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Abstract: Power transformers are vital and costly components in power systems, essential for ensuring
a reliable and uninterrupted supply of electrical energy. Their protection is crucial for improving
reliability, maintaining network stability, and minimizing operational costs. Previous studies have
introduced differential protection schemes with harmonic restraint to detect internal transformer
faults. However, these schemes often struggle with computational inaccuracies in fault detection
due to neglecting current transformer (CT) saturation and associated uncertainties. CT saturation
during internal faults can produce even harmonics, disrupting relay operations. Additionally, CT
saturation during transformer energization can introduce a DC component, leading to incorrect relay
activation. This paper introduces a novel feature extracted through advanced wavelet transform
analysis of differential current. This feature, combined with differential current amplitude and bias
current, is used to train a deep learning system based on long short-term memory (LSTM) networks.
By accounting for existing uncertainties, this system accurately identifies internal transformer faults
under various CT saturation and measurement uncertainty conditions. Test and validation results
demonstrate the proposed method’s effectiveness and superiority in detecting internal faults in power
transformers, even in the presence of CT saturation, outperforming other recent modern techniques.

Keywords: internal fault detection; power transformer; LSTM neural network; wavelet transform

1. Introduction
1.1. Research Importance

Power transformers are essential and costly assets in high-voltage substations; their
unexpected failure can significantly undermine the reliability of the power system. Conse-
quently, safeguarding these transformers is of paramount importance. One of the fundamen-
tal protection schemes employed is differential protection, which operates by comparing
the transformer’s incoming and outgoing currents. To address the issue of CT saturation
and prevent erroneous relay operations, percent differential protection has been developed.
This scheme is further enhanced with harmonic restraint to maintain relay stability during
the transformer’s energization process [1]. Despite these advancements, there remains a
potential risk of incorrect relay activation in scenarios involving external faults coupled
with severe CT saturation. Moreover, CT saturation during internal faults can introduce
even harmonics into the differential current, which can hinder the relay’s proper function-
ing. To mitigate these challenges, continuous improvements and innovations in protection
schemes are necessary, ensuring they can accurately distinguish between fault conditions
and normal operating anomalies, thereby enhancing the overall reliability and stability of
the power system [2]. The following subsection will analyze the most recent state-of-the-art
research conducted in recent years in this field.
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1.2. Research Literature Review

A significant body of research has been dedicated to improving the performance of
differential protection schemes, with the goal of enhancing the accuracy of internal fault
detection amid various operating conditions of transformers. Various methods have been
proposed where internal fault detection is performed based on features extracted from
the differential current in the time domain [3]. Advanced intelligent techniques have also
been developed for internal fault detection, relying on pattern recognition methodologies.
These techniques incorporate various classifiers, such as artificial neural networks [4–6],
probabilistic neural networks [7,8], support vector machines [9], and neuro-fuzzy sys-
tems [10], as the primary detection mechanisms. These intelligent systems necessitate
extensive training datasets. Furthermore, determining the optimal parameters for neural
networks lacks a standardized approach, which necessitates the employment of optimiza-
tion algorithms [11]. Several proposed methods utilize signal analysis tools to extract
features from the differential current waveform. This approach significantly reduces the
volume of input data and enhances the generalization ability of the intelligent algorithms.
Among the prevalent signal analysis techniques is the wavelet transform [12–15], which is
widely used in the analysis of differential currents. In wavelet-based methods, selecting the
appropriate number of decomposition levels and the mother wavelet typically involves trial
and error. The features extracted, particularly from the detail levels, are highly susceptible
to noise interference. Similarly, the S-transform method relies on a variable parameter
associated with the Gaussian window, influencing the decomposed signals [16,17]. These
innovative approaches, which blend advanced signal processing techniques with machine
learning algorithms, represent a significant step forward in the field of transformer protec-
tion. They offer improved accuracy and reliability in fault detection, thereby contributing
to the overall stability and efficiency of power systems.

On the other hand, harmonic blocking and harmonic restraint are well-established
methods for preventing false tripping caused by inrush currents [18] and are extensively
used in commercial relay systems [19,20]. Although harmonic restraint generally offers
high reliability, it often lacks security when dealing with inrush currents that have low
harmonic content [21]. Furthermore, harmonic restraint can unexpectedly block the relay
when energizing a transformer that has a fault, especially if the healthy phases exhibit
high harmonic levels [21]. While harmonic cross-blocking enhances security, it suffers from
low reliability during the energization of a faulty transformer [21]. For example, during
the energization of a faulty transformer, the differential relay may remain blocked for
several cycles [22]. Additionally, modern power transformers may exhibit very low second
harmonic ratios during energization, posing challenges for harmonic-based protection
methods [21]. Therefore, it is imperative to integrate new functionalities into differential
protection systems to improve both the security during energization and the reliability of
detecting internal faults. Recent advancements have focused on developing new techniques
that leverage artificial intelligence and advanced signal processing to address the limitations
of traditional differential protection methods [23–25]. These innovative approaches aim
to enhance the safety and reliability of differential relays during inrush conditions [26,27].
However, many of these methods face challenges, including the need for large training
datasets, high computational demands, and a reliance on specific transformer parameters.
To overcome these challenges, researchers have proposed various solutions. For instance,
some studies have explored the use of machine learning algorithms that can adapt to differ-
ent operating conditions and transformer characteristics, thereby reducing the dependency
on extensive training data and computational resources [28,29]. Additionally, advance-
ments in signal processing techniques, such as wavelet transforms and S-transforms, have
shown promise in accurately distinguishing between inrush currents and internal faults,
even in the presence of low harmonic content [30,31]. Moreover, hybrid approaches that
combine traditional protection methods with modern artificial intelligence techniques are
being investigated to provide a balanced solution that enhances both reliability and security.
These hybrid methods aim to optimize the performance of differential relays by integrating
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real-time data analysis and adaptive learning capabilities, which can dynamically adjust
to changing system conditions and fault scenarios [32,33]. As a result, while harmonic
blocking and restraint techniques have been the cornerstone of differential protection,
their limitations necessitate the adoption of advanced technologies. The integration of
artificial intelligence and sophisticated signal processing methods holds great potential
for improving the accuracy and reliability of transformer protection systems in modern
power grids.

