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Abstract: Traffic prediction is crucial for transportation management and user convenience. With
the rapid development of deep learning techniques, numerous models have emerged for traffic
prediction. Recurrent Neural Networks (RNNs) are extensively utilized as representative predictive
models in this domain. This paper comprehensively reviews RNN applications in traffic prediction,
focusing on their significance and challenges. The review begins by discussing the evolution of traffic
prediction methods and summarizing state-of-the-art techniques. It then delves into the unique
characteristics of traffic data, outlines common forms of input representations in traffic prediction,
and generalizes an abstract description of traffic prediction problems. Then, the paper systematically
categorizes models based on RNN structures designed for traffic prediction. Moreover, it provides a
comprehensive overview of seven sub-categories of applications of deep learning models based on
RNN in traffic prediction. Finally, the review compares RNNs with other state-of-the-art methods and
highlights the challenges RNNs face in traffic prediction. This review is expected to offer significant
reference value for comprehensively understanding the various applications of RNNs and common
state-of-the-art models in traffic prediction. By discussing the strengths and weaknesses of these
models and proposing strategies to address the challenges faced by RNNs, it aims to provide scholars
with insights for designing better traffic prediction models.

Keywords: review; traffic prediction; deep learning; recurrent neural network

1. Introduction

Traffic prediction plays a crucial role in intelligent urban management and planning
research on traffic prediction, encompassing various aspects such as traffic flow on road
networks, passenger flow on public transit networks, Origin–Destination (OD) demand
prediction, traffic speed prediction, travel time prediction, traffic congestion prediction,
etc., holds significant importance for both users and managers of transportation systems.
Accurate traffic prediction enables users to plan their routes more effectively, whether
driving on roads or using public transit. By avoiding congested areas and selecting the
most efficient paths, users can reduce travel time and improve their overall commuting
experience. Additionally, predicting traffic conditions allows users to anticipate potential
hazards, accidents, or delays along their route, enabling them to make safer decisions while
navigating roads or utilizing public transportation services. Moreover, real-time access
to traffic predictions empowers users to make informed decisions about when to travel,
which routes to take, or whether to switch to alternative modes of transportation. This
leads to increased convenience and flexibility in managing their daily commutes. For urban

Algorithms 2024, 17, 398. https://doi.org/10.3390/a17090398 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a17090398
https://doi.org/10.3390/a17090398
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0001-8857-9990
https://orcid.org/0000-0001-7696-7566
https://orcid.org/0000-0002-0990-5119
https://doi.org/10.3390/a17090398
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a17090398?type=check_update&version=1


Algorithms 2024, 17, 398 2 of 43

planners and traffic managers, traffic prediction research assists transportation managers in
optimizing the performance of road and transit networks by identifying congestion-prone
areas and implementing appropriate traffic management strategies. This includes adjusting
traffic signal timings, optimizing public transit schedules, and coordinating infrastructure
improvements to enhance network efficiency. Additionally, accurate traffic predictions
enable managers to allocate resources more effectively, such as deploying additional transit
services, adjusting route schedules, or prioritizing maintenance activities. This ensures
that resources are utilized efficiently to meet the demands of travelers and minimize dis-
ruptions. Moreover, insights derived from traffic prediction research inform strategic
decision-making processes related to urban planning, infrastructure development, and
transportation policy formulation. By understanding future traffic patterns and demands,
decision makers can make informed choices to support sustainable and resilient transporta-
tion systems. In summary, research on traffic prediction plays a critical role in optimizing
travel efficiency, safety, and convenience for users while assisting transportation managers
in effectively managing and improving the performance of transportation networks.

Traditional traffic prediction methods, such as those based on Historical Averages
(HAs), time series analysis, and autoregressive models, while providing initial traffic
prediction to some extent, often fail to fully capture traffic data’s complexity and dynamic
changes. These methods typically assume that traffic variations are linear or follow simple
patterns, making it challenging to handle non-linear relationships, the impact of sudden
events, and seasonal or periodic changes in traffic data. Additionally, they exhibit low
efficiency when dealing with large-scale, high-dimensional data, making it challenging
to respond to real-time traffic changes. In recent years, the rapid development of deep
learning models has dramatically promoted research and applications in traffic prediction.
Deep learning models such as Recurrent Neural Networks (RNNs), Convolutional Neural
Networks (CNNs), Graph Neural Networks (GNNs), and transformers have provided new
solutions for traffic prediction with their outstanding data processing capabilities and ability
to model complex temporal and spatial relationships. These models can automatically
learn traffic flow patterns, passenger flow, speed, and congestion changes from massive
historical traffic data, achieving high-accuracy predictions of future traffic conditions.

Given the impact of deep learning on traffic prediction, the significance of RNNs and
their variants, such as long short-term memory (LSTM) networks and Gated Recurrent
Unit (GRU) networks, stands out prominently. The design philosophy of RNNs enables
them to naturally handle time series data, which is crucial for traffic prediction as traffic
features, like flow and speed, vary over time. By capturing long-term dependencies in time
series, RNNs can accurately forecast future changes in traffic conditions. Mainly, variants
of RNNs, like LSTMs and GRUs, address the issue of vanishing or exploding gradients
faced by traditional RNNs when dealing with long sequences through specialized gating
mechanisms. This further enhances prediction accuracy and stability.

As neural network models for traffic prediction become increasingly popular, the
diversification of deep learning models complicates the assessment of the current state
and future directions of this research field. Despite the emergence of advanced models,
like transformers, which have demonstrated superior performance in traffic prediction,
reviewing the applications of RNNs in this field remains essential. Recent developments,
such as the introduction of the Test-Time Training (TTT) [1] and the Extend LSTM (xLSTM)
model by the original author of LSTM in 2024 [2], have reinvigorated interest in RNNs,
showcasing their exceptional predictive capabilities and highlighting a resurgence in their
relevance. RNNs offer a critical baseline for evaluating newer architectures, and under-
standing RNNs’ capabilities and limitations provides valuable insights into model design
and optimization, which can still be advantageous in specific contexts.

The scarcity of specialized studies on RNN models further complicates understanding
their application in traffic prediction. This review addresses these challenges by provid-
ing a comprehensive overview, targeting professionals interested in applying RNNs for
traffic prediction. Starting with the definition of the problem and a brief history of traffic
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prediction, it then delves into RNNs within traffic prediction research. It discusses the
comparison between RNNs and other state-of-the-art methods and the challenges RNNs
face in traffic prediction.

The insights that can be extracted from this paper are as follows:

1. The unique characteristics of traffic data and common input data representations in
traffic prediction are summarized.

2. The statement of traffic prediction problems is generalized.
3. A comprehensive overview of seven sub-categories of applications of current deep

learning models based on the structures of RNNs in traffic prediction is conducted.
4. A detailed comparison between RNNs and other state-of-the-art deep learning models

is conducted. In addition to the comparison of RNNs with other state-of-the-art
models on public datasets, such as the Performance Measurement System (PeMS,
http://pems.dot.ca.gov/ (accessed on 2 March 2024)), we design a comparative study
focused on short-term passenger flow prediction using a real-world metro smart card
dataset. This study allows us to directly compare the predictive performance of RNNs
with other models in a practical, real-world context.

5. Transformers excel with long sequences and complex patterns, but RNNs can out-
perform with shorter sequences and smaller datasets. The metro data used in our
comparative study favored LSTM, showing that simpler models can sometimes pro-
vide more accurate and efficient predictions. Choosing the right model based on the
dataset and resources is crucial.

6. The future challenges facing RNNs in traffic prediction and how to deal with these
challenges are discussed.

The paper is structured as follows.
In Section 2, we review the development history of the traffic prediction field over the

past six decades and describe various data-driven prediction methods. We categorize pre-
diction methods into three major classes: statistical methods, traditional machine learning,
and deep learning. With the enhancement of computational resources and advancement in
data acquisition techniques, deep learning has gradually become mainstream due to its
outstanding performance in prediction accuracy.

In Section 3, we introduce traffic data and its unique characteristics, summarize the
abstract description of traffic prediction problems, and then discuss the impact of input data
representation on RNNs and their variants for traffic prediction. This includes the form
of input sequences (including time series, matrix/grid-based sequences, and graph-based
sequences) and sliding window techniques. This section emphasizes the importance of
accurately representing input data to improve the prediction accuracy of RNN models.
It discusses the performance differences when handling different data representations,
ranging from simple RNNs to complex models combining CNNs and GNNs.

In Section 4, we delve into RNNs and their variants, sequentially introducing classical
methods and hybrid models (such as RNNs combined with machine learning techniques,
CNNs, GNNs, and attention mechanisms). This section showcases RNNs’ advantages in
capturing temporal dependencies and methods for overcoming limitations and enhancing
prediction performance through integration with other technologies.

In Section 5, we delve into the application of RNNs and their variants in traffic
prediction, covering seven aspects as follows: traffic flow prediction, passenger flow
prediction, OD (Origin–Destination) demand prediction, traffic speed prediction, travel
time prediction, traffic accidents and congestion prediction, and occupancy prediction.
This section provides a detailed exposition of the performance of relevant models in
various domains.

In Section 6, we discuss the comparison between RNNs and the most popular mod-
els, i.e., transformer series models, as well as other classical prediction models, such as
convolutional-based time series prediction models. This section also explores the chal-
lenges faced, such as model interpretability, accuracy in long-term prediction, the lack of

http://pems.dot.ca.gov/
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standardized benchmark datasets, issues with small sample sizes and missing data, and
the challenge of integrating heterogeneous data from multiple sources.

2. Development History of Traffic Prediction

In this section, we conduct a thorough review and survey of significant research on
traffic prediction throughout its development history. The field of traffic prediction has
evolved over nearly six decades, during which various prediction methods have emerged.
Traffic prediction is a multidimensional research field encompassing a diverse classification
of methods and applications (Figure 1). Methodologically, traffic prediction is divided into
three major classes: statistical methods, traditional machine learning methods, and deep
learning methods. Moreover, traffic prediction involves multiple sub-areas of applications,
such as traffic flow prediction, passenger flow prediction, traffic speed prediction, and
travel time prediction. These sub-areas will be explored in detail in Section 5. This section
will systematically review traffic prediction’s historical development and technological
progress, following the aforementioned methodological classification. Statistical methods
are particularly suitable for handling smaller datasets due to their clear and simplified
computational frameworks compared to more advanced machine learning techniques.
Meanwhile, traditional machine learning methods excel in capturing complex non-linear
relationships in traffic data and processing high-dimensional data. With the enhancement
of computational power and improvement in data acquisition methods, deep learning
methods are increasingly popular due to their complex structures and ability to outperform
many traditional methods given sufficient data.
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2.1. Statistical Methods

Statistical methods play pivotal roles in traffic prediction, representing a major paradigm
of data-driven methodologies. Statistical methods, exemplified by time series analysis
encompassing HA models [3], Exponential Smoothing models (ES) [4], ARIMA models [5],
Vector Auto Regression (VAR) models [6], etc., rely on the statistical attributes of historical
data to anticipate forthcoming traffic. By capturing the temporal dependencies and seasonal
patterns inherent in traffic data, these methodologies furnish a robust groundwork for
short-term and mid-term traffic forecasting.

In time series analysis, the ARIMA model and its variants represent mature method-
ologies rooted in classical statistics and have been widely applied in traffic prediction
tasks [7–11]. Ahmed et al. [12] were the first to use the ARIMA model for traffic prediction
problems. Since then, many scholars have made improvements in this area. For example,
Williams et al. [13] proposed seasonal ARIMA to predict traffic flow, considering the peri-
odicity of traffic data. The success of these models lies in their ability to capture trends and
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seasonal patterns in time series data, thereby providing accurate predictions for domains,
such as traffic volume and accident rates. However, despite the efficacy of the ARIMA
model and its variants in addressing linear time series forecasting problems, they exhibit
certain limitations, mainly when dealing with complex issues, like traffic prediction. Firstly,
ARIMA models assume data has linear relationships and fail to capture non-linear patterns
in traffic flow data. Secondly, ARIMA models are limited to a small set of features (lags
of the time series itself) and struggle to integrate external factors affecting traffic, such as
weather. Additionally, these models are computationally unsuitable for handling large or
high-dimensional datasets and require manual tuning of parameters. ARIMA models are
sensitive to missing data and noise, necessitating preprocessing and imputation to address
gaps in the time series. Their capability for real-time prediction is limited, especially when
the models need frequent retraining.

2.2. Traditional Machine Learning Methods

Traditional machine learning methods in traffic prediction practice mainly fall into
three categories: feature-based models, Gaussian process models, and state space models.
Feature-based models, particularly suitable for traffic prediction [14], rely on regression
models constructed from statistical and traffic features. The challenge with such meth-
ods lies in the manual construction of regression models, with their effectiveness largely
dependent on the accuracy of regression analysis. Zheng et al. [15] proposed a feature
selection-based method to explore the performance of machine learning models, such as
Support Vector Regression (SVR) and K-Nearest Neighbor (K-NN), in predicting traffic
speed across various feature selections. On the other hand, Gaussian process models
involve complex manipulation of the spatiotemporal attributes of traffic data. While
accurate, scaling to large datasets is difficult due to its high computational resource require-
ments [16,17]. Sun et al. [18] proposed a method for a mixture of variational approximate
Gaussian processes, which extends the single Gaussian process regression model. Zhao
et al. [19] established a fourth-order Gaussian process dynamical model for traffic flow
prediction based on K-NN, achieving significant improvements. State space models oper-
ate by simulating the uncertainty of the system through Markovian hidden states. While
they demonstrate specific capabilities in simulating complex systems and dynamic traffic
flows, their application is limited when dealing with more intricate traffic simulations and
flow dynamics [20]. Shin et al. [21] utilized a Markov chain with velocity constraints to
stochastically generate velocity trajectories for traffic speed prediction. Zhu et al. [22] chose
the hidden Markov model to represent the dynamic transition process of traffic states and
used it to estimate traffic states.

