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Abstract: Fatigued driving is a problem that every driver will face, and traffic accidents caused
by drowsy driving often occur involuntarily. If there is a fatigue detection and warning system, it
is generally believed that the occurrence of some incidents can be reduced. However, everyone’s
driving habits and methods may differ, so it is not easy to establish a suitable general detection system.
If a customized intelligent fatigue detection system can be established, it may reduce unfortunate
accidents. With its potential to mitigate unfortunate accidents, this study offers hope for a safer
driving environment. Thus, on the one hand, this research hopes to integrate the information obtained
from three different sensing devices (eye movement, finger pressure, and plantar pressure), which
are chosen for their ability to provide comprehensive and reliable data on a driver’s physical and
mental state. On the other hand, it uses an autonomous learning architecture to integrate these three
data types to build a customized fatigued driving detection system. This study used a system that
simulated a car driving environment and then invited subjects to conduct tests on fixed driving
routes. First, we demonstrated that the system established in this study could be used to learn and
classify different driving clips. Then, we showed that it was possible to judge whether the driver was
fatigued through a series of driving behaviors, such as lane drifting, sudden braking, and irregular
acceleration, rather than a single momentary behavior. Finally, we tested the hypothesized situation
in which drivers were experiencing three cases of different distractions. The results show that the
entire system can establish a personal driving system through autonomous learning behavior and
further detect whether fatigued driving abnormalities occur.

Keywords: intelligent system; fatigued driving; autonomous learning; distraction

1. Introduction

Car driving is indispensable in today’s high-speed and highly mobile society, and
driving safety is critical. However, safe driving must be achieved through constant eye,
hand, and foot coordination. Of course, during this driving process, it may be acceptable
if the eyes, hands, and feet do not cooperate for a short period, but it may also cause
unimaginable consequences. Fatigued (or drowsy) driving is one of the above situations
that may occur daily. Generally speaking, fatigued driving refers to slowness, blurring,
weakness, dizziness, hallucinations, or even coma due to the driver’s inability to control the
driver’s mind or body during driving. The usual reasons for this phenomenon are related
to the driver’s diseases, medications, physiological aging, and lack of sleep. Although
everyone is aware of the dangers of fatigued driving, accidents caused by fatigue still occur
from time to time. This is because most fatigued driving occurs unexpectedly when the
driver thinks there will be no problem. Especially when micro-sleep occurs, most people
will feel that they are awake. However, the scary thing is that even a few seconds of sleep
may occur and cause an accident.

t is generally believed that some of the first signs of fatigued driving can be detected
before a critical situation occurs. There are quite a few studies on drowsy driving. Related
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surveys can be found in [1–5]. Some scholars have proposed invasive physiological moni-
toring methods, such as electroencephalogram (EEG) [6], electrocardiogram (ECG) [7], and
skin conductivity [8]. Intrusion detection generally affects humans. Overall, its acceptance
is low. Therefore, some non-intrusive proposals have been made. Non-invasive methods
use different algorithms to monitor drivers’ facial features, eye signals, head movements,
hand movements, and other physiological characteristics to infer driver fatigue [9–16].
There have been many improvements in artificial intelligence deep learning software and
hardware in recent years. Therefore, some scholars advocate using these technologies to
enhance fatigue judgment from the physiological characteristics of drivers [17–20].

People generally believe that most fatigued driving will cause symptoms such as
blurred vision, red eyes, narrowed field of vision, unconscious nodding, frequent yawning,
facial numbness, slow reaction, the inability to concentrate, decreased thinking ability, stiff
and slow movements, loss of sense of direction, and speeding up and down. Therefore, in
response to the above phenomenon, the method generally used by scholars to explore the
problem of fatigue driving is to use face and eye image detection [21,22]. Some scholars have
also suggested adding mouth shape changes, head movement, and eye information [23,24].
The above studies emphasize the fatigue phenomenon displayed by the head. Another
group of scholars suggests judging fatigue phenomena such as slow response and stiff and
slow movements by observing the position and posture changes of the driving hands [25].
The above methods are all started from the perspective of image processing. We know
that image processing is generally affected by environmental factors (such as light, camera
angle, etc.) but also varies significantly due to personal usage habits (such as wearing
glasses, mouth photos, etc.). Therefore, another group of scholars emphasized the force
exerted by the hand [26–28]. We know that fatigue driving presents many symptoms
that vary from person to person and vary based on environmental conditions. While the
studies mentioned above emphasize local fatigue detection, this study explores integrating
information from three sources: eye movement and hand and foot force exertion.