1.3. Shortcoming of Previous Research

The shortcomings of the recent state of the art can be categorized as follows:

Dependence on Time Domain Features:

- Susceptibility to Noise: Features extracted from the differential current in the time
domain can be highly sensitive to noise [3].

Intelligent Techniques for Internal Fault Detection

- Artificial Neural Networks:

- Extensive Training Datasets: Large datasets are required for effective training [4–6].
- Parameter Optimization: Lack a standardized approach for determining optimal

parameters, necessitating the use of optimization algorithms [11].
- Probabilistic Neural Networks:
- Extensive Training Datasets: Also require large training datasets [7,8].
- Computational Complexity: High computational burden during the training

process [11].

- Support Vector Machines:

- Data Requirements: Need for extensive training data to achieve high accuracy [9].
- Neuro-Fuzzy Systems:
- Complexity: Involve complex training and parameter tuning processes [10].
- Data Requirements: Necessitate large amounts of training data [10].

Signal Analysis Tools

- Wavelet Transform:

- Parameter Selection: The number of decomposition levels and the mother wavelet
are determined through trial and error, which can be time-consuming [12–15].

- Noise Sensitivity: Features extracted from the detail levels are highly susceptible
to noise interference [12–15].

- S-Transform:
- Parameter Dependency: The decomposed signals depend on the variable param-

eter of the Gaussian window, which can affect reliability [16,17].

Shortcomings of Harmonic Blocking and Restraint Techniques

- Harmonic Restraint:

- Low Security: Often lacks security when dealing with inrush currents that have
low harmonic content [21].

- Unexpected Blocking: Can unexpectedly block the relay during the energization
of a faulty transformer, especially with high harmonics in healthy phases [21].

- Harmonic Cross-Blocking:
- Low Reliability: Exhibits low reliability during the energization of a faulty

transformer [21].
- Blocking Issues: The differential relay may remain blocked for several cycles

during the energization of a faulty transformer [19,20].
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- Modern Transformers:

- Low Harmonic Ratios: Modern power transformers may exhibit very low second
harmonic ratios during energization, challenging harmonic-based methods [21].

Challenges with New Techniques

- Artificial Intelligence and Signal Processing Methods:

- Large Training Datasets: Many AI methods require extensive training datasets
to function effectively [23–25].

- High Computational Demands: These methods can be computationally intensive,
making real-time application challenging [23–25].

- Dependency on Transformer Parameters: The performance of these methods
often depends on specific transformer parameters [23–25].

- Machine Learning Algorithms:

- Adaptability: Some studies suggest algorithms that can adapt to different operat-
ing conditions and transformer characteristics, but these still require significant
computational resources and data [28,29].

- Advanced Signal Processing Techniques:

- Wavelet and S-Transforms: Show promise in distinguishing between inrush cur-
rents and internal faults but still face issues with noise sensitivity and parameter
dependency [30,31].

- Hybrid Approaches:

- Balance of Reliability and Security: Aim to combine traditional methods with AI
techniques to optimize relay performance, yet these systems can still be complex
and require ongoing adjustments to maintain effectiveness [32,33].

1.4. Research Contribution

By studying and analyzing the latest research and identifying their shortcomings, this
research offers the following original contributions:

• Introduction of Advanced Feature Extraction:

# Utilizes wavelet transform analysis to derive novel features from the differential
current, significantly enhancing fault detection accuracy.

• Integration with Deep Learning for Real-Time Application

# Implements long short-term memory (LSTM) networks for training, thereby
boosting the system’s capability to accurately identify internal transformer faults
in real time.

# Comprehensive Fault Detection:
# Integrates differential current amplitude and bias current in the detection process,

resulting in a more robust and reliable fault detection mechanism.

• Consideration of CT Saturation and Measurement Uncertainty

# Addresses the challenges posed by CT saturation and measurement uncertainties,
often overlooked in traditional methods.

• Improved Relay Operations

# Mitigates issues caused by even harmonics and DC components during CT
saturation, thereby reducing the likelihood of incorrect relay activations.

• Enhanced Reliability and Security

# Demonstrates superior performance in detecting internal faults in power trans-
formers, even under challenging conditions such as CT saturation.
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1.5. Research Structure

This paper is organized as follows: The first section provides an overview. Section 2
delves into the conceptual model, while Section 3 presents the mathematical formulation
of the proposed method, as well as a flowchart that demonstrates the integration of the
LSTM-based deep learning network. Section 4 focuses on the simulation results and their
discussion. Finally, Section 5 summarizes the main conclusions derived from this study.

2. Conceptual Model and Problem Procedure

The conceptual design of the proposed intelligent method for identifying and classify-
ing internal electrical faults, external faults during the saturation of CT, and inrush currents
in power transformers is shown in Figure 1.
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Figure 1. Conceptual Model of Proposed Scheme for Real-time internal fault detection of power
transformer.