2.3. Deep Learning Methods

While traditional machine learning models can effectively learn non-linear patterns in
data, they still have limitations, such as requiring extensive feature engineering, struggling
with high-dimensional data, and not capturing complex temporal dependencies as effec-
tively. With their multi-layer neural network structures, deep learning models provide a
powerful capability for handling such data. Due to their numerous layers and large number
of parameters, these models are particularly suitable for extracting features from large and
complex datasets, thereby achieving excellent predictive performance. This leads to the
success of deep learning in multiple fields, such as stock prediction [23], text mining [24],
and traffic prediction.

Deep learning provides a powerful tool for handling high-dimensional data and
learning complex patterns, with Multi-Layer Perceptron (MLP) [25] being one of the most
basic deep learning networks that has shown significant potential in traffic prediction. MLP
is a feedforward neural network consisting of an input layer, several hidden layers, and
an output layer. It is suitable for performing classification and regression tasks, which
are crucial in traffic prediction. The goals of traffic prediction include but are not limited
to predicting traffic flow, vehicle speed, travel time, and congestion levels. MLPs use
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backpropagation as a training technique, a supervised learning algorithm that learns the
desired output from diverse inputs. Early research applying MLPs to traffic prediction was
mainly performed around 1995. For example, Taylor et al. [26] applied MLPs to predict
highway traffic volume and occupancy, while Ledoux [27] summarized the potential
applications of MLPs in traffic flow modeling. Despite MLP’s early widespread application
in traffic prediction due to its ability to handle non-linear relationships in traffic data, more
powerful and specifically optimized deep learning models are gradually replacing MLPs
over time.

The subsequent development of RNNs represents a significant evolution of traditional
feedforward neural network models, mainly aimed at improving the performance in
handling time series data. Traditional feedforward neural networks, such as MLPs, often
perform poorly in modeling sequences and time series data, mainly because they lack a
component for sustained memory, preventing the network from maintaining the flow of
information over time between its neurons. In contrast, the design of RNNs improves the
handling of sequential data by introducing internal states or memory units in the network
to store past information. The first proposed RNN model consisted of a basic two-layer
structure, with a notable feature in the hidden layer: a feedback loop. The addition of this
feedback loop was an innovation of RNNs, enabling the network to retain information
from previous states to some extent, thus handling sequential data. Although the original
RNNs show promise in dealing with data with temporal sequences, their simple design
faces significant challenges in practical applications. When training larger RNNs using
backpropagation, the issues of vanishing or exploding gradients often arose. This became
particularly pronounced when attempting to capture long-term data dependencies, as
the error gradients decay exponentially during the backpropagation process, making it
difficult for the network to learn these dependencies. To address this problem, a new
class of RNN structures, known as gated RNNs, was proposed, which manage long-term
dependency information by introducing gate mechanisms, effectively overcoming the
vanishing gradient problem. Among these, the two most well-known variants of gated
RNNs are LSTMs and GRUs. These models achieve a high capability in capturing long-term
dependencies in time series data by incorporating complex gate mechanisms, such as the
forget gate, input gate, and output gate, in LSTMs or the update gate and reset gate in
GRUs. These mechanisms enable the network to selectively retain or discard information
as needed, significantly enhancing the model’s ability to capture long-term dependencies
in time series data.

To the best of our knowledge, in 2015, two pioneering studies applied LSTM to the
field of traffic prediction for the first time, specifically for traffic speed prediction and traffic
flow prediction. Ma et al. [28] were the first to apply the LSTM model to traffic speed
prediction. Tian et al. [29] were the first to propose using the LSTM model for traffic flow
prediction. In 2016, Fu et al. [30] were the first to apply the GRU model to traffic flow
prediction and compared it with models such as LSTM, ARIMA, and others. Many research
works have improved RNNs and are used for traffic prediction. For example, Bidirectional
LSTM (Bi-LSTM) [31], two-dimensional LSTM [32], etc., have been utilized. In recent years,
in traffic prediction, RNNs have often served as essential components of hybrid deep neural
network models, playing a vital role in capturing temporal patterns in traffic data. This
reflects the ability of RNNs to understand and predict how traffic flow changes over time,
particularly in handling dynamic variations and periodic events.

Furthermore, many scholars have researched applying CNNs in traffic prediction.
Firstly, a CNN is a commonly used supervised deep learning method. CNNs have achieved
great success in image and video analysis, especially in handling data with high spatial
correlation. This characteristic makes CNNs an indispensable tool in traffic prediction,
especially when dealing with visual data from traffic cameras. Unlike MLPs and RNNs,
which mainly deal with numerical time series data, CNNs can directly identify and learn
valuable features from raw images without manual feature engineering. Specifically, CNNs
can automatically and learn spatial features from input data through convolution and
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pooling operations while being unsupervised. These features are extracted directly from
the raw data, enabling the model to identify previously unknown spatial dependencies. In
2017, Ma et al. [33] were the first to apply CNNs in traffic speed prediction, marking the
first instance of treating traffic data in the form of images. Additionally, the introduction of
the Conv-LSTM [31] combined the CNN with LSTM to extract spatiotemporal features of
traffic flow. Given that the traffic time series data from adjacent nodes on the same link are
often correlated, multiple studies have confirmed the effectiveness of convolution-based
deep learning models to extract local spatial dependencies from multivariate time series
data [34]. In addition to two-dimensional (2D) CNNs for extracting spatial dependencies,
one-dimensional (1D) CNNs are usually utilized for capturing temporal dependencies. It is
worth noting that in 2018, Lea et al. [35] proposed the Temporal Convolutional Network
(TCN). The TCN is a kind of 1D-CNN specifically designed for time series data, aiming
to overcome the limitations of traditional CNNs in handling specific problems related to
time series. It combines the temporal dependencies handling capabilities of RNNs with the
efficient feature extraction capabilities of CNNs. In traffic prediction tasks, TCNs effectively
handle sequential data, such as traffic flow and speed, predicting the traffic state for future
time intervals. As traffic data often exhibit clear temporal periodicity and trends, TCNs
excel at learning these patterns and making accurate predictions with their unique network
structure. Some researchers have improved and applied the TCN architecture to traffic
prediction tasks, demonstrating good predictive effectiveness [36–38].

However, in non-Euclidean structures, such as road networks and transportation sys-
tems, CNNs struggle to handle the complex relationships between data entities effectively.
The relationships between data entities are not only based on physical spatial distances
but also involve topology or network connectivity, which is challenging for CNNs. The
introduction of Graph Neural Networks (GNNs) has provided better solutions for this
aspect. The core advantage of GNNs lies in their ability to capture the complex relation-
ships between nodes and the structural properties of networks. The basic idea of GNNs
is to aggregate information from neighboring nodes through an iterative process to learn
node representations. Each node’s representation is based on an aggregation function of its
features and neighbors’ features. This aggregation mechanism allows information to flow
in the graph, enabling each node to indirectly access and learn information about distant
dependencies. GCNs have evolved from the GNN framework and are specifically designed
to leverage the local connectivity patterns of graph-structured data to learn node features
efficiently. GCNs provide a powerful way to process nodes and their relationships by
applying convolutional operations on graph data. In 2018, in the realm of traffic prediction
utilizing GCNs, the Diffusion Convolutional RNN (DCRNN) [39] and the Spatiotemporal
GCN (STGCN) [40] represent early attempts to incorporate the structural graph of road net-
works. These models combine GCNs with RNNs to capture the spatiotemporal correlations
inherent in traffic network structures. It is worth noting that in 2019, Guo et al. [41] pro-
posed the Attention-Based STGCN (ASTGCN), which integrates attention mechanisms into
the STGCN framework. This enhances the model’s ability to capture relationships between
different nodes in the traffic network, thereby improving feature extraction accuracy. An-
other typical example is the Temporal Graph Convolutional Network (T-GCN) [42], which
integrates the GRU and GCN in a unified manner, simultaneously optimizing spatial and
temporal features during training. It demonstrates excellent performance in spatiotemporal
traffic prediction tasks—considering that most studies model spatial dependencies based
on fixed graph structures, assuming that the fundamental relationships between entities are
predetermined, i.e., static graphs. However, this cannot fully reflect the true dependencies
relationships, so some research has begun to explore adaptive graphs. A typical example is
the Graph Wavelet Neural Network (Graph WaveNet) [43], which utilizes a novel adaptive
dependency matrix and learns through node embeddings. The model framework consists
of GCNs and TCNs. Considering the multi-modal and compound spatial dependencies
in traffic road networks, much work has begun focusing on multi-graph research in sub-
sequent developments. For example, the Temporal Multi-GCN (T-MGCN) [44] encodes
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spatial correlations between roads as multiple graphs, which are then processed by GCNs
and combined with RNNs to capture dynamic traffic flow patterns over time. In recent
years, many research methods have begun to explore the complex relationships between
spatial and temporal data in more detail. For example, the Dynamic Spatial–Temporal
Aware GNN (DSTAGNN) [45] proposed a method to measure the spatiotemporal distances
between different nodes, effectively integrating multi-head attention mechanisms.

In the evolution of deep learning for traffic prediction, RNNs, CNNs, and GNNs have
played significant roles. However, these models still need to be improved in handling
long-term dependencies and global information. Introducing the transformer [46] model
provides a new and powerful tool for traffic prediction. Unlike previous RNNs, the
transformer relies entirely on a method called attention mechanism to process sequence data.
This attention mechanism lets the model focus on different parts of the input data sequence,
effectively capturing long-range dependencies. Many studies integrate the transformer
with traffic prediction. For example, in 2020, Cai et al. [47] introduced a novel time-based
positional encoding strategy in traffic flow. They proposed the traffic transformer using a
transformer and GCN to model spatiotemporal correlations. Subsequently, many studies
have innovated the transformer model, resulting in the so-called transformer families.
In 2021, the informer [48] found wide application in traffic prediction. The informer
is an advanced deep learning model for long-sequence time series prediction tasks. It
enhances the traditional transformer architecture and is particularly suited for traffic
prediction applications. The critical innovation of the informer lies in its Probabilistic Sparse
(ProbSparse) self-attention mechanism, which selectively focuses on the most relevant time
points for prediction, significantly reducing computational complexity and enabling more
efficient handling of highly long sequences. Additionally, the informer employs a generative
decoder design that supports one-shot prediction of long-term sequences, improving
prediction efficiency and accuracy. With adaptive embedding layers, the informer can
flexibly manage datasets of varying lengths while maintaining high prediction accuracy.
In addition, the Propagation Delay-aware dynamic long-range transformer (PDFormer)
proposed by Jiang et al. [49] is a transformer variant designed for traffic flow prediction in
2023. PDFormer captures dynamic spatial dependencies by employing dynamic spatial
self-attention modules and graph masking techniques based on geographical and semantic
proximity, and it integrates short-range and long-range spatial relationships. The model
includes a feature transformation module to explicitly perceive delays and address time
delay issues in the propagation of spatial information in traffic conditions. PDFormer also
integrates temporal self-attention modules to capture long-term temporal dependencies.

The development trajectory of time series forecasting algorithms based on deep learn-
ing is illustrated in Figure 2.
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3. Problem Statement and Input Data Representation Methods
3.1. Traffic Data and Their Unique Characteristics

The first step in ensuring accurate traffic prediction is acquiring high-quality data
primarily from various sources. These sources mainly include fixed sensors (such as
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traffic cameras, induction loops, and radar sensors), mobile sensors (such as GPS devices
in vehicles and smartphone apps), public transit systems, traffic management centers,
social media and online platforms, satellites, aerial imagery, and third-party data service
providers. Fixed sensors collect information about vehicle flow, speed, and road occupancy.
Mobile sensors provide data on vehicle location and moving speeds. Public transit system
data include the positions of buses and subways, departure intervals, and passenger counts.
Traffic management centers integrate real-time and historical traffic data. Social media
and online platforms offer updates on traffic incidents and road conditions. Satellites and
aerial imagery monitor large-scale traffic flow and vehicle density. Third-party data service
providers provide comprehensive traffic data that has been preprocessed and analyzed.
After obtaining these data, preprocessing steps such as data cleaning, handling outliers, and
data integration are typically performed to improve data quality and relevance, providing
reliable inputs for traffic prediction models. These high-quality data are the foundation for
achieving accurate traffic predictions. To summarize, the unique characteristics of traffic
data are as follows:

1. Strong periodicity. Traffic data exhibit significant daily and weekly cycles. Typical
patterns include morning and evening rush hours during weekdays and different
traffic patterns on weekends. Seasonal variations, such as holiday traffic spikes, also
exhibit periodicity.

2. Spatial dependencies. While many time series involve only time, traffic data are
inherently spatiotemporal. Due to the interconnected nature of road networks, the
traffic conditions at one location can highly depend on the traffic conditions at nearby
or distant locations.

3. Non-stationarity. Traffic patterns change over time and are influenced by factors
like urban development, changes in traffic regulations, or the introduction of new
infrastructure. This non-stationarity means that the statistical properties of the traffic
data (such as mean and variance) can vary, making modeling more challenging.

4. Volatility. Traffic data can be highly volatile due to unexpected events such as
accidents, roadwork, or weather conditions. These events can cause sudden spikes or
drops in traffic flow that are not easily predictable with standard models.

5. Heteroscedasticity. Traffic volume variability is not constant over time. It can vary sig-
nificantly across different times of the day or days of the week, particularly increasing
during rush hours and decreasing at night.

6. Multivariate influences. Traffic conditions are influenced by a wide range of factors
beyond just the number of vehicles on the road. Weather conditions, special events,
economic conditions, and social media trends can affect traffic flow and congestion levels.

These unique traffic data characteristics make it challenging to model traffic data
prediction. The general prediction model cannot be directly applied to the task of traffic data
prediction. On the other hand, traffic data encompass both spatial and temporal dimensions.
These datasets capture traffic events’ geographical locations (spatial) and corresponding
timeframes (temporal). Integrating spatial coordinates and time stamps enables the analysis
of traffic patterns, flow dynamics, and congestion over time and across different locations.
This dual-dimensional nature renders traffic data inherently spatiotemporal. Thus, effective
traffic data prediction must incorporate spatial and temporal dependencies within the
dataset. By considering these interdependencies, the predictive models can more accurately
capture the dynamic nature of traffic patterns, which are influenced by location-specific
factors and temporal variations. Ignoring either dimension would undermine the predictive
accuracy and reliability of the model.

