269 0 0.01 2 1 0.269 0.269 0 0.01 2 1
Abiline 0.108 0.108 0 0.43 5 157 0.108 0.108 0 0.09 5 70
Aarnet 0.061 0.061 0 0.32 6 1 0.061 0.061 0 0.07 6 13
Ans 0.036 0.036 0 1.1 8 1 0.036 0.036 0 0.19 8 57
HurricaneElectric 0.019 0.019 0 1.41 8 1 0.019 0.019 0 0.23 8 1
Atmnet 0.045 0.045 0 9.82 9 1522 0.045 0.045 0 1.98 9 222
Bbnplanet 0.018 0.018 0 4.36 11 1 0.018 0.018 0 2.82 11 361
Bics 0.024 0.024 0 12.88 14 1 0.024 0.024 0 53 14 330
CrlNetworkServices 0.012 0.012 0 13.72 14 1 0.012 0.012 0 10.1 14 1806
Internet2 OS3E 0.026 0.026 0 410.15 14 20,685 0.026 0.026 0 35.43 14 1562
Geant2009 0.026 0.026 0 11.7 14 1 0.026 0.026 0 4.27 14 174
NetworkUsa 0.023 0.023 0 203.24 14 4016 0.023 0.023 0 18.57 14 1767
VtlWavenet2008 0.003 0.001 0.787 3600.02 35 715 0.003 0.001 0.661 3600.02 35 1092

First, we observe that the solutions obtained using models M; and M3 decrease when
the network node increases. It should also be noted that the data in the solution, best
bound, MipGap, and CPU time fields are generally approximated to two decimal places,
except for the scenario with a controller density of 40%, where, for the solution, best bound,
and MipGap columns, it is necessary to have approximations to three decimal places. It
can be noted that in almost all the studied networks, the optimal solution was found. Only
in the case of the VtlWavenet2008 network was a close-to-optimal solution found. For this
network, the solution time used exceeds the given maximum time, which is much higher
than that used for solving the other networks under study. It should also be mentioned
that the number of B&B nodes used to solve model M; does not follow the trend of the
network under study, and it is related to the CPU used. For example, in the scenario with
a controller density of 20%, the networks CrINetworkServices and Bics have the same
number of nodes. However, Bics has a larger number of edges than CrINetworkServices,
and due to this difference, the resolution time and B&B nodes are significantly larger
than those of the Bics network. From the information presented in Table 2, we can also
mention that Model M is more efficient in most of the studied networks, except for the

Algorithms 2024, 17, 393

12 of 19

Bbnplanet, CrINetworkServices, and NetworkUsa networks in terms of CPU time for the
20% controller density scenario. Additionally, it can be observed that Model M, is more
efficient for all studied networks in scenarios with 20% and 30% controller densities. Finally,
regarding the time used and changes in MipGap across all networks, we can conclude that
the scenario reporting the highest complexity in its resolution is the 20% controller density
scenario, followed by the 30% scenario, and finally, the 40% scenario. Similarly, from the
review of models M; and M, on randomly generated networks, we can derive from the
information shown in Table 3.

Table 3. Numerical results obtained for the random networks with models M; and M, across the
three density scenarios.

Network Name

M, with 20% Controllers Density M, with 20% Controllers Density

Solution Best Bound MipGap CPU NC B&BNodes Solution BestBound MipGap CPU NC B&B Nodes
Random (20) 0.44 0.44 0 2.55 4 71 0.44 0.44 0 0.6 4 1
Random (25) 0.38 0.38 0 6.7 5 366 0.38 0.38 0 3.18 5 1
Random (30) 0.32 0.32 0 38.4 6 1879 0.32 0.32 0 3.74 6 1
Random (35) 0.29 0.29 0 112.89 7 1282 0.29 0.29 0 36.67 7 956
Random (40) 0.26 0.26 0 220.94 8 1030 0.26 0.26 0 191.11 8 1039
Random (45) 0.23 0.23 0 394.44 9 1114 0.23 0.23 0 61.52 9 888
Random (50) 0.12 0.12 0 609.12 10 1159 0.12 0.12 0 180.75 10 998
Random (55) 0.19 0.19 0 1205.55 11 2006 0.19 0.19 0 307.58 11 1597
Random (60) 0.17 0.17 0 1829.16 12 1288 0.17 0.17 0 301.42 12 1331
Random (65) 0.09 0.07 0.2 3600.03 13 3537 0.09 0.09 0 1384.99 13 2922
Random (70) 0.15 0.11 0.23 3600.02 14 2171 0.15 0.15 0 1233.56 14 3199
Random (80) 0.06 0.01 0.89 3600.05 16 2074 0.06 0.01 0.91 3600.01 16 3339
Random (100) 0.05 0 0.91 3600.02 20 890 0.05 0 0.91 3600.01 20 1313