As depicted in this figure, the proposed approach can be implemented on an online
platform through the measurement of voltage and current data at the installation site of power
transformers within the power grid, even when the measured data are noisy or uncertain. In
this design, the internal and external fault currents as well as the inrush currents of power
transformers are initially measured by measurement units, which may contain noise or
uncertainties. Subsequently, the sampled signals during various events are transferred to
MATLAB software for detection and differentiation. At this stage, the features of the sampled
signals are determined using advanced wavelet transform. Afterward, the real-time fault
detection system, based on the trained advanced long short-term memory (LSTM) neural
network, differentiates and identifies the type of fault occurring in the power transformer.
The steps for implementing the proposed method are detailed in Algorithm 1 below.
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Algorithm 1. Procedure of the Proposed Framework for Internal Fault Detection in Power Transformers

1. Training Stage:
1.1. For k = 1:2000
1.2. If k ≤ 500
1.3. Run the Simulation file for sampling the differential currents of external fault
1.4. SignalVector = Differential currents of external fault
1.5. ElseIf 500 < k ≤ 1000
1.6. Run the Simulation file for sampling the differential currents of inrush current
1.7. SignalVector = Differential currents of inrush current
1.8. ElseIf 1000 < k ≤ 1500
1.9. Run the Simulation file for sampling the differential currents of internal fault without CT saturation
1.10. SignalVector = Differential currents of inrush current internal fault without CT saturation
1.11. ElseIf 1500 < k ≤ 2000
1.12. Run the Simulation file for sampling the differential currents of internal fault with CT saturation
SignalVector = Differential currents of inrush current internal fault with CT saturation

1.13. Call the Improved RTBSWT Function (x(t))

Sx(l, k) = 1√
2

L−1
∑

l=0
hφ(n)

◦
x(k − L + n + 1 + l),

wx(l, k) = 1√
2

L−1
∑

l=0
hψ(n)

◦
x(k − L + n + 1 + l),

1.14. End Call RTBSWT Function
1.15. Call Proposed LSTM Network Function

it = σ(Wxixt + Whiht−1 + bi)
ft = σ(Wx f xt + Wh f ht−1 + b f )
c̃t = tanh(Wxcxt + Whcht−1 + bc)
ct = it ⊙ c̃t + ft ⊙ ct−1
ot = σ(Wxoxt + Whoht−1 + bo)
ht = ot ⊙ tanh(ct)

1.16. End LSTM Function
1.17. End for (K = 2000)
2. Test and Verification Stage
2.1. Call an unknown differential current (x(t), y(t))
2.2. Call the Improved RTBSWT Function (x(t))
2.3. Feature selection of x(t) using the 1.13.1 and 1.13.2
2.4. End Call RTBSWT Function
2.5. Call Proposed LSTM Network Function
2.6.

⌢
y (t) = predict the signal type using the trained LSTM Network

2.7. End LSTM Function
2.8. Calculate the RSME (y(t),

⌢
y (t))

2.9. End Stage 2

3. Problem Statement and Mathematical Formulation
3.1. Structure of Differential Current Measuring

In this part, differential current is generated by employing CTs on both the primary
and secondary sides of the power transformer. The correct CT ratio is essential for this
setup, and the star-delta connection of the CTs must be precisely configured according to
the power transformer’s connection type. Figure 2 shows the structure of the differential
current measurement system, including the CT connections and the differential current
calculation. This differential current flows through the operating winding of the differential
protection relay. During fault conditions, the current passing through the CT can greatly
exceed its rated capacity, leading to the saturation of the CT core. Moreover, when a fault
occurs, particularly during asymmetrical faults, a DC component can be superimposed on
the AC waveform. This DC offset can drive the CT core to saturation. Additionally, the
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presence of harmonics in the current, caused by nonlinear loads or power electronics, can
also contribute to the saturation of the CT core.
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Figure 2. Schematic of differential current measurement in a power transformer.

3.2. Wavelet Transform (Stationary State)—SWT

Derived from the DWT, the SWT is a time–frequency decomposition method where
the input signal becomes invariant in time without being downsampled by the filters. As a
result, the SWT method is better suited for real-time applications because it offers a faster
transient detection than the DWT [34]. Figure 3 illustrates the filtering process without the
two-fold downsampling.
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The SWT’s scaling and wavelet coefficients are defined similarly to the DWT’s:

Sj(k) =
1√
2

∞

∑
n=−∞

hφ(n − k)xj−1(n), (1)
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wj(k) =
1√
2

∞

∑
n=−∞

hψ(n − k)xj−1(n), (2)

where j > 1. The wavelet and scaling coefficients can also be computed at the first
decomposition level for a sequence of k f samples using a matrix generated by the SWT’s
pyramidal algorithm as follows:

S1 =
1√
2

Hφx (3)

w1 =
1√
2

Hψx (4)

where the square matrices Hφ and Hψ have orders equal to k f . The filter coefficients Hφ

and Hψ are circularly displaced to form the matrices Hφ and Hψ, respectively.

Hφ =



hφ(3) 0 0 0 . . . 0 hφ(0) hφ(1) hφ(2)
hφ(2) hφ(3) 0 0 . . . 0 0 hφ(0) hφ(1)
hφ(1) hφ(2) hφ(3) 0 . . . 0 0 0 hφ(0)
hφ(0) hφ(1) hφ(2) hφ(3) · · · 0 0 0 0

...
...

...
...

...
...

...
...