3.1.1. Spatial Dependencies

To describe the spatial dependencies within traffic data, the representation can be
primarily categorized into the following three ways.

• Stacked Vector
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We can use domain knowledge to stack data from multiple related spatial units
according to predefined rules to capture spatial dependency, forming a multi-dimensional
vector. The data for each unit can include traffic flow, speed, density, etc. Through
stacking, these vectors can simultaneously represent the traffic conditions of multiple
geographic locations.

• Matrix/Grid Representation

To capture spatial dependencies, spatial data, such as points or areas within a traffic
network (a traffic matrix is a two-dimensional matrix with its ij-th element tij denoting
the amount of traffic sourcing from node i and exiting at node j), are mapped onto a
two-dimensional matrix or grid. In this matrix or grid, each row and column represents a
specific geographic location, and each cell in the matrix contains the traffic data for that
location. This treats spatial information as two-dimensional Euclidean data composed of
geographic information, representing it like an image. This method can be called matrix-
based representation or grid-based map segmentation. As shown in Figure 3, the city map
is divided into a grid-based map format.
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• Graph Representation

Compared to image data, traffic network data exhibit more complex spatial depen-
dencies, primarily because these dependencies cannot be solely explained by Euclidean
geometry. For example, traffic networks are inherently graph like rather than grid like.
While image data naturally align into a regular grid where each pixel relates primarily to
its immediate neighbors, traffic nodes (such as intersections and bus stops) connect in more
complex patterns that often do not correspond to physical proximity.

A graph consists of multiple nodes and edges that connect these nodes. Each node
represents a specific spatial unit. In the representation of a graph, a matrix of size of N × N
is commonly used to describe the complex relationships between nodes, where N is the
total number of nodes. This matrix is called an adjacency matrix A, and its element (i, j)
represents the connectivity status between the ith and j-th spatial units. These connections
may involve distance, connectivity properties, and other more complex spatial relationships,
often beyond simple Euclidean distance definitions.
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3.1.2. Temporal Dependencies

Temporal dependencies are typically categorized into two main types in data rep-
resentation: sequentiality and periodicity. Sequentiality represents the natural order of
data over time, which in traffic prediction means that data are collected in chronological
order, with each data point timestamped later than the previous one, similar to the stacked
vector method for representing spatial dependencies, where consecutive temporal units
are stacked into a single vector to indicate that temporally closer data are more related.
Periodicity involves the recurring patterns displayed by data, such as daily cycles (peak
and off-peak periods within a day) or weekly cycles (differences in traffic patterns between
weekdays and weekends). Representing data with periodicity allows models to capture
these regularly occurring patterns, enabling accurate predictions for similar future periods.

3.2. Common Forms of Input Representations

With the rapid development of intelligent transportation systems, advanced deep
learning techniques, particularly RNNs and their variants, for analyzing and predicting
time series data have become a hot research area. RNNs, due to their unique feedback
structure, demonstrate significant advantages in capturing long-term dependencies within
time series data. However, the performance of RNNs in traffic prediction depends on their
algorithms and is heavily influenced by the methods used to represent input data.

Data representation methods play a pivotal role in model design and predictive
performance. Different data representation formats, such as time series, grid sequences, or
graph sequences, each possess distinct characteristics and advantages suitable for handling
various types of traffic data. For example, time series methods emphasize the changes
in traffic data over time, while grid sequences and graph sequences also concern spatial
dependencies. Furthermore, applying sliding window techniques is particularly crucial
for capturing time dependencies, as it allows for the inclusion of continuous sequences of
historical data in the model, thereby enhancing prediction accuracy.

With the advancements in big data and computing capabilities, an increasing number
of studies are now exploring the impact of different data representation methods on
the performance of RNNs in traffic prediction. From essential time series forecasting to
complex spatiotemporal data analysis, researchers are striving to identify the most effective
data representation methods to improve the accuracy and efficiency of traffic prediction.
This section concentrates explicitly on the traffic prediction task’s common input data
representation methods. We aim to provide a comprehensive perspective to better utilize
RNNs for traffic prediction by analyzing the latest research findings. Below, we will explore
the relevant literature regarding three forms of input sequences: time series, matrix/grid-
based sequences, and graph sequences. Table 1 summarizes these three types of forms of
input representations.

3.2.1. Time Series

The data representation of a time series encompasses the organization and structure
of the data points that describe the evolution of a quantity over time. It consists of two
fundamental components: the time stamp or index and the corresponding data values. The
time stamp indicates when each observation was recorded and can take various formats,
such as dates, timestamps, or numerical indices representing time intervals. The data
values represent the actual measurements or observations of the quantity of interest at each
time stamp. Together, these components form a sequential series of data points that can
be analyzed to identify patterns, trends, and relationships over time. Time series, s ∈ Rt,
can be represented as s = {s1, s2, . . . , st}, where st represents the traffic state at time t. Time
series s is a common way to represent traffic data. It emphasizes the importance of traffic
patterns that change over time. For example, Rawat et al. [50] provided a comprehensive
overview of time series forecasting techniques, including their applications in various
fields. Furthermore, in traditional studies, RNNs only utilize the time series of traffic
volume as input and do not incorporate any attribute information from the time series data,
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such as timestamps and days of the week. However, traffic volume varies depending on
the time and day of the week. Therefore, in addition to the time series of traffic volume,
attribute information can be used as input to enhance the prediction accuracy of RNN
methods further. Tokuyama et al. [51] investigated the impact of incorporating attribute
information from the time series of traffic volume on prediction accuracy in network traffic
prediction. They proposed two RNN methods: the RNN–Volume and Timestamp method
(RNN-VT), which uses timestamp information, and the RNN–Volume, Timestamp, Day
of the week method (RNN-VTD), which utilizes both timestamp and day of the week
information as inputs, in addition to the time series of traffic volume. Some studies have
also considered the potential connections between traffic states and their contexts by
integrating time series data with contextual factors. For instance, Lv et al. [52] used time
series to represent the scenario of short-term traffic speed prediction, where these time series
data represent the average speed of all vehicles during specific time intervals, aiming to
accurately reflect the movement status of vehicles. They introduce Feature-Injected RNNs
(FI-RNNs), a network that combines time series data with contextual factors to uncover
the potential relationship between traffic states and their backgrounds. Some studies
decompose time series data, such as Wang et al. [53], who used time series to represent
traffic flow data in urban road networks. Specifically, the study addresses short-term traffic
flow prediction in urban road networks and emphasizes the periodicity and randomness of
traffic data. To handle these traffic data, the research is divided into two modules. The first
module consists of a set of algorithms to process traffic flow data, providing a complete
dataset without outliers through analysis and repair and offering a dataset of the most
similar road segment pairs. The second module focuses on multi-time step short-term
forecasting. Awan et al. [54] demonstrated that in addition to parameters related to traffic,
other features associated with road traffic, such as air and noise pollution, can also be
integrated into the input. This study uses time series to represent road traffic data in the
city, specifically focusing on the correlation between noise pollution and traffic flow to
predict traffic conditions. The noise pollution data provide additional indicators of traffic
density and traffic flow. These time series integrate changes in road traffic flow and the
associated levels of noise pollution, revealing the interaction between traffic flow and
noise pollution. Then, an LSTM model is used to predict traffic trends. Traditional time
series forecasting models perform poorly when encountering missing data in the dataset.
Regarding temporal dependencies, all roadways undergo seasonal variations characterized
by long-term temporal dependencies and missing data. Traditional time series forecasting
models perform poorly when encountering missing data in the dataset.

Table 1. Summary of different input representations.

Input Representations Reference Techniques

Time Series

[51] RNN
[52] RNN
[53] LSTM
[54] LSTM

Matrix/Grid-based Sequence

[55] ResNet
[56] LSTM + CNN
[57] LSTM + CNN
[58] LSTM + CNN

Graph-based Sequence

[59] RNN + GNN
[60] LSTM + GNN
[61] GRU + GCN
[62] GAT + Attention
[63] GCN + Attention
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3.2.2. Matrix/Grid-Based Sequence

We previously discussed the spatial dependencies of traffic data, which revealed the
mutual influence of traffic conditions between different locations. To effectively capture this
spatial relationship, the method of dividing a map into grids in Euclidean space can be used.
Specifically, the map is divided into many uniform small areas, with each grid representing
a specific area on the map. This way, the map’s location information is transformed into
a two-dimensional matrix or grid structure. In this structure, each cell of the matrix or
grid contains traffic information for a particular area and simulates the spatial proximity
of the real world between cells. Additionally, the traffic matrix (TM) refers to a specific
application scenario, namely, the representation of traffic flow between different nodes
(such as intersections, city areas, etc.) in a network. Data processed in this manner are
referred to as a grid-based sequence, as shown in Figure 4a. The grid-based sequence,
Xm ∈ Ri×j×t, consisting of i rows and j columns is spread over t time steps, and it can be
represented as Xm =

{
Xm

1 , Xm
2 , . . . , Xm

t
}

, where Xm
t ∈ Ri×j represents a two-dimensional

matrix indicating the traffic state of all grids at time t. Zhang et al. [55] divided the city into
equally sized grid areas, with each grid cell capturing the inflow and outflow traffic volume
of pedestrian flows. Inflow is defined as the total traffic volume entering an area within
a given time interval. In contrast, outflow is defined as the total traffic volume leaving
the area within the same time interval. Matrices at each time step are stacked to form a
three-dimensional tensor, representing the temporal sequence of pedestrian flow volumes.
Yao et al. [56] represented city roads in a grid format, where each grid cell captures taxi
demand. The constructed matrix is in a single tensor form. They built a matrix sequence
where each matrix represents the city’s taxi demand at different time steps. Bao et al. [57]
constructed a grid-based matrix sequence for short-term bike sharing demand. Specifically,
they partitioned the surveyed areas of Shanghai into a grid of 5 × 5 cells, aggregating
the trip data of bicycles in Shanghai (including start timestamps, start geolocations, end
timestamps, end geolocations, etc.), as well as collecting weather and air quality data, based
on grid cells. The data for each time step are integrated into a matrix, with each matrix
element containing comprehensive data for the corresponding grid cell; over time, these
matrices are arranged in chronological order to form a matrix sequence. Zhou et al. [58]
divided the city into several grids and proposed a parameter to control the grid width. This
study suggests that the pickup demands from certain locations at the previous time step
will affect the dropoff demands at the next time step. Subsequently, all data are mapped
to the grids, and each grid’s pickup and dropoff demands are aggregated for each time
interval. Demand matrices are generated for each time interval, quantifying the number of
pickup and dropoff demands occurring within each grid.
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time; (b) a simple schematic diagram of a graph-based sequence data representation, representing a
sequence of traffic data changing over time.
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3.2.3. Graph-Based Sequence

After discussing the grid-based sequence data representation, it is worth noting that
much traffic data are collected based on complex traffic networks and their spatial depen-
dencies closely rely on the topology of these networks. Therefore, to accurately describe
and capture the spatiotemporal big data characteristics existing in traffic networks, we need
a data representation method that reflects the network properties at each time step, namely,
graph-based sequence data representation, as shown in Figure 4b. In this representation,
each sequence element is treated as a graph at each time step, and the relationships or
dependencies among elements are represented by time series. The graph-based sequence
is Xg =

{
Xg

1 , Xg
2 , . . . , Xg

t

}
, where each Xg

t is a graph representing the state of the entire

traffic network at time t. Each graph Xg
t can be further defined as Xg

t = {V, E, A}, where
V is the set of nodes in the graph, with each node representing a specific location in the
traffic network. E is the set of edges in the graph, representing the connections between
nodes. A is the adjacency matrix. This approach is particularly suitable for capturing
complex graph-based spatial and temporal data dependencies. It is widely used in multiple
tasks in machine learning and data mining, such as sequence classification, clustering,
and prediction.

In recent years, significant progress in traffic prediction research has been made using
graph sequences as input sequences. Roudbari et al. [59] used graph-based sequence data to
characterize road network traffic speed over time. These data encompass recorded journey
information for road segments, considering the road network as a unified graph where
nodes represent road segments and edges denote connections between these segments.
Variable features are integrated into node information through an adjacency matrix, while
static features are regarded as edge information. Their study categorized travel times for
road segments, creating temporal lists on adjacent nodes sharing the same road segment,
thus establishing a speed matrix that records speed variations for all road segments. Finally,
the adjacency and speed matrices are combined to form graph-based sequential data.
Additionally, Lu et al. [60] used graph-based sequence data to characterize vehicle speeds
over a period in urban road networks. Specifically, the road network structure is constructed
as a graph based on map data, with special consideration for the accessibility between
different road segments. This not only reflects the physical structure of the roads but
also accounts for actual traffic flow conditions, like when a road segment is temporarily
closed due to maintenance or a traffic accident. Their study computes the traffic speeds of
different road segments at various time points using taxi trajectory data, which are then
matched with the road network. Graph-based sequence data are formed by continuously
constructing these road traffic speed graphs. Wang et al. [61] used graph-based sequence
data to predict traffic flow in urban road networks. Specifically, the road network structure
is constructed as a graph based on spatial–temporal data, with each node representing a
traffic sensor and edges representing the correlations between sensors at different time
steps. The study computes traffic flow data at various time points using real-time sensor
readings, forming a sequence of graphs where each graph represents the traffic conditions
at a specific time step. Jams et al. [62] utilized a data-driven graph construction scheme for
traffic prediction. In their approach, nodes represent traffic sensors, and edges represent the
correlations between sensor readings at different time points. They dynamically construct
graphs by embedding sensor correlations in a latent attention space and generate them
at each time step to form a sequence. Gu et al. [63] used graph-based sequence data to
describe traffic flow over a period in urban traffic networks. They define the topological
road network as a directed graph, where nodes represent detectors on the roads, and
features, such as traffic flow and speed, are added to the nodes. Their study distinguishes
between two types of graphs: static adjacency graphs and dynamic adjacency graphs. The
static adjacency graph is constructed without relying on prior assumptions, simulating
typical long-term spatial dependencies in traffic patterns, while the dynamic adjacency
graph addresses short-term local dynamics, allowing relationships between nodes to adjust
over time based on observed data. Timestamp information is effectively concentrated on
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historical time information using a multi-head self-attention mechanism. The graphs of
consecutive time steps (static and dynamic adjacency graphs) are concatenated to form
a graph sequence encompassing both spatial and temporal dimensions. This way, each
graph at a time node not only contains the traffic state at that moment but also reflects
changes in the relationships between nodes from one time step to the next through the
variations in the edges of the dynamic adjacency graph. Importantly, they embed learnable
time and space matrices into the input graph-based sequence, ultimately becoming the
model’s input.

