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Abstract: In singular spectrum analysis, which is applied to signal extraction, it is of critical impor-
tance to select the number of components correctly in order to accurately estimate the signal. In
the case of a low-rank signal, there is a challenge in estimating the signal rank, which is equivalent
to selecting the model order. Information criteria are commonly employed to address these issues.
However, singular spectrum analysis is not aimed at the exact low-rank approximation of the signal.
This makes it an adaptive, fast, and flexible approach. Conventional information criteria are not
directly applicable in this context. The paper examines both subspace-based and information criteria,
proposing modifications suited to the Hankel structure of trajectory matrices employed in singular
spectrum analysis. These modifications are initially developed for white noise, and a version for red
noise is also proposed. In the numerical comparisons, a number of scenarios are considered, including
the case of signals that are approximated by low-rank signals. This is the most similar to the case of
real-world time series. The criteria are compared with each other and with the optimal rank choice
that minimizes the signal estimation error. The results of numerical experiments demonstrate that for
low-rank signals and noise levels within a region of stable rank detection, the proposed modifications
yield accurate estimates of the optimal rank for both white and red noise cases. The method that
considers the Hankel structure of the trajectory matrices appears to be a superior approach in many
instances. Reasonable model orders are obtained for real-world time series. It is recommended that a
transformation be applied to stabilize the variance before estimating the rank.

Keywords: time series; singular spectrum analysis; model order selection; low rank approximation;
information criterion

1. Introduction

Singular spectrum analysis (SSA), which is closely related to signal-subspace methods
(cf. [1–5] and reviews [6,7]), has been increasingly used in recent decades for practical
tasks, including preprocessing and feature extraction as part of hybrid machine learn-
ing methods [8–12]. The attractive feature of the SSA method is that it does not require
specifying a time series model.

SSA is capable of addressing a wide range of problems in time series analysis, includ-
ing the application of low-frequency filters for smoothing, the extraction of signals, the
estimation of frequencies, the filling of gaps, and the forecasting; all but the former are
based on signal subspace estimation (Golyandina, 2020 [7]). The signal is understood to be
a non-random component of the time series, which may include a trend and oscillations.
The SSA algorithm consists of embedding the time series into a sequence of vectors of
size L, collecting them into a matrix, decomposing this matrix into elementary matrices,
grouping these matrices in a sophisticated way, and then obtaining an interpreted decom-
position of the original time series into a sum of interpreted components. In order to act as
a low-frequency filter, the number of components is determined based on the frequency
characteristics of the components in question. In the case of the majority of other problems,
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signal estimation is required. Signal estimation is performed by grouping the leading r
components. As a result, it is of great importance to know r, which is referred to as the
signal rank or signal model order. The following section will describe the SSA algorithm
for solving a particular signal estimation problem.

SSA

Let us briefly describe the SSA algorithm for signal extraction from a time series
X = (x1, . . . , xN) of length N, following [7]. We assume that

X = S+N,

where S is a signal, and N is random noise with zero expectation. The algorithm has
two parameters, the window length L, 1 < L < N, and the number of components r,
r < min(L, K), where K = N − L + 1. First, the time series is transformed into a trajectory
matrix X of size L× K of the time series X:

X = TL(X) =


x1 x2 . . . xK
x2 x3 . . . xK+1
...

...
...

...
xL xL+1 . . . xN

, (1)

where the embedding operator TL denotes the bijection between RN andH, andH is the
set of Hankel matrices of size L× K with equal values on the anti-diagonals i + j = const.

The SSA estimator of the signal is defined as the composition

S̃ = T −1
L ◦ΠH ◦ΠMr ◦ TL(X), (2)

where ΠH is the orthogonal projector on the set of Hankel matrices H, and ΠMr is the
projector on the setMr of L× K matrices of rank at most r. In both cases, we consider the
projector by the Frobenius norm. The projection by ΠH is constructed by averaging the
values along the anti-diagonals [Section 6.2] in [3], and the result of ΠMr can be obtained
via singular value decomposition as the sum of the leading r summands (Eckart–Young
theorem [13,14]).

From the description of the algorithm, it follows that to adequately estimate a signal,
its signal trajectory matrix must be of rank r or well approximated by a matrix of rank r.
This raises the following notion.

Signal Model

Say that a signal S is a series of rank r if its L-trajectory matrix S = T (S) is rank-
deficient and has rank r for any r < L < N − r + 1. It is known that the definition of
the series of rank r is equivalent to the equality to the rank r of a trajectory matrix with
L = r + 1 if N > 2r [Corollary 5.1] in [15]. If a signal has rank r, we call it a low-rank series.

For an infinite time series S of rank r, there exists a governing linear recurrence relation
(LRR) of order r: sn = ∑r

i=1 aisn−i, n = r + 1, . . . , N, ar ̸= 0 [Chapter XVI, Section 10,
Theorem 7] in [16]. A well-known result that specifies the explicit form of LRR governed
series in parametric form is: sn = ∑i Pi(n) exp(αin) cos(2πωin + ψi), where Pi(n) are
polynomials in n [Theorem 3.1.1] in (cf. [17] and [Theorem 5.3] in [3]).

The rank of a signal is referred to as the model order, since in the complex-valued case,
a sum of r complex exponentials has rank r. Consequently, the rank estimation problem is
known as model order selection.

Low-Rank Approximation and SSA

If the signal is a series of known rank r, there are numerous methods for extracting it,
including low-rank approximation [18–21]. In particular, the paper [21] proposes an effi-
cient MGN (Modified Gauss-Newton) method for finding the best low-rank approximation
using the least-squares method. It is significant to note that in the case of Gaussian white
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noise, the least-squares approximation coincides with the maximum likelihood estimate.
Alternative approaches include the Cadzow method, which consists of alternating projec-
tions to ΠH and ΠMr at each iteration. This method has been discussed in the literature,
including in the following sources: [22–24].