...
0 0 0 0 · · · hφ(0) hφ(1) hφ(2) hφ(3)


(5)

Hψ =



hψ(3) 0 0 0 . . . 0 hψ(0) hψ(1) hψ(2)
hψ(2) hψ(3) 0 0 . . . 0 0 hψ(0) hψ(1)
hψ(1) hψ(2) hψ(3) 0 . . . 0 0 0 hψ(0)
hφ(0) hφ(1) hφ(2) hφ(3) · · · 0 0 0 0

...
...

...
...

...
...

...
...

...
0 0 0 0 · · · hψ(0) hψ(1) hψ(2) hψ(3)


(6)

Equations (3) and (4) can therefore be rewritten as follows:

S1(0)
S1(1)
S1(2)
S1(3)

...
S1(kt)


= − 1√

2
Hφ



x1(0)
x1(1)
x1(2)
x1(3)

...
x1(kt)


(7)



w1(0)
w1(1)
w1(2)
w1(3)

...
w1(kt)


= − 1√

2
Hψ



x1(0)
x1(1)
x1(2)
x1(3)

...
x1(kt)


(8)

Equations (7) and (8) state that the first three scaling and wavelet coefficients are
calculated from the initial and final signal samples, using the db4 wavelet filter at the
first decomposition level. As a result, it is probable that some coefficients exhibit am-
plitude values that differ from those of the others, indicating a phenomenon called the
border effect.

3.2.1. Real-Time Stationary Wavelet Transform (RT-SWT)

In order to compute the scaling and wavelet coefficients, the traditional SWT pyramid
algorithm, according to [35], requires all samples of the analyzed signal, which is imprac-
tical for real-time applications. In addition, if the signal is circular and periodic, border
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distortions might happen. Consequently, in the first decomposition level, the RT-SWT
computes the scaling Sx and wavelet wx coefficients in the manner described below [35]:

Sx(k) =
1√
2

L−1

∑
l=0

(
hφ(l)

◦
x(k + l − L + 1)

)
, (9)

wx(k) =
1√
2

L−1

∑
l=0

(
hψ(l)

◦
x(k + l − L + 1)

)
, (10)

where Sx and wx can be obtained with just L samples. As a result, in order to produce results
comparable to those of SWT, RT-SWT does not require all of the signal samples. The window
shifts because a new sample is added to the window and an older sample is removed at
each sampling step (1/ fs seconds). With the exception of the first L − 1 coefficients, which
cannot be computed in real time and may present coefficients with border distortions of
the signal sliding window, the wavelet coefficients of the main window computed in real
time with the RT-SWT algorithm are the same wavelet coefficients calculated by the SWT
pyramid algorithm [35].

3.2.2. Improved Wavelet Transform (Real-Time Boundary Stationary)

As previously mentioned, border distortions may result from the RT-SWT’s compu-
tation of scaling and wavelet coefficients for periodic and circular signals. In this work,
border effects will be implemented to give more information in order to achieve fast fault
detection [36].

In the following manner, the first level of the real-time boundary stationary wavelet
transform (RTBSWT) scaling and wavelet coefficients related to the current sampling k
are calculated by inner products between L samples of the time-domain signal x inside a
circular sliding window

◦
x with δk samples and L coefficients of the scaling Hφ and wavelet

Hψ filters [36]:

Sx(l, k) =
1√
2

L−1

∑
l=0

(
hφ(n)

◦
x(k − L + n + 1 + l)

)
, (11)

wx(l, k) =
1√
2

L−1

∑
l=0

(
hψ(n)

◦
x(k − L + n + 1 + l)

)
, (12)

where the current sampling time, k/ fs, is associated with k > ∆k − 1; the sliding window
length is ∆k > L; the border distortion index is 0 < 1 <L; and the periodized signal in ∆k
samples is

◦
x(k + m) = x(k − ∆k + m) with m ∈ N∗.

x is broken down into L scaling and wavelet coefficients, as shown by
Equations (11) and (12). These are composed of s(0, k) = s(k) and w(0, k) = w(k), which
correspond to the RT-SWT scaling and wavelet coefficients, and s(l, k) and w(l, k) with
l = 0, which are L − 1 coefficients known as boundary coefficients (coefficients with border
distortions).

The boundary coefficients in the RTBSWT algorithm are ascertained using a few last
and first samples of the signal sliding window. Since the first transient-affected sample
is grouped with samples from steady-state operations, there are notable variations in the
magnitudes of SWT coefficients and those computed with border effects. Then, when
transients affect a sample, using boundary coefficients rather than the traditional ones may
present a highest magnitude, which facilitates the detection of disturbances.

3.3. Enhanced LSTM Neural Network

To implement a meaningful mapping between a set of observations and a response
variable, artificial neural networks (ANNs) employ a combination of linear and nonlinear
operations. A network’s depth is the number of successive transformation layers that it uses.
Using ANNs with multiple layers to implicitly extract underlying patterns from data at
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progressively higher abstraction levels is the aim of deep learning [37]. Because of this, deep
neural networks (DNNs) typically do not need an additional feature extraction step, such
as the one used in [38], to estimate the parameters of the sinusoidal model. It is necessary
to estimate the weights of the linear operations used in DNN layers during the training
phase based on observations, as they are currently unknown. A detailed discussion of the
algorithms used to train DNNs can be found elsewhere [39,40]. A schematic representation
of this training procedure is shown in Figure 4.
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Recurrent neural networks (RNNs) function based on a set of internal states in addition
to input observations, which sets them apart from feed-forward networks in a fundamental
way [41,42]. The internal states record historical data in sequences that the network has
already processed. In other words, the network has a cycle that enables the retention of
historical data for a period of time that is dependent on the observations and weights it
receives as input rather than being fixed a priori. Therefore, an RNN is a dynamic system
capable of learning sequential dependencies extended over time, unlike other common
DNN architectures that implement a static input–output mapping. It has therefore been
widely utilized for time-series analysis [43].