3.2.4. Sliding Window

The size of the sliding window is often a critical parameter that needs to be adjusted
in forecasting research. Using RNNs for the prediction process allows for recognizing and
learning data patterns within time series data. However, the presence of fluctuations in
the data can make it challenging to understand these data patterns. The dataset utilized in
the study by Sugiartawan et al. [64] records the visitor volume at each time point over ten
years, showcasing the changes in visitor visitation to attractions over time, characterized by
linear trends and periodic fluctuations. The study employs 120 data vectors for prediction
processing, representing tourism visitation data for 120 months. Based on these 120 data
vectors, the study conducts multiple experiments and determines a window size setting of
3, meaning each window contains data from three time steps. In the study, the window
moves forward one time step at a time, and ultimately, the model predicts the visitor
volume at the next time point based on the visitor count data from the past three time
points. Like other deep learning models, GRUs require careful adjustment of the sliding
window size to optimize predictive performance. To explore this tedious process, in the
study conducted by Basharat Hussain et al. [65], they continuously adjust the input window
size of the GRU model to enhance its predictive capabilities. The original data are derived
from average traffic flow data collected at 5 min intervals. Through experimentation, the
researchers tested various window sizes (3, 6, 12, 18, 24) to determine which size most
effectively improves the performance of the GRU model. In a GRU model configured
with 256 neurons in the first layer and two hidden layers containing 64 and 32 neurons,
respectively, they find that a window size of 12 yielded the best predictive performance.
Lu et al. [66] combined the ARIMA model and LSTM for traffic flow prediction. In the
ARIMA model, regression with a sliding time window is introduced, allowing the model
to fit new input data for more accurate predictions continuously. This combined approach
merges the projections of the two models through dynamic weighting, where the weights
of each model in the final prediction are adjusted based on the standard deviation between
the predicted results and the actual traffic flow at different time windows.

3.3. Problem Statement

Traffic prediction involves using historical traffic data to forecast future traffic condi-
tions accurately. In the context of traffic data analysis, predictions are typically categorized
into short-term, mid-term, and long-term predictions based on the forecast horizon. Short-
term prediction involves forecasting traffic conditions over a horizon ranging from a few
minutes to a few hours into the future. This type of prediction is crucial for real-time traffic
management and control systems. Mid-term prediction refers to forecasting traffic condi-
tions over a horizon extending from a few hours to several days. This type of prediction
is used for planning and operational strategies that require an understanding of traffic
patterns beyond immediate real-time needs. Long-term prediction involves forecasting
traffic conditions over a horizon extending from several days to several months or even
years. This type of prediction is important for strategic planning, infrastructure develop-
ment, and policymaking [67]. In this review, short-term traffic prediction problems are our
focus. Due to the diversity and complexity of traffic data, the traffic prediction tasks also
vary. Therefore, a sufficiently generalized problem definition is needed to represent the
short-term traffic prediction problem clearly.
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Assume a spatial network with a set of n sensors deployed, where each sensor records
f attributes (such as traffic flow, traffic speed, traffic occupancy, etc.) over t timestamps.
Thus, the observations of all sensors across all time points can be represented as a three-
dimensional tensor, X ∈ Rn× f×t, and it can be represented as X = {X1, X2, . . . , Xt}, where
Xt ∈ Rn× f represents the attribute data of all sensors at timestamp t. E represents the
exogenous factors that influence future traffic conditions, such as information on weather,
holidays, big events, etc. Assume that the traffic prediction task requires predicting the
traffic attributes for the next u time steps based on the traffic attributes from the past d time
steps and exogenous factors E; the traffic prediction task can be defined as follows:{

X̂t+1, X̂t+2, . . . , X̂t+u
}
= F{(Xt−d+1, . . . , Xt−1, Xt), E, ϕ} (1)

where F(·) is the method used for prediction. ϕ represents the model’s parameters, in-
cluding all weights and biases in the network. X̂t is the prediction at time t. This problem
definition provides a clear and structured approach to utilizing various methods for traffic
prediction, ensuring coverage of all relevant variables.

4. RNN Structures Used for Traffic Prediction
4.1. RNNs

RNNs are a class of iterative learning machines that process sequence data by cyclically
reusing the same weights. This cyclical structure enables them to maintain a memory of
previous data points using this accumulated information to process current inputs, thereby
capturing temporal dependencies. Specifically, an RNN applies a transfer function to
update its internal state at each time step. The general formula for this update is as follows:

ht = f (Wx(xt + bx) + Wh(ht−1 + bh)) (2)

Here, xt is identified as the input vector at time step t and ht−1 is the previous hidden
state. Wx is the weight matrix for the connections between the input at the current time
step and the current hidden state. Wh is the weight matrix for the connections between the
previous hidden state and the current hidden state. bx and bh represent bias vectors. The
function f (·) acts as the activation function.

The hidden state ht at each time step t is updated using a combination of the current
input xt and the previous hidden state ht−1. Weight matrix Wx facilitates the incorporation
of new information and weight matrix Wh helps in transferring past learned information.
bx and bh adjust the inputs and the state transition. The function f (·), typically a non-linear
activation function, is applied to introduce non-linearity into the system, enabling the
network to capture complex patterns in sequential data.

4.2. LSTMs

Theoretically, RNNs are simple and powerful models, effectively training them poses
many challenges in practical applications. One major issue is the problem of vanishing and
exploding gradients. Gradient explosion occurs during training when the norm of gradients
sharply increases due to long-term dependencies, growing exponentially. Conversely, the
vanishing gradient problem describes the opposite phenomenon, where gradients for long-
term dependencies rapidly diminish to near-zero levels, making it difficult for the model
to learn long-range dependencies. To overcome these issues, the introduction of LSTM
addresses the problem by employing gate mechanisms to maintain long-term dependencies
while mitigating gradient problems. These gate control systems include input gates, forget
gates, and output gates, which work together to regulate information flow, retention, and
output precisely.
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The basic formulas for LSTM are as follows:

ft = σ
(

W f [ht−1, xt] + bf

)
it = σ(Wi[ht−1, xt] + bi)
ot = σ(Wo[ht−1, xt] + bo)
∼
Ct = tanh(WC[ht−1, xt] + bc)

Ct = ftCt−1 + it
∼
Ct

ht = ottanh(Ct)

(3)

where xt represents the input vector at time step t. ht−1 represents the hidden state vector
at time step t − 1 and will serve as part of the input for the next time step. ft, it, and ot

are the outputs of the forget gate, input gate, and output gate.
∼
Ct is the candidate layer

at time step t, representing potential new information that might be added to the current
cell state. Ct is the LSTM’s internal state, containing the network’s long-term memory.
W f , Wi, Wo, and WC are the weight matrices for the forget gate, input gate, output gate,
and candidate layer. bf, bi, bo, and bc are the bias vectors for the forget gate, input gate,
output gate, and candidate layer, respectively. σ(·) is the sigmoid activation function used
for gating mechanisms and tanh(·) is the hyperbolic tangent activation function used for
non-linear transformations.

The forget gate ft decides which information to discard by using a sigmoid function
that outputs values between 0 and 1 for each component in the cell state, where 1 means
“retain this completely” and 0 means “discard completely”. Simultaneously, the input gate

it and a candidate layer
∼
Ct decide which new information is stored by creating a vector of

new candidate values. The cell state is then updated by combining the old state, multiplied
by the output of the forget gate, with the new candidate values scaled by the output of
the input gate. Lastly, the output gate ft together with the cell state passed through a
tanh function determines the next hidden state ht, filtering the information to the output.
This mechanism enables LSTMs to handle vanishing gradients and learn over extended
sequences effectively.

4.3. GRUs

The GRU, as another prominent gated structure, was initially proposed by Cho
et al. [68]. The GRU was proposed primarily to optimize the complexity and compu-
tational cost of LSTMs. While LSTMs are powerful, their structure includes three gates and
a cell state, making the model complex and parameter heavy. The GRU simplifies the model
structure by merging the forget gate and input gate into a single update gate, reducing the
number of parameters and improving computational efficiency. Additionally, the GRU
does not have a separate cell state; it operates directly on the hidden state, simplifying the
flow of information and memory management. These improvements enable the GRU to
efficiently handle tasks requiring capturing long-term dependencies while remaining a
powerful model choice. The propagation formulas of the GRU are as follows:

zt = σ(Wz[ht−1, xt] + bz)
rt = σ(Wr[ht−1, xt] + br)
Ct = tanh(Wc[rt · ht−1, xt] + bc)
ht = zt · ht−1 + (1 − zt) · Ct

(4)

Here, zt is the output of the update gate and rt is the output of the reset gate. Wz, Wr,
and WC are the weight matrices for the update gate, reset gate, and candidate layer. bz, br,
and bc are the bias vectors for the update gate, reset gate, and candidate layer.

The GRU operates by effectively balancing the retention and introduction of new
information in time series data. The update gate output zt controls the extent to which
the previous hidden state ht−1 is retained. The reset gate output rt dictates the influence
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of ht−1 on the candidate’s hidden state Ct. The candidate’s hidden state Ct is obtained
by applying the tanh activation function tanh to the linear combination of the reset gate-
adjusted previous hidden state and the current input. The final hidden state ht results from
a linear combination of the previous hidden state, controlled by the output of the update
gate, and the new candidate hidden state. The weight matrix WC is used to generate the
candidate state, while the bias bc adjusts its bias. Thus, the GRU can effectively update its
state, capturing long-term dependencies in time series data.

Figure 5 shows a comparison between the structures of the RNN and its variants. The
RNN represents the simplest form, showing a single recurrent layer; the distinction of
the LSTM lies in the introduction of three types of gates (input, forget, and output gates),
which allow the network to selectively remember or forget information and a cell state
that helps maintain long-term dependencies, aiming to overcome the common problem of
vanishing gradients seen in simple RNNs. The GRU merges the LSTM’s input and forget
gates into a single update gate and combines the cell state and hidden state into a unified
mechanism. Overall, this diagram clearly explains how different RNNs and their variants
process information to handle sequential data.
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4.4. Hybrid Models Including RNN Techniques

In the field of traffic prediction, RNNs and their variants, such as LSTMs and GRUs, are
widely adopted due to their excellent performance in handling time series data. However,
as the complexity of traffic data continues to increase, models relying solely on RNNs are
no longer sufficient to meet prediction requirements entirely. To further enhance prediction
accuracy and effectively address the complexities of traffic data, researchers are beginning
to explore methods that combine RNNs with other mechanisms and models. These methods
may include but are not limited to combining RNNs with traditional machine learning (ML)
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techniques, CNNs, GNNs, and attention mechanisms aimed at achieving better results in
traffic prediction tasks, as shown in Table 2.

4.4.1. RNNs + Traditional ML Techniques

As mentioned earlier, classical traffic flow prediction methods based on traditional
ML techniques include K-NN and SVR. Some scholars have endeavored to combine these
methods with the RNN family for traffic prediction. For example, Luo et al. [69] proposed
a spatiotemporal traffic flow prediction method combining K-NN and LSTM. K-NN is
used to select neighboring stations most relevant to the test site to capture the spatial
characteristics of traffic flow. At the same time, LSTM is employed to explore the temporal
variability of traffic flow. The experimental results show that this model outperforms some
traditional models in predictive performance, with an average accuracy improvement of
12.59%. In comparison with combining with the LSTM model, Zhou et al. [70] proposed
a traffic flow prediction method based on the K-NN and GRU. This method calculates
spatial correlations between traffic networks using Euclidean distance and captures the
time dependency of traffic volume through the GRU. The experimental results demonstrate
a significant improvement in the prediction accuracy of this model compared to traditional
methods. The K-NN method exhibits good predictive performance in simple scenarios.
However, due to its non-sparse nature, it may struggle to handle traffic scenarios with
significant variations. Tong et al. [71] utilized an optimized version of SVR as a traffic
flow prediction method. They apply Particle Swarm Optimization (PSO) to optimize the
parameters of SVR, thereby enhancing the prediction system’s performance. Given the
complex non-linear patterns of traffic flow data, Cai et al. [72] proposed a hybrid traffic
flow prediction model combining the Gravitational Search Algorithm (GSA) and SVR
model. The GSA is employed to search for the optimal SVR parameters, and this model
demonstrates good performance in practice.

Table 2. Summary of different hybrid models.