Safe driving must rely on a high degree of coordination between the eyes, hands, feet,
muscles, bones, ligaments, joints, etc., that control every movement. To achieve this goal, the
human brain plays a vital role. Our brain is a highly developed organ, and its coordination
with the human body’s eyes, hands, and feet is an exquisite masterpiece. However, we
must emphasize that sometimes, even though a driving control action is seen as simple
(especially in an “unconscious state”), it is still highly contingent on the coordination of
eyes, hands, and feet. Based on the above motivation, if a system that integrates eye
movement, finger pressure, and foot pressure sensing information can be designed and
controlled through an autonomous learning mechanism (“brain”), it is generally believed
that the occurrence of accidents caused by fatigued driving can be reduced.

We plan to start with user behavior classification and train and learn each cluster,
which is called customized learning. A customized detection system may be generated
when driving data are considerably accumulated. Of course, the feasibility of using this
customized intelligent system for fatigue detection will be significantly increased.

Previously, our team developed an intelligent learning system—an artificial neuro-
molecular system (ANM system) [29]. It is an information-processing architecture that
captures biological structure/function relationships. In particular, in addition to infor-
mation processing between neurons, it also emphasizes information processing within
neurons. Because of this, it has sufficient system dynamics and can be transformed into a
particular input/output information processor through evolutionary learning. Due to these
features, it can perform specific functions according to the needs of the problem domain. It
has been proven that it can be effectively applied in different fields, such as chopstick robot
movement [29], finger motion control [30], and rehabilitation action control [31]. The entire
system is implemented on a digital computer (program).

There were two differences between the ANM system currently developed in this
study and the one from before 2015. The first is a classification system in terms of processing
units, that is, the analysis of correctly classifying a series of time series input data [29]. The
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second change is that this research has added processing unit functions that can convert a
series of sequential inputs into other sequential data [30,31]. We know that the functions of
living things in nature result from the high interaction between some component molecular
structures. Therefore, some scholars [32,33] have further proposed that it results from
various weak interactions between constituent molecules. In other words, traditional
learning algorithm research often needs to pay more attention to these interactive processes
because they are too complex and unknown. In recent years, research on deep learning
has shown rapid growth due to the acceleration of computer software and hardware,
dramatically increasing its application scope. However, this line of study still falls into the
style of Hebbian information processing, which still has the so-called problem of stagnating
at the regional optimal solution. The most significant difference between this study and
deep learning research is our hope to increase the dynamics of the processing unit of the
ANM system, especially in adding weak interaction functions. Through this increase, we
hope to make the system’s learning curve show a smooth improvement method: continuous
improvement (there is no complete stagnation of learning). When we allow the system to
learn long enough, it can progress toward completely solving the problem.

We all know that collecting data on fatigued driving based on real-life driving con-
ditions is very dangerous in a natural environment. Because of this, conducting it in a
simulation is relatively appropriate. Instead, in this study, we use the City Car Driving
(CCD) 1.5.9.2 simulation software to conduct driving tests and data collection. This simula-
tion environment provides permutations and combinations of varying vehicle conditions,
weather, and vehicles, allowing us to perform testing and data collection directly on specific
situational settings through the driving simulator in a relatively simple and safe manner.

2. The System

The system will be described in three parts. The first part explains the experimental
test bed of this study—the driving simulation environment. The second part describes the
sensing system. The third part explains the learning mechanism of the ANM system.