M, with 30% controllers density M, with 30% controllers density

Network Name

Solution Best bound MipGap CPU NC B&B nodes Solution Best bound MipGap CPU NC B&B nodes
Random (20) 0.19 0.19 0 212 6 1 0.19 0.19 0 0.82 6 1
Random (25) 0.12 0.12 0 19.56 8 1436 0.12 0.12 0 8.06 8 4438
Random (30) 0.13 0.13 0 27.05 9 1006 0.13 0.13 0 19.95 9 1124
Random (35) 0.1 0.1 0 162.48 11 1979 0.1 0.1 0 14.88 11 991
Random (40) 0.1 0.1 0 222.32 12 1033 0.1 0.1 0 53.54 12 900
Random (45) 0.08 0.08 0 763.97 14 14,726 0.08 0.08 0 32.39 14 867
Random (50) 0.04 0.04 0 788.28 15 1224 0.04 0.04 0 68.32 15 926
Random (55) 0.06 0.06 0 686.62 17 1286 0.06 0.06 0 89.44 17 895
Random (60) 0.06 0.06 0 1581.11 18 1965 0.06 0.06 0 2714 18 860
Random (65) 0.03 0.03 0 1686.76 20 943 0.03 0.03 0 234.77 20 827
Random (70) 0.05 0.05 0 1033.16 21 899 0.05 0.05 0 218.22 21 873
Random (80) 0.02 0 0.82 3600.04 24 984 0.02 0 0.8 3600.02 24 1347
Random (100) 0.02 0 0.89 3600.07 30 572 0.02 0 0.81 3600.04 30 983

M; with 40% controllers density M, with 40% controllers density

Network Name

Solution Best bound MipGap CPU NC B&B nodes Solution Best bound MipGap CPU NC B&B nodes
Random (20) 0.09 0.09 0 6.87 8 938 0.09 0.09 0 1.85 8 973
Random (25) 0.06 0.06 0 35.55 10 3800 0.06 0.06 0 6.35 10 3466
Random (30) 0.06 0.06 0 197.58 12 25,821 0.06 0.06 0 9.43 12 1209
Random (35) 0.05 0.05 0 108.88 14 1255 0.05 0.05 0 11.29 14 1012
Random (40) 0.04 0.04 0 212.14 16 1077 0.04 0.04 0 22.31 16 951
Random (45) 0.04 0.04 0 554.05 18 1432 0.04 0.04 0 31.16 18 896
Random (50) 0.02 0.02 0 825.09 20 1001 0.02 0.02 0 4241 20 930
Random (55) 0.03 0.03 0 1482.45 22 966 0.03 0.03 0 68.38 22 906
Random (60) 0.03 0.03 0 1180.69 24 937 0.03 0.03 0 97.33 24 839
Random (65) 0.01 0.01 0 927.38 26 876 0.01 0.01 0 102.15 26 865
Random (70) 0.02 0.02 0 1308.33 28 891 0.02 0.02 0 162.19 28 848
Random (80) 0.01 0.01 0.16 3600.02 32 902 0.01 0.01 0 969.72 32 872
Random (100) 0.01 0 0.86 3600.12 40 3908 0.01 0.01 0 2218.93 40 827

For the scenario with a 20% controller density, it can be observed that for all networks,
Model M, is more efficient in terms of CPU processing time, except for the Randomic
networks with 80 nodes and 100 nodes, where an optimal solution cannot be obtained, and
the best near-optimal solution is found after 1 h of searching. In the case of the 80-node
Randomic network, the MipGap obtained in M; is better than in My, while in the 100-node
Randomic network, the MipGap is approximately the same. It is noteworthy that for M in
this scenario, optimal solutions are achieved from the 20-node network up to the 60-node
network; this result is worse than that obtained using Mj, which also achieves optimal
solutions for networks with 65 and 70 nodes. For the 30% controller density scenario,
it can be observed that both models achieve optimal results, with the random networks