Hybrid Models Reference Techniques

RNNs + Traditional ML
Techniques

[69] LSTM + K-NN
[70] GRU + K-NN

RNNs + CNNs
[73] LSTM + CNN
[74] LSTM + CNN

RNNs + GNNs
[42] GRU + GCN
[75] LSTM + GNN
[76] LSTM + GNN

RNNs + Attention

[77] LSTM + Attention
[78] LSTM + Attention
[79] LSTM + Attention
[80] RNN + GNN + Attention
[81] GRU + GCN + Attention

4.4.2. RNNs + CNNs

Researchers have gradually recognized the importance of spatial dependency, and the
combined use of RNNs and CNNs in addressing spatiotemporal data issues, particularly
in traffic flow prediction in the Euclidean-based space, has become an important research
direction. This fusion method fully leverages the advantages of RNNs in handling time
series data and the efficiency of CNNs in processing spatial features. RNNs are particularly
suitable for handling time series data because they can capture the temporal dynamic
characteristics and long-term dependencies in the data. However, RNNs have limited
capability in dealing with high-dimensional spatial data. CNNs effectively identify and
extract local features from high-dimensional spatial data, such as images and videos. Still,
they do not directly handle dynamic information in time series data. Therefore, combining
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RNNs and CNNs can achieve more comprehensive and accurate modeling and prediction
of spatiotemporal data. Figure 6 shows an example of a hybrid RNN and CNN model.
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Ma et al. [33] transferred the application of CNNs from images to the field of traffic
prediction, forecasting large-scale transportation networks by utilizing spatiotemporal
traffic dynamics transformed into images. This method integrates the spatial and temporal
dimensions of traffic data into a unified framework, involving the conversion of traffic
dynamics into a two-dimensional spatiotemporal matrix, fundamentally treating traffic flow
as images. This matrix captures the intricate relationships between time and space in traffic
flow, allowing for a more nuanced analysis of traffic patterns. Yu et al. [73] proposed an
innovative approach for predicting traffic flow in large-scale transportation networks using
Spatiotemporal Recurrent Convolutional Networks (SRCNs). The particular distinction
of this method lies in transforming network-wide traffic speeds into a series of static
images, which are then employed as inputs for the deep learning architecture. This image-
based representation allows for a more intuitive and effective capture of the complex
spatial relationships inherent in traffic flow across the transportation network. Empirical
testing on a Beijing transportation network comprising 278 links further demonstrated the
effectiveness of this method. Due to the potential variation in spatial dependencies between
different locations in the road network over time and the non-periodic nature of temporal
dynamics, Yao et al. [74] proposed a novel Spatial–Temporal Dynamic Network (STDN) for
traffic prediction. This approach utilizes a flow gating mechanism to track the dynamic
spatial similarity between regions, enabling the model to understand how traffic flows
between areas change over time, which is crucial for accurately predicting future traffic
volumes. Additionally, they employ a periodically shifted attention mechanism to handle
long-term periodic information and time offsets. This allows the model to account for
subtle variations in daily and weekly patterns, such as shifts in peak traffic times, thereby
enhancing prediction accuracy.

4.4.3. RNNs + GNNs

When constructing deep learning spatiotemporal traffic prediction models, it is nec-
essary to consider the characteristic graph structure of many transportation networks.
Generally, passenger flow activities occur on specific transportation networks rather than
simple Euclidean spaces. Modeling with non-graph structures may result in the loss of
useful spatial information. CNNs are typically used to handle data with Euclidean spatial
structures, such as regular grids. However, for non-Euclidean spaces, such as graph-
structured data, the utility of CNNs is not as evident. To explore the spatial properties of
non-Euclidean transportation networks, some scholars have adopted mathematical graph
theory approaches, modeling transportation networks as graphs. This approach effectively
depicts the connectivity between traffic nodes and opens new avenues for introducing
convolutional operations. In recent years, GNNs have been widely employed to capture
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spatial correlations in transportation networks. Figure 7 shows an example of a hybrid
RNN and GNN model.
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Zhao et al. [42] proposed a T-GCN model, which integrates the advantages of GCNs
and GRUs. This model can simultaneously capture the spatial and temporal dependencies
of traffic data. Furthermore, it incorporates encoder–decoder architecture and temporal
sampling techniques to enhance long-term prediction performance. Wang et al. [75] pro-
posed a novel spatiotemporal GNN for traffic flow prediction, which comprehensively
captures spatial and temporal patterns. This framework provides a learnable positional
attention mechanism, enabling effective information aggregation from adjacent roads.
Additionally, modeling traffic flow dynamics to leverage local and global temporal depen-
dencies demonstrates strong predictive performance on real datasets. Related studies also
aim to reduce the data volume processed by neural networks to improve accuracy. For
example, Bogaerts et al. [76] proposed a hybrid deep neural network based on a GNN
and LSTM. Additionally, they introduced a time-correlation-based data dimensionality
reduction technique to select the most relevant sets of road links as inputs. This approach
effectively reduces the data volume, enhancing prediction accuracy and efficiency. The
model performs well in short-term traffic flow prediction and exhibited good predictive
capability in forecasting four-hour long-term traffic flow. Moreover, the proposed time
correlation-based data dimensionality reduction technique effectively addresses prediction
problems in large-scale traffic networks.

4.4.4. RNNs + Attention

Accurate traffic prediction optimizes road network operational efficiency, enhances
traffic safety, and reduces environmental pollution. In recent years, with the development
of deep learning methods, RNNs have been widely applied in traffic prediction due to their
excellent ability to handle temporal data. Meanwhile, introducing attention mechanisms
further improves the model’s capability to capture temporal and spatial dependencies.
Figure 8 shows an example of a hybrid RNN and attention model.

The STAGCN model proposed by Gu et al. [63] combined static and dynamic graphs
to accurately capture spatial dependencies in traffic networks. Additionally, the model
introduces gated temporal attention modules to effectively handle long-term dependencies
in time series data, thereby improving traffic prediction accuracy. Some scholars have
improved training efficiency by introducing attention mechanisms on top of LSTM; for
example, Qin et al. [77] integrated attention mechanisms to enhance training efficiency by
simplifying the structure of LSTM networks while focusing on the most influential features
for current predictions. This approach has shown superior performance and speed over
traditional LSTM and RNN models on multiple public datasets. Similarly, Hu et al. [78]
improved the LSTM-RNN by introducing attention mechanisms and developed a short-
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term traffic flow prediction model. This model demonstrates efficiency and accuracy in
practical applications with real traffic flow data, confirming the effectiveness of attention
mechanisms in enhancing traffic prediction performance. The SA-LSTM model proposed
by Yu et al. [79] utilized self-attention mechanisms, effectively addressing the vanishing
gradient problem and accurately capturing the spatiotemporal characteristics of traffic in-
formation. The superiority of this model is demonstrated in experiments on Shenzhen road
network data and floating car data, showcasing the potential of self-attention mechanisms
in improving traffic prediction accuracy. Additionally, some scholars, both domestically
and abroad, have combined dynamic spatiotemporal graph recurrent networks with atten-
tion mechanisms. For instance, the Dynamic Spatiotemporal Graph Recurrent Network
(DSTGRN) model proposed by Zhao et al. [80] integrated spatial attention mechanisms
and multi-head temporal attention mechanisms by encoding road nodes, providing a
fine-grained perspective for modeling the temporal dependencies of traffic flow data. This
model surpasses its baseline models in prediction accuracy, demonstrating the potential
application of dynamic graph networks in traffic prediction. Tian et al. [81] effectively
captured the spatiotemporal characteristics of road conditions and achieved precise traffic
speed prediction by combining the GCN and GRU and introducing multi-head attention
mechanisms. Testing results on two real datasets demonstrate the superior performance of
this model, further validating the application value of multi-head attention mechanisms in
traffic prediction.
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5. Sub-Areas of Traffic Prediction Applications Using RNNs

Various applications based on traffic prediction are developed to achieve smart trans-
portation. This review investigates seven widely used applications: traffic flow prediction,
passenger flow prediction, OD demand prediction, traffic speed prediction, travel time
prediction, traffic accidents and congestion prediction, and occupancy prediction. Further-
more, these applications heavily rely on the performance of traffic prediction technology.
Table 3 summarizes traffic prediction methods proposed in these seven fields of application
and whether they consider temporal and spatial dependencies of traffic data.

5.1. Traffic Flow Prediction

Traffic flow prediction involves estimating the number of vehicles traversing a specific
road segment within a certain timeframe. It is crucial for transportation planning and
management because it allows for the optimization of traffic signals, better planning of
road maintenance, and effective real-time traffic management. This, in turn, leads to
reduced congestion, improved fuel efficiency, shorter travel times, enhanced safety, and
increased overall reliability of the transportation network. The field of traffic flow prediction
has witnessed significant advancements in recent years, particularly with the utilization
of RNNs and their variants, such as LSTMs and GRUs. These methods have shown
promise in accurately predicting traffic flow patterns, surpassing traditional approaches
like ARIMA models.
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The literature demonstrates a growing interest in harnessing deep learning techniques
for traffic flow prediction, focusing on enhancing prediction models’ performance and
accuracy. Fu et al. [30] introduced LSTM and GRU neural network methods for traffic
flow prediction, showcasing their superiority over ARIMA models. Their work highlights
the potential of RNN-based deep learning methods in capturing the intricate patterns
inherent in traffic flow data. Similarly, Zheng et al. [82] proposed a hybrid deep learning
model featuring attention-based Conv-LSTM networks, which aims to automatically ex-
tract intrinsic features of traffic flow data, resulting in improved prediction performance.
This underscores the effectiveness of advanced deep learning architectures for traffic flow
prediction. Shu et al. [83] explored using an enhanced GRU neural network, known as
the Bi-GRU prediction model, for short-term traffic flow prediction. Their study provides
insights into the characteristics of this model and its effectiveness in addressing short-term
traffic flow prediction tasks. Chen et al. [84] also introduced the Attentive Attributed
Recurrent GNN (AARGNN) for traffic flow prediction, incorporating GNNs to consider
multiple dynamic factors. This multi-faceted approach illustrates the increasing complexity
of models designed to capture the dynamic nature of traffic flow. Huang et al. [85] proposed
a multi-attention predictive RNN (MAPredRNN), which leverages dynamic spatiotempo-
ral data fusion for traffic flow prediction. Their approach emphasizes effectively fusing
spatiotemporal data for accurate traffic flow prediction. Moreover, Liu et al. [86] conducted
a comparison between the LSTM model and traditional RNNs and demonstrated the LSTM
model’s higher prediction accuracy and effectiveness in traffic flow prediction. Previous
studies have often integrated spatiotemporal prediction models with GNNs and tempo-
ral processing modules to capture the spatiotemporal dependencies of traffic networks.
However, they have encountered issues related to static spatial connectivity and the loss
of global temporal dependency information. To address these challenges, Zhao et al. [80]
introduced the DSTGRN, which utilizes spatial and temporal attention mechanisms for
fine-grained modeling, improving accuracy in predicting traffic flow data. RNNs and their
variants, like LSTMs, are designed to model long-term temporal correlations in sequences.
However, multi-regime models consider multiple states in the traffic system, each with dis-
tinct characteristics, necessitating separate models. Agnimitra Sengupta et al. [87] proposed
a hybrid Hidden Markov LSTM model that combines their strengths, improving traffic
flow prediction, especially in complex and non-stationary scenarios. Due to various factors,
such as weather, accidents, and road control affecting traffic flow, it exhibits significant and
irregular fluctuations. This challenge is particularly pronounced when predicting traffic
flow trends at the minute and hour levels. To address this issue, Wang et al. [88] proposed
a sequential model called an LSTM–Light Gradient-Boosting Machine (LSTM-LightGBM)
for hourly traffic flow prediction, taking into account the temporal, periodic, and spatial
features of traffic flow. The model leverages LSTM to capture temporal characteristics and
LightGBM to capture spatial and periodic features. Testing on the Chicago traffic dataset
demonstrated that the LSTM-LightGBM model outperforms other baseline models, with a
potential reduction in the RMSE of up to 50%, considering that weather factors are crucial
for traffic flow prediction. However, existing models typically utilize shallow prediction
techniques, resulting in suboptimal accuracy when accounting for external factors, such
as weather. Zhou et al. [89] introduced an enhanced LSTM model with an attention mech-
anism for short-term traffic flow prediction that considers weather factors. Experiments
conducted on the Caltrans PeMS traffic dataset demonstrate that the proposed model out-
performs the original LSTM model, reducing its Mean Absolute Percentage Error (MAPE)
by 23.36%. Yang et al. [90] introduced a novel short-term traffic flow and speed prediction
approach. The model effectively combines attention mechanisms, CNNs, and GRUs within
a multi-task learning framework. This innovative method demonstrates enhanced accuracy
and robustness in predicting traffic conditions in diverse urban and highway scenarios,
although it requires substantial computational resources and complex data processing. The
literature presents a diverse array of approaches for traffic flow prediction, encompassing
advanced deep learning architectures and incorporating multiple dynamic factors and
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spatiotemporal data fusion. These developments underscore the ongoing progress and
innovation in the field as researchers strive to enhance the accuracy and reliability of traffic
flow prediction.

5.2. Passenger Flow Prediction

Passenger flow prediction involves forecasting the number of passengers expected to
use a particular transportation service or facility over a specified period. It is significant
for transportation as it aids in optimizing the allocation of resources, such as scheduling
of transit services, staffing, and facility management. Accurate predictions enhance op-
erational efficiency, reduce waiting times, improve service quality, and improve capacity
management. This results in increased passenger satisfaction and a more reliable and
efficient transportation system. Several traffic prediction techniques estimate passenger
flow at different traffic nodes, such as bus stops, subway stations, and airports.

Lin et al. [91] studied the application of the RNN and LSTM in passenger traffic
forecasting and demonstrated their performance in experiments. The advantage is that
the RNN and LSTM show superior performance compared to other models, but there
may be challenges in handling long time series data. Maazoui et al. [92] explored the
application of LSTM for passenger flow prediction on railroad networks. They find that
LSTM slightly outperforms ARIMA and other statistical models in terms of Mean Absolute
Error (MAE) at railroad stations but performs poorly in train line prediction. Izudheen
et al. [93] proposed an LSTM-based model for predicting passenger traffic at subway sta-
tions. This model can comprehensively consider multiple factors to enhance prediction
accuracy, but it requires high data diversity. Wen [94] demonstrated the advantages of the
Genetic Algorithm-optimized LSTM (GA-LSTM) in terms of passenger traffic forecasting
accuracy. The benefit is its superior accuracy compared to non-optimized RNNs, but the
drawback is that the parameter optimization process may be complex. Zhai et al. [95] used
the DCRNN model to perform excellently in bus passenger traffic forecasting, achieving a
5% improvement in accuracy compared to traditional RNNs. Sun [96] conducted compara-
tive studies and found that the CNN-LSTM outperformed pure LSTMs in subway station
passenger flow prediction despite their higher complexity and computational requirements.
Xu et al. [97] successfully predicted the passenger flow of attractions through a GCN-RNN
model using passenger flow data from neighboring bus and metro stations. The model’s
strength lies in its utility, but its dependence on region-specific traffic data limits it. Wang
et al. [98] introduced a novel Residual RNN Channel Spatiotemporal Graph Convolution
Network (RRC-STGCN) for predicting passenger traffic at railway stations. The model out-
performs several baseline models, but its implementation is relatively complex, requiring a
substantial amount of data for training.