In this instance, we codify the RNN dynamics. The k × 1, m × 1, and L × 1 vectors of
input observations, hidden states, and output vectors, respectively, can be represented by
the symbols xt, ht, and yt and (h1, h2, . . . , hT) and (y1, y2, . . . , yT) are computed given an
input sequence (x1, x2, . . . , xT) by iterating through the following recursive equations for
t = 1, . . . , T [44]:

ht = fh(Wxhxt + Whhht−1 + bh) (13)

yt = Whyht + by (14)

where M × K, M × M, and L × M weight matrices are represented by Wxh, Whh, and Why;
M × 1 and L × 1 bias terms are represented by bh and by; and an element-wise nonlinear
hidden layer function (such as the logistic sigmoid function) is represented by fh. An
illustration of a fundamental RNN unit described by Equations (13) and (14) is shown in
Figure 5.
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Since a basic RNN unit unfolds over time to become a composite of several nonlinear
computational layers, it is already temporally deep [39]. In addition to the temporal depth
of an RNN, Pascanu et al. investigated several alternative definitions of depth in RNNs,
which allowed for the construction of deep RNNs [40]. Nonetheless, piling several recurrent
hidden layers on top of one another is a standard method of defining deep RNNs [40]. In
this instance, the output of the layer before it forms the input of that layer. With N hidden
layers assumed, the hidden states for layer j are iteratively calculated for j = 1, . . . , N and
t = 1, . . . , T using the following formula:

hj
t = fh(Whj−1hj h

j−1
t + Whjhj h

j
t−1 + bj

h) (15)

yt = WhN yhN
t + by (16)

where the same hidden layer operates. It is assumed that fh for every layer exists, where
h0

t = xt and hj
t represents the state vector of the jth hidden layer. RNNs have a strong and

intuitive structure, but when trained in real-world scenarios, they are unable to capture long-
term dependencies. Generally speaking, this situation is related to the vanishing gradient
and exploding gradient issues mentioned in [37,43]. More advanced recurrent units, such
as enhanced long short-term memory (ELSTM) units and, more recently, gated recurrent
units (GRUs), have been proposed to address issues with basic RNNs. In addition to being
easier and more effective to train than LSTMs, GRUs have demonstrated performance
levels that are comparable to those of LSTM architectures [44]. Formally, a GRU [44] uses
the following approximate function to try and implement the hidden layer function fh in
Equation (13):

zt = σ(Wxzxt + Whzht−1 + bz) (17)

rt = σ(Wxrxt + Whrht−1 + br) (18)

h̃t = tanh(Wxhxt + Wh(ht−1 ⊙ rt) + bh) (19)

ht = zt ⊙ ht−1 + (1 − zt)⊙ h̃t (20)

where ⊙ stands for multiplication of elements, The weight matrices M × K, M × K, M × K,
and M × M are represented by Wxz, Wxr, Wxh, and Wh; the m × 1 bias terms are represented
by bz, br, and bh; the M × 1 (update gate) vector and M × 1 (rest gate) vector are represented
by Zt and rt, respectively. GRUs can be stacked on top of one another to create a deeper
network, much like simple RNN units. Under such circumstances, Equations (17)–(20) are
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extended to all layers, much like Equation (15). However, the hidden layer function fh in
Equation (13) is implemented by the following composite function in the proposed LSTM:

it = σ(Wxixt + Whiht−1 + bi) (21)

ft = σ(Wx f xt + Wh f ht−1 + b f ) (22)

c̃t = tanh(Wxcxt + Whcht−1 + bc) (23)

ct = it ⊙ c̃t + ft ⊙ ct−1 (24)

ot = σ(Wxoxt + Whoht−1 + bo) (25)

ht = ot ⊙ tanh(ct) (26)

where bi, b f , bc, and b0 denote M × 1 bias terms; it, ft, ct, and ot denote M × 1 (input
gate) vector, M × 1 (forget gate) vector, M × 1 (cell state) vector, and M × 1 (output gate)
vector, respectively; Wxi, Wx f , Wxc, and Wxo denote M × K; Whi, Wh f , Whc, and Who denote
M × M weight matrices. The reason the models up to this point have been referred to as
unidirectional RNNs is that only observations x1, x2, . . . , xt are utilized in order to predict
yt; in other words, information flows from the past to the present and future observations
are not utilized in order to predict yt. The bidirectional LSTM neural network that can use
data from the “future” to predict yt is proposed in this paper. In this sense, a different set
of hidden layers is identified and linked in a different temporal sequence. Formally, the
following modification to Equation (13) yields this:

h f
t = fh(W

f
xhxt + W f

hhh f
t−1 + b f

h) (27)

hb
t = fh(Wb

xhxt + Wb
hhhb

t+1 + bb
h) (28)

yt = W f
hyh f

t + Wb
hyhb

t + by (29)

where W f
xh, W f

hh, Wb
xh, Wb

hy, b f
h , bb

h, and by are weight matrices and bias terms that need to
be calculated in the right size.

In the current study, the model is trained to minimize the error between the predicted
output and the actual labels using a suitable loss function, such as binary cross-entropy
loss. Backpropagation through time (BPTT) or alternative optimization algorithms like
Adam or RMSprop are used to update the network parameters. Where:

yt: Binary coding vector using (0,1) for various types of faults in power transformers.

