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Abstract

:

The split delivery vehicle routing problem (SDVRP) is a relaxed variant of the capacitated vehicle routing problem (CVRP) where the restriction that each customer is visited precisely once is removed. Compared with CVRP, the SDVRP allows a reduction in the total cost of the routes traveled by vehicles. The exact methods to solve the SDVRP are computationally expensive. Moreover, the complexity and difficult implementation of the state-of-the-art heuristic approaches hinder their application in real-life scenarios of the SDVRP. In this paper, we propose an easily understandable and effective approach to solve the SDVPR based on an a priori adaptive splitting algorithm (AASA) that improves the existing state of the art on a priori split strategy in terms of both solution accuracy and time complexity. In this approach, the demand of the customers is split into smaller demand values using a splitting rule in advance. Consequently, the original SDVRP instance is converted to a CVRP instance which is solved using an existing CVRP solver. While the proposed a priori splitting rule in the literature is fixed for all customers regardless of their demand and location, we suggest an adaptive splitting rule that takes into account the distance of the customers to the depot and their demand values. Our experiments show that AASA can generate solutions comparable to the state of the art, but much faster.
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1. Introduction


The split delivery vehicle routing problem (SDVRP) introduced by [1] is a relaxation of the traditional capacitated vehicle routing problem (CVRP), where each customer can be visited more than once. In both CVRP and SDVRP, a number of identical vehicles having limited capacity serve a set of customers with given demands. The vehicles depart a depot and return to the depot after visiting customers. The pairwise travel costs between customers and between customers and the depot are given. The objective is to minimize the total travel cost of the vehicles. The difference between CVRP and SDVRP is that in contrast to CVRP, where each customer is required to be visited once and by only one vehicle, SDVRP allows multiple visits to a customer. Therefore, the demand of a customer may be split among multiple vehicles. The authors in [2] showed that splitting the customer demands potentially reduces the total cost by up to   50 %  . Furthermore, they show that there always exists an optimal solution to the SDVRP in which there is no k-split cycle and no two routes have more than one common customer.



Apart from environmental benefits, such as reduced emissions and energy efficiency, by allowing split deliveries, SDVRP can reduce the total distance traveled and the number of vehicles required. This optimization leads to lower fuel consumption, reduced vehicle wear and tear, and decreased maintenance costs. For businesses with large delivery fleets, these savings can be substantial. Split delivery may reduce labor, inventory, and storage costs as efficient routing reduces the time drivers spend on the road, which translates to lower labor costs. Reduced travel time also minimizes overtime and improves overall productivity. Moreover, split deliveries enable better alignment with demand patterns. By avoiding the need to stockpile large quantities of inventory, businesses can reduce warehousing costs and minimize the risk of overstocking or obsolescence. These findings justify the essence of formulating and solving the SDVRP.



State-of-the-art research has applied the SDVRP to various practical scenarios. For instance, Mullaseril et al. [3] addressed the problem of distributing feed to cattle on a large ranch in Arizona, where inaccuracies in feed loading necessitate split deliveries. Their approach, modeled as a capacitated rural postman problem with time windows, demonstrated that allowing split deliveries significantly reduced the total distance traveled by the fleet in most cases. Sierksma and Tijssen [4] studied the crew exchange process between offshore gas platforms in the North Sea. They formulated this as a discrete split delivery routing problem and employed integer programming with column generation and a cluster-and-route procedure. Their experiments showed that while their column generation approach (CGRP) was more accurate, the cluster-and-route (CR) method offered faster computation times. Song et al. [5] explored the distribution of newspapers from printing plants to agents in South Korea. They implemented a two-phase solution procedure, including agent allocation and split delivery scheduling, which improved the overall delivery efficiency and reduced costs by 15% compared to manual methods. More recently, within the context of waste management, ref. [6] utilized the SDVRP framework to model and solve complex waste collection and transportation challenges, incorporating realistic collection policies and offering insights into optimizing operational costs and fleet management, where they showed how an appropriate collection policy can significantly reduce fleet operating costs by 40–60% and fleet size by approximately 50% without causing overflow.



The SDVRP is known to be an NP-hard problem [7]. Therefore, exact solutions are only applicable to the SDVRP instances of smaller scale. Such methods typically formulate the SDVRP as a mixed integer linear program (MILP) [8] and propose different variants of branching algorithms such as branch-and-cut [9,10], branch-and-price [11,12], and branch-and-price-and-cut [13,14] for various versions of the SDVRP. However, with increasing the size of the problem, the corresponding MILP models will soon become intractable for exact solutions. To tackle this issue, various traditional approximation techniques, heuristics and metaheuristics have been proposed to deal with the high time-complexity of the large SDVRP models. For instance, a max–min clustering before solving the optimization problem is proposed in [15]. Tabu search has been used in several papers [16,17,18]. In [16], the authors proposed an approach relying on simulated annealing to solve the SDVRP. Other lines of research propose methods utilizing ant colony optimization [19,20], genetic algorithms [21,22], and particle swarm optimization [23,24], to solve the SDVRP. Using column generation is another optimization technique that has been applied to the SDVRP by [8,25]. The authors in [26] applied the cutting plane method to tackle the time complexity of the SDVRP.