RNNs and their variants are increasingly used in passenger traffic prediction, and
they show significant advantages in processing time series data. However, these models
usually require large amounts of data for training and may exhibit different strengths and
weaknesses in various application scenarios.

5.3. OD Demand Prediction

Short-term OD demand prediction estimates the number of trips between different ori-
gins and destinations within a transportation network. Because of the high dimensionality
and sparsity of the data, accurately determining OD demand is significantly more difficult
than estimating traffic/passenger flow. This prediction is significant for transportation
planning and management, providing critical insights into travel patterns and demands. It
helps optimize route planning, enhance public transit scheduling, design infrastructure
projects, and improve traffic management strategies. Accurate OD demand prediction
ensures better resource allocation, reduces congestion, improves travel times, and enhances
overall system efficiency and reliability. Islam et al. [99] proposed a complex prediction
model that integrates LSTMs and RNNs. The study emphasizes the model’s efficiency
across different seasons and validates its performance using various error metrics, but
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it faces challenges with complexity and data requirements. Toqué et al. [100] presented
an innovative LSTM approach to predict dynamic OD matrices in a subway network.
The advantage of this method is its reliable short-term prediction of OD pairs. Still, it
requires a substantial amount of smart card data for training and additional data from
nearby transportation systems to enhance prediction accuracy, which can be considered a
drawback. Nejadettehad et al. [101] utilized three types of RNNs, including simple RNN
units, GRUs, and LSTMs, to predict short-term traffic OD demand. The results indicate
that the simpler RNNs, such as simple recurrent units and GRUs, outperform LSTMs re-
garding accuracy and training time. Ride-hailing services have witnessed dramatic growth
over the past decade but have raised various challenging issues, one of which is how to
provide a timely and accurate short-term prediction of supply and demand. While the
predictions for zone-based demand are extensively studied, much less effort is paid to
the predictions for OD-based demand (namely, demand originating from one zone to an-
other). However, OD-based demand prediction is even more important and worth further
exploration. Feng et al. [102] introduced a model called the Multi-Task Matrix Factorized
Graph Neural Network (MT-MF-GCN), which combines the GCN and matrix factorization
modules. This model is used to predict both zone-based and OD demand simultaneously
in ride-hailing services, and it demonstrates outstanding performance in real-world testing.
Wang et al. [103], in contrast to previous studies on ride-hailing demand prediction that
primarily focused on inflow or outflow demands of each zone, proposed a Conditional
Generative Adversarial Network with a Wasserstein divergence objective (CWGAN-div)
for predicting ride-hailing OD demand matrices. They utilize interpretable conditional
information to capture external spatiotemporal dependencies, ultimately guiding the model
to generate more precise results. RNNs are one of the most popular methods for predicting
OD demand in ride-hailing services. However, due to the diversity of these networks, the
question of which type is most suitable for this task still needs to be solved. Compared
to road systems, the OD distribution in urban rail transit exhibits distinct characteristics,
including high dimensionality and sparsity, posing significant challenges for data-driven
prediction models. While existing research has made some progress in mining spatiotem-
poral features, current models still lack objectivity when considering prediction framework
embedding, multi-source data fusion, and integration of spatiotemporal feature mining.
Gu et al. [104] proposed a deep learning framework based on a multi-factor fusion channel-
wise attention mechanism. This framework can capture the intrinsic relationships between
inter-station, date attributes, external factors, and passenger flow distribution’s high-level
spatial correlations and further abstract spatiotemporal features using convolutional LSTM
to generate prediction results. The study demonstrates that this model achieves higher
network-level prediction accuracy.

5.4. Traffic Speed Prediction

Traffic speed prediction involves forecasting the average speeds of vehicles on specific
road segments over a given period. This prediction is significant for transportation because
it is crucial in traffic management, road safety, and infrastructure planning. By accurately
predicting traffic speeds, authorities can optimize traffic signal timings, manage congestion,
and provide real-time traffic information to drivers. This leads to improved travel times,
reduced fuel consumption, and enhanced overall efficiency and safety of the transportation
network. Deep learning models have been developed to accurately forecast traffic speed
based on different data sources, such as remote microwave sensor data, network-wide
traffic patterns, and spatiotemporal correlations. Among the range of deep learning models
applied to this problem, RNNs, LSTMs, and GRUs have emerged as popular choices due to
their ability to capture temporal dependencies effectively.

Ma et al. [28] proposed an LSTM neural network for traffic speed prediction using
remote microwave sensor data, which demonstrates superior prediction performance in
terms of accuracy and stability. This work lays the foundation for the application of LSTM
networks in traffic speed prediction. In a different direction, Kim et al. [105] introduced
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structural RNNs for traffic speed prediction, demonstrating the potential benefits of embed-
ding topological information in the road network to improve the learning process of traffic
features. Timely and accurate traffic speed prediction is essential for traffic management,
but existing methods face challenges in feature extraction from large-scale traffic data.
Cui et al. [106] further advanced this research by introducing a deep bidirectional and
unidirectional LSTM for network-wide traffic speed prediction. The study shows that a
deep Bi-LSTM neural network achieves superior prediction performance for the entire
traffic network. Similarly, Lv et al. [107] presented the LC-RNN model, which integrates the
RNN and CNN to achieve more accurate traffic speed prediction. This approach highlights
the potential benefits of combining different neural network architectures for this task.
Ma et al. [108] also introduced a hybrid spatiotemporal feature selection algorithm of a
CNN-GRU model for short-term traffic speed prediction, showcasing the importance of
combining spatial and temporal features for accurate predictions. Abdelraouf et al. [109]
proposed an attention-based multi-encoder–decoder neural network for freeway traffic
speed prediction, leveraging convolutional LSTMs to capture spatiotemporal relationships
of multiple input sequences. Their focus on capturing spatiotemporal relationships through
attention mechanisms further advanced the state of the art in traffic speed prediction. Hu
et al. [110] proposed a hybrid deep learning approach for large-scale traffic speed predic-
tion. The model comprises a Conv-LSTM module, an attention mechanism module, and
two Bi-LSTM modules. The introduction of the attention mechanism module enhances
Conv-LSTM’s performance by automatically capturing the importance of different histori-
cal periods and assigning corresponding weights. Additionally, two Bi-LSTM networks
are designed to extract daily and weekly periodic features and capture trends from for-
ward and backward traffic data. The model demonstrates good predictive performance
but has a complex structure and slower prediction speed. Additionally, traditional traffic
forecasting methods have significant limitations in capturing the dynamic characteristics
of complex traffic networks. Therefore, there is a need for a predictive model that can
efficiently represent spatial dependencies within the traffic network, model non-linear
temporal dynamics simultaneously, and perform long-term forecasting for multiple time
steps. Yin et al. [111] introduced a novel graph deep learning model that incorporated
an attention mechanism for predicting traffic speeds in the network. It captures spatial
dependencies through adjacency matrices and graph convolutions and learns temporal
information using an RNN structure. The proposed attention-enabled model outperforms
traditional forecasting models in prediction tasks.

These studies collectively demonstrate the significant advancements in traffic speed
prediction using RNN-, LSTM-, and GRU-based models. The integration of different neural
network architectures, attention mechanisms, and the consideration of spatiotemporal
correlations have shown promising results in improving the accuracy and stability of
traffic speed predictions. Overall, the literature indicates a growing consensus on the
effectiveness of RNN variants for traffic speed prediction, with ongoing research focusing
on enhancing the models’ ability to capture complex spatiotemporal patterns and network-
wide traffic behaviors.

5.5. Travel Time Prediction

Travel time prediction involves estimating the duration required for a vehicle to travel
between two points in a transportation network. This prediction is significant for transporta-
tion as it enhances route planning, improves the accuracy of navigation systems, and aids
in traffic management. Providing reliable travel time estimates helps reduce uncertainty for
travelers, optimizes logistics and delivery operations, and enhances the efficiency of public
transit systems. Accurate travel time predictions contribute to reduced congestion, better
resource allocation, and overall improved reliability and performance of the transportation
network. There has been a growing interest in using RNNs in travel time prediction in
recent years. One of the first successful attempts to apply RNNs in this field was made by
Duan et al. [112]. They explore using LSTM neural network models specifically designed
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for travel time prediction, achieving remarkable results. In addition, Yuan et al. [113]
proposed a deep feature extraction framework based on an RNN and DNN for bus dy-
namic travel time prediction, achieving greater efficiency than traditional machine learning
models. Furthermore, a study by Ran et al. [114] introduced an LSTM-based method with
an attention mechanism for travel time prediction, which demonstrates better accuracy and
effective utilization of departure time. Another interesting work by Petersen et al. [115]
used a convolutional LSTM neural network for multi-output bus travel time prediction,
allowing the discovery of complex patterns not captured by traditional methods. Addi-
tionally, there have been efforts to combine different neural network models for travel
time prediction. Ting et al. [116] proposed a deep hybrid model that combines the GRU
and eXtreme Gradient Boosting (XGBoost) through linear regression, showcasing good
prediction accuracy for freeway travel time. Moreover, due to the widespread availability of
various observation data, such as vehicle data, data-driven travel time prediction methods
have been rapidly advancing. In many existing large-scale network studies, speed time
series data directly estimated from vehicle data are commonly used as inputs. However, in
free-flow conditions, speed variations are not significantly influenced by the number of
vehicles, making it challenging to depict the traffic conditions in this mode accurately. To
address this issue, a study by Katayama et al. [117] introduced traffic density-based travel
time prediction with GCN-LSTM, showcasing the superiority of density input in achieving
early detection of traffic congestion and improving prediction accuracy. Following this,
a study by Shen et al. [118] introduced the Traffic Trajectory Prediction Network (TTP-
Net). This novel neural network leverages tensor decomposition and graph embedding
to achieve significantly better performance in travel time prediction. Furthermore, the
processing capacity of traditional data processing and modeling tools needs to be improved
for handling large-scale travel datasets. To overcome the challenges posed by massive data,
Zhang [119] employed big data analytics engines, Apache Spark and the Apache Mixed
Sparse Matrix Network (MXNet), for data preprocessing and modeling. They introduce a
hierarchical LSTM model with attention mechanisms for network-level short-term travel
time prediction, successfully forecasting unusual congestion and achieving the best predic-
tion results at 30 min and 45 min horizons. Due to GRU’s ability to handle long-term traffic
sequences, GRUs have been successfully applied to traffic prediction problems. However,
existing GRUs do not consider the relationships between various positions in historical
travel time sequences. Chughtai et al. [120] introduced an attention-based GRU model
for short-term travel time prediction to address this issue, allowing the GRU to learn the
relevant context in historical travel time sequences and update the weights of hidden states
accordingly. Despite the need for complex data processing and significant computational
resources, this model excels in handling noisy data.

In conclusion, applying RNNs, LSTMs, GRUs, and other neural network models
for travel time predictions has shown significant progress and promising results, espe-
cially when combined with novel data processing techniques and attention mechanisms.
Nevertheless, there is still potential for further research and innovation in this area.

5.6. Traffic Accidents and Congestion Prediction

Traffic accidents and congestion prediction involves forecasting the likelihood of traffic
incidents and the occurrence of traffic jams on specific road segments. Traffic accidents and
congestion prediction have been the subject of extensive research in artificial intelligence
and machine learning. Various approaches, including RNNs, LSTMs, GRUs, and other
deep learning models, have been employed to tackle the challenges of predicting traffic
accidents and congestion.

Traffic accident prediction is to estimate the likelihood and severity of accidents by
analyzing historical data and contextual data (e.g., weather, and road conditions). Its signif-
icance lies in enhancing road safety, optimizing traffic management, allocating emergency
resources effectively, informing urban planning, guiding insurance risk assessments, raising
public awareness, and reducing environmental impact. Sameen et al. [121] explored the
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use of RNNs for predicting the severity of traffic accidents. Their findings indicate that
RNNs, within deep learning frameworks, hold promise in predicting injury severity in
traffic accidents. Furthermore, Sameen et al. [122] demonstrated the superiority of deep
learning models, like CNNs and RNNs, in predicting the severity of traffic accidents com-
pared to traditional models. Their research emphasizes the advantages of leveraging deep
learning techniques for more accurate and stable predictions. Similarly, Chui et al. [123]
introduced an extended-range prediction model using the Non-dominated Sorting Genetic
Algorithm III (NSGA-III) the optimized RNN-GRU-LSTM for driver stress and drowsiness,
highlighting the potential of hybrid algorithms to enhance prediction performance. To
accurately predict the number of traffic accidents and address road safety issues more
effectively, Wang et al. [124] have proposed a time series prediction model based on LSTM
and the attention mechanism. They use road traffic accident data and meteorological
data from the city of Curitiba, Brazil, as their research dataset and improve the internal
gating unit structure of the LSTM model. This model is used to fit and predict the traffic
accident dataset. The results indicate that the prediction performance of the road traffic
accident prediction model based on LSTM and the attention mechanism outperforms that
of the classical LSTM model and SVR model; overall, this model has significant practical
implications for enhancing road traffic management. Yu et al. [125] proposed a method
called a Deep Spatiotemporal GCN (DSTGCN) for traffic accident prediction. The DSTGCN
model combines the GCN for spatial data processing and the TCN for time series analysis,
further exploring the spatial and temporal dependencies in traffic data. Experimental
results show that the DSTGCN outperforms traditional methods in terms of traffic acci-
dent prediction accuracy, validating the model’s effectiveness in capturing complex traffic
patterns and interactions.