In this study, different types of faults have been encoded as the output of the proposed
LSTM, as shown in Table 1.

Table 1. Binary Code for Different types of the fault in power transformer.

Fault Type Binary Code

Internal faults (0,0)
External faults (0,1)
Inrush current (1,0)

Internal faults and inrush current (under CT saturation) (1,1)
xt: A vector of features, such as Sx and Wx , extracted from the wavelet transform.

4. Result Analysis and Discussion

In the study presented, the proposed framework was tested and validated through a
simulation case, illustrated in Figure 6. A comprehensive approach was adopted, incor-
porating numerous case studies using a blend of simulation techniques, real-world data,
and data augmentation methods. This multifaceted strategy allowed the methodology to
be validated across various experimental scenarios. Specifically, a simulation model of a
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132/33 kV power transformer with a 63 MVA capacity was created, meticulously calibrated
to match a real-world counterpart under different fault conditions. Detailed specifications
of the transformer under study are provided in Table 2. This calibration enabled the accu-
rate replication of the real transformer’s behavior under diverse operating conditions and
fault scenarios. Throughout the process, the measured signals at each simulation step were
rigorously compared to ensure consistency with those observed in the real transformer
under identical conditions. Additionally, data from multiple sources—including simu-
lated, real-world, and augmented datasets—were integrated to construct a comprehensive
training dataset. This approach ensured that the synthesized data authentically reflected
real-world transformer operations and fault conditions. The robustness and capability
of the model to handle a wide range of experimental data in real-world scenarios were
ensured through this thorough and integrative approach, providing a strong foundation
for validating and ensuring the reliability of the methodology.
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Table 2. Detailed data of understudied power transformer.

Connection of Transformer YnD11

Nominal apparent power (MVA) 63
Voltage ratio (kV) 132/33

Rated frequency (Hz) 50
Percentage impedance (%) 10

CT ratio primary side 300:5
CT ratio secondary side 1200:5

The simulation was designed to emulate a real-world power transformer, considering
source phase angles ranging from 0 to 360 degrees to cover all possible transformer switch-
ing conditions. Additionally, various load scenarios and multiple cases of internal faults
with varying ground resistance were simulated. A total of 2000 cases were gathered through
a comprehensive approach that combined simulations with real-world data and data aug-
mentation techniques. These cases were used for training and validating the LSTM network.



Algorithms 2024, 17, 397 14 of 26

Data augmentation methods included introducing noise, applying transformations such as
scaling and rotation, and generating synthetic samples using techniques like the synthetic
minority over-sampling technique (SMOTE). Diverse data sources—simulated, real-world,
and augmented data—were integrated to create an extensive training dataset. Throughout
this process, it was ensured that the synthesized data accurately represented the underlying
distribution of transformer operations and fault conditions. According to the Table 3, the
data collection approach systematically explored different scenarios, as detailed in the
following points:

1. Running the power system with varying power supply phase angles (0–360◦).
2. Modifying fault ground resistance within a range (0.001, 0.01, 0.1, 1, 2, 10, . . ., 75,

125, 150).
3. Adjusting transformer load from 5 MVA to 33 MVA.
4. Manipulating fault location timing on both the LV side (33 kV) and HV side (132 kV)

as per the provided table.

Table 3. Various fault scenarios in the power transformer for training and testing the proposed
framework.

Cases Power Source
Phase Angle

Number of
Cases Fault Location Fault Ground

Resistance Transformer Load

Inrush current (0–360◦) 500 - - -

Internal faults with and
without CT saturation

(0–360◦)
500 HV and LV

(0.001, 0.01, 0.1, . . ., 75), (5 MVA to 33 MVA)
500 HV and LV

External faults under CT
saturation

(0–360◦)
250 HV (0.001, 0.01, 0.1, . . ., 75,

125, 150),
(5 MVA to 33 MVA)

250 LV

Overall, the data collection efforts, with a strong emphasis on simulation, were metic-
ulously conducted to encompass a wide array of scenarios and conditions. This compre-
hensive approach ensured the robustness and reliability of the study, providing valuable
insights into transformer behavior under various operational and fault conditions.

4.1. Feature Extraction Using Improved RBSWT

In this subsection, the feature extraction process for various signal tests of a faulted
power transformer is addressed, focusing on external fault with saturation, internal faults,
inrush currents, and internal faults occurring simultaneously with CT saturation, as dis-
cussed in the previous subsection. Figures 7–10 depict these signals both with and without
the inclusion of white noise. It should be noted that in the external fault scenario depicted
in Figure 10, a three-phase short circuit to ground fault is used to ensure the absolute
condition of saturation.