Algorithms 2024, 17, 393

13 of 19

ranging from 20 nodes to 70 nodes, achieving near-optimal solutions for the 80-node and
100-node networks, respectively. It is also noticeable that model M is more efficient for
all networks analyzed in this scenario, either in terms of CPU computing times or in the
MipGaps obtained for networks where an optimal solution could not be found. In the
40% controller density scenario, it can be seen that model M; obtains optimal solutions for
networks from 20 nodes up to the network with 70 nodes, finding near-optimal solutions
for the 80-node and 100-node networks, respectively. In contrast, model M; achieved
optimal solutions for all the studied networks. In this case, model M is more efficient in
terms of CPU computing times for all studied networks. As it can be observed in Table 4,
the model reporting better results is the one for the scenario using 40% controller density,
the following study was conducted using M3 in that scenario.

Table 4. Numerical results obtained with M3 for real benchmark and random instances varying
parameter « for different controller densities.

M; with « = 0.25 M; with & = 0.50 M; with « = 0.75 M; witha =1

Network Name

Solution MipGap CPU Solution MipGap CPU Solution MipGap CPU Solution MipGap CPU
Arpanet196912 0.109 0 0.01 0.269 0 0.01 0.525 0 0 1 0 0.07
Abiline 0.039 0 0.12 0.108 0 0.12 0.266 0 0.12 0 0.19
Aarnet 0.021 0 0.07 0.061 0 0.07 0.164 0 0.09 1 0 0.25
Ans 0.012 0 0.21 0.036 0 0.32 0.102 0 0.27 1 0 0.53
HurricaneElectric 0.006 0 0.23 0.019 0 0.24 0.054 0 0.23 1 0 0.73
Atmnet 0.015 0 2.82 0.045 0 2.68 0.123 0 2.73 1 0 0.62
Bbnplanet 0.006 0 3.05 0.018 0 2.88 0.052 0 2.8 1 0 1.51
Bics 0.008 0 8.4 0.024 0 15.13 0.068 0 14.54 1 0 1.85
CrlNetworkServices 0.004 0 25.81 0.012 0 20.91 0.036 0 14.77 1 0 2.73
Internet2 OS3E 0.009 0 32.84 0.026 0 44.54 0.074 0 36.61 1 0 2.03
Geant2009 0.009 0 322 0.026 0 522 0.074 0 4.49 1 0 1
NetworkUsa 0.008 0 33.85 0.023 0 17.41 0.065 0 15.24 1 0 1.87
VtlWavenet2008 0.001 0.65 3600.03 0.003 0.67 3600.02 0.009 0 3005.59 1 0 3.63

M3 with « =0.25 M3 with a = 0.50 M3 with a =0.75 Mz witha=1

Network Name

Solution MipGap CruU Solution MipGap CPU Solution MipGap CPU Solution MipGap CPU
Random (20) 0.032 0 1.45 0.09 0 2.29 0.229 0 2.61 1 0 0.89
Random (25) 0.023 0 9.7 0.065 0 8.18 0.172 0 227 1 0 0.85
Random (30) 0.021 0 12.31 0.06 0 4 0.162 0 24.32 1 0 1.94
Random (35) 0.018 0 19.17 0.051 0 20.84 0.138 0 9.52 1 0 141
Random (40) 0.015 0 32.93 0.044 0 26.51 0.121 0 27.84 1 0 1.98
Random (45) 0.013 0 33.06 0.037 0 39.65 0.103 0 33.44 1 0 2.14
Random (50) 0.006 0 79.48 0.016 0 43.74 0.048 0 42.42 1 0 1.81
Random (55) 0.009 0 80.57 0.027 0 67.87 0.078 0 61.76 1 0 2.25
Random (60) 0.009 0 111.52 0.026 0 98.15 0.074 0 111.69 1 0 2.39
Random (65) 0.004 0 177.58 0.012 0 111.89 0.034 0 111.68 1 0 5.72
Random (70) 0.007 0 180.3 0.021 0 159.06 0.059 0 143.39 1 0 2.08
Random (80) 0.003 0 1037.72 0.008 0 1195.13 0.025 0 666.69 1 0 5.48
Random (100) 0.002 0.63 3600.01 0.007 0.67 3600.02 0.021 0 2190.03 1 0 1.74

This evaluates the behavior of this model, which is similar to M, but with weights on
its components for switch—controller communication and controller—controller communica-
tion (note that Model M, obtained the best results in the previous review).