In all versions, low-rank approximation methods are iterative, which makes even
efficient methods quite time-consuming and not guaranteed to find the global minimum.
Furthermore, it is always necessary to know the rank of the signal in advance.

Let us describe the cases when low-rank approximation methods, with the choice of r
equal to the signal rank, will prove ineffective. The first situation is when the noise level
is too high. In this case, the approximation by a signal-rank series includes a significant
portion of the noise in the result. In order to extract the signal more accurately, it is necessary
to take r less than the signal rank. The second situation is when the signal is not exactly a
low-rank series. This is usually the case for real-world time series. In this case, the low-rank
approximation can perform poorly.

The version of SSA for signal extraction is a single iteration of the Cadzow method
and has a very efficient implementation [25]. Given that the method employs a single
iteration, it is not constrained to the extraction of low-rank signals. Instead, it can be used
to identify trends and periodic components in real-world time series, which can then be
subjected to further analysis and forecasting. By employing the intermediate SSA result
in the form of the singular value decomposition of the trajectory matrix, one can perform
visual identification of the signal-related components of the decomposition. It is evident
that this approach is not feasible when dealing with a vast amount of data. Consequently,
techniques for automated component identification within SSA have been developed. For
example, in [26], a method for automated trend identification has been proposed, wherein
the number of components to be identified must be specified. Consequently, it is also
necessary to set r.

The Problem Statement and Contribution

In this study, we propose a novel approach to the problem of estimating the signal
rank. Rather than determining the signal rank itself, our objective is to identify the optimal
parameter r in the SSA algorithm that minimizes the mean square error (MSE) of the signal
reconstruction. In the case of a low-rank signal and low noise, this approach will yield the
same result as the conventional method of finding the signal rank. However, in situations
where the signal is not exactly of low rank or the noise level is high, the signal rank may
not provide the optimal r.

This study will be based on the methods of signal rank detection (model order selec-
tion). These methods can be divided into two types: those based on information criteria and
those based on the properties of the SSA method (properties of the signal subspace). The
information criteria that are currently available were not designed for use in the context of
the SSA case; therefore, we propose modifications to them. Given that the original version
of the information criteria was developed for the case of Gaussian white noise, we suggest
an approach that would allow us to extend them to the case of red noise.

Structure of the Paper

Let us describe the structure of the paper. Section 2 describes known methods for
estimating the model order r. In Section 3, we propose an approach that is based on signal
estimation by SSA. Section 3.1 considers the case of white noise, and Section 3.2 proposes a
way to transfer the methods to the case of red noise. Section 4 includes numerical studies
and comparisons on artificial examples. Section 5 verifies the performance of the methods
for real-world time series. Section 6 presents a summary and discussion; conclusions
complete the paper.
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2. Model Order Selection

This section presents an overview of the existing methods for model order selec-
tion, including both general information criteria and specific criteria that employ signal
subspace models.

2.1. Information Criteria

Let us start with information criteria that are common to model order selection.

2.1.1. General Approach

Let the observed data be in the form X = Pk(θk) + E ∈ RN , where Pk(θk) is a model
with the number of parameters k, E is a random noise with zero expectation.

We can write out the general form of the information criterion (abbreviated as IC in
formulas and algorithms) as follows [27]:

IC(k) = 2 lnLk − ϕ(k), (3)

here the maximum value of the likelihood function within the model Pk is denoted by Lk; k
is the number of parameters in the model; and the penalty for the number of parameters is
represented by the function ϕ(k). In this form of criteria, the optimal model is indicated by
the maximum value.

If the elements εi, i = 1, . . . , N, of the noise E are independent and εi ∼ N(0, σ2), then
instead of searching for the maximum of (3), it is possible to search for the maximum in k of

IC(k) = −N log(σ̂2)− ϕ(k), (4)

where
σ̂2 = σ̂2

k = min
θ
∥X− Pk(θ)∥2.

Different information criteria are distinguished by the penalties that are associated
with them. For Akaike information criterion (AIC), ϕ(k) = 2k [28] and for Bayesian
information criterion (BIC) [29], ϕ(k) = k log N.

Another criterion is the Maximum Description Length criterion (MDL [30]), where the
penalty additionally depends on the particular model. In the case of independent noise,
the MDL criterion is asymptotically equivalent to the BIC criterion as N → ∞. However,
the penalty for the number of parameters differs for finite N.

The following section will present the application of this approach to the model order
selection problem for time series, specifically in the context of a low-rank signal.

2.1.2. Information Criteria for Time Series

Consider the problem of estimating the rank r of the signal S = (s1, . . . , sN)
T by the

observed noisy time series X = S+N.
The parametric model of signals of rank r can be considered as a nonlinear model

with k = 2r parameters [21]. In the case of a noisy signal with Gaussian white noise, the
maximum likelihood estimate Ŝ of the signal S obtained from the time series X can be
obtained by means of the nonlinear least-squares method. Numerically, the least-squares
estimate can be obtained using the VPGN method [19] or the MGN method [21]. In both
cases, an initial approximation is required, which can be obtained using the Cadzow
iterations [22,24].

This approach to information criteria is not without its limitations. First, the nonlinear
least-squares method is a computationally expensive procedure due to its iterative nature.
Additionally, the range over which the rank r is searched slows down the computation.
Second, as demonstrated by numerical experiments (see Section 4), such methods may
converge to local minima of the target function, which may result in an overestimation of
the rank due to an overestimated error.
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2.1.3. Information Criteria for a Sequence of Vectors

In [31], a model for a sequence of vectors is stated: Xi = ACi + Ei ∈ RL, i = 1, . . . , K;
the rank of the matrix A ∈ RL×r is equal to an unknown r, and the noises are independent.
Here Ci ∈ Rr consists of r stationary processes, and L noisy linear combinations of these
processes are observed. In matrix form, the model is X = AC + E , where E is a matrix
composed of independent noises.