Recently, the authors in [27] introduced a metaheuristic approach incorporating several mathematical programming components within an iterative local search framework. We refer to this method as ILS-MIP in the rest of the paper. ILS-MIP starts from an initial set of solutions obtained using the I1 Solomon heuristic followed by a perturbation step (to escape local optima), a local search step using classical neighborhood search heuristics, and several steps based on hybrid components. The hybrid components are called only if the incumbent solution of the search is not improved after a number of steps. The hybrid components encompass a mixed integer program (MIP)-based improvement heuristic performing two operations of inserting splits or removing potential unnecessary splits. Another used hybrid component is based on converting the current SDVRP solution to a CVRP instance and using a hybrid genetic search (HGS) framework [28] specialized to solve a CVRP. An MIP model is also used in the third component of the hybrid step where a residual problem is constructed by removing the edges that are not used in any solution of the current set of solutions. The residual problem is then solved using an MIP solver. Finally, the fourth component uses the branch-and-cut (BC) framework proposed in [29]. While ILS-MIP is a powerful and effective methodology, its complexity and significant runtime for larger instances makes it challenging for addressing real-world problems.



Although the state-of-the-art algorithms for the SDVRP are known for their ability to produce high-quality solutions, they often pose challenges in terms of complexity and practical implementation. In response to these challenges, the authors in [30] introduced an efficient algorithm that decomposes the SDVRP into two sub-problems. First, a demand-splitting rule is applied to all customers. The idea of splitting the customer demands was introduced in [31]; the authors propose a heuristic solution for SDVRP with time windows based on the column generation approach. In this paper, it is assumed that the demand of each customer is served by a number of orders selected from a set of feasible orders where each order is a pre-determined discrete split of the customer demand. The authors in [30] proposed applying the a priori splitting strategy in which the demand of each customer is split into smaller demands, each representing a new customer located in the same position as the original customer. As a result, a new problem instance is generated with an increased number of customers. Second, the new problem is assumed to be an instance of the CVRP which is solved using existing powerful CVRP solvers. The transformation of the SDVRP to a CVRP not only facilitates the implementation of SDVRP but also enables leveraging the rich literature on the CVRP. The obtained solution for the resulting CVRP is then translated back to the original SDVRP.



Regarding the splitting strategy, the solutions proposed in both [30,31] are based on a static splitting rule without taking into account the specific characteristics of the problem, such as customers’ location and demand. In the method proposed by [30], a fixed splitting rule that is inspired by the US coin denominations is applied to all customer demands and the VRPH solver introduced by [32] is used to solve the resulting CVRP instance. We refer to this algorithm as VRPHAS in the rest of this paper. The numerical evaluation of VRPHAS illustrates its ability to produce acceptable sub-optimal solutions in much less time compared to the state-of-the-art heuristic algorithms. However, the adoption of the introduced splitting rule is not well justified. Instead of applying a fixed rule to all customers, a splitting rule that is adaptive, based on the specific characteristics of a customer can potentially result in an improved solution for the SDVRP. In this paper, we study the problem of defining a good splitting rule for each customer. To this end, we introduce an a priori adaptive splitting algorithm (AASA). In combination with the VRPH solver, AASA results in an improved performance in terms of the optimality gap without significantly increasing the computational complexity of VRPHAS. AASA achieves this by taking into account the distance between the customers and the depot, the value of the customers’ demand along with the vehicles’ capacity. Similar to VRPHAS, AASA can be used with any CVRP solver. Thus, it provides a method to solve the SDVRP that is easily understandable, can be implemented simply, and generates high-quality solutions very quickly.



The rest of the paper is organized as follows. In Section 2.1, we provide a formal definition of the SDVRP. Our proposed solution is explained in Section 2.2. Section 3 presents the numerical results. Finally, the conclusion is discussed in Section 4.




2. Problem Definition and the Proposed Solution


2.1. SDVRP Definition


Let   G = ( V , E )   denote an undirected and weighted complete graph representing the network of customers and a depot. The vertex set   V = { 0 , … , n }   represents the depot denoted by the vertex 0 and n customers indexed as   1 , … , n  . A non-negative weight   c  i j    is associated with each edge of the graph   ( i , j ) ∈ E   that stands for the cost of traveling between customers i and j. Moreover, each customer   i ∈ V   has a positive demand, denoted by   d i  . A set of M vehicles is available to serve the customers’ demands. Each vehicle has a limited capacity denoted by Q. The objective of the SDVRP is to find a route for each vehicle such that the demands of all customers are satisfied with the minimum total cost. In this paper, we assume that the cost of traveling between customers   i , j ∈ V   is their Euclidean distance denoted by the function   d i s t  , i.e.,    c  i j   = d i s t  ( i , j )   .




2.2. Proposed Heuristic Algorithm for SDVRP


In the following, we first describe the idea of the a priori splitting rule proposed by [30] and then discuss the core algorithmic idea of AASA based on two motivational observations. We then formalize AASA in detail.



A Priori Splitting Rule


The proposed splitting rule in [30] is inspired by the US coin denominations. The authors propose two splitting options   20 / 10 / 5 / 1  , and   25 / 10 / 5 / 1  . The first option replaces customer i, with the demand of   d i  , by   m 20 i  ,   m 10 i  ,   m 5 i   and   m 1 i   customers with the demand values of   0.2 Q  ,   0.1 Q  ,   0.05 Q   and   0.01 Q  , respectively. Hence, we have:


   m 20 i  = m a x  { m ∈  Z +  ∪  { 0 }  : 0.2 Q m ≤  d i  }  ;  



(1)






   m 10 i  = m a x  { m ∈  Z +  ∪  { 0 }  : 0.1 Q m ≤  d i  − 0.2 Q  m 20 i  }  ;  



(2)






   m 5 i  = m a x  { m ∈  Z +  ∪  { 0 }  : 0.05 Q m ≤  d i  − 0.2 Q  m 20 i  − 0.1 Q  m 10 i  }  ;  



(3)






   m 1 i  = m a x  { m ∈  Z +  ∪  { 0 }  : 0.01 Q m ≤  d i  − 0.2 Q  m 20 i  − 0.1 Q  m 10 i  − 0.05 Q  m 5 i  }  .  