2.1. Car Driving Environment

The CCD system provides different settings (including routes, road conditions, vehicle
conditions, weather, and driving modes) that allow us to conduct driving tests in a specific
environment. In addition, because it is a simulation system, we can conduct different
tests under the same driving environment. Figure 1 shows the driver’s field of vision in
front of the vehicle. Figure 2 shows the steering wheel, accelerator pedal, and brake pedal.
The steering wheel has a maximum rotation angle of 270 degrees and has an automatic
return function.
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2.2. Sensing System
2.2.1. Eye Movement Tracking

Currently, four standard eye-tracking methods are used. Electro-oculography is the
earliest tracking method used. This method is simple to use but has the disadvantage of
poor accuracy. A scleral search coil method can improve accuracy, but its disadvantage
is that it is invasive. The use of eye tracker technology improves the shortcomings of the
above two methods. However, its disadvantage is that the user must wear the device on the
head correctly and without deviation. Video-based pupil/corneal reflection combination
is currently the most advanced and widely used method. The Tobii EyeX, which is the
eye-tracking device used in this study, is one such device (Figure 3). It uses near-infrared
light (800-1500 nanometers) to track the movement and gaze of the user’s eyes. When
the user’s line of sight moves, the cursor will move to the corresponding position on the
computer screen. A plug-and-play USB device records the subject’s visual field and eye
movements. The device only captures eye gaze data (not the user’s face), so there are no
privacy concerns. Figure 4 shows part of the user’s captured gaze data (two-dimensional
X- and Y-axes).
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2.2.2. Finger Pressure Sensing and Plantar Pressure Sensing

Eight piezoresistive pressure sensors were used in this study. Three relate to the brake
pedal, three to the gas pedal, and two to the steering wheel. The brake and oil pedal are
placed at the pedal’s front, middle, and rear, respectively. The steering wheel is installed at
both ends where people usually use the steering wheel. Although the brake and gas pedals
are each equipped with three sensors, we will add up the three values and take the average
when collecting data due to the different methods of use. All of the piezoresistive pressure
sensors mentioned above will be connected to an Arduino board to collect the subject’s
finger pressure data and transmit it to the computer. Figure 5 is a simple schematic diagram
without further processing. After testing its accuracy, this study further strengthened the
closeness of the sensor to these devices.
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2.3. The ANM System

Generally speaking, computer programs using symbolic design methods are unsuit-
able for evolutionary autonomous learning. A slight change in a program may result in a
malfunctioning program. This is because the fitness curve between the structure of the en-
tire program and the functions represents a peak and valley full of distinct highs and lows.
In other words, the feasible paths between mountain peaks are steep, which is unsuitable
for evolutionary autonomous learning. Using the evolutionary learning method, the final
result may lead to learning stagnation, falling into the so-called local optimal solution.

In response to the problems faced by symbolic programs, traditional neural networks
use the connection relationship between neurons (including the strength of the connection)
to store (or express) information to deal with this problem. When inputs and outputs
change, the connections between neurons in the network must also be adjusted accordingly.
In other words, the system’s function entirely relies on the different link relationships on
the network to express. Unfortunately, the processing of neurons’ molecular and chemical
messages has been completely ignored. In recent years, the information-processing function
of neurons has been gradually discovered. For example, the second type of transmitter
(cAMP) may play a role in controlling the firing of neurons in the central nervous system.
These theories propose that some information transmitters and regulators on the cell
membrane are converted into signals of the second type of transmitter. Then, this cAMP
acts on some proteins (kinases), which control some reactor proteins that regulate ion
channels or connect microtubules. These proteins directly or indirectly affect the opening of
ion channels; that is, they directly or indirectly affect the potential or firing of neurons. Some
other researchers believe the cytoskeleton plays the role of integrating signals (information)
or memory functions. It is known that the cytoskeleton of neurons is a multi-molecular
network of microtubules, microfilaments, and neurofilaments and some proteins (MAPs)
that connect these molecules. These MAPs may coordinate other information-processing
behaviors within neurons.

