
Citation: Torkzaban, N.; Gholami, A.;

Baras, J.S.; Golden, B.L. AASA: A

Priori Adaptive Splitting Algorithm

for the Split Delivery Vehicle Routing

Problem. Algorithms 2024, 17, 396.

https://doi.org/10.3390/a17090396

Academic Editor: Frank Werner

Received: 6 June 2024

Revised: 17 August 2024

Accepted: 29 August 2024

Published: 6 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

AASA: A Priori Adaptive Splitting Algorithm for the Split
Delivery Vehicle Routing Problem
Nariman Torkzaban 1,*,†, Anousheh Gholami 1,†, John S. Baras 1 and Bruce L. Golden 2,*

1 Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742, USA;
anousheh@umd.edu (A.G.); baras@umd.edu (J.S.B.)

2 Robert H. Smith School of Business, University of Maryland, College Park 20742, MD, USA
* Correspondence: narimant@umd.edu (N.T.); bgolden@umd.edu (B.L.G.)
† These authors contributed equally to this work.

Abstract: The split delivery vehicle routing problem (SDVRP) is a relaxed variant of the capacitated
vehicle routing problem (CVRP) where the restriction that each customer is visited precisely once is
removed. Compared with CVRP, the SDVRP allows a reduction in the total cost of the routes traveled
by vehicles. The exact methods to solve the SDVRP are computationally expensive. Moreover, the
complexity and difficult implementation of the state-of-the-art heuristic approaches hinder their
application in real-life scenarios of the SDVRP. In this paper, we propose an easily understandable
and effective approach to solve the SDVPR based on an a priori adaptive splitting algorithm (AASA)
that improves the existing state of the art on a priori split strategy in terms of both solution accuracy
and time complexity. In this approach, the demand of the customers is split into smaller demand
values using a splitting rule in advance. Consequently, the original SDVRP instance is converted to a
CVRP instance which is solved using an existing CVRP solver. While the proposed a priori splitting
rule in the literature is fixed for all customers regardless of their demand and location, we suggest an
adaptive splitting rule that takes into account the distance of the customers to the depot and their
demand values. Our experiments show that AASA can generate solutions comparable to the state of
the art, but much faster.

Keywords: split delivery vehicle routing problem; capacitated vehicle routing problem; splitting rule

1. Introduction

The split delivery vehicle routing problem (SDVRP) introduced by [1] is a relaxation
of the traditional capacitated vehicle routing problem (CVRP), where each customer can
be visited more than once. In both CVRP and SDVRP, a number of identical vehicles
having limited capacity serve a set of customers with given demands. The vehicles depart
a depot and return to the depot after visiting customers. The pairwise travel costs between
customers and between customers and the depot are given. The objective is to minimize
the total travel cost of the vehicles. The difference between CVRP and SDVRP is that in
contrast to CVRP, where each customer is required to be visited once and by only one
vehicle, SDVRP allows multiple visits to a customer. Therefore, the demand of a customer
may be split among multiple vehicles. The authors in [2] showed that splitting the customer
demands potentially reduces the total cost by up to 50%. Furthermore, they show that there
always exists an optimal solution to the SDVRP in which there is no k-split cycle and no
two routes have more than one common customer.

Apart from environmental benefits, such as reduced emissions and energy efficiency,
by allowing split deliveries, SDVRP can reduce the total distance traveled and the number
of vehicles required. This optimization leads to lower fuel consumption, reduced vehicle
wear and tear, and decreased maintenance costs. For businesses with large delivery fleets,
these savings can be substantial. Split delivery may reduce labor, inventory, and storage

Algorithms 2024, 17, 396. https://doi.org/10.3390/a17090396 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a17090396
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-5270-6094
https://doi.org/10.3390/a17090396
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a17090396?type=check_update&version=1


Algorithms 2024, 17, 396 2 of 19

costs as efficient routing reduces the time drivers spend on the road, which translates to
lower labor costs. Reduced travel time also minimizes overtime and improves overall
productivity. Moreover, split deliveries enable better alignment with demand patterns.
By avoiding the need to stockpile large quantities of inventory, businesses can reduce
warehousing costs and minimize the risk of overstocking or obsolescence. These findings
justify the essence of formulating and solving the SDVRP.

State-of-the-art research has applied the SDVRP to various practical scenarios. For in-
stance, Mullaseril et al. [3] addressed the problem of distributing feed to cattle on a large
ranch in Arizona, where inaccuracies in feed loading necessitate split deliveries. Their ap-
proach, modeled as a capacitated rural postman problem with time windows, demonstrated
that allowing split deliveries significantly reduced the total distance traveled by the fleet in
most cases. Sierksma and Tijssen [4] studied the crew exchange process between offshore
gas platforms in the North Sea. They formulated this as a discrete split delivery routing
problem and employed integer programming with column generation and a cluster-and-
route procedure. Their experiments showed that while their column generation approach
(CGRP) was more accurate, the cluster-and-route (CR) method offered faster computation
times. Song et al. [5] explored the distribution of newspapers from printing plants to
agents in South Korea. They implemented a two-phase solution procedure, including agent
allocation and split delivery scheduling, which improved the overall delivery efficiency
and reduced costs by 15% compared to manual methods. More recently, within the context
of waste management, ref. [6] utilized the SDVRP framework to model and solve complex
waste collection and transportation challenges, incorporating realistic collection policies
and offering insights into optimizing operational costs and fleet management, where they
showed how an appropriate collection policy can significantly reduce fleet operating costs
by 40–60% and fleet size by approximately 50% without causing overflow.

The SDVRP is known to be an NP-hard problem [7]. Therefore, exact solutions are
only applicable to the SDVRP instances of smaller scale. Such methods typically formulate
the SDVRP as a mixed integer linear program (MILP) [8] and propose different variants of
branching algorithms such as branch-and-cut [9,10], branch-and-price [11,12], and branch-
and-price-and-cut [13,14] for various versions of the SDVRP. However, with increasing the
size of the problem, the corresponding MILP models will soon become intractable for exact
solutions. To tackle this issue, various traditional approximation techniques, heuristics
and metaheuristics have been proposed to deal with the high time-complexity of the
large SDVRP models. For instance, a max–min clustering before solving the optimization
problem is proposed in [15]. Tabu search has been used in several papers [16–18]. In [16],
the authors proposed an approach relying on simulated annealing to solve the SDVRP.
Other lines of research propose methods utilizing ant colony optimization [19,20], genetic
algorithms [21,22], and particle swarm optimization [23,24], to solve the SDVRP. Using
column generation is another optimization technique that has been applied to the SDVRP
by [8,25]. The authors in [26] applied the cutting plane method to tackle the time complexity
of the SDVRP.

Recently, the authors in [27] introduced a metaheuristic approach incorporating several
mathematical programming components within an iterative local search framework. We
refer to this method as ILS-MIP in the rest of the paper. ILS-MIP starts from an initial set
of solutions obtained using the I1 Solomon heuristic followed by a perturbation step (to
escape local optima), a local search step using classical neighborhood search heuristics,
and several steps based on hybrid components. The hybrid components are called only if
the incumbent solution of the search is not improved after a number of steps. The hybrid
components encompass a mixed integer program (MIP)-based improvement heuristic
performing two operations of inserting splits or removing potential unnecessary splits.
Another used hybrid component is based on converting the current SDVRP solution to
a CVRP instance and using a hybrid genetic search (HGS) framework [28] specialized to
solve a CVRP. An MIP model is also used in the third component of the hybrid step where
a residual problem is constructed by removing the edges that are not used in any solution



Algorithms 2024, 17, 396 3 of 19

of the current set of solutions. The residual problem is then solved using an MIP solver.
Finally, the fourth component uses the branch-and-cut (BC) framework proposed in [29].
While ILS-MIP is a powerful and effective methodology, its complexity and significant
runtime for larger instances makes it challenging for addressing real-world problems.