Thus, in such a model, Xi is a stationary process, allowing us to discuss the model
of its auto-covariance matrix. It has a form R = ASAT + σ2 I, where S represents the
auto-covariance matrix of the signals.

The same model can be valid in a more general formulation of the problem; for
instance, the matrix C is not necessarily random and thus R is not necessarily a covariance
matrix. Additionally, the stationarity condition is not a prerequisite.

Let {µi} be the singular values of the matrix R. Then, as shown in [31], the logarithm
of the maximum value of the likelihood function has the form

lnL = −K
L

∑
i=r+1

ln µi + (L− r) ln(σ̂2), (5)

where

σ̂2 =
L

∑
i=r+1

µi/(L− r).

The number of parameters is equal to r(2L− r) + 1 [31]. After adjusting for the penalty,
we obtain the following:

MDL(r) = −2 lnL− r(2L− r) ln K. (6)

In this case, we consider the variant of MDL that is the same as BIC. However, to distinguish
it from BIC in time series form, we will keep the name MDL.

Remark 1. Let us show the similarities and differences with the problem given in the time series
form. The transfer from time series to trajectory matrices yields the following: X is the trajectory
data matrix, AC is a possible form for the presentation of a trajectory signal matrix of rank r, and E
is the trajectory noise matrix. Then, R, which is formally not an auto-covariance matrix here, can be
estimated as XXT/K. The distinction lies in the fact that, in the case of time series, the elements
of the noise matrix are not independent. This is due to the specific structure of the trajectory noise
matrix, which is Hankel, meaning that the noise elements on each anti-diagonal are identical.

2.2. Subspace-Based Criteria

In this section, we consider two methods, namely ESTER [32] and SAMOS [33], which
are not related to information criteria. These criteria are based on signal subspace properties
and, in the specific case where the signal subspace has rank r and is extracted exactly, they
yield the value +∞ for rank r. These methods are based on the concept of separability in
SSA [Sections 1.5 and 6.1] in [3] and aim to identify separability points. The criteria are
applicable when the signal is approximately separable from the noise. However, within the
signal, its components may also be separable, which makes the methods appear unstable
despite the strong advantage that they are directly based on SSA properties. Another
disadvantage of the criteria is that they cannot specify r = 0, i.e., they cannot determine the
case of no signal.

The criterion ESTER is based on the principles of the ESPRIT method [34], which is a
subspace-based method used for estimating signal parameters, particularly, frequencies.
We define E(r) = Ur −UrA, where A = Ur

†Ur, Ur consists of the r leading left singular
vectors of the trajectory matrix of the series X. In the case of an exactly separable signal S of
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rank r, the matrix E(r) is the null matrix. Therefore, the criterion proposes to consider the
maximum of

ESTER(r) = ∥E(r)∥−2
2 ;

here the norm ∥ · ∥2 equals the maximum eigenvalue.
Subsequently, in [33], the method SAMOS was proposed, which was also based on the

matrix Ur. Let us denote τi the singular values of the matrix [Ur : Ur]. Then, we seek the
maximum of

SAMOS(r) =
1

∑2r
i=r+1 τi/r

.

3. Modifications of Information Criteria for the Case of Hankel Noise

It is known that the setMr of matrices of rank at most r in the neighborhood of a
matrix of rank r is a smooth manifold of order r(L + K)− r2 (ref. [21], [Ex.13, p.27 ] in [35]).
This allows one to consider the linearization of the projector ΠMr and to approximate the
projection on the setMr as a linear projection onto a tangent subspace at the desired point.

Our approach is to estimate the variance σ2 used in information criteria (4) for a given
rank r by using the matrix

Dr = TLX−ΠMr ◦ TL(X), (7)

rather than by constructing the maximum likelihood estimate of the signal. Since the
computation of ΠMr is reduced to the summation of the first r summands of the singular
value decomposition of the matrix TL(X), this allows for fast recalculation for different r
and thus provides a fast method for estimating the rank of a signal.

3.1. White Noise

Let N be a Gaussian white noise with zero expectation and variance σ2. The noise
series N can be estimated as T −1 ◦ΠH(Dr). In the proposed approach, the estimation of σ2

will be conducted without proceeding from the matrix Dr to a time series.
Let Dr = (d(r)i,j ) = (di,j). Then the estimate of σ2 can be given as follows (let us call

this version ‘SVD’):

σ̃2 =
∑L

i=1 ∑K
j=1 d2

i,j

LK
. (8)

By employing the singular value decomposition, the same noise variance estimate can be
obtained as σ̃2 = ∑L

i=r+1 λi/(LK), where λi are the squares of the singular values of the
trajectory matrix X.

It can be seen from (1) that the operator TL repeats each time series element in the
trajectory matrix as many times as there are elements on the corresponding anti-diagonal.
Consequently, given the Hankel structure of the input matrices, we put forward a more accu-
rate weighted version of the σ̃2 estimator (which we shall henceforth refer to as ‘TRMAT’):

σ̃2 =
1
N

L

∑
i=1

K

∑
j=1

1
wi+j−1

d2
i,j, (9)

where wi, i = 1, . . . , N, are the numbers of elements on the i-th anti-diagonals of an L× K
matrix. The division by N is a consequence of the fact that the number of such diagonals is
N. Note, that if the window length L is a relatively small value compared to N, there is a
negligible difference with the SVD criterion, since the weights wL, wL+1, . . . , wN−L are the
same for both methods.