In addition to using the relationship between network neurons to express information,
the ANM system also adds information processing within the neurons. However, a detailed
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simulation of intraneuronal dynamics would require significant computational cost (computer
time). Therefore, we only consider modeling this neural information processing relatively
abstractly. Even so, the fitness curve presented by the structure–function relationships repre-
sented by the internal dynamics of the entire neuron must be rich enough to be suitable for
evolutionary learning. We would use the adjective “multidimensional bypass” to describe
the curve between this structure and the function it represents. Intuitively, this kind of curve
is due to adding extra spatial degrees, which increases the chance of saddle points. The
theoretical basis is that when the number of constituent elements increases, the interaction
between them increases, thereby increasing the opportunities for saddle points. In addition
to adding more interactive elements, two features (redundancy and weak interactions) that
facilitate evolutionary learning also play a crucial role. In simulating the internal dynamics of
neurons, the ANM system uses evolutionary learning inside the neurons to place the above
three factors.

2.3.1. Neuromolecular Information Processing

The ANM system assumes that information processing occurs in the cytoskeleton of
neurons, which we call neuromolecular information processing. This study used a two-
dimensional space cellular automata (CA) to simulate the information-processing method
on the cytoskeleton. We call these types of neurons information-processing (IP) neurons.
Figure 6 illustrates the molecular structure of an information-processing neuron, where
each grid represents a unit molecule of the cytoskeleton. This study assumed three types of
molecules (represented by C1, C2, and C3). Each molecule type is responsible for signal
transmission and has different transmission characteristics. For example, the transmission
speed of the C1 type of elements is the slowest, but the influence of the signal transmission
is the strongest. In contrast, the signal transmission influence of the C3 type of elements is
the weakest but has the fastest transmission speed. Among the three, the transfer speed
and influence of the C2 element type are between C1 and C3.
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In the cytoskeleton, each component unit can act as a signal input and output site.
The input site is called a readin enzyme, whereas the output site is a readout enzyme. The
readin enzymes receive signals from outside the neuron and convert them into signals that
flow through the molecular structure, while readout enzymes play a role in controlling
whether neurons fire. The neuron fires when a specific combination of signals reaches a
location with readout enzymes and the total signal kinetic state reaches a certain level.
However, this model has some limitations: the readin enzyme can be configured on any
element, but the readout enzyme can only be configured on the C1 element. This is based
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on the hypothesis in this study that only certain combinations of signals will cause neurons
to fire.

When a signal from outside the cell is sent to the cell membrane, it causes the reader
enzyme to activate and further turn on elements in their exact location. Each enabled
piece will affect adjacent aspects of the same type in turn. As described above, it initiates
a specific signal flow in the cytoskeleton. For example, as shown in Figure 6, when the
read enzyme at the (2, 2) position receives a signal, it will activate the C2 element and
generate a signal that moves along the C2 element, moving from (2, 2) to (8, 2). To form a
unidirectional signal flow during the process, the aspect turned on will enter a very short
backlash period after transmitting the signal. During the backlash period, the element
can no longer be activated and must wait until the backlash period ends, which ensures
unidirectional transmission.

Signals on different types of components can also affect each other through the MAP
between them (of course, these effects are asymmetric). When a signal from one end reaches
a place with a MAP, it will affect the kinetic state of different types of elements at the other
end through the MAP (or even prompt the other end to generate new signal flows). The
neuron triggers when a specific combination of signals reaches a location with a readout
enzyme. The firing time of the neuron depends on how the cytoskeleton in the neuron
integrates and processes these messages.