Although the state-of-the-art algorithms for the SDVRP are known for their ability
to produce high-quality solutions, they often pose challenges in terms of complexity and
practical implementation. In response to these challenges, the authors in [30] introduced an
efficient algorithm that decomposes the SDVRP into two sub-problems. First, a demand-
splitting rule is applied to all customers. The idea of splitting the customer demands was
introduced in [31]; the authors propose a heuristic solution for SDVRP with time windows
based on the column generation approach. In this paper, it is assumed that the demand of
each customer is served by a number of orders selected from a set of feasible orders where
each order is a pre-determined discrete split of the customer demand. The authors in [30]
proposed applying the a priori splitting strategy in which the demand of each customer is
split into smaller demands, each representing a new customer located in the same position
as the original customer. As a result, a new problem instance is generated with an increased
number of customers. Second, the new problem is assumed to be an instance of the CVRP
which is solved using existing powerful CVRP solvers. The transformation of the SDVRP
to a CVRP not only facilitates the implementation of SDVRP but also enables leveraging the
rich literature on the CVRP. The obtained solution for the resulting CVRP is then translated
back to the original SDVRP.

Regarding the splitting strategy, the solutions proposed in both [30,31] are based on a
static splitting rule without taking into account the specific characteristics of the problem,
such as customers’ location and demand. In the method proposed by [30], a fixed splitting
rule that is inspired by the US coin denominations is applied to all customer demands
and the VRPH solver introduced by [32] is used to solve the resulting CVRP instance. We
refer to this algorithm as VRPHAS in the rest of this paper. The numerical evaluation
of VRPHAS illustrates its ability to produce acceptable sub-optimal solutions in much
less time compared to the state-of-the-art heuristic algorithms. However, the adoption
of the introduced splitting rule is not well justified. Instead of applying a fixed rule to
all customers, a splitting rule that is adaptive, based on the specific characteristics of a
customer can potentially result in an improved solution for the SDVRP. In this paper, we
study the problem of defining a good splitting rule for each customer. To this end, we
introduce an a priori adaptive splitting algorithm (AASA). In combination with the VRPH
solver, AASA results in an improved performance in terms of the optimality gap without
significantly increasing the computational complexity of VRPHAS. AASA achieves this
by taking into account the distance between the customers and the depot, the value of
the customers’ demand along with the vehicles’ capacity. Similar to VRPHAS, AASA can
be used with any CVRP solver. Thus, it provides a method to solve the SDVRP that is
easily understandable, can be implemented simply, and generates high-quality solutions
very quickly.

The rest of the paper is organized as follows. In Section 2.1, we provide a formal
definition of the SDVRP. Our proposed solution is explained in Section 2.2. Section 3
presents the numerical results. Finally, the conclusion is discussed in Section 4.

2. Problem Definition and the Proposed Solution
2.1. SDVRP Definition

Let G = (V, E) denote an undirected and weighted complete graph representing the
network of customers and a depot. The vertex set V = {0, . . . , n} represents the depot
denoted by the vertex 0 and n customers indexed as 1, . . . , n. A non-negative weight cij
is associated with each edge of the graph (i, j) ∈ E that stands for the cost of traveling
between customers i and j. Moreover, each customer i ∈ V has a positive demand, denoted
by di. A set of M vehicles is available to serve the customers’ demands. Each vehicle has
a limited capacity denoted by Q. The objective of the SDVRP is to find a route for each



Algorithms 2024, 17, 396 4 of 19

vehicle such that the demands of all customers are satisfied with the minimum total cost.
In this paper, we assume that the cost of traveling between customers i, j ∈ V is their
Euclidean distance denoted by the function dist, i.e., cij = dist(i, j).

2.2. Proposed Heuristic Algorithm for SDVRP

In the following, we first describe the idea of the a priori splitting rule proposed
by [30] and then discuss the core algorithmic idea of AASA based on two motivational
observations. We then formalize AASA in detail.

A Priori Splitting Rule

The proposed splitting rule in [30] is inspired by the US coin denominations. The au-
thors propose two splitting options 20/10/5/1, and 25/10/5/1. The first option replaces
customer i, with the demand of di, by mi

20, mi
10, mi

5 and mi
1 customers with the demand

values of 0.2Q, 0.1Q, 0.05Q and 0.01Q, respectively. Hence, we have:

mi
20 = max{m ∈ Z+ ∪ {0} : 0.2Qm ≤ di}; (1)

mi
10 = max{m ∈ Z+ ∪ {0} : 0.1Qm ≤ di − 0.2Qmi

20}; (2)

mi
5 = max{m ∈ Z+ ∪ {0} : 0.05Qm ≤ di − 0.2Qmi

20 − 0.1Qmi
10}; (3)

mi
1 = max{m ∈ Z+ ∪ {0} : 0.01Qm ≤ di − 0.2Qmi

20 − 0.1Qmi
10 − 0.05Qmi

5}. (4)

A similar breakdown can be given for the second splitting rule option. Using the
splitting rule 20/10/5/1, the demand of customer i is split into mi = mi

20 + mi
10 + mi

5 + mi
1

smaller values. The customer i is then replaced by mi customers located at the same
position as customer i and with the demand values resulting from (1)–(4). After applying
the splitting rule to all customers, a new graph is constructed with m = ∑n

i=1 mi vertices
(customers). The new graph is considered as an instance of the CVRP and the VRPH solver
is used to solve it. The resulting solution is also a solution to the original SDVRP instance.
In the next section, we justify the essence of the adaptation of the splitting rule and propose
the AASA algorithm.

2.3. A Priori Adaptive Splitting Algorithm (AASA)

The a priori splitting rule described by Equations (1)–(4) is a fixed rule, i.e., a single
splitting rule is applied to all customers regardless of their demand and location. However,
the information regarding the customers’ demand and location can be leveraged in the
vehicle routing decisions towards reducing the total travel cost as well as the size of the
resulting CVRP instance. We propose an adaptive splitting rule based on the location and
demand information that is shown to effectively improve the solution. In the following, we
first present the motivation behind the main building blocks of our proposed splitting rule.
We then explain the AASA algorithm.

2.3.1. Motivation

In this section, we present the motivation behind our proposed splitting algorithm
through illustrative examples. We study the impact of the splitting rule granularity on
the total travel cost and the solution runtime considering customers’ demand values and
their distances from the depot. Our investigations reveal the benefits of using coarser/finer
splitting rules for different customers depending on their demand and location. By a
coarser splitting rule, we mean one that entails larger splitting portions as opposed to
a finer splitting rule where the portions are smaller. For instance, for a demand point
with d = 200, the splitting rule 200 = 128 + 64 + 8 is coarser compared to the rule
200 = 3× 64 + 8.