Firstly, it is noted that for « = 1, the complexity of the evaluated model is drastically
lower because, in this case, the latency of communications between controllers is not
considered in the problem under study. Therefore, no further observations or comparisons
can be made against this scenario. The first analysis to be conducted is focused on the
benchmark networks. In general, it can be observed that the objective solutions are higher
for &« = 0.75 compared to « = 0.5 and « = 0.25, which is consistent because giving more
weight to switch—controller latencies, which are more numerous than the connections
between controllers, naturally leads to higher solution values.

It is also noticeable that, in general, the scenario with « = 0.5 is worse than the scenario
with @ = 0.25 and « = 0.75, either in terms of CPU processing times and MipGaps obtained.
Furthermore, it can be appreciated that « = 0.75 achieves more efficient results in terms of
processing times for larger networks compared to « = 0.25. For « = 0.75, optimal solutions
are obtained for all benchmark networks studied, unlike « = 0.25 and &« = 0.5, where an
optimal solution is not obtained for the VtlWavenet2008 network. Regarding the study

Algorithms 2024, 17, 393

14 of 19

of random networks, the results are similar. It is noted that « = 0.75 achieves optimal
solutions for all the studied networks, whereas « = 0.25 and &« = 0.5 do not achieve optimal
solutions; instead, the solutions are close to optimal for the 100-node network. Additionally,
for @« = 0.25, less efficient results were obtained when compared to & = 0.5 for all the
networks except for those with 20, 35, 45, 80, and 100 nodes. Overall, « = 0.75 yields better
results in terms of CPU processing times.

Regarding this analysis, it can be determined that as the weighting of switch—controller
communication relative to controller—controller communication increases, the objective
values approach one. After the previous observations and to improve the performance of
the methods used so far, the best model, M,, was compared to the proposed algorithm.
For the scenario with 20% controller density, it can be observed in Figure 2, on the left
side, that the solution value found by the algorithm is not better than that of model M.
However, it is still very close, with small differences in the majority of the studied networks.
In contrast, the CPU times used for networks with fewer nodes are similar, whereas for
the larger networks, they are drastically lower, as observed in network #13 (following the
same order as the benchmark networks in Table 1). Similarly, the comparison results can be
observed for the 30% controller density scenario. This can be observed in Figure 3.

1.0 1 —— Algorithm —— Algorithm
- M2 35009 M2
3000 A
0.8
2500 A
wn
K
0.6 =]
S = 2000 -
2 s
=2 %)
Q €
@ F 1500 A
0.4 o}
o
o
1000 A
0.2 A
500
0.0 1 01

1 2 3 45 6 7 8 9 10111213
of benchmark network

1 2 3 45 6 7 8 9 10111213
of benchmark network

Figure 2. This figure represents both the objective function values on the left and the CPU times on
the right side for the benchmark networks studied at a 20% controller density.

—— Algorithm —— Algorithm
— M2 3500*_M2
0.25 A
3000 -
0.20 A
2500 A
w
o
]
éolls EZOOO’
=)
[} £
@ F 1500 1
=
0.10 5
1000 1
0.051 500 -
0.00 0]
— T T — T T T T
1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13

of benchmark network # of benchmark network

Figure 3. This figure represents both the objective function values on the left and the CPU times on
the right side for the benchmark networks studied at a 30% controller density.

Algorithms 2024, 17, 393

15 of 19

For this scenario, the solutions found by the algorithm align more closely with those
obtained using model M, with considerably better times in the majority of the studied
networks and noteworthy performance in larger networks, such as network #13. The trend
of aligning with model Mj is highlighted more effectively in the 40% controller density
scenario. In these cases, the proposed algorithm achieves solutions that are very close to
those of model M, with significantly more efficient times. It performs best in the largest
networks, where the solution found is very close to optimal and has drastically lower CPU
times. Observe network #13 in Figure 4. The same previous analysis is conducted with
the studied random networks. In this case, there are certain differences compared to the
benchmark networks. While the algorithm found solutions that are very close to those
found by model M,, the CPU processing times are much lower than those required by M,
and are comparatively more efficient than in the case of the benchmark networks for the
20% density scenario, as shown in Figure 5.