(4)







A similar breakdown can be given for the second splitting rule option. Using the splitting rule   20 / 10 / 5 / 1  , the demand of customer i is split into    m i  =  m 20 i  +  m 10 i  +  m 5 i  +  m 1 i    smaller values. The customer i is then replaced by   m i   customers located at the same position as customer i and with the demand values resulting from (1)–(4). After applying the splitting rule to all customers, a new graph is constructed with   m =  ∑  i = 1  n   m i    vertices (customers). The new graph is considered as an instance of the CVRP and the VRPH solver is used to solve it. The resulting solution is also a solution to the original SDVRP instance. In the next section, we justify the essence of the adaptation of the splitting rule and propose the AASA algorithm.





2.3. A Priori Adaptive Splitting Algorithm (AASA)


The a priori splitting rule described by Equations (1)–(4) is a fixed rule, i.e., a single splitting rule is applied to all customers regardless of their demand and location. However, the information regarding the customers’ demand and location can be leveraged in the vehicle routing decisions towards reducing the total travel cost as well as the size of the resulting CVRP instance. We propose an adaptive splitting rule based on the location and demand information that is shown to effectively improve the solution. In the following, we first present the motivation behind the main building blocks of our proposed splitting rule. We then explain the AASA algorithm.



2.3.1. Motivation


In this section, we present the motivation behind our proposed splitting algorithm through illustrative examples. We study the impact of the splitting rule granularity on the total travel cost and the solution runtime considering customers’ demand values and their distances from the depot. Our investigations reveal the benefits of using coarser/finer splitting rules for different customers depending on their demand and location. By a coarser splitting rule, we mean one that entails larger splitting portions as opposed to a finer splitting rule where the portions are smaller. For instance, for a demand point with   d = 200  , the splitting rule   200 = 128 + 64 + 8   is coarser compared to the rule   200 = 3 × 64 + 8  .



Impact of coarser rules for customers with higher demands: Using coarser rules for customers with high demands introduces a two-fold benefit: (i) it reduces the runtime due to a smaller number of resulting customers in the resulting CVRP and (ii) it often results in a lower total cost of delivery. To capture this effect, we employ an exponential pattern (such as 128/64/32/16/8/4/2) for the AASA rule. We illustrate this effect for the   P 04 _ 3070   instance of the third dataset provided in [33], as depicted in Figure 1. In this instance, the vehicle capacity is 200 and the depot is located at the location   ( 0 , 0 )   in Figure 1a,b. Each point in the plane corresponds to a customer. The routes of the vehicles in the obtained solution are denoted by different colors. Figure 1a,b show the solution of the SDVRP instance considering the   20 / 10 / 5 / 1   and   128 / 64 / 32 / 16 / 8 / 2   splitting rules, respectively. We observe that the splitting rule of   128 / 64 / 32 / 16 / 8 / 4 / 2   reduces the solver runtime by an order of   2.5  . The lower runtime is expected since using an exponential pattern in the splitting rule results in splitting the higher demands into a piece with a very high value and most likely fewer pieces in total. This effect can also be observed from the size of the generated CVRP instance. The   20 / 10 / 5 / 1   rule resulted in a new instance with 855 customers (nodes), while the   128 / 64 / 32 / 16 / 8 / 4 / 2   rule generated a network with 572 customers. Moreover, the coarser splitting rule of   128 / 64 / 32 / 16 / 8 / 4 / 2   resulted in a cost of   4424.64   that improves upon the cost of the rule   20 / 10 / 5 / 1   (proposed by the VRPHAS algorithm) by   1.34 %  .



Impact of coarser rules for customers further away from the depot: The second motivation behind our proposed AASA rule is that using coarser rules for the demands with a larger distance from the depot and splitting closer demands into smaller pieces results in lower solver runtime and possibly a better solution. The intuition behind this observation is that as the distance between a customer and the depot increases, each visit to that customer would significantly increase the cost. Therefore, it is desirable to satisfy the demand of further customers within the fewest possible number of visits and that is only possible by applying coarser splitting rules to those nodes. Moreover, by splitting closer-to-depot customer demands into smaller pieces, we provide the opportunity for the vehicles returning to the depot to utilize their remaining capacity to fulfill smaller demands and, therefore, minimize the fraction of their unused capacity. It is important to note that all of these intuitive statements are based on the fact that after splitting demands and generating a new network with a larger number of customers, we use the VRPH solver and basically solve the generated instance by a number of heuristic and metaheuristic methods. Figure 2a–c illustrate the above observation for the   S D 6   instance from [34]. The best-known solution for this instance is   830.86  . In Figure 2a,b, the results of using the   80 / 40 / 20 / 10   and   40 / 20 / 10   rules are shown. Although these two rules alone provide acceptable results with the costs of   863.43   and   881.21  , respectively, we observe that by using a combination of the two rules as shown in Figure 2c, we can achieve lower cost of   862.38  . In this experiment, the 32 customers are clustered into two categories of size 16. For the 16 customers closer to the depot, we used the splitting rule   40 / 20 / 10  , and the coarser splitting rule   80 / 40 / 20 / 10   is applied to the remaining 16 customers located farthest from the depot.