The two-dimensional cytoskeleton in the ANM system is arranged in a wrap-around
manner. There will be no boundary restrictions when moving within the cytoskeleton. Each
basic unit has eight possible directions to move and might form a circular path. Figure 7
shows a schematic diagram of the signal movement path. For example, in Figure 7a, the
signal starting at location (3, 3) will move along (2,3), (1,3), and (8,3) and finally stop at (7,3).
The other example, as shown in Figure 7b, is that the signal starting at location (5,2) will
follow (4,1), (3,8), (2,7), and (1,6) and finally stop at (8,5).
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Currently, the ANM system has 576 information-processing neurons (called cytoskele-
tal neurons). Each neuron has a different cytoskeletal structure when the system is initially
designed. Figure 8 shows a hierarchical structure diagram of all information-processing
neurons, from the population to the molecule level. Each neuron has different information-
processing capabilities. To allow them to learn autonomously, they are divided into eight
competitive subnetworks (each subnetwork has 72 information-processing neurons). The
competitive learning approach used in this study allows each sub-network to have an “in-
formation processing neuron” with a very similar cytoskeletal structure (in the following,
we refer to information-processing neurons with very similar cytoskeletal structures in
different subnetworks as the same bundle of neurons). Given the same input data for the
neurons in the same bundle, the output behavior of these neurons with similar cytoskele-
tons will be very similar (but not exactly equal). Furthermore, for the entire subnetwork
group, the structure of the neurons in each subnetwork is also very similar. Through the
characteristics of this similar structure, we can allow these different subnetworks to com-
pete. First, we evaluate the performance of each subnet then select the better-performing
subnet and copy it to the less-performing subnet (assuming that a slight error occurs dur-
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ing the copying process, a so-called mutation). The learning process described above is
similar to Darwinian evolution, which will train these subnetworks to achieve the intended
purpose of this study.
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Evolutionary learning uses a Darwinian evolutionary search method, which can be
roughly divided into three steps (Figure 9).
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Figure 9. Evolutionary learning process at the level of information-processing neurons. (a) Evaluate
the performance of each subnet and select a few subnets with better performance; (b) Copying occurs
from better-performing subnets to worse-performing subnets (copying occurs in the same bundle of
neurons with a similar cytoskeletal structure); and (c) Change the subnets with poor performance.
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2.3.2. Manipulation Network

As mentioned, the learning algorithm used in this study produces something similar
to competitive learning by allowing each subnetwork to change its cytoskeletal struc-
ture. Changing the cytoskeletal structure shapes the ANM system with gradual struc-
ture/function switching properties. This feature helps generate paths in multi-dimensional
spaces (please refer to Section 2.1), and the system thus has a relatively high chance of
escaping from the regional optimal solution when searching. However, this kind of change
is a gradual fine-tuning, which improves slowly and takes a long time. The difficulty is
relatively high if the goal is to train a large group of neurons to complete a specified task.
From another perspective, it may not be necessary to use this approach because it may be
possible to train a small group of suitable neurons to perform the same task. To deal with
this problem, this study uses another type of neuron, whose task is to select appropriate
information-processing neurons to achieve it (that is, only the chosen neurons will par-
ticipate in information processing and fitness evaluation). This type of neuron is called a
control neuron (CN). This study assumes that control neurons have hierarchical control
(selection) functions. This hierarchical control method controls a group of information-
processing neurons (selected) to achieve the task. This way of selecting neurons is called
orchestration. The current operation method uses two layers of control neurons, as shown
in Figure 10, to find suitable neurons through the Darwinian variation–selection method.
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Figure 10. Two layers of control neurons control information-processing neurons.