Impact of coarser rules for customers with higher demands: Using coarser rules for
customers with high demands introduces a two-fold benefit: (i) it reduces the runtime due
to a smaller number of resulting customers in the resulting CVRP and (ii) it often results



Algorithms 2024, 17, 396 5 of 19

in a lower total cost of delivery. To capture this effect, we employ an exponential pattern
(such as 128/64/32/16/8/4/2) for the AASA rule. We illustrate this effect for the P04_3070
instance of the third dataset provided in [33], as depicted in Figure 1. In this instance,
the vehicle capacity is 200 and the depot is located at the location (0, 0) in Figure 1a,b. Each
point in the plane corresponds to a customer. The routes of the vehicles in the obtained
solution are denoted by different colors. Figure 1a,b show the solution of the SDVRP
instance considering the 20/10/5/1 and 128/64/32/16/8/2 splitting rules, respectively.
We observe that the splitting rule of 128/64/32/16/8/4/2 reduces the solver runtime
by an order of 2.5. The lower runtime is expected since using an exponential pattern in
the splitting rule results in splitting the higher demands into a piece with a very high
value and most likely fewer pieces in total. This effect can also be observed from the size
of the generated CVRP instance. The 20/10/5/1 rule resulted in a new instance with
855 customers (nodes), while the 128/64/32/16/8/4/2 rule generated a network with
572 customers. Moreover, the coarser splitting rule of 128/64/32/16/8/4/2 resulted in
a cost of 4424.64 that improves upon the cost of the rule 20/10/5/1 (proposed by the
VRPHAS algorithm) by 1.34%.

(a) 20/10/5/1 rule, 231.91 s (b) 128/64/32/16/8/4/2 rule, 86.67 s

Figure 1. Impact of using splitting rules with different granularity for different demands.

Impact of coarser rules for customers further away from the depot: The second
motivation behind our proposed AASA rule is that using coarser rules for the demands
with a larger distance from the depot and splitting closer demands into smaller pieces
results in lower solver runtime and possibly a better solution. The intuition behind this
observation is that as the distance between a customer and the depot increases, each visit
to that customer would significantly increase the cost. Therefore, it is desirable to satisfy
the demand of further customers within the fewest possible number of visits and that is
only possible by applying coarser splitting rules to those nodes. Moreover, by splitting
closer-to-depot customer demands into smaller pieces, we provide the opportunity for the
vehicles returning to the depot to utilize their remaining capacity to fulfill smaller demands
and, therefore, minimize the fraction of their unused capacity. It is important to note that
all of these intuitive statements are based on the fact that after splitting demands and
generating a new network with a larger number of customers, we use the VRPH solver and
basically solve the generated instance by a number of heuristic and metaheuristic methods.
Figure 2a–c illustrate the above observation for the SD6 instance from [34]. The best-known
solution for this instance is 830.86. In Figure 2a,b, the results of using the 80/40/20/10 and
40/20/10 rules are shown. Although these two rules alone provide acceptable results with
the costs of 863.43 and 881.21, respectively, we observe that by using a combination of the
two rules as shown in Figure 2c, we can achieve lower cost of 862.38. In this experiment,
the 32 customers are clustered into two categories of size 16. For the 16 customers closer to



Algorithms 2024, 17, 396 6 of 19

the depot, we used the splitting rule 40/20/10, and the coarser splitting rule 80/40/20/10
is applied to the remaining 16 customers located farthest from the depot.

(a) 80/40/20/10 rule,
4.98 s

(b) 40/20/10 rule,
5.90 s.

(c) 80/40/20/10 and 40/20/10
combined rule, 5.41 s

Figure 2. Impact of using splitting rules with different granularity according to the customers’
distance to the depot.

2.3.2. AASA Algorithm

The above observations highlight the significance of applying an adaptive splitting
rule for different customers instead of using a fixed splitting rule for all customers, as in VR-
PHAS. Motivated by these observations, we incorporate the following factors into AASA:

• Vehicle capacity: As implied by [30], it makes sense to look for the splitting rule as
a function of the vehicle capacity. This not only presents a structured representation
with vehicle capacity as the kernel allowing for better generalization but also leads
the policy towards leaving the lowest portion of the vehicles’ capacities unused, and
consequently, increases the vehicles’ utilization.

• Customer location: We believe one potential improvement to the VRPHAS splitting
rule is to personalize the rule for each customer considering its distance from the
depot. We observe that if the customers that are located further from the depot are
visited by one (or very few) vehicle(s), the total travel cost is lower. Otherwise, if a long
distance needs to be traversed multiple times, the cost will be negatively impacted.
This can be avoided by coarsening the splitting rule for further customers. In AASA,
the impact of customers’ locations is addressed by partitioning the customers into a
number of clusters based on their distance from the depot. We then use a different
splitting rule for each cluster. A coarser splitting rule is used for clusters of customers
further from the depot while finer rules are applied to the clusters closer to the depot.

• Customer demand: Another important factor in the adaptation of the splitting rule
is the demand of customers. Depending on how large the demand is, the splitting
rule can be applied in full or partially to result in an appropriate number of additional
demand points with appropriate demand values. In order to create the exponential
pattern in the splitting rule, we propose to decompose the customers’ demands based
on the different powers of prime numbers. For instance, the demand of a customer
with d = 199 served by vehicles with capacity Q = 200 can be decomposed as
d = 27 + 26 + 22 + 21 + 1 if p = 2, and d = 2× 34 + 33 + 32 + 1 if p = 3.

Leveraging the above factors, the AASA solution framework is shown in Figure 3.
First, AASA employs a clustering algorithm to partition the customers into multiple levels.
In our experiments, we used a simple distance-based clustering as follows:

label(v) = ℓ, if
ℓ− 1

L
distmax < dist(v, 0) ≤ ℓ

L
distmax, ℓ ∈ {1, . . . , L} (5)



Algorithms 2024, 17, 396 7 of 19

where L is the number of levels, and distmax is the maximum customer–depot distance
among all customers, i.e, distmax = maxv dist(v, 0). As a result of this clustering rule, first,
the customers are separated with L uniformly spaced rings around the depot. Second,
for the customers at each level, the same splitting rule is applied. After all the demands are
split, a CVRP instance is generated. Finally, the VRPH solver is used to solve the resulting
CVRP instance.

Figure 3. AASA framework.

The pseudo-code for AASA is given in Algorithm 1. The algorithm starts by taking
as input the SDVRP instance as a graph G = (V, E), the vehicle capacity Q, the vector
of customer–depot distances denoted by d⃗ist where d⃗ist(v) = dist(v, 0), and the vector
of customer demands D⃗. Next, it computes d, the greatest common divisor (gcd) of the
demands vector and the vehicle capacity, which will be used as a parameter in the adaptive
splitting rule. The vehicles may carry goods only in quantities that are multiples of d
units. This is to control the granularity of the splitting rule. Next, the demand vector
is scaled down by d and averaged over the customers to find µ that is used in finding
smax determining the largest quantity of goods that is demanded by the customers in the
equivalent CVRP model.