As shown in Figure 7, inrush currents exhibit a rapid increase in magnitude at the
onset of space gaps, transitioning either from zero to a significant value or from a specific
value back to zero. This abrupt change in current results in smooth ripples along the
signal’s length as it swiftly shifts between different states. Upon inspecting the shape of
the decomposition details depicted in Figures 11–14 both the origin and detail coefficients
of each faulted signal reveal discernible features. These features are indicative of distinct
characteristics within the signal, which can be effectively captured and utilized for further
analysis and diagnosis. On the other hand, the wavelet decomposition of each faulted
signal is shown in Figures 11–14. These wavelet decompositions can be used for extracting
the component levels of the faulted signals. This process allows for a detailed analysis of
the signal components, providing valuable insights into the nature and characteristics of
each fault.
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Figure 7. Differential current signal of the power transformer during inrush current under CT
saturation condition.
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Figure 8. Differential current signal of the power transformer during an internal fault without CT
saturation effect.
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Figure 9. Differential current signal of the power transformer during an internal fault under CT
saturation condition.
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Figure 10. Differential current signal of the power transformer during an external fault under CT
saturation condition.
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during inrush current under CT saturation condition.
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Additionally, the analysis of these features provides valuable insights into the be-
havior of the power transformer under various fault conditions. By examining the detail
coefficients, one can identify specific patterns and anomalies associated with each type of
fault. This information is crucial for developing robust diagnostic tools and improving the
reliability of fault detection methods. The detailed examination of inrush currents, external
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and internal faults, and CT saturation effects allows for a comprehensive understanding of
transformer performance and enhances the accuracy of the proposed framework.

It is noteworthy that the settings for differential protection were set up to handle all
kinds of external faults, particularly those that arise when CT saturation is present. A
wavelet analysis of the current signal was carried out with a ground fault resistance of
0.1 Ω in the event of an external fault involving three-phase and ground faults (ABC-G)
outside the protected zone of the power transformer (such as three-phase faults occurring
on the load side). In order for the protection mechanisms to be able to respond to and
lessen the effects of such faults, it was necessary to precisely identify and characterize the
fault conditions.

4.2. Training and Verification of the Proposed LSTM Neural Network

The training and verification of the proposed long short-term memory (LSTM) neural
network were conducted to ensure its effectiveness in accurately diagnosing faults in the
power transformer. A comprehensive dataset, which included various fault scenarios
and conditions, was utilized for this purpose. As discussed in the preceding section, a
power transformer with specifications (132/33 kV, 63 MVA, 50 Hz) configured as YnD11
was used to validate the proposed inner fault detection methodology. The discussion
of the RBSWT-LSTM model’s results is based on testing the model across multiple fault
and inrush current scenarios. The model’s performance was evaluated by training it
on the proposed deep learning framework, using a total of 2000 cases segregated into
four groups: inrush current, internal defects, external faults, and internal faults with CT
saturation. The proposed methodology initially extracted features from the differential
current using wavelet transform and subsequently computed the mean value of each
detail coefficient level of the signals. As previously mentioned, spectral analyses were
conducted for each of the four cases, with each case demonstrating unique characteristics,
highlighting the effectiveness of the deep learning model in accurately recognizing various
fault conditions. The training phase involved feeding the LSTM network with a diverse
set of faulted and normal operation signals, allowing the network to learn the underlying
patterns and characteristics associated with each condition. The wavelet-decomposed
signals, as shown in Figures 11–14 were particularly useful in extracting the component
levels of the faulted signals, providing the LSTM with detailed information for analysis.
During the verification phase, the performance of the LSTM network was rigorously tested
against a separate validation dataset. This dataset included signals not previously seen
by the network, ensuring an unbiased evaluation of its diagnostic capabilities. The results
demonstrated that the LSTM network could accurately identify and classify different types
of faults, including external faults, internal faults, inrush currents, and internal faults with
CT saturation. Overall, the training and verification process confirmed the robustness and
reliability of the proposed LSTM neural network in diagnosing transformer faults, making
it a valuable tool for enhancing the protection and monitoring of power systems. In this
analysis, MATLAB 2024a programming software is utilized to conduct experiments using
data obtained from model tests comprising 2000 cases, each representing a specific type of
fault. The collected vibration time-series data were segmented into brief intervals of 0.02 s
using the current method. Each segment contained 60 consecutive sample points, with the
original time series sampled at a consistent rate of 3 kHz. For this study, the observations
were shuffled, and 25% of the observations for each load current were reserved as a
validation set for model selection. The analyses in this study are based on a thoroughly
researched dataset. The LSTM network, as it gains experience, learns to identify patterns
and temporal dependencies within input sequences by adjusting its weights and biases to
minimize prediction errors. This capability is facilitated by the unique LSTM architecture,
which incorporates cell state mechanisms and gating functions. The model’s outputs are
the raw numerical predictions, and the network is trained to make accurate forecasts. The
training process spans 200 epochs, with the learning rate gradually decreasing from an
initial value of 0.01. By specifying validation data and frequency, the accuracy of the
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network is verified, and the algorithm continuously assesses the validation data’s accuracy
during training. The model’s performance is evaluated using the root mean square error
(RMSE) of the predicted values and the proportion of predictions within an acceptable error
margin. Figure 15 illustrates the training and analysis of the proposed LSTM network using
the Sgdm optimizer. Additionally, Table 4 presents the initial learning rate and associated
losses, along with the iteration-wise mini-batch accuracy for both training and validation
phases. By the conclusion of the training epochs, the model achieved an RMSE accuracy of
0.039 and a loss accuracy of 1.2 × 10−4. This comprehensive approach ensures the model’s
robustness and accuracy, highlighting the effectiveness of the LSTM network in handling
time-series data for fault diagnosis. In this regard, it should be noted that in Figure 15,
the dark colors typically correspond to metrics on the training data, while the light colors
correspond to metrics on the validation data.
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Table 4. Various evaluation criteria utilized during the training of the LSTM network on a single CPU.