2.3.2. AASA Algorithm


The above observations highlight the significance of applying an adaptive splitting rule for different customers instead of using a fixed splitting rule for all customers, as in VRPHAS. Motivated by these observations, we incorporate the following factors into AASA:




	
Vehicle capacity: As implied by [30], it makes sense to look for the splitting rule as a function of the vehicle capacity. This not only presents a structured representation with vehicle capacity as the kernel allowing for better generalization but also leads the policy towards leaving the lowest portion of the vehicles’ capacities unused, and consequently, increases the vehicles’ utilization.



	
Customer location: We believe one potential improvement to the VRPHAS splitting rule is to personalize the rule for each customer considering its distance from the depot. We observe that if the customers that are located further from the depot are visited by one (or very few) vehicle(s), the total travel cost is lower. Otherwise, if a long distance needs to be traversed multiple times, the cost will be negatively impacted. This can be avoided by coarsening the splitting rule for further customers. In AASA, the impact of customers’ locations is addressed by partitioning the customers into a number of clusters based on their distance from the depot. We then use a different splitting rule for each cluster. A coarser splitting rule is used for clusters of customers further from the depot while finer rules are applied to the clusters closer to the depot.



	
Customer demand: Another important factor in the adaptation of the splitting rule is the demand of customers. Depending on how large the demand is, the splitting rule can be applied in full or partially to result in an appropriate number of additional demand points with appropriate demand values. In order to create the exponential pattern in the splitting rule, we propose to decompose the customers’ demands based on the different powers of prime numbers. For instance, the demand of a customer with   d = 199   served by vehicles with capacity   Q = 200   can be decomposed as   d =  2 7  +  2 6  +  2 2  +  2 1  + 1   if   p = 2  , and   d = 2 ×  3 4  +  3 3  +  3 2  + 1   if   p = 3  .








Leveraging the above factors, the AASA solution framework is shown in Figure 3. First, AASA employs a clustering algorithm to partition the customers into multiple levels. In our experiments, we used a simple distance-based clustering as follows:


     l a b e l  ( v )  = ℓ ,  if     ℓ − 1  L     d i s t   m a x   < d i s t  ( v , 0 )  ≤   ℓ L     d i s t   m a x   ,  ℓ ∈  { 1 , … , L }      



(5)




where L is the number of levels, and    d i s t   m a x    is the maximum customer–depot distance among all customers, i.e,     d i s t   m a x   = m a  x v   d i s t  ( v , 0 )   . As a result of this clustering rule, first, the customers are separated with L uniformly spaced rings around the depot. Second, for the customers at each level, the same splitting rule is applied. After all the demands are split, a CVRP instance is generated. Finally, the VRPH solver is used to solve the resulting CVRP instance.



The pseudo-code for AASA is given in Algorithm 1. The algorithm starts by taking as input the SDVRP instance as a graph   G = ( V , E )  , the vehicle capacity Q, the vector of customer–depot distances denoted by    d i s t  →   where     d i s t  →   ( v )  = d i s t  ( v , 0 )   , and the vector of customer demands   D →  . Next, it computes d, the greatest common divisor (  g c d  ) of the demands vector and the vehicle capacity, which will be used as a parameter in the adaptive splitting rule. The vehicles may carry goods only in quantities that are multiples of d units. This is to control the granularity of the splitting rule. Next, the demand vector is scaled down by d and averaged over the customers to find  μ  that is used in finding   s  m a x    determining the largest quantity of goods that is demanded by the customers in the equivalent CVRP model.






	Algorithm 1 A priori Adaptive Splitting Algorithm (AASA)



	
Input:   G =  ( V , E )  , Q ,   d i s t  →  ,  D →  , p  



Output:    G ′  =  (  V ′  ,  E ′  )   



	   1:

	
Initialize   L , d ← g c d  ( Q ,  D →  )   ,   μ ← a v g  (  D →  / d )  ,  s  m a x   ←  [ l o  g p μ  ]   




	   2:

	
for  i : 1 . . L  




	   3:

	
       s i  →  ← d ∗  ( e x  p p   { 0 . .  s  m a x   − i + 1 }  )   




	   4:

	
end for




	   5:

	
    l a b e l  →  = c l u s t e r i n g  ( V )                                                          ▹    l a b e l  →   ( v )  ∈  { 1 , . . . , L }   




	   6:

	
repeat




	   7:

	
     V = V ∖ { v }  




	   8:

	
     i ←   l a b e l  →   ( v )   




	   9:

	
      V ′  =  V ′  ∪  s p l i t  ( v ,   s i  →  )   




	  10:

	
until    V = ∅  




	  11:

	
return     G ′  =  (  V ′  ,  E ′  )   














The algorithm takes into account L different levels for the distance-based clustering as provided in (5). Then, for each level i, the splitting rule    s →  i   is determined using the value   s  m a x   . Next, the clustering of the customers is made according to Equation (5). The split function substitutes each node (customer) of the graph G with new customers according to the rule    s →  i   to gradually form the graph   G ′  . Note that the splitting rule ensures that the demands further away from the depot are split with coarser rules. Once the graph   G ′   is completed, the CVRP solver will solve the generated new problem. We experimented with different values of the prime number p and observed that   p = 2   has the best performance overall in the current version of AASA.



For example, consider the instance   S D 6   from SET-1 as shown in Figure 2. We will have   d = g c d (  D →  , Q )  , i.e.,   d = g c d ( 60 , 90 , 10 ) = 10  . The simple distance-based clustering in Equation (5) with   L = 2   results in two levels, where   l = 1   covers the customers that are furthest from the depot and   l = 2   covers the customers that are closest to the depot. We will have   μ = 7.5   and    s  m a x   = 3  . Therefore, for the first level, we have     s 1  →  =  { 10 , 20 , 40 , 80 }    and for     s 2  →  =  { 10 , 20 , 40 }   .