Algorithm 1 A priori Adaptive Splitting Algorithm (AASA)

Input: G = (V, E), Q, d⃗ist, D⃗, p
Output: G′ = (V′, E′)

1: Initialize L, d←− gcd(Q, D⃗), µ←− avg(D⃗/d), smax ←− [logµ
p ]

2: for i : 1..L
3: s⃗i ←− d ∗ (expp{0..smax − i + 1})
4: end for
5: ⃗label = clustering(V) ▷ ⃗label(v) ∈ {1, ..., L}
6: repeat
7: V = V \ {v}
8: i←− ⃗label(v)
9: V′ = V′ ∪ split(v, s⃗i)

10: until V = ∅
11: return G′ = (V′, E′)

The algorithm takes into account L different levels for the distance-based clustering as
provided in (5). Then, for each level i, the splitting rule s⃗i is determined using the value
smax. Next, the clustering of the customers is made according to Equation (5). The split
function substitutes each node (customer) of the graph G with new customers according
to the rule s⃗i to gradually form the graph G′. Note that the splitting rule ensures that the
demands further away from the depot are split with coarser rules. Once the graph G′ is
completed, the CVRP solver will solve the generated new problem. We experimented with
different values of the prime number p and observed that p = 2 has the best performance
overall in the current version of AASA.

For example, consider the instance SD6 from SET-1 as shown in Figure 2. We will
have d = gcd(D⃗, Q), i.e., d = gcd(60, 90, 10) = 10. The simple distance-based clustering in
Equation (5) with L = 2 results in two levels, where l = 1 covers the customers that are
furthest from the depot and l = 2 covers the customers that are closest to the depot. We



Algorithms 2024, 17, 396 8 of 19

will have µ = 7.5 and smax = 3. Therefore, for the first level, we have s⃗1 = {10, 20, 40, 80}
and for s⃗2 = {10, 20, 40}.

VRPH solver: Once the a priori splitting rule is applied to an SDVRP problem, any
commercial solver can be used to solve the resulting CVRP instance. In this paper, we
use the VRPH solver to solve CVRP instances. VRPH is a publicly available solver with
a provable record of generating high-quality solutions. It takes as input a CVRP instance
written to a file with a format similar to that of the Traveling Salesman Problem Library
(TSPLIB) files and prints the solution to an output file. VRPH implements an open-source
library of several local search heuristics for generating and improving feasible solutions to
the CVRP instances. We refer the reader to [35] for a detailed description of the heuristics
and the modular structure of the VRPH software. In this paper, we use VRPH as a
standalone solver with the parameters set at their default values.

3. Performance Evaluation

In this section, we evaluate the performance of AASA through extensive numerical
simulations. We benchmark the performance of AASA against three baseline strategies,
using instances from datasets that are widely used in the literature for the comparison
of various vehicle routing solutions. Table 1 presents the summary of the evaluation
datasets used throughout this section. Further details about the instances of each dataset
are provided in Section 3.1.

Table 1. Evaluation datasets.

Dataset Number of Instances Number of Customers (N) Vehicle Capacity (Q) Customers’ Demands

SET-1 21 [8, 288] 100 {60, 90}

SET-2 14 {50, 75, 100} 160 randomly from [aQ, bQ] 1

SET-3 42 [50, 199] [140, 200] randomly from [aQ, bQ] 1

SET-4 11 [21, 100] [112, 8000] No pattern
1 (a, b) ∈ {(0.01, 0.1), (0.1, 0.3), (0.1, 0.5), (0.1, 0.9), (0.3, 0.7), (0.7, 0.9)}, corresponding to six different cases.

3.1. Benchmarking Instances

We consider 4 benchmarking sets that include 88 instances overall as presented in
Table 1. SET-1 [34] contains 21 instances, each with customers uniformly distributed on
the perimeter of concentric circles centered at the depot. The instances are sorted by the
number of customers and the number of concentric circles. SET-2 [36] and SET-3 [33]
instances use similar customer demand profiles but vary in the number of customers and
vehicle capacity. These demands are randomly sampled from the range [aQ, bQ] with
(a, b) chosen by six different scenarios as in Table 1. SET-2 contains 14 and SET-3 contains
42 instances, 6 of which are repeated. Therefore, we test only the 36 of them that are not
redundant. The coordinates of the customers in SET-2 are randomly generated using the
coordinates of eil51, eil76, and eil101 from TSPLIB, which are also used in SET-4 [37]. SET-4
includes 11 instances where no specific rule is preserved throughout for generating the
customer demands.

3.2. Benchmarking Solutions

We benchmark the performance of the AASA algorithm against the following base-
line methods:

• No-splitting (CVRP): The baseline method that treats an SDVRP instance as a CVRP
instance and runs the VRPH [32] solver to generate solutions.

• VRPHAS: The method based on a priori splitting that is proposed by [30].
• ILS-MIP: The metaheuristic method proposed by [27].

We note that when computing the optimality gap corresponding to each method
for each experimental instance, we take the best solution known in the literature as the



Algorithms 2024, 17, 396 9 of 19

reference solution. Furthermore, we note that in ILS-MIP, the travel cost between each
pair of customers is assumed to be their rounded Euclidean distance except for SET-1
instances where the exact Euclidean distance is taken as the cost. Hence, we compare the
results of ILS-MIP and AASA only for SET-1. For the rest of the datasets, we compare the
performance of AASA against the No-splitting and the VRPHS methods.

3.3. Metrics and Setup

We consider the optimality gap and the solver runtime as metrics for performance
comparison between the above strategies. The optimality gap which indicates the deviation
from the best-known solution is defined as:

gap =
obj− best-known solution

best-known solution
∗ 100

where obj is the objective value of the considered method. We run both VRPHAS and
AASA algorithms on the same PC with an Intel Xeon processor at 3.2 GHz and 16 GB of
main memory. It is important to note that the gap results we obtained for the VRPHAS
method do not match the values presented in [30] for some instances. However, since
we need to compare both the runtime and the gap results for the VRPHAS and AASA
methods on similar hardware, we reflect the results of our run for VRPHAS. Moreover,
we report the computation time of the ILS-MIP method presented in [27], including the
values of time and timebest corresponding to the time required for the proposed iterative
algorithm to terminate and the time at which the best solution of ILS-MIP is achieved,
respectively. A time limit (TL) is considered for the algorithm termination that is assumed
to be equal to 1349 s by [27]. It is important to note that the ILS experiments are conducted
on a PC with an Intel Core i7-8700 3.2 GHz processor and 32 GB of memory which is more
powerful than our PC. Therefore, we can expect that ILS-MIP performs even worse in terms
of computation time compared to AASA if both were run on the same hardware.

3.4. Numerical Results
3.4.1. CVRP Instance Attributes Comparison: AASA vs. VRPHAS

As illustrated in Section 2.3.1, one of the promises of our proposed splitting algorithm
is generating smaller size CVRP instances that can be solved consistently faster. To show
this, we present the size of the CVRP instances and the number of routes (i.e., vehicles) in
the generated CVRP solution obtained by the splitting strategies of VRPHAS and AASA
for the evaluation sets SET-1 to SET-4 in Tables 2–5, respectively. It is observed that for
all the benchmarking datasets, AASA reduces the size of the CVRP problem compared to
the VRPHAS method. Moreover, the number of routes in the solution obtained by AASA
is less than or equal to the VRPHAS solution except for a few instances. Although the
reduced number of routes indicates the potential of AASA in producing better solutions
compared to VRPHAS, it does not provide sufficient evidence for cost-efficiency since the
actual routes taken by the vehicles determine the total cost. However, together with the
solution gap results shown in the next section, we can conclude that AASA performs better
than VRPHAS in terms of both solution quality and runtime and that is a result of the
adaptive splitting approach we proposed.