Epoch Iteration Time Elapsed
(hh:mm:ss)

Mini-Batch
RMSE

Mini-Batch
Loss

Base Learning
Rate

1 1 00:00:03 191 × 10−2 18 × 10−1 1 × 10−2

50 50 00:00:04 7 × 10−2 26 × 10−4 1 × 10−2

100 100 00:00:05 3 × 10−2 4 × 10−4 1 × 10−2

150 150 00:00:06 1 × 10−2 57 × 10−7 1 × 10−3

200 200 00:00:07 933 × 10−5 44 × 10−7 1 × 10−3

Figures 16–19 display the root mean square error (RMSE) indicators comparing the
real signals to the predicted signals generated by the LSTM network. These comparisons
are made for various signal tests corresponding to different types of faults, all of which
are affected by white noise caused by the data measurement units. As observed in these
figures, the proposed method demonstrates high accuracy in predicting each type of fault,
even with a minimal number of samples. This indicates the robustness and reliability of
the LSTM network in handling noisy data and accurately identifying fault conditions.
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4.3. Analysis of Results and Comparison with State-of-the-Art Research

As discussed in the previous subsection, the utilization of the proposed Real-Time
Boundary Stationary Wavelet Transform (RTBSWT) and the improved long short-term
memory (LSTM) networks introduces a novel approach for sequence classification tasks.
This approach is particularly effective when the input data contain both spatial and tempo-
ral features. Consequently, Table 5 illustrates the capabilities of the proposed framework
compared to recent state-of-the-art research in fault detection across various scenarios,
including internal faults, external faults, inrush currents, and internal faults coinciding
with CT saturation. The proposed method and other recent methods were tested under fair
and equal conditions using identical case studies.

The results shown in Table 5 demonstrate that the proposed framework exhibits su-
perior performance. For internal faults, the proposed framework correctly detects 498
out of 500 cases (approximately 99%) with an average detection time of 130 milliseconds.
In contrast, other state-of-the-art methods correctly detect 489 out of 500 cases (approxi-
mately 97%) but require an average detection time of 340 milliseconds. Regarding external
faults, the proposed framework accurately identifies 499 out of 500 cases (approximately
99%) with an average detection time of 110 milliseconds. Meanwhile, other leading meth-
ods detect 471 out of 500 cases (approximately 94%) with an average detection time of
310 milliseconds. In the case of inrush currents, the proposed framework successfully
detects 497 out of 500 cases (approximately 99%) with an average detection time of
120 milliseconds. Comparatively, other top methods detect 486 out of 500 cases (approxi-
mately 97%) with an average detection time of 360 milliseconds. Lastly, for internal faults
coinciding with CT saturation, the proposed framework accurately identifies 496 out of
500 cases (approximately 99%) with an average detection time of 170 milliseconds. Other
state-of-the-art methods detect 462 out of 500 cases (approximately 92%) with an average
detection time of 390 milliseconds. These results highlight the effectiveness and efficiency
of the proposed framework, which not only achieves higher detection accuracy but also
significantly reduces the detection time compared to other state-of-the-art methods. This
demonstrates its potential for real-time applications in fault detection and highlights the
advancements made in integrating RBSWT and improved LSTM networks for sequence
classification tasks.
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Table 5. Comparison of the accuracy in detecting various fault types between the proposed method
and previous state-of-the-art methods.

Fault Type
Analysis of Correct Diagnosis by Different Methods

[5,24,27] [10,25] [9,14] Present Method

Internal fault

Number of cases Number % Number % Number % Number %

500 489 97 476 95 482 96 498 99

Average detection time (ms) 340 380 410 130

External fault

Number of cases Number % Number % Number % Number %

500 469 93 471 94 463 92 499 99

Average detection time (ms) 362 310 510 110

Inrush currents

Number of cases Number % Number % Number % Number %

500 486 97 477 95 471 94 497 99

Average detection time (ms) 360 379 525 120

Internal faults with CT
saturation

Number of cases Number % Number % Number % Number %

500 462 92 420 84 431 86 496 99

Average detection time (ms) 390 428 610 170

5. Conclusions

The research presented in this paper underscores the critical importance of accurate
and reliable fault detection in power transformers, essential for maintaining network
stability and minimizing operational costs. The novel approach introduced here leverages
the RBSWT combined with enhanced long short-term memory (LSTM) networks to address
the limitations of existing differential protection schemes, particularly under conditions of
CT saturation and measurement uncertainties. Through rigorous testing and validation,
the proposed method has demonstrated exceptional performance across various scenarios,
including internal faults, external faults, inrush currents, and internal faults coinciding
with CT saturation. The empirical results highlight the method’s superiority, achieving
higher detection accuracy and significantly reduced detection times compared to recent
state-of-the-art techniques. Specifically, the proposed framework achieves approximately
99% accuracy in detecting internal faults, external faults, and inrush currents, with detection
times substantially shorter than those of existing methods. These findings confirm the
proposed framework’s potential for real-time applications in power transformer fault
detection. By effectively integrating RBSWT and LSTM networks, this approach not only
enhances fault detection accuracy but also ensures faster response times, which are crucial
for the protection and efficient operation of power systems. The advancements presented
in this study pave the way for more reliable and cost-effective transformer protection
solutions, reinforcing the critical role of innovative technologies in the power sector.
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Abbreviations
The following abbreviations are used in this manuscript:

LSTM Long Short-Term Memory ELSTM Enhanced Long Short-Term Memory
RT-SWT Real-Time Stationary Wavelet Transform GRU Gated Recurrent Unit
RTBSWT Real-Time Boundary Stationary Wavelet Transform BPTT Backpropagation Through Time
ANN Artificial Neural Network SMOTE Synthetic Minority Over-Sampling Technique
DNN Deep Neural Network RMSE Root Mean Square Error
RNN Recurrent Neural Network
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