—— Algorithm 3500 —— Algorithm
0.25 - M — M2
3000 A
0.20 A
2500 -
w
o
E)
S 0.15 = 2000 -
g s
= ()
] £
@ g 1500 -
0.10 5
1000 A
0.05 A
500 A
0.00 A 01
1 2 3 4 5 6 7 8 9 1011 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13
of benchmark network # of benchmark network

Figure 4. This figure represents both the objective function values on the left and the CPU times on
the right side for the benchmark networks studied at a 40% controller density.

0.45 4 —— Algorithm 35004 —— Algorithm
— M2 — M2
0.40 3000 A
0.35 A
% 2500 A
o
0.30 A g
S § 20001
5 J
3 0.25 g
n = 1500
0.20 A 2
O
1000 A
0.15 A
0.10 - 500 -
0.05 A 0 1
1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13
of random network # of random network

Figure 5. This figure represents both the objective function values on the left and the CPU times on
the right for the random networks at a 20% network density.

For the 30% controller density scenario, the comparison of solutions found is even
closer. Note that in Figure 6, the scale of the Y-axis on the left is smaller, and although

Algorithms 2024, 17, 393

16 of 19

the CPU times are better than M;, compared to the previous scenario, the performance is
slightly lower.

0.200
—— Algorithm

— M2

—— Algorithm
3500 M2
0.1754

3000 1

0.150 4
2500 A

0.125 1
2000 -

Solution
o
-
o
o

15001

CPU Time Values(s)

0.075 4
1000 A

0.050 1
500

0.025 4

— T — T T T T T T T T T T T
9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13
of random network

T T T T T T

T T
1 2 3 4 5 6 7 8
of random network

Figure 6. This figure represents both the objective function values on the left and the CPU times on
the right for the random networks at a 30% network density.

Finally, in the 40% controller density scenario, the trend of closeness in the solutions
found by the algorithm compared to M, continues, and this closeness becomes stronger for
larger networks. Similarly, the processing time used by the algorithm is much lower than
that required by M, for the majority of the studied networks, with the advantage being
clearer for larger networks. From these analyses, including the trends presented in Figure 7,
it is suggested that the proposed algorithm can be used for larger networks.

0107 —— Algorithm —— Algorithm
— M2 — M2
2000 A
0.08
@ 1500 4
0
[
< 0.06 1 =
S s
= 9]
] E1000~
0.04 2
e}
500
0.024
0<
— T T 7T T T — T 17— T 71—
1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13

of random network # of random network

Figure 7. This figure represents both the objective solutions on the left and the CPU times on the right
for the random networks at a 40% network density.

Based on this final suggestion, a last experiment was conducted with larger random
networks, as can be seen in Table 5 bellow.

Table 5. Analysis of Algorithm 1 versus model M, for larger random networks.

20% Controllers Density

30% Controllers Density 40% Controllers Density

Network Name Algorithm M, Algorithm M, Algorithm
Solution CPU Solution CPU Solution CPU Solution CPU Solution CPU Solution CPU
Random (150) 0.029 3600 0.044 24.1 0.009 3600.1 0.014 37.7 0.004 3600.1 0.006 23.1
Random (200) 0.019 3600.1 0.029 419 0.006 3600.1 0.009 50.8 0.002 3600.1 0.004 41
Random (300) 0.01 3600.1 0.016 95.3 0.003 3600.1 0.005 106.4 0.001 3600.3 0.002 934
Random (400) 0.007 3600.1 0.011 168.6 0.002 3600.2 0.003 171.3 0.001 3600.1 0.001 164.7
Random (500) 0.006 3600.2 0.008 263.8 0.002 3600.2 0.002 270.5 0.001 3600.3 0.001 261.2

Algorithms 2024, 17, 393

17 of 19

From Table 5, it can be observed that the behaviors for all scenarios are similar to
the above tables. In the scenario with a 40% controller density, the results show reduced
CPU processing times. Additionally, upon analyzing each scenario and comparing the
results obtained with M, and the proposed algorithm, it can be noted that as the size of the
network increases, the difference between the solution of M, and the proposed algorithm
decreases. Furthermore, there is a significant reduction in CPU processing time compared
to model My, with an average between 1% and 7% of the CPU time required by model M.
The results obtained from analyzing each scenario lead to the conclusion that the use of
Algorithm 1 is recommended for larger networks again. This is because the solution found
will increasingly approach the optimal solution found by model M, and with shorter CPU
times. This can be observed, for example, in the results of random networks with 400 and
500 nodes for the scenario using 40% controller density.