Algorithms 2024, 17, 396 10 of 19

Table 2. CVRP instance attributes: VRPHAS vs. AASA on SET-1.

Instance CVRP Size Number of Routes

VRPHAS AASA VRPHAS AASA

SD1 32 18 8 7
SD2 64 42 14 13
SD3 64 36 13 13
SD4 96 54 19 20
SD5 128 84 26 26
SD6 128 72 29 28
SD7 160 110 34 34
SD8 192 134 41 41
SD9 192 126 39 39

SD10 256 168 55 56
SD11 320 222 68 68
SD12 320 220 68 68
SD13 384 272 80 83
SD14 480 330 103 100
SD15 576 403 123 121
SD16 576 324 128 129
SD17 640 444 138 140
SD18 640 440 141 139
SD19 768 535 167 165
SD20 960 666 210 208
SD21 1152 756 259 259

Table 3. CVRP instance attributes: VRPHAS vs. AASA on SET-2.

Instance CVRP Size Number of Routes

VRPHAS AASA VRPHAS AASA

S51D1 139 109 3 3
S51D2 167 150 10 10
S51D3 209 162 17 17
S51D4 246 247 32 32
S51D5 253 231 28 28
S51D6 307 246 50 50
S76D1 218 176 4 4
S76D2 263 245 16 16
S76D3 327 283 24 24
S76D4 352 352 41 40
S101D1 276 218 5 5
S101D2 345 315 21 21
S101D3 428 372 34 33
S101D5 500 472 58 56

Table 4. CVRP instance attributes: VRPHAS vs. AASA on SET-3.

Instance CVRP Size Number of Routes

VRPHAS AASA VRPHAS AASA

p01_110 121 92 3 3
p01_1030 176 148 11 11
p01_1050 207 193 17 17
p01_1090 268 204 33 33
p01_3070 257 198 33 33
p01_7090 326 240 50 50
p02_110 182 168 5 5

p02_1030 204 231 17 17



Algorithms 2024, 17, 396 11 of 19

Table 4. Cont.

Instance CVRP Size Number of Routes

VRPHAS AASA VRPHAS AASA

p02_1050 297 283 27 27
p02_1090 382 377 48 47
p02_3070 370 293 48 48
p02_7090 462 377 75 75
p03_110 346 244 6 6

p03_1030 411 333 23 23
p03_1050 471 376 37 37
p03_1090 608 476 67 67
p03_3070 571 369 66 66
p03_7090 711 591 100 99
p04_110 516 315 10 10

p04_1030 613 467 34 34
p04_1050 705 547 55 55
p04_1090 915 676 98 98
p04_3070 855 649 98 98
p04_7090 1063 879 149 149
p05_110 657 475 12 12

p05_1030 804 616 43 43
p05_1050 920 621 67 69
p05_1090 1169 824 123 124
p05_3070 1119 806 124 126
p05_7090 1401 1082 199 197
p11_110 422 233 8 8

p11_1030 489 388 27 27
p11_1050 560 475 42 43
p11_1090 722 543 78 78
p11_3070 680 500 77 76
p11_7090 849 663 119 119

Table 5. CVRP instance attributes: VRPHAS vs. AASA on SET-4.

Instance CVRP Size Number of Routes

VRPHAS AASA VRPHAS AASA

eil22 69 47 4 4
eil23 74 44 3 3
eil30 110 57 4 4
eil33 108 72 4 4
eil51 157 139 6 6

eilA76 228 215 10 10
eilB76 254 215 15 15
eilC76 231 201 8 8
eilD76 216 215 7 7

eilA101 347 248 8 8
eilB101 265 248 14 14

3.4.2. Optimality Gap and Runtime Comparison: AASA against Baselines

Table 6 presents the performance of AASA against VRPHAS, ILS-MIP, and the no-
splitting strategies for the instances of SET-1. First, we observe that the no-splitting method
results in very low-quality solutions as the resulting optimality gap obtained by this method
is very high compared to the VRPHAS, AASA, and ILS-MIP heuristics. Moreover, we
observe that while the ILS-MIP strategy outperforms the AASA and VRPHAS solution
approaches in terms of optimality gap for almost all instances of SET-1, it requires very
large computation times. The average runtime for ILS-MIP is 992.38 s as opposed to the



Algorithms 2024, 17, 396 12 of 19

average runtime of 86.14 s and 30.56 s corresponding to the VRPHAS and AASA solution
approaches, respectively. This huge time complexity hinders the practical application of the
ILS-MIP approach in real-world problems with time sensitivity or scalability requirements.
Figures 4 and 5 illustrate the per-instance optimality gap and runtime of our proposed
splitting rule against the fixed splitting rule introduced in VRPHAS. Our proposed method
outperforms the VRPHAS in terms of time complexity for all instances, and it also improves
upon the average optimality gap of VRPHAS. Moreover, while the VRPHAS method
results in the 5.50% optimality gap in the worst-case scenario (SD16), AASA achieves the
maximum optimality gap of 3.81% for the same instance. We also observe that AASA finds
the best-known solution for four instances as opposed to the VRPHAS method obtaining
the best-known solution for three instances of SET-1.

Table 6. Performance of VRPHAS, AASA, and ILS-MIP on SET-1.

Instance Best-
Known VRPHAS AASA ILS-MIP No Splitting

Solution Gap (%) Time (s) Cost Gap (%) Time (s) Gap Time –Timebest (s) Gap (%)

SD1 228.28 0.00 0.51 228.28 0.00 1.60 0.00 25.10–0.00 5.13
SD2 708.28 0.00 1.23 708.28 0.00 2.85 0.00 47.51–0.00 12.94
SD3 430.40 0.04 1.25 430.58 0.04 2.57 0.05 37.68–0.00 11.51
SD4 630.62 0.07 2.35 631.04 0.07 3.57 0.07 75.45–0.00 14.17
SD5 1389.94 1.22 3.91 1390.57 0.05 5.66 0.05 216.69–0.80 15.10
SD6 830.86 0.05 3.85 831.24 0.05 5.09 0.04 202.60–92.42 15.47
SD7 3640.00 0.55 5.47 3640.00 0.00 7.79 0.00 TL–0.00 20.87
SD8 5068.28 0.00 7.64 5068.28 0.00 10.43 0.00 TL–0.00 23.11
SD9 2042.88 0.72 7.50 2051.06 0.40 8.97 0.07 TL–39187 17.47

SD10 2683.73 0.95 13.73 2704.88 0.79 13.68 0.38 TL–960.42 19.23
SD11 13,280.00 0.15 20.59 13,480.00 1.50 18.43 0.00 TL–0.00 26.50
SD12 7213.62 0.73 20.89 7238.88 0.34 20.99 0.09 TL–1223.31 21.99
SD13 10,105.86 0.05 25.90 10,110.58 0.05 22.05 0.05 TL–1091.84 23.49
SD14 10,717.53 0.70 42.57 10,804.84 0.81 32.03 0.22 TL–967.30 23.16
SD15 15,094.48 0.93 59.43 15,232.60 0.91 47.32 0.37 TL–318.44 24.01
SD16 3379.33 5.50 54.88 3508.16 3.81 30.16 0.11 TL–0.01 27.83
SD17 26,493.56 0.25 66.98 26,962.64 1.56 50.14 0.1 TL–1328.05 26.82
SD18 14,202.53 0.69 72.04 14,278.70 0.54 54.75 0.46 TL–1347.05 23.92
SD19 19,995.69 1.00 101.05 20,197.04 1.00 70.14 0.64 TL–1328.17 24.82
SD20 39,635.51 0.17 162.90 40,236.66 1.51 104.51 0.25 TL–1328.44 27.15
SD21 11,271.06 3.41 240.36 11,576.96 2.71 129.31 0.2 TL–0.07 27.76

Average 0.82 86.14 0.76 30.56 0.15 992.38–494.17 20.60

Figure 4. Per-instance gap of SET-1.