Traffic congestion prediction is used to forecast traffic flow and identify potential
bottlenecks by analyzing historical traffic data, real-time sensor information, weather
conditions, and road network characteristics. Its significance lies in enabling proactive
traffic management, reducing travel delays, optimizing infrastructure utilization, improving
urban planning, enhancing emergency response times, and minimizing environmental
impact by reducing vehicle emissions. Akhtar et al. [126] conducted a comprehensive
review of existing research on traffic congestion prediction using artificial intelligence,
summarizing the application of various AI methodologies and categorizing them under
different branches. Shin et al. [127] proposed an LSTM-based method for predicting traffic
congestion, focusing on correcting missing temporal and spatial data in traffic datasets. This
approach primarily involves outlier removal and correction of missing values guided by
data trends and patterns, followed by using the LSTM model to forecast traffic conditions.
The study demonstrates that this method outperforms traditional models by effectively
managing time series traffic data and handling missing information. Ranjan et al. [128]
proposed a hybrid neural network model combining the CNN, LSTM, and transpose
CNN to predict city-wide traffic congestion. Their approach utilizes the CNN to extract
spatial features from traffic images and LSTM to analyze temporal patterns. The model
leverages real-time data captured from the Seoul Transportation Operation and Information
Service (TOPIS) to address the challenge of forecasting congestion levels across the entire
city. While the model effectively learns spatial and temporal relationships, enhancing
its ability to handle the real-world complexities of traffic data more effectively remains a
challenge. Jin et al. [129] proposed a framework designed specifically for predicting traffic
congestion events. Their research integrates the transformer and GCN to effectively capture
spatiotemporal dependencies from historical traffic data and road network information.
The model utilizes continuous gated recurrent units to handle the spatiotemporal dynamics
and evolution of congestion patterns, enabling it to predict not only the timing but also the
duration of future congestion events. Additionally, the study emphasizes the challenge of
accurately modeling the complex dynamics of road traffic.
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Table 3. Summary of traffic prediction methods in different fields of application.

Application Reference Techniques Temporal Spatial

Traffic Flow Prediction

[29,32,66] LSTM
√

×
[30,65,83] GRU

√
×

[31,73,74] LSTM + CNN
√ √

[36–38] TCN
√

×
[51,53,54,64] RNN

√
×

[75,76] LSTM + GNN
√ √

[77–79,82,89] LSTM + Attention
√ √

[84] RNN + GNN
√ √

[85] RNN + Attention
√ √

[90] GRU + CNN + Attention
√ √

Passenger Flow Prediction

[91–94] LSTM
√

×
[95,96] LSTM + CNN

√ √

[97] RNN + GCN
√ √

[98] LSTM + GCN + Attention
√ √

OD Demand Prediction

[56–58] LSTM+CNN
√ √

[99,100] LSTM
√

×
[101] RNN, LSTM, GRU

√
×

[102] GCN ×
√

[103] GAN
√ √

[104] LSTM + Attention + Conv
√ √

Traffic Speed Prediction

[28] LSTM
√

×
[33,34] CNN

√
×

[52] RNN
√

×
[59] RNN + GNN

√ √

[60] LSTM + GNN
√ √

[81] GRU + GCN + Attention
√ √

[105,106] RNN, LSTM
√

×
[107] RNN + CNN

√ √

[108] GRU + CNN
√ √

[109] LSTM + CNN
√ √

[110] LSTM + CNN + Attention
√ √

[111] RNN + GNN + Attention
√ √

Travel Time Prediction

[112,113] RNN, LSTM
√

×
[114,119] LSTM + Attention

√ √

[115] LSTM + Conv
√ √

[117] LSTM + GCN
√ √

[118] LSTM + CNN
√ √

Traffic Accident Prediction

[121,122] RNN
√

×
[123] RNN, LSTM, GRU

√
×

[124] LSTM + Attention
√

×
[125] TCN + GCN

√ √

Traffic Congestion Prediction
[127] LSTM

√
×

[128] LSTM + CNN
√ √

[129] Transformer + GCN
√ √

Occupancy Prediction
[130,131] LSTM

√
×

[132] GRU
√

×
[133] LSTM + MLP

√
×

The utilization of these advanced deep learning techniques shows significant promise
in enhancing the accuracy and reliability of traffic prediction systems. Overall, the literature
indicates a strong trend toward leveraging deep learning models, especially RNNs, LSTMs,
and GRUs, for traffic accidents and congestion prediction, contributing to the advancement
of intelligent transportation systems. This literature underscores the importance of traffic
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accidents and congestion prediction and provides a solid foundation for further research in
this domain.

5.7. Occupancy Prediction

Occupancy prediction involves forecasting the number of passengers or vehicles
occupying a transportation service or facility at a given time. This prediction is significant
for transportation because it aids in optimizing resource allocation, improving service
quality, and enhancing operational efficiency. Accurate occupancy predictions enable better
scheduling of services, informed infrastructure planning, and effective crowd management.
This results in reduced waiting times, improved passenger comfort, and overall enhanced
performance and reliability of the transportation system. RNNs are widely employed for
occupancy prediction, and among them, LSTMs emerge as a popular choice due to their
capability to capture temporal dynamics and long-term dependencies. Kim et al. [130]
proposed a probabilistic vehicle trajectory prediction method utilizing LSTM to analyze
the temporal behavior and predict future surrounding vehicle coordinates. Furthermore,
the use of stacked LSTM models for parking occupancy rate prediction, as demonstrated
by Jose et al. [131], outperforms traditional models and validates the proposed predictive
model. Zeng et al. [132] stacked the GRU and LSTM together, utilizing historical parking
data, occupancy, weather conditions, and other diverse data to predict parking volume and
parking space availability across various periods. Ma et al. [133] optimized the traditional
LSTM model by integrating it with a feedforward neural network to form a hybrid LSTM
network for predicting the occupancy rate of electric vehicle charging and making certain
contributions to charging infrastructure management.

6. Discussion
6.1. Discussion: RNNs vs. Transformer Families

With the increasing popularity of transformer families’ models, it is necessary to
explore the comparison of the traffic prediction effects between RNNs and transformer
families and their respective advantages and disadvantages. It is also important to explore
whether RNNs are really outdated and a failure compared to transformer families. Both
RNNs and transformer families have demonstrated unique strengths and limitations in
traffic prediction. The RNNs and their variants are well suited for handling time series
data due to their built-in memory mechanism, allowing them to retain historical input
information. This characteristic enables RNNs to exhibit stable and robust performance
in traffic prediction, particularly in forecasting future traffic flow and events. However,
RNNs also have certain limitations. Firstly, there is the gradient problem. RNNs often
encounter the issue of vanishing or exploding gradients when dealing with long sequences,
although LSTMs and GRUs partially mitigate this problem. Secondly, their parallel process-
ing capability is limited. Due to the recursive nature of RNNs, they are slower compared
to models with stronger parallelization capabilities, which restricts their efficiency when
applied to large-scale datasets. Transformer families have certain advantages over RNNs
in terms of parallel processing capability and capturing long-term dependencies. Firstly,
in terms of parallel processing capability, transformers are entirely based on self-attention
mechanisms, enabling them to process the entire sequence simultaneously, greatly im-
proving both training and inference speed. Secondly, in terms of capturing long-term
dependencies, with the help of multi-head attention mechanisms, transformers can effec-
tively capture long-distance dependencies within sequences, regardless of how far apart
those dependencies are. However, transformer families also have certain drawbacks. Firstly,
the significant computational resources required for the extensive self-attention calculations
in transformer models, particularly for long sequence data, may limit their application
in resource-constrained environments. Secondly, for small-scale datasets, the complexity
of transformer models may lead to overfitting issues, necessitating carefully designed
regularization strategies. Additionally, unlike RNNs, transformers do not naturally handle
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the sequential order of sequences, requiring additional positional encodings to maintain
the order relationships between elements in the sequence.

In order to systematically compare the performance of RNNs and transformer fam-
ilies in traffic prediction, several experiments have been conducted. Existing studies
demonstrated that transformer families outperform RNNs in prediction tasks on large
datasets [134–136]. Selim Reza et al. [134] compared LSTMs, GRUs, and transformer fami-
lies for traffic flow prediction. The study is conducted on the PeMS dataset, which covers
traffic data from over 39,000 individual detectors on the interstate system in California. The
transformer-based model shows improvements of 32.4% and 33.9% in MAPE compared
to the LSTM and GRU, respectively. However, in terms of training time, the transformer
model requires 172.76% more training time than the LSTM or GRU.

However, we also find that on some smaller-scale datasets, RNNs outperform trans-
former families [137–139]. To validate this viewpoint, we use passenger flow data extracted
from the Automatic Fare Collection (AFC) system of Shenzhen Metro Company, spanning
53 days from August 5 to September 26, 2019, to conduct short-term passenger flow predic-
tion models. By 2019, there are eight metro lines and 166 stations in the Shenzhen Metro
network. Based on the metro’s operating hours from 6:00 to 24:00, we process the AFC data
within this timeframe. The experimental dataset is aggregated at station-level passenger
inflow and outflow at 10 min intervals from a total of 166 stations. The dataset in the
experiment is divided into different parts: 70% for model training, 10% for validation and
optimization of model parameters, and the remaining 20% for testing to measure various
evaluation metrics. In the experiment, we manually set the learning rate to 0.001, batch
size to 8, number of epochs for the training phase to 60, input time window to 108, and
prediction lengths to 1, 3, and 6. Model training is conducted on the Windows 10 platform
with a GTX 4090 GPU. PyTorch 1.8.0 is the chosen framework for model implementation.
We train the ARIMA, SVR, LSTM, and informer models to predict passenger inflow and
outflow. As shown in Table 4, the experimental results display the prediction performance
of ARIMA, SVR, LSTM, and informer on this dataset. Compared to other models, LSTM
demonstrates the best predictive performance, achieving the lowest RMSE and MAE. As
a result, LSTM, as an RNN, sometimes has a better predictive effect than the transformer
families’ model. To more intuitively illustrate the predictive performance of each model
in the comparative experiments, we visualized the prediction results for three types of
typical stations, as shown in Figure 9. The three typical stations are Wuhe station, which
is a residential-oriented station; Hi-Tech Park station, which is an employment-oriented
station; and Houhai station, which is a transportation hub. According to the comparison
illustrated in Figure 9, LSTM accurately captures patterns in passenger flow during early
peak hours, significantly outperforming all other models, including informer.

Table 4. The prediction results of the ARIMA, SVR, LSTM, and informer models.

Model Time Steps RMSE MAE

ARIMA
1 34.18 17.71
3 47.21 23.10
6 66.60 30.94

SVR
1 30.22 15.33
3 37.28 17.84
6 46.17 20.97

Informer
1 27.48 14.96
3 28.35 15.22
6 28.55 15.25

LSTM
1 21.91 11.66
3 23.78 12.47
6 24.55 12.84
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Here are some key considerations that might explain why LSTM outperformed in-
former in our metro passenger flow prediction task.

1. LSTMs are excellent at capturing local temporal patterns and short-term dependen-
cies, which might be prevalent in our metro passenger flow data. Transformers are
powerful in capturing long-range dependencies and complex patterns, which might
be more useful in datasets with longer historical dependencies or more complex
temporal interactions.

2. LSTMs tend to perform well with smaller datasets. They can overfit less easily than
transformers if the data are limited. Transformers generally require larger datasets to
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train effectively. They are data hungry and might not perform as well with smaller
datasets due to their large number of parameters and high complexity.

3. LSTMs can sometimes handle noisy data better due to their gating mechanisms
that control the flow of information. Transformers can be sensitive to noise, and
their performance might degrade if the data are not clean or highly variable without
sufficient training data to generalize well.

4. LSTMs have a simpler architecture compared to transformers, which might make
them easier to train and tune, especially when computational resources are limited.
Transformers, with their self-attention mechanisms and multi-head attention, are more
complex and require more computational resources for training. This complexity can
be a disadvantage if the computational infrastructure is not robust enough.

5. For tasks with clear and strong temporal dependencies, LSTMs can effectively leverage
their ability to remember previous states. Transformers can provide better perfor-
mance for tasks that benefit from capturing broader contextual information and where
interactions are not strictly sequential.

Additionally, it is noteworthy that Sun et al. proposed a novel type of RNN layer
termed TTT, which exhibits linear complexity and a highly expressive hidden state. This
model employs the hidden state as a machine learning model, where the update rule is
derived from self-supervised learning steps. This innovation enables updating the hidden
state during test sequences to equate to model training at test time. The TTT layer lowers
perplexity by conditioning on more tokens in extended contexts, thereby demonstrating
superior performance compared to transformers. Additionally, the TTT-RNN introduces
advances in hardware efficiency and system optimization, revealing significant potential
for processing long contexts. Such innovations provide promising avenues for future
applications in traffic prediction utilizing RNNs.

In summary, while transformers generally excel in tasks involving longer sequences
and more complex temporal patterns, LSTMs might outperform in situations where the
data have shorter sequences, stronger local temporal dependencies, and a relatively small
dataset size. The specific characteristics of our metro passenger flow data likely favored the
strengths of LSTMs, leading to their better performance in the short-term metro passenger
flow prediction task. Therefore, selecting an appropriate model that considers the dataset
and computational resources is crucial for traffic prediction tasks. Sometimes, simpler
models can provide more accurate and efficient predictions in certain prediction tasks.