VRPH solver: Once the a priori splitting rule is applied to an SDVRP problem, any commercial solver can be used to solve the resulting CVRP instance. In this paper, we use the VRPH solver to solve CVRP instances. VRPH is a publicly available solver with a provable record of generating high-quality solutions. It takes as input a CVRP instance written to a file with a format similar to that of the Traveling Salesman Problem Library (TSPLIB) files and prints the solution to an output file. VRPH implements an open-source library of several local search heuristics for generating and improving feasible solutions to the CVRP instances. We refer the reader to [35] for a detailed description of the heuristics and the modular structure of the VRPH software. In this paper, we use VRPH as a standalone solver with the parameters set at their default values.






3. Performance Evaluation


In this section, we evaluate the performance of AASA through extensive numerical simulations. We benchmark the performance of AASA against three baseline strategies, using instances from datasets that are widely used in the literature for the comparison of various vehicle routing solutions. Table 1 presents the summary of the evaluation datasets used throughout this section. Further details about the instances of each dataset are provided in Section 3.1.



3.1. Benchmarking Instances


We consider 4 benchmarking sets that include 88 instances overall as presented in Table 1. SET-1 [34] contains 21 instances, each with customers uniformly distributed on the perimeter of concentric circles centered at the depot. The instances are sorted by the number of customers and the number of concentric circles. SET-2 [36] and SET-3 [33] instances use similar customer demand profiles but vary in the number of customers and vehicle capacity. These demands are randomly sampled from the range   [ a Q , b Q ]   with   ( a , b )   chosen by six different scenarios as in Table 1. SET-2 contains 14 and SET-3 contains 42 instances, 6 of which are repeated. Therefore, we test only the 36 of them that are not redundant. The coordinates of the customers in SET-2 are randomly generated using the coordinates of eil51, eil76, and eil101 from TSPLIB, which are also used in SET-4 [37]. SET-4 includes 11 instances where no specific rule is preserved throughout for generating the customer demands.




3.2. Benchmarking Solutions


We benchmark the performance of the AASA algorithm against the following baseline methods:




	
No-splitting (CVRP): The baseline method that treats an SDVRP instance as a CVRP instance and runs the VRPH [32] solver to generate solutions.



	
VRPHAS: The method based on a priori splitting that is proposed by [30].



	
ILS-MIP: The metaheuristic method proposed by [27].








We note that when computing the optimality gap corresponding to each method for each experimental instance, we take the best solution known in the literature as the reference solution. Furthermore, we note that in ILS-MIP, the travel cost between each pair of customers is assumed to be their rounded Euclidean distance except for SET-1 instances where the exact Euclidean distance is taken as the cost. Hence, we compare the results of ILS-MIP and AASA only for SET-1. For the rest of the datasets, we compare the performance of AASA against the No-splitting and the VRPHS methods.




3.3. Metrics and Setup


We consider the optimality gap and the solver runtime as metrics for performance comparison between the above strategies. The optimality gap which indicates the deviation from the best-known solution is defined as:


  g a p =    o b j −  best-known   solution    best-known   solution    ∗ 100  








where   o b j   is the objective value of the considered method. We run both VRPHAS and AASA algorithms on the same PC with an Intel Xeon processor at   3.2   GHz and 16 GB of main memory. It is important to note that the gap results we obtained for the VRPHAS method do not match the values presented in [30] for some instances. However, since we need to compare both the runtime and the gap results for the VRPHAS and AASA methods on similar hardware, we reflect the results of our run for VRPHAS. Moreover, we report the computation time of the ILS-MIP method presented in [27], including the values of time and   time best   corresponding to the time required for the proposed iterative algorithm to terminate and the time at which the best solution of ILS-MIP is achieved, respectively. A time limit (TL) is considered for the algorithm termination that is assumed to be equal to 1349 s by [27]. It is important to note that the ILS experiments are conducted on a PC with an Intel Core i7-8700 3.2 GHz processor and 32 GB of memory which is more powerful than our PC. Therefore, we can expect that ILS-MIP performs even worse in terms of computation time compared to AASA if both were run on the same hardware.




3.4. Numerical Results


3.4.1. CVRP Instance Attributes Comparison: AASA vs. VRPHAS


As illustrated in Section 2.3.1, one of the promises of our proposed splitting algorithm is generating smaller size CVRP instances that can be solved consistently faster. To show this, we present the size of the CVRP instances and the number of routes (i.e., vehicles) in the generated CVRP solution obtained by the splitting strategies of VRPHAS and AASA for the evaluation sets SET-1 to SET-4 in Table 2, Table 3, Table 4 and Table 5, respectively. It is observed that for all the benchmarking datasets, AASA reduces the size of the CVRP problem compared to the VRPHAS method. Moreover, the number of routes in the solution obtained by AASA is less than or equal to the VRPHAS solution except for a few instances. Although the reduced number of routes indicates the potential of AASA in producing better solutions compared to VRPHAS, it does not provide sufficient evidence for cost-efficiency since the actual routes taken by the vehicles determine the total cost. However, together with the solution gap results shown in the next section, we can conclude that AASA performs better than VRPHAS in terms of both solution quality and runtime and that is a result of the adaptive splitting approach we proposed.