Algorithms 2024, 17, 396 13 of 19

Figure 5. Per-Instance solver runtime of SET-1.

Table 7 shows the results of VRPHAS, AASA, and the no-splitting methodologies for
the instances of SET-2. According to Table 7, the no-splitting approach results in a higher
gap compared to both the VRPHAS and AASA rules. Furthermore, our proposed AASA
strategy outperforms the VRPHAS method in terms of the average optimality gap, as well
as runtime. Moreover, the per-instance results depicted in Figures 6 and 7 indicate that
the AASA strategy improves upon the optimality gap and solver runtime of the VRPHAS
method for almost all instances of SET-2. It can also be observed that while the VRPHAS
method exhibits an optimality gap of 2.51% in the worst-case scenario (S76D4), AASA
achieves a maximum optimality gap of 1.97% (S51D6).

Table 7. Performance of VRPHAS, AASA, and the no-splitting methodologies on SET-2.

Instance Best-Known VRPHAS AASA No Splitting

Solution Gap (%) Time (s) Cost Gap (%) Time (s) Gap (%)

S51D1 459.50 0.00 10.98 459.50 0.00 7.92 0.00
S51D2 709.29 0.77 15.04 713.80 0.63 11.22 1.71
S51D3 948.06 1.88 20.28 959.92 1.25 13.04 3.19
S51D4 1562.01 1.94 28.24 1583.88 1.40 22.94 7.32
S51D5 1333.67 1.03 30.68 1343.109 0.71 20.81 8.89
S51D6 2169.10 1.86 43.81 2211.90 1.97 23.37 10.75
S76D1 598.94 0.00 23.18 598.94 0.00 14.55 0.78
S76D2 1087.40 1.82 32.48 1104.88 1.61 22.43 2.79
S76D3 1427.86 1.93 46.99 1436.99 0.64 28.05 2.52
S76D4 2079.76 2.51 55.89 2120.16 1.94 40.09 5.41

S101D1 726.59 1.23 34.03 729.72 0.43 42.31 1.14
S101D2 1378.43 2.00 52.44 1399.67 1.54 34.45 1.67
S101D3 1874.81 1.85 70.64 1905.43 1.63 41.05 4.13
S101D5 2791.22 1.61 95.71 2844.51 1.91 62.54 11.59

Average 1.39 39.94 1.08 26.12 4.42



Algorithms 2024, 17, 396 14 of 19

Figure 6. Per-instance gap of SET-2.

Figure 7. Per-instance solver runtime of SET-2.

Similarly, the comparison of the results for SET-3 and SET-4 provided in Tables 8 and 9
show that our proposed splitting algorithm again improves both average optimality gap
and runtime of the VRPHAS splitting mechanism and, therefore, it can effectively generate
higher-quality solutions, faster than VRPHAS. The improvement in the runtime is mainly
owing to the rule granularity consideration introduced in AASA as discussed in Section 2.2,
which results in smaller instances to be solved by the CVRP solver compared to the
VRPHAS method. Figures 8 and 9 illustrate the per-instance optimality gap and runtime
of SET-3. According to Table 8 and Figure 8, although the VRPHAS method results in the
maximum optimality gap of 3.27% (p11_1090), the worst-case optimality gap achieved
by AASA is 2.54% (p02_7090). The optimality gap and run-time of SET-4 instances are
presented in Figures 10 and 11. Table 9 and Figure 10 illustrate that the AASA method
improves the worst-case optimality gap of VRPHAS in SET-4, since AASA achieves the
maximum optimality gap of 2.02% (eilA101) as opposed to the maximum gap of 2.35%
obtained by VRPHAS for the same instance.



Algorithms 2024, 17, 396 15 of 19

Table 8. Performance of VRPHAS, AASA, and the no-splitting methodologies on SET-3.

Instance Best-Known VRPHAS AASA No Splitting

Solution Gap (%) Time (s) Cost Gap (%) Time (s) Gap (%)

p01_110 459.50 0.00 9.84 459.50 0.00 6.63 0.00
p01_1030 757.17 1.74 17.2 770.93 1.81 11.08 3.29
p01_1050 1005.75 2.56 22.52 1021.18 1.53 15.76 4.08
p01_1090 1488.58 1.48 32.70 1507.14 1.24 19.61 12.75
p01_3070 1481.71 2.23 32.84 1503.66 1.48 17.02 13.81
p01_7090 2156.14 2.24 49.82 2203.93 2.22 21.41 11.41
p02_110 617.85 0.66 21.82 618.13 0.04 12.08 0.65
p02_1030 1109.62 1.65 28.86 1125.65 1.44 21.83 2.50
p02_1050 1502.05 1.06 22.52 1508.98 0.46 26.21 2.72
p02_1090 2298.58 2.00 61.01 2334.33 1.55 41.19 9.21
p02_3070 2219.97 2.23 58.80 2269.50 2.23 28.02 12.87
p02_7090 3223.4 1.57 89.76 3305.53 2.54 40.52 12.64
p03_110 752.62 1.78 55.12 762.54 1.31 22.08 1.51
p03_1030 1458.46 1.87 37.26 1476.86 1.26 35.67 2.09
p03_1050 1996.76 2.54 58.40 2032.25 1.77 41.76 3.93
p03_1090 3085.69 2.29 143.32 3143.69 1.88 56.56 12.17
p03_3070 2989.3 2.19 136.10 3034.28 1.50 40.02 16.50
p03_7090 4387.32 1.66 186.14 4464.65 1.76 84.48 13.72
p04_110 919.17 1.35 116.08 925.19 0.65 33.83 0.84
p04_1030 2016.97 2.71 152.44 2056.71 1.97 55.37 2.97
p04_1050 2849.66 2.40 196.82 2889.62 1.40 72.14 5.09
p04_1090 4545.46 2.44 310.84 4624.18 1.73 112.41 14.72
p04_3070 4334.71 2.87 272.44 4407.02 1.67 99.65 19.64
p04_7090 6395.41 1.94 469.62 6555.47 2.5 82.07 15.09
p05_110 1074.18 2.74 186.66 1086.27 1.12 66.5 1.42
p05_1030 2478.4 1.83 241.44 2515.45 1.49 82.72 2.46
p05_1050 3471.41 1.54 311.94 3510.99 1.14 87.56 4.01
p05_1090 5521.57 2.02 561.54 5619.52 1.77 145.02 12.67
p05_3070 5409.76 2.41 383.28 5412.85 0.06 142.81 15.57
p05_7090 8192.03 1.96 884.68 8332.36 1.71 255.05 17.28
p11_110 1031.11 2.11 74.12 1044.44 1.29 20.20 1.55
p11_1030 2881.8 2.89 94.06 2923.86 1.46 40.64 1.95
p11_1050 4219.01 2.29 108.54 4268.79 1.18 55.27 2.71
p11_1090 6854.09 3.27 188.30 6994.56 2.05 64.06 13.22
p11_3070 6671.04 1.44 162.36 6759.99 1.33 59.01 15.79
p11_7090 10,204.81 1.99 231.60 10,406.25 1.97 101.02 19.93

Average 1.96 166.94 1.45 33.38 8.08

Figure 8. Per-instance gap of SET-3.