In both cases, the alternative estimate of k (instead of k = 2r) to substitute into the
Formula (4) is

k =
N(r(K + L)− r2)

LK
, (10)
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that is, it is the dimension r(K + L)− r2 of the smooth manifoldMr, reweighted taking into
account the “replacement” of the dimension LK of the matrix space by the dimension N of
the time series space. Let us explain this normalization. One can look at the contribution
of number k of parameters to the penalty in the AIC and BIC values in the form (4) by
dividing the expression by N. This shows that the parameter penalty depends on k/N.

We have numerically checked that the non-normalized number of parameters k = 2r
that corresponds to the non-Hankel case leads to a severe underestimation of the penalty
term ϕ(k) in (4) when (8) or (9) is taken as an estimate of σ2; therefore, we will not consider
this case further.

We will consider (8) (SVD) and (9) (TRMAT) with the normalized number of parame-
ters given by (10) using the information criteria (4). Recall that the best rank corresponds
to the maximum value of a criterion. Preliminary experiments have shown that only the
BIC-penalty criteria turned out to be working, and we will consider it further. A graph of
AIC(k) flattens out after growth to the correct rank, so the maximum point is determined
unstably and the rank is usually overestimated.

3.2. Red Noise

Let the noise be stationary and Gaussian. The procedure that makes the noise white
is called whitening and consists of multiplying the time series by the square root of the
inverse of the noise autocovariance matrix. The whitening operation affects both the signal
and the noise. Since the matrix-form model is stable concerning a linear transformation
(multiplication by a full-rank matrix), we can apply the methods of the previous section to
the result of the whitening. To apply the criterion, it is sufficient to know what the variance
of the white noise after whitening will be; more precisely, it is sufficient to know how the
variance of the noise after whitening is expressed through the variance of the original noise.
To conduct this, we need to know the covariance matrix of the noise.

Let us denote the variance estimate using the Formula (8) or (9) as σ̃2
0 . Then, we need

to substitute the variance σ̃2of the whitened noise into the Formula (4). For example, in the
case of an AR(1) model with coefficient ϕ,

σ̃2 = σ̃2
0 (1− ϕ2). (11)

Recall that red noise is an AR(1) process with a positive coefficient.
To implement this approach, it is sufficient to estimate the coefficient ϕ, which is equal

to the correlation coefficient between successive observations. As before, D = Dr is the
residual matrix defined in (7). It is not exactly Hankel. Since in the case of wrong rank,
its structure is far from Hankel and diagonal averaging should distort it considerably, let
us estimate the correlation using the matrix before averaging by shifting the rows of the
residual matrix.

Let

c =
L

∑
i=1

K−1

∑
j=1

di,jdi,j+1, v1 =
L

∑
i=1

K−1

∑
j=1

d2
i,j, v2 =

L

∑
i=1

K−1

∑
j=1

d2
i,j+1.

Then, as an estimate of ϕ we take
c/
√

v1v2. (12)

Remark 2. The idea behind TRMAT can also be applied to the evaluation of ϕ by considering the
same weights 1

wi+j−1
in each sum as in (9). We will apply such an estimate with weights to the

algorithm TRMAT.

An alternative is to estimate ϕ as the correlation between successive observations
in the series Dr = T −1 ◦ΠH(Dr), but we will not consider it since it did not lead to an
improvement in preliminary numerical experiments.

Unfortunately, especially if the signal is not stationary and even more so if it is not a
low-rank series, the calculated estimate of ϕ based on nonstationary residuals in the case of
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wrong rank can be accidental and lead to an incorrect maximum of an information criterion.
Therefore, we consider the following variant in which the information criterion is assigned
−∞ when the residual is clearly nonstationary (recall that the best model corresponds to
the maximum of criteria):

1. Check the series Dr for nonstationarity (this is optional, not necessary), e.g., using the
KPSS test [36]. If the hypothesis is rejected (e.g., p-value < 0.05), then ϕ = 1 and STOP.

2. Find the better model for Dr from white and red noise models. If it is detected as
white noise, then ϕ = 0, and if it is closer to red noise, then estimate parameter ϕ in
the red-noise model, for example, by the MLE method without requiring the model to
be stationary.

3. If ϕ ≥ 1, then the criterion returns −∞; otherwise, the value is calculated using the
formula of the corresponding information criterion.

The option of criteria with the adjustment (11) according to the estimated ϕ will be
referred to by adding _AR.

3.3. Case of Zero Signal

Information criteria allow one to consider the absence of a signal as one of the models.
In this case, in the form of the criterion (4), the mean square of the values of the initial time
series serves as the estimate of σ2.

Accordingly, the signal values are 0. Recall that the ESTER and SAMOS criteria do not
consider the case r = 0. Formally, criteria ESTER and SAMOS return −∞ in the case r = 0,
so the value r = 0 will never provide the maximum for these criteria.

3.4. Algorithm

Algorithm 1 describes how to compute BIC versions of the proposed criteria for white
and red noise cases.

Algorithm 1 Calculation of TRMAT and SVD
Input: Time series X, window length L, rank r, type of IC (TRMAT or SVD), indicator
CHECKSTAT if the stationarity check is needed, significance level α for checking stationar-
ity, indicator NOISETYPE.
Result: Value of IC.

1. Apply SSA with L and r to X of length N.
2. Calculate the residuals in the matrix (Dr) and time-series (Dr) forms.
3. Calculate σ̂2 by (9) if IC = TRMAT or by (8) if IC = SVD.
4. If NOISETYPE = RED:

• Estimate ϕ by (12) using matrix residuals Dr (with weights if IC = TRMAT;
Remark 2).

• If CHECKSTAT = TRUE and the stationarity of Dr is rejected with significance level
α or if ϕ > 1, set ϕ = 1 and return IC = −∞.

• Recalculate σ̂2 ← σ̂2(1− ϕ2);
5. Calculate the number of parameters k by (10).
6. Return IC = −N log σ̂2 − k log N (4).