3.4.2. Optimality Gap and Runtime Comparison: AASA against Baselines


Table 6 presents the performance of AASA against VRPHAS, ILS-MIP, and the no-splitting strategies for the instances of SET-1. First, we observe that the no-splitting method results in very low-quality solutions as the resulting optimality gap obtained by this method is very high compared to the VRPHAS, AASA, and ILS-MIP heuristics. Moreover, we observe that while the ILS-MIP strategy outperforms the AASA and VRPHAS solution approaches in terms of optimality gap for almost all instances of SET-1, it requires very large computation times. The average runtime for ILS-MIP is   992.38   s as opposed to the average runtime of   86.14   s and   30.56   s corresponding to the VRPHAS and AASA solution approaches, respectively. This huge time complexity hinders the practical application of the ILS-MIP approach in real-world problems with time sensitivity or scalability requirements. Figure 4 and Figure 5 illustrate the per-instance optimality gap and runtime of our proposed splitting rule against the fixed splitting rule introduced in VRPHAS. Our proposed method outperforms the VRPHAS in terms of time complexity for all instances, and it also improves upon the average optimality gap of VRPHAS. Moreover, while the VRPHAS method results in the   5.50 %   optimality gap in the worst-case scenario (  S D 16  ), AASA achieves the maximum optimality gap of   3.81 %   for the same instance. We also observe that AASA finds the best-known solution for four instances as opposed to the VRPHAS method obtaining the best-known solution for three instances of SET-1.



Table 7 shows the results of VRPHAS, AASA, and the no-splitting methodologies for the instances of SET-2. According to Table 7, the no-splitting approach results in a higher gap compared to both the VRPHAS and AASA rules. Furthermore, our proposed AASA strategy outperforms the VRPHAS method in terms of the average optimality gap, as well as runtime. Moreover, the per-instance results depicted in Figure 6 and Figure 7 indicate that the AASA strategy improves upon the optimality gap and solver runtime of the VRPHAS method for almost all instances of SET-2. It can also be observed that while the VRPHAS method exhibits an optimality gap of   2.51 %   in the worst-case scenario (  S 76 D 4  ), AASA achieves a maximum optimality gap of   1.97 %   (  S 51 D 6  ).



Similarly, the comparison of the results for SET-3 and SET-4 provided in Table 8 and Table 9 show that our proposed splitting algorithm again improves both average optimality gap and runtime of the VRPHAS splitting mechanism and, therefore, it can effectively generate higher-quality solutions, faster than VRPHAS. The improvement in the runtime is mainly owing to the rule granularity consideration introduced in AASA as discussed in Section 2.2, which results in smaller instances to be solved by the CVRP solver compared to the VRPHAS method. Figure 8 and Figure 9 illustrate the per-instance optimality gap and runtime of SET-3. According to Table 8 and Figure 8, although the VRPHAS method results in the maximum optimality gap of   3.27 %   (  p 11 _ 1090  ), the worst-case optimality gap achieved by AASA is   2.54 %   (  p 02 _ 7090  ). The optimality gap and run-time of SET-4 instances are presented in Figure 10 and Figure 11. Table 9 and Figure 10 illustrate that the AASA method improves the worst-case optimality gap of VRPHAS in SET-4, since AASA achieves the maximum optimality gap of   2.02 %   (  e i l A 101  ) as opposed to the maximum gap of   2.35 %   obtained by VRPHAS for the same instance.






4. Conclusions


In this paper, we propose an efficient and effective heuristic algorithm for the SDVRP based on a two-step procedure of splitting the demand of customers into smaller demands and solving the generated network assuming it to be a CVRP instance. Our approach focuses on enhancing the state-of-the-art splitting rule by considering customer locations and demand values. Our proposed adaptive splitting algorithm incorporates clustering customers based on their location and choosing a specific splitting rule for each cluster. It is shown to outperform the fixed splitting rule of the approach adopted by the state of the art, for all four benchmark datasets on average, with respect to both performance and computational effort.
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Figure 1. Impact of using splitting rules with different granularity for different demands. 
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Figure 2. Impact of using splitting rules with different granularity according to the customers’ distance to the depot. 
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Figure 3. AASA framework. 
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Figure 4. Per-instance gap of SET-1. 
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Figure 5. Per-Instance solver runtime of SET-1. 
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Figure 6. Per-instance gap of SET-2. 
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Figure 7. Per-instance solver runtime of SET-2. 
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Figure 8. Per-instance gap of SET-3. 
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Figure 9. Per-instance solver runtime of SET-3. 
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Figure 10. Per-instance AASA gap of SET-4. 
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Figure 11. Per-instance solver runtime of SET-4. 
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Table 1. Evaluation datasets.
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	Dataset
	Number of Instances
	Number of Customers (N)
	Vehicle Capacity (Q)
	Customers’ Demands





	SET-1
	21
	   [ 8 , 288 ]   
	100
	   { 60 , 90 }   



	SET-2
	14
	   { 50 , 75 , 100 }   
	160
	randomly from     [ a Q , b Q ]    1   



	SET-3
	42
	   [ 50 , 199 ]   
	   [ 140 , 200 ]   
	randomly from     [ a Q , b Q ]    1   



	SET-4
	11
	   [ 21 , 100 ]   
	   [ 112 , 8000 ]   
	No pattern







1   ( a , b ) ∈ { ( 0.01 , 0.1 ) , ( 0.1 , 0.3 ) , ( 0.1 , 0.5 ) , ( 0.1 , 0.9 ) , ( 0.3 , 0.7 ) , ( 0.7 , 0.9 ) }  , corresponding to six different cases.