Algorithms 2024, 17, 396 16 of 19

Figure 9. Per-instance solver runtime of SET-3.

Table 9. Performance of VRPHAS, AASA, and the no-splitting methodologies on SET-4.

Instance Best-Known VRPHAS AASA No Splitting

Solution Gap (%) Time (s) Cost Gap (%) Time (s) Gap (%)

eil22 375.28 0.00 3.28 375.28 0.00 3.11 0.00
eil23 568.56 0.00 5.92 568.56 0.00 2.92 0.00
eil30 497.53 1.50 6.89 505.01 1.50 3.64 1.48
eil33 826.41 1.36 6.89 837.67 1.36 5.08 1.36
eil51 524.61 0.00 12.58 524.61 0.00 10.95 0.00

eilA76 823.89 0.43 24.60 830.97 0.86 19.77 1.61
eilB76 1009.04 1.96 31.86 1025.24 1.60 18.65 1.86
eilC76 738.67 0.52 26.78 742.49 0.55 17.48 0.64
eilD76 684.53 0.81 23.82 689.47 0.72 19.41 0.82

eilA101 812.51 2.35 55.39 828.98 2.02 23.37 1.92
eilB101 1076.26 1.57 30.90 1087.70 1.06 23.76 1.53

Average 0.96 20.80 0.88 13.63 1.02

Figure 10. Per-instance AASA gap of SET-4.



Algorithms 2024, 17, 396 17 of 19

Figure 11. Per-instance solver runtime of SET-4.

4. Conclusions

In this paper, we propose an efficient and effective heuristic algorithm for the SDVRP
based on a two-step procedure of splitting the demand of customers into smaller demands
and solving the generated network assuming it to be a CVRP instance. Our approach
focuses on enhancing the state-of-the-art splitting rule by considering customer locations
and demand values. Our proposed adaptive splitting algorithm incorporates clustering
customers based on their location and choosing a specific splitting rule for each cluster.
It is shown to outperform the fixed splitting rule of the approach adopted by the state of
the art, for all four benchmark datasets on average, with respect to both performance and
computational effort.

Author Contributions: Conceptualization, N.T., A.G., J.S.B. and B.L.G.; Methodology, N.T., A.G. and
J.S.B.; Software, N.T. and A.G.; Validation, A.G. and B.L.G.; Formal analysis, N.T., A.G. and B.L.G.;
Investigation, N.T. and A.G.; Resources, N.T. and A.G.; Writing – original draft, N.T., A.G. and B.L.G.;
Writing – review and editing, J.S.B. and B.L.G.; Visualization, J.S.B. and B.L.G.; Supervision, J.S.B. and
B.L.G.; Project administration, J.S.B.; Funding acquisition, N.T., A.G. and J.S.B. All authors have read
and agreed to the published version of the manuscript.

Funding: The research of N. Torkzaban, A. Gholami, and J. Baras was partially supported by ONR
grant N00014-17-1-2622, and by a grant from Lockheed Martin Chair in Systems Engineering.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Dror, M.; Trudeau, P. Savings by split delivery routing. Transp. Sci. 1989, 23, 141–145. [CrossRef]
2. Archetti, C.; Savelsbergh, M.; Speranza, M. Worst-case analysis for split delivery vehicle routing problems. Transp. Sci. 2006, 40,

226–234. [CrossRef]
3. Mullaseril, P.; Dror, M.; Leung, J. Split-delivery routing heuristics in livestock feed distribution. J. Oper. Res. Soc. 1997, 48, 107–116.

[CrossRef]
4. Sierksma, G.; Tijssen, G. Routing helicopters for crew exchanges on off-shore locations. Ann. Oper. Res. 1998, 76, 261–286.

[CrossRef]
5. Song, S.; Lee, K.; Kim, G. A practical approach to solving a newspaper logistics problem using a digital map. Comput. Ind. Eng.

2002, 43, 315–330. [CrossRef]
6. Luo, K.; Zhao, W.; Zhang, R. A multi-day waste collection and transportation problem with selective collection and split delivery.

Appl. Math. Model. 2024, 126, 753–771. [CrossRef]

http://doi.org/10.1287/trsc.23.2.141
http://dx.doi.org/10.1287/trsc.1050.0117
http://dx.doi.org/10.1057/palgrave.jors.2600338
http://dx.doi.org/10.1023/A:1018900705946
http://dx.doi.org/10.1016/S0360-8352(02)00077-3
http://dx.doi.org/10.1016/j.apm.2023.11.009


Algorithms 2024, 17, 396 18 of 19

7. Archetti, C.; Feillet, D.; Gendreau, M.; Speranza, M.G. Complexity of the VRP and SDVRP. Transp. Res. Part C Emerg. Technol.
2011, 19, 741–750. [CrossRef]

8. Archetti, C.; Bianchessi, N.; Speranza, M.G. A column generation approach for the split delivery vehicle routing problem.
Networks 2011, 58, 241–254. [CrossRef]

9. Hernández-Pérez, H.; Salazar-González, J.-J. A Branch-and-cut algorithm for the split-demand one-commodity pickup-
anddelivery travelling salesman problem. Eur. J. Oper. Res. 2021, 297, 467–483. [CrossRef]

10. Wolfinger, D.; Salazar-González, J.-J. The pickup and delivery problem with split loads and transshipments: A branch-and-cut
solution approach. Eur. J. Oper. Res. 2020, 289, 470–484. [CrossRef]

11. Casazza, M.; Ceselli, A.; Calvo, R.W. A route decomposition approach for the single commodity Split Pickup and Split Delivery
Vehicle Routing Problem. Eur. J. Oper. Res. 2019, 289, 897–911. [CrossRef]

12. Li, J.L.; Qin, H.; Shen, H.X.; Tong, X.; Xu, Z. Exact algorithms for the multiple depot vehicle scheduling problem with heteroge-
neous vehicles, split loads and toll-by-weight scheme. Comput. Ind. Eng. 2022, 168, 108137. [CrossRef]

13. Li, J.; Qin, H.; Baldacci, R.; Zhu, W. Branch-and-price-and-cut for the synchronized vehicle routing problem with split delivery,
proportional service time and multiple time windows. Transp. Res. Part E Logist. Transp. Rev. 2020, 140, 101955. [CrossRef]

14. Gschwind, T.; Bianchessi, N.; Irnich, S. Stabilized branch-price-and-cut for the commodity-constrained split delivery vehicle
routing problem. Eur. J. Oper. Res. 2019, 278, 91–104. [CrossRef]

15. Min, J.N.; Jin, C.; Lu, L.J. Maximum-minimum distance clustering method for split-delivery vehicle-routing problem: Case
studies and performance comparisons. Adv. Prod. Eng. Manag. 2019, 14, 125–135. [CrossRef]