For MDL and white noise, the values of the criterion are calculated by (6). If the noise
is red, then σ̂2 in (6) is recalculated with the substitution of σ̂2(1− ϕ2) instead of σ̂2.

4. Numerical Experiments

Let us numerically compare the considered methods and study their accuracy as a
function of the noise level.
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4.1. Approach to Comparison

One of the criterion quality characteristics used in practice for model order estimation
is the proportion of correct order (rank) estimates or the bias of the average rank estimate.
However, overestimation or underestimation of the rank can have different effects on the
result, because the decomposition components are arranged by decreasing their contri-
bution, and therefore, overestimation of the rank leads to a smaller increase in the signal
estimation error compared to underestimation of the rank. Therefore, we will consider the
RMSE of the signal estimation as the main characteristic. Note, also that the trend identifi-
cation methods [26,37] are robust to rank overestimation when the number of identified
components is chosen according to the estimated rank.

In the problem statement considered in this paper, the correct order of models is
generally not defined. Therefore, we will compare the estimated ranks (model orders) with
the optimal rank r, which gives the minimum error of the signal estimation obtained by (2).
Accordingly, we will compare the RMSE of the signal estimation at the estimated rank with
the minimum error at the optimal rank. Since the best approximation depends on the noise
level, we will consider the quality of the criteria depending on the noise level.

Thus, in most cases, we will compare the signal estimation error with the average
minimum error and the average rank with the average optimal rank. In addition, we will
consider the proportion of rank estimate matches with individual optimal ranks that yield
the minimum errors for each series separately.

4.2. White Noise

In this section, we consider the case of a noisy signal, where the noise is Gaussian
white with zero mean and variance σ2.

4.2.1. Sum of Two Sinusoids

Let us start with a simple example, a signal in the form of the sum of two sinusoids:

sn = 10 sin(2πn/20) + sin(2πn/10). (13)

The rank of the signal (13) is 4 [Example 5.2] in [3]. Since deterministic signals are
asymptotically separated from noise [Section 6.1.3] in [3], the optimal value of r will be 4.
However, as the noise level increases, the second sinusoid will start to mix with the noise
and after some period of uncertainty, the optimal rank will become equal to 2, the rank of
one sinusoid. It is clear that for any signal, as the noise increases, at some noise level the
optimal rank becomes zero, i.e., the best estimate of the signal is the zero series.

We will consider 20 values of σ from 0.01 to 100 with equal logarithmic steps. Sepa-
rately, we will focus on four noise levels, σ1 = 0.1128838 (optimal rank 4), σ2 = 1.274275
(transition period from 4 to 2), σ3 = 5.45559478 (optimal rank 2) and σ4 = 61.58482111
(optimal rank 0).

We begin by examining the proportion of matches between the estimated ranks and
the individual optimal ranks (which yield the smallest RMSE of the signal estimates for the
given series).

In comparison to the methods SVD, TRMAT, and MDL, the methods ESTER and
SAMOS demonstrate the most favorable outcome, with a proportion of matches reaching
0.998 (out of 1000 trials) at a low noise level (σ = 0.01) and window length L = 50. This
outcome aligns with the findings presented in the studies [32,33]. However, as the noise
level increases, the methods lose efficacy, yielding near-zero matches. Figure 1 illustrates
the dependence of standardized criterion values on rank. For comparability, the criteria
were standardized (i.e., the mean was subtracted and the values were divided by the
standard deviation depicted in the graph) as the criterion scales may be incomparable.
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To more effectively illustrate the impact, we have selected the window length L = 40
as a multiple of both sinusoids’ periods and the standard deviation σ = σ1. It is readily
apparent that the ESTER and SAMOS criteria lead to an erroneous determination of the
rank in this instance, particularly the ESTER method, with a maximum at the separability
point r = 2. In contrast, the considered information criteria, such as TRMAT, effectively
resolve the rank to be four.
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Figure 1. Example ‘sine’: The dependence of criteria IC(k) on rank k for one realization of noise.

Thereby, in the following sections, we will not consider the ESTER and SAMOS criteria,
particularly given that they are not applicable in the absence of a signal. Thus, in what
follows, we will examine the criteria SVD, TRMAT, and MDL in greater detail.

As illustrated in Table 1, for noise levels corresponding to the stable rank detection
(i.e., all except the level σ2), the TRMAT, SVD, and MDL methods consistently yield optimal
rank estimates. For each of the aforementioned methods, the proportion of matches with
optimal ranks is nearly one. However, at the noise level σ2, the TRMAT and SVD methods
were unsuccessful, with only a small proportion of matches being identified. In comparison,
the MDL method demonstrated better performance, with a success rate of 0.48, as opposed
to 0.235 and 0.277 for the TRMAT and SVD methods, respectively.

Table 1. Example ‘sine’: proportion of ranks coinciding with the individual optimal ranks.

σ TRMAT SVD MDL

σ1 0.983 0.990 0.969
σ2 0.235 0.277 0.480
σ3 0.984 0.988 0.966
σ4 0.992 0.994 0.974

Figure 2 illustrates the distinction in the behavior of the criteria for the two noise levels,
namely, σ1 and σ3. As previously, the criterion values have also been standardized.

Figure 3 depicts the mean estimated ranks and the optimal ranks for the smallest
root of average MSEs over 1000 realizations for the TRMAT and MDL methods (SVD has
been omitted due to its similar behavior to TRMAT). It can be observed that the optimal
rank graph as a function of noise levels contains plateaus with identical rank values and
transition periods.
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Figure 2. Example ‘sine’: The dependence of criteria IC(k) on rank k for one realization of noise
(noise level σ1 on the left, σ3 on the right).
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Figure 3. Example ‘sine’: Dependence of rank estimation on white noise level, TRMAT and MDL.

At plateaus, both methods yield accurate estimates of the rank. During transition peri-
ods, both methods underestimate the rank, but the MDL method does so to a lesser extent.