6. Conclusions

In this study, we focused on reducing latency density in software-defined networks,
which is crucial for enhancing user experience and operational efficiency for network ad-
ministrators. Lowering latency density in SDNs provides significant benefits for users, such
as faster response times, improved connection reliability, and better resource utilization.
For network decision-makers, this translates into more efficient traffic management and
an enhanced ability to meet service-level agreements. In order to tackle this challenge, we
introduced two novel mathematical models, M; and M,. These models are specifically
designed to optimize resource distribution and management in SDNs, aiming to minimize
latency and enhance overall network performance. Our evaluations consistently highlight
that the M, model outperforms M; in terms of CPU times and MipGaps across all studied
instances, demonstrating its effectiveness and robustness in various network configura-
tions. In addition to theoretical modeling, we conducted comprehensive analyses using
real benchmark instances, including randomly generated ones. This approach validated
the practical effectiveness and applicability of our models. As a complement to our mathe-
matical models, we developed a meta-heuristic localization algorithm to compare with the
model M;. The results indicate that this algorithm offers competitive solutions in terms of
efficiency and accuracy and is particularly recommended for large-scale networks where
resource optimization is critical. Throughout our study, we explored different controller
density scenarios in networks, each representing unique conditions impacting network
optimization and efficiency. Our findings show that increasing controller density tends
to simplify the problem, as it enables more efficient traffic management, reducing latency
and improving resource distribution. Furthermore, we introduced a sensitivity model
similar to M, emphasizing that prioritizing connections between switches and controllers
over controller-to-controller links significantly reduces CPU times. This strategic approach
allows for more effective resource allocation and precise network optimization, which is
particularly crucial in environments requiring scalability and efficiency.

These insights highlight the importance of considering controller density as a key
factor in SDN design and management. By adjusting controller density according to spe-
cific network needs, we can simplify problem resolution and significantly enhance overall
network performance and responsiveness. This adaptive and strategic approach is essen-
tial for addressing emerging challenges in modern network management and preparing
networks for continued growth and increasing demands for digital services. In conclu-
sion, this study not only advances the theoretical understanding of SDN optimization
but also provides a robust framework for the practical implementation of solutions that
enhance performance and efficiency in these critical digital networks. Our findings suggest
that deploying the model M; and the proposed algorithm represents a significant step
toward more efficient and adaptive networks capable of meeting escalating connectivity
and performance demands in enterprise and telecommunications settings.

In future work, we aim to explore the relationship between latency density and the
distribution of network components, along with how this relates to service quality and

Algorithms 2024, 17, 393 18 of 19

the costs associated with the deployment and maintenance of the network by service
operators. It is important to address multiple issues simultaneously because there are
different stakeholders with various challenges that require analysis and solutions. The goal
is to find a balance that allows us to provide optimal service for users while ensuring
operational feasibility conditions.

Author Contributions: Conceptualization, A.V,, PA., and A.D.F,; methodology, A.V., PA., and AD.F;
software, A.V. and P.A,; validation, A.V,, PA., and A.D.E,; formal analysis, A.V,, PA., AD.E,and ES.J.;
investigation, A.V,, PA., AD.F, and E.S].; resources, A.V,, PA,, AD.F, and E.SJ.; data curation, A.V.,
P.A., and A.D.E; writing—original draft preparation, A.V. and P.A_; writing—review and editing,
AV,PA., ADF, and ESJ,; visualization, A.V.,, PA., AD.F, and E.S].; supervision, P.A., AD.F, and
E.S.J.; project administration, P.A. and A.D.E; funding acquisition, P.A. and A.D.E. All authors have
read and agreed to the published version of the manuscript.

Funding: The authors acknowledge the financial support from Projects Dicyt 062313AS, ANID/
FONDECYT Iniciacion No. 11230129, and the Competition for Research Regular Projects, year 2021,
code LPR21-02; Universidad Tecnolégica Metropolitana.

Data Availability Statement: The dataset is available upon request from the authors. The raw data
supporting the conclusions of this article will be made available by the authors upon request.