16. Wang, J.; Jagannathan, A.K.; Zuo, X.; Murray, C.C. Two-layer simulated annealing and tabu search heuristics for a vehicle routing
problem with cross docks and split deliveries. Comput. Ind. Eng. 2017, 112, 84–98. [CrossRef]

17. Xia, Y.; Fu, Z. An adaptive tabu search algorithm for the open vehicle routing problem with split deliveries by order. Wirel. Pers.
Commun. 2018, 103, 595–609. [CrossRef]

18. Xia, Y.; Fu, Z.; Tsai, S.B.; Wang, J. A new TS algorithm for solving low-carbon logistics vehicle routing problem with split deliveries
by backpack—From a green operation perspective. Int. J. Environ. Res. Public Health 2018, 15, 949. [CrossRef] [PubMed]

19. Ma, X.; Liu, C. Improved Ant Colony Algorithm for the Split Delivery Vehicle Routing Problem. Appl. Sci. 2024, 14, 5090.
[CrossRef]

20. Yang, W.; Wang, D.; Pang, W.; Tan, A.-H.; Zhou, Y. Goods consumed during transit in split delivery vehicle routing problems:
Modeling and solution. IEEE Access 2020, 8, 110336–110350. [CrossRef]

21. Jiang, Y.; Bian, B.; Liu, Y. Integrated multi-item packaging and vehicle routing with split delivery problem for fresh agri-product
emergency supply at large-scale epidemic disease context. J. Traffic Transp. Eng. (Engl. Ed.) 2020, 8, 196–208. [CrossRef]

22. Fan, H.M.; Zhang, X.; Ren, X.X.; Liu, P. Optimization of multi-depot open split delivery vehicle routing problem with simultaneous
delivery and pick-up. Syst. Eng.-Theory Pract. 2021, 41, 1521–1534.

23. Shi, J.; Zhang, J.; Wang, K.; Fang, X. Particle swarm optimization for split delivery vehicle routing problem. Asia-Pac. J. Oper. Res.
2018, 35, 1840006. [CrossRef]

24. Qing, D.S.; Deng, Q.L.; Li, J.J.; Liu, S.; Liu, X.; Zeng, S.P. Split vehicle route planning with full load demand based on particle
swarm optimization. J. Control Decis. 2021, 36, 1397–1406.

25. Jin, M.; Liu, K.; Eksioglu, B. A column generation approach for the split delivery vehicle routing problem. Oper. Res. Lett. 2008, 36,
265–270. [CrossRef]

26. Bianchessi, N.; Drexl, M.; Irnich, S. The split delivery vehicle routing problem with time windows and customer inconvenience
constraints. Transp. Sci. 2019, 53, 1067–1084. [CrossRef]

27. Alvarez, A.; Munari, P. A Matheuristic Approach for Split Delivery Vehicle Routing Problems. 2022. Available online: http:
//www.optimization-online.org/DB_FILE/2022/02/8790.pdf (accessed on 31 August 2023).

28. Vidal, T. Hybrid genetic search for the CVRP: Open-source implementation and SWAP* neighborhood. Comput. Oper. Res. 2022,
140, 105643. [CrossRef]

29. Munari, P.; Savelsbergh, M. Compact formulations for split delivery routing problems. Transp. Sci. 2022, 56, 1022–1043. [CrossRef]
30. Chen, P.; Golden, B.; Wang, X.; Wasil, E. A novel approach to solve the split delivery vehicle routing problem. Int. Trans. Oper. Res.

2017, 24, 27–41. [CrossRef]
31. Salani, M.; Vacca, I. Branch and price for the vehicle routing problem with discrete split deliveries and time windows. Eur. J. Oper.

Res. 2011, 213, 470–477. [CrossRef]
32. Groer, C. VRPH. 2011. Available online: https://github.com/coin-or/VRPH (accessed on 1 August 2024).
33. Archetti, C.; Speranza, M.G.; Savelsbergh, M.W. An optimization-based heuristic for the split delivery vehicle routing problem.

Transp. Sci. 2008, 42, 22–31. [CrossRef]
34. Chen, S.; Golden, B.; Wasil, E. The split delivery vehicle routing problem: Applications, algorithms, test problems, and

computational results. Netw. Int. J. 2007, 49, 318–329. [CrossRef]
35. Groer, C.S.; Golden, B.; Wasil, E. A Library of Local Search Heuristics for the Vehicle Routing Problem. Math. Program. Comput.

2010, 2, 79–101. [CrossRef]

http://dx.doi.org/10.1016/j.trc.2009.12.006
http://dx.doi.org/10.1002/net.20467
http://dx.doi.org/10.1016/j.ejor.2021.05.040
http://dx.doi.org/10.1016/j.ejor.2020.07.032
http://dx.doi.org/10.1016/j.ejor.2019.07.015
http://dx.doi.org/10.1016/j.cie.2022.108137
http://dx.doi.org/10.1016/j.tre.2020.101955
http://dx.doi.org/10.1016/j.ejor.2019.04.008
http://dx.doi.org/10.14743/apem2019.1.316
http://dx.doi.org/10.1016/j.cie.2017.07.031
http://dx.doi.org/10.1007/s11277-018-5464-4
http://dx.doi.org/10.3390/ijerph15050949
http://www.ncbi.nlm.nih.gov/pubmed/29747469
http://dx.doi.org/10.3390/app14125090
http://dx.doi.org/10.1109/ACCESS.2020.3001590
http://dx.doi.org/10.1016/j.jtte.2020.08.003
http://dx.doi.org/10.1142/S0217595918400067
http://dx.doi.org/10.1016/j.orl.2007.05.012
http://dx.doi.org/10.1287/trsc.2018.0862
http://www.optimization-online.org/DB_FILE/2022/02/8790.pdf
http://www.optimization-online.org/DB_FILE/2022/02/8790.pdf
http://dx.doi.org/10.1016/j.cor.2021.105643
http://dx.doi.org/10.1287/trsc.2021.1106
http://dx.doi.org/10.1111/itor.12250
http://dx.doi.org/10.1016/j.ejor.2011.03.023
https://github.com/coin-or/VRPH
http://dx.doi.org/10.1287/trsc.1070.0204
http://dx.doi.org/10.1002/net.20181
http://dx.doi.org/10.1007/s12532-010-0013-5


Algorithms 2024, 17, 396 19 of 19

36. Belenguer, J.M.; Martinez, M.C.; Mota, E. A lower bound for the split delivery vehicle routing problem. Oper. Res. 2000, 48,
801–810. [CrossRef]

37. Reinhelt, G. TSPLIB: A Library of Sample Instances for the TSP (and Related Problems) from Various Sources and of Various
Types. 2014. Available online: http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95 (accessed on 31 August 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1287/opre.48.5.801.12407
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95

	Introduction
	Problem Definition and the Proposed Solution
	SDVRP Definition
	Proposed Heuristic Algorithm for SDVRP
	A Priori Adaptive Splitting Algorithm (AASA)
	Motivation
	AASA Algorithm


	Performance Evaluation
	Benchmarking Instances
	Benchmarking Solutions
	Metrics and Setup
	Numerical Results
	CVRP Instance Attributes Comparison: AASA vs. VRPHAS
	Optimality Gap and Runtime Comparison: AASA against Baselines


	Conclusions
	References