 





Table 2. CVRP instance attributes: VRPHAS vs. AASA on SET-1.
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Instance

	
CVRP Size

	
Number of Routes






	

	
VRPHAS

	
AASA

	
VRPHAS

	
AASA




	
SD1

	
32

	
18

	
8

	
7




	
SD2

	
64

	
42

	
14

	
13




	
SD3

	
64

	
36

	
13

	
13




	
SD4

	
96

	
54

	
19

	
20




	
SD5

	
128

	
84

	
26

	
26




	
SD6

	
128

	
72

	
29

	
28




	
SD7

	
160

	
110

	
34

	
34




	
SD8

	
192

	
134

	
41

	
41




	
SD9

	
192

	
126

	
39

	
39




	
SD10

	
256

	
168

	
55

	
56




	
SD11

	
320

	
222

	
68

	
68




	
SD12

	
320

	
220

	
68

	
68




	
SD13

	
384

	
272

	
80

	
83




	
SD14

	
480

	
330

	
103

	
100




	
SD15

	
576

	
403

	
123

	
121




	
SD16

	
576

	
324

	
128

	
129




	
SD17

	
640

	
444

	
138

	
140




	
SD18

	
640

	
440

	
141

	
139




	
SD19

	
768

	
535

	
167

	
165




	
SD20

	
960

	
666

	
210

	
208




	
SD21

	
1152

	
756

	
259

	
259











 





Table 3. CVRP instance attributes: VRPHAS vs. AASA on SET-2.
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Instance

	
CVRP Size

	
Number of Routes






	

	
VRPHAS

	
AASA

	
VRPHAS

	
AASA




	
S51D1

	
139

	
109

	
3

	
3




	
S51D2

	
167

	
150

	
10

	
10




	
S51D3

	
209

	
162

	
17

	
17




	
S51D4

	
246

	
247

	
32

	
32




	
S51D5

	
253

	
231

	
28

	
28




	
S51D6

	
307

	
246

	
50

	
50




	
S76D1

	
218

	
176

	
4

	
4




	
S76D2

	
263

	
245

	
16

	
16




	
S76D3

	
327

	
283

	
24

	
24




	
S76D4

	
352

	
352

	
41

	
40




	
S101D1

	
276

	
218

	
5

	
5




	
S101D2

	
345

	
315

	
21

	
21




	
S101D3

	
428

	
372

	
34

	
33




	
S101D5

	
500

	
472

	
58

	
56











 





Table 4. CVRP instance attributes: VRPHAS vs. AASA on SET-3.
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Instance

	
CVRP Size

	
Number of Routes






	

	
VRPHAS

	
AASA

	
VRPHAS

	
AASA




	
p01_110

	
121

	
92

	
3

	
3




	
p01_1030

	
176

	
148

	
11

	
11




	
p01_1050

	
207

	
193

	
17

	
17




	
p01_1090

	
268

	
204

	
33

	
33




	
p01_3070

	
257

	
198

	
33

	
33




	
p01_7090

	
326

	
240

	
50

	
50




	
p02_110

	
182

	
168

	
5

	
5




	
p02_1030

	
204

	
231

	
17

	
17




	
p02_1050

	
297

	
283

	
27

	
27




	
p02_1090

	
382

	
377

	
48

	
47




	
p02_3070

	
370

	
293

	
48

	
48




	
p02_7090

	
462

	
377

	
75

	
75




	
p03_110

	
346

	
244

	
6

	
6




	
p03_1030

	
411

	
333

	
23

	
23




	
p03_1050

	
471

	
376

	
37

	
37




	
p03_1090

	
608

	
476

	
67

	
67




	
p03_3070

	
571

	
369

	
66

	
66




	
p03_7090

	
711

	
591

	
100

	
99




	
p04_110

	
516

	
315

	
10

	
10




	
p04_1030

	
613

	
467

	
34

	
34




	
p04_1050

	
705

	
547

	
55

	
55




	
p04_1090

	
915

	
676

	
98

	
98




	
p04_3070

	
855

	
649

	
98

	
98




	
p04_7090

	
1063

	
879

	
149

	
149




	
p05_110

	
657

	
475

	
12

	
12




	
p05_1030

	
804

	
616

	
43

	
43




	
p05_1050

	
920

	
621

	
67

	
69




	
p05_1090

	
1169

	
824

	
123

	
124




	
p05_3070

	
1119

	
806

	
124

	
126




	
p05_7090

	
1401

	
1082

	
199

	
197




	
p11_110

	
422

	
233

	
8

	
8




	
p11_1030

	
489

	
388

	
27

	
27




	
p11_1050

	
560

	
475

	
42

	
43




	
p11_1090

	
722

	
543

	
78

	
78




	
p11_3070

	
680

	
500

	
77

	
76




	
p11_7090

	
849

	
663

	
119

	
119











 





Table 5. CVRP instance attributes: VRPHAS vs. AASA on SET-4.
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Instance

	
CVRP Size

	
Number of Routes






	

	
VRPHAS

	
AASA

	
VRPHAS

	
AASA




	
eil22

	
69

	
47

	
4

	
4




	
eil23

	
74

	
44

	
3

	
3




	
eil30

	
110

	
57

	
4

	
4




	
eil33

	
108

	
72

	
4

	
4




	
eil51

	
157

	
139

	
6

	
6




	
eilA76

	
228

	
215

	
10

	
10




	
eilB76

	
254

	
215

	
15

	
15




	
eilC76

	
231

	
201

	
8

	
8




	
eilD76

	
216

	
215

	
7

	
7




	
eilA101

	
347

	
248

	
8

	
8




	
eilB101

	
265

	
248

	
14

	
14











 





Table 6. Performance of VRPHAS, AASA, and ILS-MIP on SET-1.
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Instance

	
Best-Known

	
VRPHAS

	
AASA

	
ILS-MIP

	
No Splitting






	

	
Solution

	
Gap (%)

	
Time (s)

	
Cost

	
Gap (%)

	
Time (s)

	
Gap

	
Time–  Time best   (s)