The graphs of RMSE versus noise level are presented in Figure 4. We will now explain
the specifics of the graph depicted in this figure. First, as a baseline, we consider the
RMSE at the maximum possible rank, that is, when the signal estimate is the entire original
series and the RMSE is equal to the root of the mean squared time series values. All errors
depicted in the plot are presented on a relative scale, wherein they are divided by the
baseline RMSE. Accordingly, the value of 1 corresponds to a signal estimate that is equal to
the original series. In a sense, this represents the most unfavorable scenario. Figure 4 also
presents the optimal case, which corresponds to the rank associated with the lowest average
error. The lines exhibit minimal divergence at the plateau, indicating stable rank detection,
while diverging at the transition periods. It is evident that the error of both criteria exceeds
the minimum error at the transitions. However, the error of the MDL criterion is slightly
smaller than that of TRMAT, which is consistent with the results presented in Figure 3.

Let us include MGN in the consideration. When the criterion MGN is applied, we
obtain an MGN signal estimate and use this estimate for calculating the MSE of the signal
estimate; in particular, for finding the optimal ranks.
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Figure 4. Example ‘sine’: Dependence of relative RMSE on white noise level, TRMAT and MDL.

Figure 5, which depicts the mean of the rank estimates as a function of noise level,
shows that MGN overestimates the rank at plateaus and thus is much closer to the optimal
rank at transitions than the other criteria, which estimate the rank accurately at plateaus
and underestimate at transitions. It should be noted that the optimal ranks depicted in
Figure 5 may differ from those presented in Figure 3. This discrepancy arises from the fact
that, in the MGN criterion, the estimate of the signal is obtained through the MGN method,
rather than the SSA. A comparison of the two figures reveals that the optimal MGN ranks
do not exhibit a transition range of noise levels, whereas the optimal SSA ranks display
noise levels that correspond to an intermediate rank of 3. Consequently, it is possible to
calculate both minimal mean squared errors (MSE) using the MGN estimates and minimal
MSEs using the SSA estimates. The former are, naturally, smaller, given that the MGN
estimates are obtained by the least-squares method.
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Figure 5. Example ‘sine’: Dependence of rank estimation on white noise level, MGN.
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As a consequence of rank overestimation, the resulting RMSE for the MGN-estimated
rank is observed to be larger at plateaus than that of the minimal MGN error. Therefore, at
plateaus, the MGN criterion provides the same level of accuracy (Figure 6) as TRMAT, with
smaller errors occurring at transitions. Figure 6 also presents a hybrid scenario in which the
criterion is TRMAT and the signal estimation is conducted using MGN. This combination
results in the smallest errors, as TRMAT determines rank with greater precision and MGN
generates a more precise estimate of the signal.
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Figure 6. Example ‘sine’: Dependence of relative RMSE on white noise level, TRMAT and MGN.

4.2.2. Logarithmic Signal

As an example of a signal that is not low-rank, consider the signal in the form of a
logarithmic series:

sn = log n. (14)

As the signal is not low-rank, it is not possible to determine a proper rank; however,
the selection of an appropriate model order can be discussed. Figure 7 depicts the mean
estimated ranks and the optimal ranks (model orders) for the smallest root of the average
mean squared errors (MSEs) over 1000 realizations. As the noise level increases, the optimal
rank values decrease from four to zero. The plateaus are relatively short, and there are
significantly more transition regions than in the previous example involving a finite-rank
signal. Figure 8 illustrates the dependence of the root mean square error (RMSE) on the
noise level.

In this example, we will consider the same noise levels as previously described in
Section 4.2.1. In contrast with the previous example, the noise level σ1 falls on the transition
period between ranks 3 and 2, σ2 is almost on the plateau (rank 1), σ3 lies exactly on the
plateau (rank 1), and for σ4, the signal is not detected.

Table 2 correlates with this description of noise levels. In the first row, the accuracy of
the criteria is generally less precise; in the second row, it is more precise and in the third
and fourth rows, it is highly precise. It can be seen that the TRMAT method produces the
best result, providing a good match of ranks on transition periods as well.
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Figure 7. Example ‘log’: Dependence of rank estimation on white noise level, TRMAT and MDL.

Table 2. Example ‘log’: proportion of ranks coinciding with the individual optimal ranks.

σ TRMAT SVD MDL

σ1 0.744 0.214 0.206
σ2 0.751 0.603 0.589
σ3 0.983 0.983 0.976
σ4 0.997 0.998 0.978

In the preceding example, the TRMAT and MDL criteria exhibited comparable accu-
racy, with MDL demonstrating a slight advantage at transition sections in the noise levels.
In the case of the considered signal that is not low-rank, the MDL criterion exhibited insta-
bility, while the TRMAT criterion demonstrated a notable advantage. These observations
are illustrated in Table 2 and Figure 8.
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Figure 8. Example ‘log’: Dependence of relative RMSE on white noise level, TRMAT and MDL.
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The MGN criterion is now to be incorporated into the comparison (see Figures 9 and 10).
One can see that the error lines for TRMAT and MGN are intertwined, indicating that there
is no clear advantage of one criterion over the other. In this instance, the combination of
the TRMAT criterion for rank detection and the MGN signal estimation with the obtained
rank does not result in any improvement and thus is not depicted in the graph.
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Figure 9. Example ‘log’: Dependence of rank estimation on white noise level, MGN.
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Figure 10. Example ‘log’: Dependence of relative RMSE on white noise level, TRMAT and MGN.

4.3. Red Noise

In this section, we examine a more complicated case of red noise. Since there is no
effective implementation of the MGN method for red noise with unknown autoregression
parameters, we will not consider it in this section.