Acknowledgments: The authors acknowledge the support of the Vicerrectorfa de Investigacion,
Innovacién y Creacién (VRIIC) of the Universidad de Santiago de Chile.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:

SDN Software-defined network
QoS Quality of service
IoUT Internet of underwater things
CASM Multi-controller balancing strategy
SQAR Routing protocol adaptative
CAMD Controller adaption and migration decision
DALB Dynamic and adaptive load balancing
VLAN virtual local area network
TSSDN Time-sensitive software-defined networking
TSN Time-sensitive networking
IloT Industrial internet of things applications
FRER Frame replication and elimination for reliability
G = (V,A) Graph with asetof nodes, V, and a set of arcs, A
NC Number of controllers
References
1. Ahmadi, A,; Sepehri, Z.; Gratuze, M.; Indja, M.; Jemmali, A.; Jevremovic, V.; Lamontagne, M.; Cloutier, S.; Iordanova, I;

Nerguizian, C.; et al. Wireless Network Deployment Survey. In Proceedings of the 2024 IEEE Radio and Wireless Symposium
(RWS), San Antonio, TX, USA, 21-24 January 2024; pp. 143-146. [CrossRef]

Adday, G.H.; Subramaniam, S.K.; Zukarnain, Z.A.; Samian, N. Investigating and Analyzing Simulation Tools of Wireless Sensor
Networks: A Comprehensive Survey. IEEE Access 2024, 12, 22938-22977. [CrossRef]

Goswami, B.; Kulkarni, M.; Paulose, J. A Survey on P4 Challenges in Software Defined Networks: P4 Programming. IEEE Access
2023, 11, 54373-54387. [CrossRef]

Gurobi Optimization, LLC, Gurobi Optimizer Reference Manual. 2023. Available online: https://www.gurobi.com (accessed on
5 July 2024).

Shi, Y.; Yang, Q.; Huang, X.; Li, D.; Huang, X. An SDN-Enabled Framework for a Load-Balanced and QoS-Aware Internet of
Underwater Things. IEEE Internet Things]. 2023, 10, 7824-7834. [CrossRef]

Abdellatif, A.A.; Mohamed, A.; Erbad, A.; Guizani, M. Dynamic Network Slicing and Resource Allocation for 5G-and-Beyond
Networks. In Proceedings of the 2022 IEEE Wireless Communications and Networking Conference (WCNC), Austin, TX, USA,
10-13 April 2022; pp. 262-267. [CrossRef]

http://doi.org/10.1109/RWS56914.2024.10438583
http://dx.doi.org/10.1109/ACCESS.2024.3362889
http://dx.doi.org/10.1109/ACCESS.2023.3275756
https://www.gurobi.com
http://dx.doi.org/10.1109/JIOT.2022.3231329
http://dx.doi.org/10.1109/WCNC51071.2022.9771877

Algorithms 2024, 17, 393 19 of 19

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Viveros, A.; Adasme, P; Firoozabadi, A.D. Minimizing User Connectivity Costs and Latency Between Controllers and Switch-
Controllers for Software Defined Networking. In Mobile Web and Intelligent Information Systems, Proceedings of the MobiWIS,
Marrakech, Morocco, 14-16 August 2023; Lecture Notes in Computer Science; Younas, M., Awan, L., Grenli, T.M., Eds.; Springer:
Cham, Switzerland, 2023; Volume 13977._7. [CrossRef]

Hlophe, M.C.; Maharaj, B.T. An SDN Controller-Based Network Slicing Scheme Using Constrained Reinforcement Learning.
IEEE Access 2022, 10, 134848-134869. [CrossRef]

Adekoya, O.; Aneiba, A.; Patwary, M. An Improved Switch Migration Decision Algorithm for SDN Load Balancing. IEEE Open J.
Commun. Soc. 2020, 1, 1602-1613. [CrossRef]

Prabha, C.; Goel, A.; Singh, J. A Survey on SDN Controller Evolution: A Brief Review. In Proceedings of the 2022 7th International
Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, 22-24 June 2022; pp. 569-575. [CrossRef]
Viveros, A.; Adasme, P.; Urrutia, E.S.J. Minimizing Latency and Number of Controllers in Software Defined Networking. In
Proceedings of the 2022 IEEE International Conference on Automation/XXV Congress of the Chilean Association of Automatic
Control (ICA-ACCA), Curicé, Chile, 24-28 October 2022; pp. 1-6. [CrossRef]

Adasme, P; Viveros, A.; Firoozabadi, A.D.; Soto, I. Mathematical Models for Minimizing Latency in Software-Defined Networks.
In Proceedings of the MobiWIS, Rome, Italy, 22-24 August 2022; pp. 131-142.