	
Gap (%)




	
SD1

	
228.28

	
0.00

	
0.51

	
228.28

	
0.00

	
1.60

	
0.00

	
25.10–0.00

	
5.13




	
SD2

	
708.28

	
0.00

	
1.23

	
708.28

	
0.00

	
2.85

	
0.00

	
47.51–0.00

	
12.94




	
SD3

	
430.40

	
0.04

	
1.25

	
430.58

	
0.04

	
2.57

	
0.05

	
37.68–0.00

	
11.51




	
SD4

	
630.62

	
0.07

	
2.35

	
631.04

	
0.07

	
3.57

	
0.07

	
75.45–0.00

	
14.17




	
SD5

	
1389.94

	
1.22

	
3.91

	
1390.57

	
0.05

	
5.66

	
0.05

	
216.69–0.80

	
15.10




	
SD6

	
830.86

	
0.05

	
3.85

	
831.24

	
0.05

	
5.09

	
0.04

	
202.60–92.42

	
15.47




	
SD7

	
3640.00

	
0.55

	
5.47

	
3640.00

	
0.00

	
7.79

	
0.00

	
TL–0.00

	
20.87




	
SD8

	
5068.28

	
0.00

	
7.64

	
5068.28

	
0.00

	
10.43

	
0.00

	
TL–0.00

	
23.11




	
SD9

	
2042.88

	
0.72

	
7.50

	
2051.06

	
0.40

	
8.97

	
0.07

	
TL–39187

	
17.47




	
SD10

	
2683.73

	
0.95

	
13.73

	
2704.88

	
0.79

	
13.68

	
0.38

	
TL–960.42

	
19.23




	
SD11

	
13,280.00

	
0.15

	
20.59

	
13,480.00

	
1.50

	
18.43

	
0.00

	
TL–0.00

	
26.50




	
SD12

	
7213.62

	
0.73

	
20.89

	
7238.88

	
0.34

	
20.99

	
0.09

	
TL–1223.31

	
21.99




	
SD13

	
10,105.86

	
0.05

	
25.90

	
10,110.58

	
0.05

	
22.05

	
0.05

	
TL–1091.84

	
23.49




	
SD14

	
10,717.53

	
0.70

	
42.57

	
10,804.84

	
0.81

	
32.03

	
0.22

	
TL–967.30

	
23.16




	
SD15

	
15,094.48

	
0.93

	
59.43

	
15,232.60

	
0.91

	
47.32

	
0.37

	
TL–318.44

	
24.01




	
SD16

	
3379.33

	
5.50

	
54.88

	
3508.16

	
3.81

	
30.16

	
0.11

	
TL–0.01

	
27.83




	
SD17

	
26,493.56

	
0.25

	
66.98

	
26,962.64

	
1.56

	
50.14

	
0.1

	
TL–1328.05

	
26.82




	
SD18

	
14,202.53

	
0.69

	
72.04

	
14,278.70

	
0.54

	
54.75

	
0.46

	
TL–1347.05

	
23.92




	
SD19

	
19,995.69

	
1.00

	
101.05

	
20,197.04

	
1.00

	
70.14

	
0.64

	
TL–1328.17

	
24.82




	
SD20

	
39,635.51

	
0.17

	
162.90

	
40,236.66

	
1.51

	
104.51

	
0.25

	
TL–1328.44

	
27.15




	
SD21

	
11,271.06

	
3.41

	
240.36

	
11,576.96

	
2.71

	
129.31

	
0.2

	
TL–0.07

	
27.76




	
Average

	

	
0.82

	
86.14

	

	
0.76

	
30.56

	
0.15

	
992.38–494.17

	
20.60











 





Table 7. Performance of VRPHAS, AASA, and the no-splitting methodologies on SET-2.
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Instance

	
Best-Known

	
VRPHAS

	
AASA

	
No Splitting






	

	
Solution

	
Gap (%)

	
Time (s)

	
Cost

	
Gap (%)

	
Time (s)

	
Gap (%)




	
S51D1

	
459.50

	
0.00

	
10.98

	
459.50

	
0.00

	
7.92

	
0.00




	
S51D2

	
709.29

	
0.77

	
15.04

	
713.80

	
0.63

	
11.22

	
1.71




	
S51D3

	
948.06

	
1.88

	
20.28

	
959.92

	
1.25

	
13.04

	
3.19




	
S51D4

	
1562.01

	
1.94

	
28.24

	
1583.88

	
1.40

	
22.94

	
7.32




	
S51D5

	
1333.67

	
1.03

	
30.68

	
1343.109

	
0.71

	
20.81

	
8.89




	
S51D6

	
2169.10

	
1.86

	
43.81

	
2211.90

	
1.97

	
23.37

	
10.75




	
S76D1

	
598.94

	
0.00

	
23.18

	
598.94

	
0.00

	
14.55

	
0.78




	
S76D2

	
1087.40

	
1.82

	
32.48

	
1104.88

	
1.61

	
22.43

	
2.79




	
S76D3

	
1427.86

	
1.93

	
46.99

	
1436.99

	
0.64

	
28.05

	
2.52




	
S76D4

	
2079.76

	
2.51

	
55.89

	
2120.16

	
1.94

	
40.09

	
5.41




	
S101D1

	
726.59

	
1.23

	
34.03

	
729.72

	
0.43

	
42.31

	
1.14




	
S101D2

	
1378.43

	
2.00

	
52.44

	
1399.67

	
1.54

	
34.45

	
1.67




	
S101D3

	
1874.81

	
1.85

	
70.64

	
1905.43

	
1.63

	
41.05

	