In this study, we consider the red noise process in the form ξn+1 = ϕξn + σϵn,
where ϵn ∼ N(0, 1) are independent between themselves and with ξn, 0 ≤ ϕ < 1;
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ξn ∼ N(0, σ2/(1− ϕ2)). Accordingly, when calculating the baseline RMSE, it is necessary
to normalize it by dividing by

√
1− ϕ2 in order to obtain 1 for the maximum relative RMSE.

4.3.1. Sum of Two Sinusoids

In this section, we will examine an example with the signal defined in (13). We recall
that the rank of the signal in this case is 4. As with white noise, an increase in the variance
results in the second sinusoid becoming mixed with noise. As the variance continues to
increase, after a period of uncertainty, the optimal rank becomes equal to 2 and then to 0.

As in the preceding analysis, 20 values of σ will be considered, ranging from 0.01 to
100 in equal logarithmic steps.

Figure 11 depicts the mean estimated ranks and the optimal ranks for the smallest
root of average MSEs over 1000 realizations. As demonstrated in Figure 12, the methods
exhibit a high degree of similarity in their performance. At plateaus, the criteria accurately
determine the rank of the signal, thereby confirming their capacity to estimate the rank
correctly. However, at the transition from model order 2 to 0, both methods demonstrate a
notable decline in performance, with a pronounced tendency to underestimate the rank.
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Figure 11. Example ‘sine’: Dependence of rank estimation on red noise level, TRMAT and MDL.
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Figure 12. Example ‘sine’: Dependence of relative RMSE on red noise level, TRMAT and MDL.
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4.3.2. Logarithmic Signal

As an example of a signal that is not low-rank, consider a series with the signal (14).
In this case, we use the version of the criteria with the stationarity check (Algorithm 1,
CHECKSTAT = TRUE).

Figure 13 depicts the mean estimated ranks and the optimal ranks for the smallest
root of average MSEs over 1000 realizations. In this case, the superiority of TRMAT is
clearly evident at relatively low noise levels, as illustrated in Figure 14. At high noise
levels, however, both methods perform poorly, largely due to a significant underestimation
of ranks.
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Figure 13. Example ‘log’: Dependence of rank estimation on red noise level, TRMAT and MDL.
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Figure 14. Example ‘log’: Dependence of relative RMSE on red noise level, TRMAT and MDL.
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4.4. Zero Signal

In the case of white noise, all three methods (TRMAT, SVD, and MDL) explicitly indi-
cate that the rank is equal to zero. The noise level plays no role in this particular scenario.

In the case of red noise, it is recommended that a criterion without an additional check
for stationarity of the residual be used for the stationary signal. In this case, for ϕ = 0.7, the
three methods, TRMAT_AR, SVD_AR, and MDL_AR, almost always yield a rank estimate
equal to 0.

5. Real-Life Time Series

Consider ten real-world time series, they are described at https://ssa-with-r-book.
github.io/datasets.html (accessed on 10 August 2024):

• wines (from 1 to 6), Australian wine sales (Total, Drywhite, Fortified, Red, Rose,
Sparkling), monthly, length 174;

• co2, Atmospheric concentrations of CO2, monthly, length 468;
• dwarf, Time variation of the intensity of the variable white dwarf star, every 10 s,

length 618;
• oilprod, Crude oil and natural gas plant liquids production, monthly, length 300;
• treerings, Tree ring indices, annual, length 669.

We take the window length for each series to be half the length of the series.
Table 3 presents the model order estimates by the specified criteria in three versions:

for the white noise case and with the estimation of the parameter ϕ of the autoregressive
process AR(1), without checking for stationarity (labeled “no”) and with checking for
stationarity. The last column contains the ranks that were estimated visually. It is not
always possible to determine the number of components associated with a given signal.
In such cases, a number of values are provided. In general, the estimates of the model
orders produced by the various criteria are consistent with the visual estimates. As can
be observed, the MGN criterion produces an overestimate of the rank in the majority of
cases, while the TRMAT criterion produces an underestimate in several instances. The
stationarity check has a negligible impact on the outcome. The results are, for the most part,
satisfactory. In particular, the signal rank for the series “tree rings” is indeed equal to 1, as
the series is similar to a random process with a non-zero constant mean.

Table 3. Original series: Ranks estimated by the criteria and visual rank estimation.

ts MGN TRMAT MDL TRMAT
ar1 (no)

MDL
AR (no)

TRMAT
AR

MDL
AR Visual Est.

wine1 14 13 13 14 13 14 13 13
wine2 12 11 11 11 11 11 11 11–14
wine3 15 11 11 7 11 7 11 11
wine4 13 5 10 6 10 6 10 14
wine5 22 2 11 1 12 1 13 12
wine6 12 12 12 12 12 12 12 12
co2 11 12 21 6 6 6 6 6, 15, 25
oilprod 22 21 21 16 16 16 16 16+
dwarf 10 15 15 11 14 11 14 12–14
treerings 5 1 3 1 1 1 1 1

Since the criteria were developed for the case of stationary noise, we will assess whether
the performance of the criteria improves after the variance is stabilized. Table 4 illustrates the
outcomes of the criteria applied to the series after the Box-Cox transformation [38] with the
automatically estimated parameter λ, the value of which is provided in the last column. It
can be observed that the results have been equalized, and the effects of over-ranking by
the MGN criterion and under-ranking by the TRMAT criterion have been mitigated. The

https://ssa-with-r-book.github.io/datasets.html
https://ssa-with-r-book.github.io/datasets.html
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effect of the stationarity test is entirely absent. Therefore, although the SSA method does
not require stationarity, it is recommended to perform a variance stabilizing transformation
for more accurate and stable rank estimation.