Maity, I.; Misra, S.; Mandal, C. SCOPE: Cost-Efficient QoS-Aware Switch and Controller Placement in Hybrid SDN. IEEE Syst. J.
2022, 16, 4873-4880. [CrossRef]

Zhao, Y.; Wang, X.; He, Q.; Zhang, C.; Huang, M. PLOFR: An Online Flow Route Framework for Power Saving and Load Balance
in SDN. IEEE Syst.]. 2021, 15, 526-537. [CrossRef]

Fortet, R. Applications de lalgebre de boole en recherche operationelle. Rev. Fr. Rech. Oper. 1960, 4, 17-26.

Sotindjo, P.; Gbemavo, G.; Djogbe, L.; Goussi, G.; Agossou, C.M.M.; Vianou, A. Study of the Complexity of Implementation
and Maintenance of an SDN Network. In Proceedings of the 2023 International Conference on Electrical, Computer and Energy
Technologies (ICECET), Cape Town, South Africa, 16-17 November 2023; pp. 1-6.

Trachly, P.; Kubica, J. Communication Networks with Multiple SDN Controllers. In Proceedings of the 2023 International
Symposium ELMAR, Zadar, Croatia, 11-13 September 2023; pp. 29-32. [CrossRef]

Prajapati, U.; Chatterjee, B.C.; Banerjee, A. OptiGSM: Greedy-Based Load Balancing with Minimum Switch Migrations in
Software-Defined Networks. IEEE Trans. Netw. Serv. Manag. 2024, 21, 2200-2210. [CrossRef]

Ji,L; He, S.; Gu, C.; Shi, Z.; Chen,]. Routing and Scheduling for Low Latency and Reliability in Time-Sensitive Software-Defined
IIoT. IEEE Internet Things J. 2024, 11, 12929-12940. [CrossRef]

Viveros, A.; Adasme, P.; Dehghan Firoozabadi, A. Optimal Topology Management for Software-Defined Networks Minimizing
Latency and Using Network Slicing. Complexity 2024. [CrossRef]

Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Clifford, S. Section 24.3: Dijkstra’s algorithm. In Introduction to Algorithms, 2nd ed.;
MIT Press: Cambridge, MA, USA; McGraw-Hill: New York, NY, USA, 2001; pp. 595-601, ISBN 0-262-03293-7.

Nembhauser, G.L.; Wolsey, L.A. Integer and Combinatorial Optimization; Wiley Interscience Series in Discrete Mathematics and
Optimization; Wiley: Hoboken, NJ, USA, 1988; pp. 1-763. ISBN 978-0-471-82819-8.

Yoo, H.S.; Yu, W.E.S. Building a QoS Testing Framework for Simulating Real-World Network Topologies in a Software-defined
Networking Environment. In Proceedings of the 2022 International Conference on Engineering and Emerging Technologies
(ICEET), Kuala Lumpur, Malaysia, 27-28 October 2022; pp. 1-6. [CrossRef]

Petale, S.; Thangaraj, J. Failure-Based Controller Placement in Software Defined Networks. IEEE Trans. Netw. Serv. Manag. 2020,
17,503-516. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/978-3-031-39764-6_7
http://dx.doi.org/10.1109/ACCESS.2022.3228804
http://dx.doi.org/10.1109/OJCOMS.2020.3028971
http://dx.doi.org/10.1109/ICCES54183.2022.9835810
http://dx.doi.org/10.1109/ICA-ACCA56767.2022.10006004
http://dx.doi.org/10.1109/JSYST.2021.3124280
http://dx.doi.org/10.1109/JSYST.2020.3010971
http://dx.doi.org/10.1109/ELMAR59410.2023.10253918
http://dx.doi.org/10.1109/TNSM.2023.3323743
http://dx.doi.org/10.1109/JIOT.2023.3337941
http://dx.doi.org/10.1155/2024/4849198
http://dx.doi.org/10.1109/ICEET56468.2022.10007108
http://dx.doi.org/10.1109/TNSM.2019.2949256

	Introduction
	Related Work
	A Feasible Solution and the Mathematical Formulations
	A Feasible Solution to the Problem
	Mathematical Formulations
	Parameters
	Variables

	Mathematical Formulations

	Algorithmic Approaches
	Results and Discussion
	Conclusions
	References