6.2. Discussion: RNNs vs. Other Prediction Models

With the increasing popularity, we first discuss the comparison between RNNs and
statistical models, focusing on the comparison between RNNs and the representative work
of statistical learning models, ARIMA. The ARIMA model is relatively simple, easy to
understand and implement, and has low requirements for data preprocessing. Initially,
ARIMA models were used for short-term traffic flow predictions, often restricted to a single
arterial roadway or a small subset of an urban network. ARIMA models can provide
reliable predictions in scenarios where the data are stable and the linear relationship is
apparent. However, there are significant drawbacks, especially when dealing with com-
plex, non-stationary time series data. ARIMA models typically assume that the data are
stationary, which limits their ability to predict traffic during more complicated conditions,
like peak traffic periods. Their ability to handle non-stationary data is limited. Although
non-stationarity can be addressed through methods, such as differencing, traditional statis-
tical models, typically do not perform as well as deep learning models when dealing with
non-stationary data with complex seasonal and trend patterns. Liu et al. [140] evaluated
the performance of LSTMs against statistical learning models in traffic flow prediction.
The study indicates that integrating LSTMs with other neural network architectures shows
better predictive results than ARIMA. Compared to the ARIMA model, LSTMs are more
suitable for complex and dynamic traffic flow predictions, enabling better capture of key
traffic flow characteristics. This is mainly attributed to LSTM’s ability to model data with
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non-stationary patterns without pre-differencing or transformations effectively. Addition-
ally, the structure of LSTMs allows them to learn from relatively complex data patterns,
which is advantageous when dealing with the multidimensional nature of traffic systems,
including spatial interactions and temporal dynamics. It is worth mentioning that RNNs
and their variants naturally support multivariate input, making it easy to handle traffic
data from multiple sites or road segments. In contrast, the ARIMA model is designed for
univariate time series, dealing with autoregression, differencing, and moving averages
of a single time series. Therefore, the ARIMA model used to forecast traffic flow predicts
the flow for a single measurement point or road segment. In comparison, RNNs and their
variants, like LSTMs and GRUs, can naturally handle inputs from multiple data sources
and effectively capture the temporal dependencies and interaction effects among these
variables. This makes them perform better in applications, such as traffic flow prediction,
where analyzing and forecasting dynamic interactions across multiple points are required.

Next, we discuss the comparison between RNNs and traditional machine learning
models. Firstly, regarding handling time series data, K-NN and SVR are not specifically
designed for sequence prediction. They often require complex feature engineering to
include time information, such as creating time window features or lag features. While these
models perform well on non-time series data, like classification and regression problems,
they are less intuitive or efficient than RNNs in native time series processing. When dealing
with multivariate and spatial relationships, RNNs support multivariate input, enabling
the simultaneous prediction of data from multiple traffic monitoring points. Although
RNNs do not directly handle spatial data, incorporating techniques, like CNN layers
or attention mechanisms, allows for effective learning of spatial relationships between
points in the traffic network. In traditional machine learning, models like K-NN and
SVR can handle multivariate problems but often lack built-in mechanisms for handling
spatial or temporal dependencies. They are not very efficient when dealing with data
from multiple monitoring points. Additionally, these models do not inherently incorporate
mechanisms for analyzing spatial relationships and require complex data preprocessing or
feature engineering to include this information indirectly. Considering the aspect of model
interpretability, traditional machine learning models have relatively simple algorithms and
fewer parameters, making their decision processes easy to understand. The outputs of these
models are easily interpretable, aiding in the analysis and validation of prediction results’
reasonableness. In contrast, RNNs are less intuitive compared to traditional machine
learning models.

As shown in Table 4, the experimental results using the AFC dataset reveal that the
prediction performance of the ARIMA model, representing statistical learning models,
and the SVR model, representing traditional machine learning, do not have an advantage
over RNNs.

Finally, we discuss TCN models, which have shown excellent performance in time
series forecasting compared to RNNs and their variants and other deep learning models.
Earlier, we outlined the fundamental characteristics of these two types of models. Given
that TCN’s development occurs later than RNNs, we now discuss the specific features of
TCNs in the context of traffic prediction compared to RNNs. Firstly, TCN’s advantage lies in
its parallel processing capability. In contrast to RNNs, where predicting the next time step
requires waiting for the computation of the previous step to complete, TCNs can process
the entire sequence in parallel. This makes TCNs more efficient in handling long-time
series traffic data, enabling quick responses to changes in traffic flow and making it suitable
for real-time or near-real-time traffic prediction systems. TCNs can also flexibly adjust
their receptive field by tuning the number of dilated convolution layers, dilation factors, or
filter sizes, allowing them to adapt to different lengths of historical data. Different traffic
scenarios require varying lengths of historical data for effective prediction. Regarding
gradient stability, TCNs avoid the problem of exploding or vanishing gradients compared
to RNNs. This is because TCN’s backpropagation is independent of the time direction.
This characteristic enhances the stability of model training, which is particularly crucial for
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traffic data scenarios that often involve sudden events and non-linear changes. Additionally,
when handling long input sequences, TCNs are more efficient than RNNs and their variants,
like LSTM and GRUs. This efficiency stems from TCN’s shared filters across layers, where
the complexity of backpropagation is mainly determined by the network depth, making it
feasible to handle large-scale traffic data in resource-constrained environments. In terms of
inputting traffic data, TCNs and RNNs can handle input sequences of arbitrary lengths,
allowing flexibility in dealing with different situations in traffic data. However, TCNs
have some notable drawbacks. For instance, during the testing phase, TCNs require
storing sufficient historical data to generate predictions. In contrast, RNNs only need to
maintain hidden states and receive the current input to create predictions. Consequently,
TCNs may require more memory during testing. Moreover, when transitioning from an
application scenario with lower historical data requirements to one with greater historical
data demands, TCNs may need to increase their receptive field size to adapt to the new
requirements. This may entail significant adjustments to the model architecture, increasing
the complexity of model tuning.

6.3. Challenges and Future Directions
6.3.1. Improve Model Interpretability

Improving the interpretability of RNNs in traffic prediction is not only a technical
requirement to enhance model transparency but also a key factor in achieving efficient
traffic management and precise decision support. Interpretable models enable traffic
managers and decision makers to understand the logic and influencing factors behind
model predictions. For example, suppose a traffic prediction model can clearly show
the reasons for traffic congestion during a certain period (such as weekday rush hours,
holidays, or special events). In that case, decision makers can adjust traffic signal control or
implement traffic control measures based on these insights. Additionally, when the model
can provide easily understandable prediction processes and results, the trustworthiness
of these predictions increases among the public and policymakers. This is crucial for
promoting the application of intelligent transportation systems and the acceptance of new
technologies. On the other hand, by enhancing the interpretability of models, developers
can more easily identify biases in the data or algorithms, such as geographic biases or
systematic biases in data collection, thereby improving the fairness and accuracy of the
model. Improving models’ interpretability is crucial for developing deep learning models
in traffic prediction. However, enhancing the interpretability of deep learning models and
further exploring their superiority and rationality remains a significant challenge.

In future research, enhancing model interpretability can be pursued through two main
directions. On the one hand, improvements can be made from within the model itself,
such as simplifying model architectures and integrating interpretability mechanisms to
ensure that while the model achieves high-performance traffic prediction, it maintains a
transparent and explainable decision-making structure. On the other hand, developing
visualization tools to represent the predictive model’s internal workings and decision pro-
cesses can reveal the underlying logic behind the model’s predictions, thereby improving
its interpretability.

6.3.2. Long-Term Dependencies of Traffic Data in Short-Term Traffic Prediction

Long-term dependencies in traffic data are patterns and trends that extend over a
significant time span and influence short-term traffic conditions. By incorporating these
dependencies, short-term traffic prediction models can more accurately forecast immediate
traffic conditions by considering historical data and broader temporal patterns. When using
RNNs for extracting long-term dependencies of traffic data in short-term prediction, issues
such as vanishing or exploding gradients often lead to training difficulties. This is because,
during backpropagation, gradients can quickly diminish or grow exponentially with each
layer, especially when dealing with long sequences. Additionally, capturing long-term
dependencies is challenging with RNNs due to the difficulty in capturing long-term de-
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pendencies. In long sequences, the current output may depend on inputs from a long time
ago, and due to the vanishing gradient problem, these long-term dependencies cannot be
effectively learned through backpropagation through time. The network struggles to under-
stand these critical historical dependencies, leading to decreased prediction performance.
This limits the model’s ability to predict over long periods, while the information contained
in long time series is crucial for predicting future traffic conditions. As the prediction period
increases, effectively utilizing historical long-term data to maintain prediction accuracy
becomes a major challenge.

In future research, further investigation and development of innovative deep learning
architectures will be crucial for addressing long-term dependency issues. For instance,
novel RNN layers, such as TTT [1], employ new model designs to compress and represent
inputs, dynamically adjusting the internal structure of the model to accommodate input
data and capture long-term dependencies. Such innovative approaches offer promising
directions for better capturing and utilizing long-term dependencies.

6.3.3. Lack of a Comprehensive Multi-Scenario Baseline Dataset

In the field of traffic prediction, despite the existence of high-quality datasets, such as
the PeMS dataset, current data resources often focus on specific regions or types of roads
(such as highways) and are not sufficient to comprehensively cover diverse traffic scenarios,
such as urban streets, rural roads, or those in different countries and regions. Additionally,
existing datasets often lack traffic flow data during changing weather conditions, holidays,
or large events, as well as data from daily peak and off-peak periods, all of which are
important factors affecting traffic flow. Effective traffic prediction models need to process
multiple types of data, such as real-time location and speed information from floating
car data, road network data, and exogenous data, like weather and population density.
However, the lack of a unified and widely accepted baseline dataset makes it difficult
to compare model performance between different studies, affecting the evaluation and
validation of models.

In future research, creating a comprehensive, diverse, and widely applicable standard
dataset is crucial. It can improve models’ accuracy and generalization ability, promote the
reproducibility of research results, and further technological innovation.

6.3.4. Missing Data Problem

When using RNNs for traffic prediction, data integrity is crucial for model performance.
Traffic data are typically collected from sensors, cameras, or GPS devices, and these data
collection tools may result in data missing due to failures, communication interruptions, or
processing errors. These missing data can decrease model training and prediction accuracy,
as RNNs rely on complete time series data to learn the dynamic changes in traffic flow.

In future research, to address the issue of missing data, researchers need to develop
and apply effective data imputation techniques, such as estimating missing values using
historical data trends or employing machine learning methods to fill in missing data
automatically. However, ensuring the accuracy and reliability of data imputation methods
remains a challenge. Additionally, solutions can be found through techniques such as
few-shot learning or transfer learning. Few-shot learning aims to enable models to quickly
learn and adapt to new tasks with a small amount of data and is particularly useful in
scenarios with scarce data. By pre-training models on large datasets to learn general
feature representations and then transferring this knowledge to specific traffic prediction
tasks, accuracy can be improved in cases of limited data availability. Furthermore, data
augmentation techniques are also a strategy to address missing data, as they can increase
the diversity of training samples and reduce the risk of overfitting.

6.3.5. Processing Multi-Source Heterogeneous Data

Traffic prediction involves a variety of data sources, including road sensors, vehicle
sensors, video surveillance, GPS devices, social media, and meteorological stations, all of
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which are large in scale and diverse in form. Initially, these different data sources provide
various formats of data; for instance, sensors typically offer real-time traffic flow figures,
video surveillance yields image data, and GPS devices provide geographical location and
timestamp information. Furthermore, the accuracy and update frequency of data from
these sources vary; GPS data may update multiple times per second, while some sensors
update less frequently. Additionally, due to potential asynchrony in device clocks, there
may be slight discrepancies in the time stamps of data from different sources. Lastly, data
may be missing due to various reasons, such as equipment failure or communication
disruptions. Facing the massive multi-source heterogeneous data, how to build a suitable
deep learning model that can fully tap the value of these data for traffic prediction will
become a major challenge in the future.

Therefore, future development needs to focus on extracting useful features from these
data sources and using ensemble learning methods or multi-model fusion techniques to
combine the predictive results from these sources, thereby enhancing the accuracy and ro-
bustness of predictions. Moreover, developing more intelligent data fusion algorithms that
automatically identify and utilize information from each data source is key to improving
data utilization and enhancing the adaptive capacity of predictions.

7. Conclusions

This paper provided a comprehensive review of the application of RNNs in traffic
prediction. Specifically, we first outlined the history of traffic prediction, classified existing
traffic prediction methods based on existing input sequence representation methods and
forms, and summarized in detail the research progress on predicting tasks with different
input sequence lengths. The discussion on input data representation emphasized the impor-
tance of choosing appropriate data formats to optimize model performance. Additionally,
we summarized the classical models, RNNs, and their variants, as well as hybrid models
combined with RNNs applied to traffic prediction. Next, we presented the representative
results for seven traffic prediction tasks, providing a comprehensive overview of research
progress in different application scenarios. Finally, we discussed the comparison between
RNNs and popular deep learning models and the major challenges.

The key findings of our review are listed as follows:

1. RNNs are extensively utilized in traffic prediction. In processing various types of
traffic data, RNNs not only efficiently handle time series data independently but also
serve as temporal feature extraction modules when combined with models, such as
CNNs and GNNs, for spatiotemporal data processing. Furthermore, RNNs play a
significant role across seven sub-areas within traffic prediction.

2. RNNs are expected to continue being preferred models for future traffic prediction
tasks due to their advantages and will not be replaced by transformers. We conducted
a comparative study using real-world metro smart card datasets for short-term passen-
ger flow prediction. This allowed us to directly compare the predictive performance
of RNNs (particularly LSTMs) with other models in a real and specific environment.
The results showed that, despite the presence of more advanced transformer models,
RNNs demonstrated superior performance. This finding underscores the importance
of selecting the appropriate model based on the characteristics of different datasets
and available resources, as sometimes simpler models can provide more accurate and
efficient predictions.

This paper served as a valuable resource for participants seeking a comprehensive
understanding of traffic prediction, enabling them to identify areas of interest quickly.
It offered a thorough reference for researchers, facilitating exploration and fostering the
advancement of related studies in the field. By providing an in-depth analysis of the applica-
tion of RNNs in traffic prediction, this review aimed to promote innovation and development,
encouraging the design of more effective traffic prediction models and integrating advanced
methodologies. Ultimately, it aspired to contribute to the progress and refinement of traffic
prediction research, benefiting theoretical exploration and practical application.
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