Table 4. Series after the Cox-Box transformation: Rank values estimated by the criteria and estimates
of the transformation parameters.

ts MGN TRMAT MDL TRMAT
AR (no)

MDL
AR (no)

TRMAT
AR

MDL
AR λ

wine1 14 13 13 14 13 14 13 0.35
wine2 12 11 11 11 11 11 11 0.38
wine3 15 11 11 7 11 7 11 0.19
wine4 14 10 12 6 12 6 12 0.51
wine5 12 12 12 12 12 12 12 −0.24
wine6 12 9 9 9 9 9 9 −0.27
co2 21 12 21 6 6 6 6 −0.03
oilprod 18 21 21 16 16 16 16 −0.33
dwarf - - - - - - - -
treerings - - - - - - - -

6. Summary and Discussion

In this paper, we considered a variety of criteria for determining the model order
(signal rank) in SSA, including non-conventional cases, namely, signals that are not low-
rank or mixed with noise. The criteria considered were ESTER, SAMOS, MGN, MDL, SVD,
and TRMAT (the latter two were proposed by us).

The ESTER and SAMOS criteria appeared to be unsuitable for determining model order
in the majority of the considered cases. While the information criteria can be employed,
none of them have a comprehensive theoretical justification for application to the considered
problem statement. It is also important to note that this justification is unlikely to be
obtained due to the overly general formulation of the problem, which allows for the
possibility of signals that are not low-rank and have a high noise level.

An exception is the MGN criterion, which is theoretically justified in the case of a low-
rank unmixed signal in the presence of white noise. This is due to the fact that it numerically
searches for the maximum likelihood estimate (MLE) of the signal. The MGN method,
which is used in the MGN criterion for signal estimation, is computationally expensive,
while it is implemented as computationally fast as possible. The used optimization method
is local, as are many others, and can converge to a local extremum, leading to an excessive
estimation of the standard error and thus an overestimation of the rank by the MGN
criterion. In general, an overestimation may not be a significant issue, as the higher the
number of decomposition components, the smaller their contribution. However, the high
computational cost represents a significant obstacle to the application of the MGN criterion,
even in the case of a low-rank signal.

In the case of SSA, when the singular value decomposition is performed once and
the signal estimation is generally not a low-rank series, three variants, MDL, SVD, and
TRMAT, were considered in the BIC version, since the penalty from the AIC criterion
leads to a significant overestimation of the signal rank. In this case, the MSE signal
estimation error (an estimate of σ2) used in the information criteria is not based on the time
series decomposition after diagonal averaging, but on the estimated noise matrix before
hankelization. In our proposed version of TRMAT, the Hankel structure of the trajectory
matrix is accounted for using weights.

Numerical studies have demonstrated that for relatively simple cases, such as a noisy
sum of sinusoids with a low noise level, the methods yield approximately the same results.
A slight advantage of the MDL method can be observed in transition regions where the
optimal order of the model changes. In the case of a signal that is not low-rank, such as a
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logarithmic signal, the proposed TRMAT criterion is preferred. In both cases, the MGN
criterion is comparable to TRMAT.

Let us turn our attention to the issue of computational cost. In the case of white noise,
the SVD and MDL methods have the same cost as SSA itself, which is O(N log N). The
TRMAT method requires an additional computation that can be implemented at the same
asymptotic cost as N → ∞. Consequently, TRMAT is slightly more expensive. The MGN
method is significantly more expensive, as demonstrated in [21], with a computational
cost of one iteration being O(N log N). However, the number of iterations required for
convergence can be considerable.

In order to apply the given criteria to the case of red noise, the well-known technique
of noise whitening was employed. Due to the linearity of the model, the approach can be
reduced to multiplying the estimated variance by 1− ϕ2, where ϕ is the AR(1) coefficient.

In the case of an incorrect model, ϕ can be estimated by an irrelevant value; this may
lead to an incorrect estimation of the signal rank. The proposed approach is as follows. If
the series has a trend, one can first test the residual of the extracted signal of rank r for
stationarity and if the hypothesis is rejected, not consider this value of rank as a candidate
for the rank estimation. Numerical experiments have shown that the stationary check
improved the accuracy in the considered examples. However, in the absence of a trend,
such a check leads to a worsening of the rank estimation. For the TRMAT method, the
estimate of ϕ can be improved using the same weights caused by the Hankel structure of
trajectory matrices as it is in the TRMAT method itself.

We do not discuss the costs of the methods for the red noise case because estimating ϕ
and checking the stationarity of the residuals can be conducted in different ways and it is
currently difficult to choose the best one.

A general recommendation on the choice of a criterion that is based on numerical
experiments is as follows: If one does not take into account the considerable time con-
sumption associated with MGN, TRMAT can be recommended for both white and red
noise cases.

In addition, the paper presented an approach to comparing methods based on the
relative MSE as a function of the noise variance. The range of noise levels is divided
into plateaus and transitions, providing a more structured framework for interpreting the
comparison results. Without this approach, the comparison results were less organized and
difficult to interpret.

The application of the methods to real-world data sets demonstrated satisfactory out-
comes, with the suggestion that a variance-stabilizing transformation should be performed.

7. Conclusions

A number of information criteria have been proposed and investigated for estimat-
ing the amount of signal-related SSA components in the noisy signal model, including
applications to real-world time series. The approach that considers the matrix residuals
and the weights resulting from the Hankel structure of the trajectory matrices enabled the
construction of appropriate criteria, particularly in the case of white noise. The whitening
technique was employed in the processing of the red noise case. As might be expected, the
red noise case is more complex and offers less accurate results. Consequently, it is necessary
to implement additional verification procedures within the information criteria for signals
exhibiting trends. We have studied the possibility of testing the stationarity of the residuals.
In general, the proposed approach can be extended to the case of AR(p) noise.

Since the model order is typically used for a specific purpose, it is necessary to further
investigate the methods discussed in this paper from the perspective of addressing a
particular problem, such as trend extraction, parameter estimation, and forecasting.
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