As mentioned, the current ANM system has 576 information-processing neurons (or
72 bundles of neurons). A lower-level control neuron controls each bundle. Therefore, there
are a total of 72 low-level control neurons. This study utilizes another layer of neurons,
high-level control neurons, to control the firing of lower-level control neurons. Learning
of control neurons occurs only between higher and lower layers. In other words, each
high-level control neuron can select different low-level control neurons and change along
with the learning process. However, the information-processing neurons controlled by
low-level control neurons do not change with the learning process. The entire evolutionary
learning step is first to evaluate the performance of each high-level control neuron and
select the better-performing high-level control neuron. Then, the better-performing higher-
level control neurons are copied to the worse-performing higher-level control neurons.
It is assumed that there are slight errors during the copying process, which results in
the low-level control neurons controlled by the replicator and the copied being different
(Figure 11).
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Figure 11. Evolutionary learning process at the level of control neurons. (a) Cytoskeletal neurons con-
trolled by each reference neuron are activated sequentially to evaluate their performance. (b) Assume
the cytoskeletal neurons controlled by R2 achieve better performance. The pattern of neural activities
controlled by R2 is copied to R1. (c) R1 controls a slight variation of the neural grouping controlled
by R2, assuming some errors occur during the copy process.

Evolutionary learning is implemented by allowing alternating learning between con-
trol and information-processing neurons. The current approach is to allow the system
to learn at the control neuron level for a while and then allow the system to learn at the
information-processing neuron level for another period. This cycle allows each level to
learn sequentially until the system is stopped or the assigned task is completed.

3. Application Domain

The following will first explain how to collect driving data. We then explain how
to preprocess the collected data. The last part describes how to connect these data to
the system.

3.1. Driving Data Collection

Figure 12 shows our settings for the CCD system. We selected a U-shaped route
with light traffic and good weather conditions, with average driving patterns for general
roads. We selected a straight highway route, with 10% light and 80% heavy traffic. The
details of data collection are explained below. We first connected the Tobii eye tracker to
the computer, then used Open Broadcaster Software (OBS) 29.0.2 to record the coordinate
information of the eye tracker through the computer screen, and finally turned on the CCD
system to determine whether the eye tracker was correctly displayed on the screen. When
all of the above equipment and subjects are ready, we further confirm whether the data
collection of the eye tracker and hand and foot pressure are synchronized. Finally, data
collection was officially carried out. The entire process was screen-recorded, and the time
was recorded until the simulation ended.

The following explains how to synchronize the data collected through eye, hand,
and foot sensors. We note that the data collection of hands and feet was performed
through Arduino. These two data were synchronized. The main problem is synchronizing
eye movement and hand and foot data. The current approach was to find the screen
recording data based on when the hand and foot pressure values were obtained. When the
image data were found, the HoughCircles function provided by the open-source computer
vision library was used to find the coordinate values displayed by the eye tracker, which
completed the integration of specific eye, hand, and foot data at a particular time.

To maintain the consistency of data collection, this study invited the same subjects
to collect data ten times in the same driving environment. Each time, the driver drove on
the entire route. The data on eye movements, braking, finger pressure, and accelerator
were collected at intervals of 0.5 s. The subject was asked to drive the same route every
time, but the traffic conditions varied (due to different traffic lights, pedestrians, and traffic
volume). It took about three to five minutes from the beginning to the end for a drive test.
In terms of driver behavior, this study assumed two types of driving: everyday driving
and distracted driving. The former means the driver is relatively focused, while the latter
means the driver has wandering eyes and changes lanes at will.
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3.2. Data Preprocessing

In this study, three participants were invited for data collection. All three collected data
on general roads, while two also collected data on highways. Taking the first participant
as an example, using the sliding window method (with a sliding speed of five time series
points), all of the collected time series data were divided into 567 driving segments. The
driving duration varied among participants, resulting in a different number of final driving
segments. Each clip has 100 timing points (approximately 50 s of driving time). The
clustering method used in this study is described below. The first step is to set a threshold.
The dynamic timing warping (DTW) method is then used to compare two driving clips.
When the difference between two driving clips is within the threshold, they belong to
the same cluster. A new data cluster will be created when the newly-added clip does not
belong to any cluster. This study followed the above method and organized the 567 driving
clips into 73 clusters. The setting of this threshold is arbitrary and has no substantive
significance. When this value is set too high, the number of clusters generated will be
relatively small (relatively, it means that the difference within the cluster is more significant).
On the contrary, relatively more clusters will be generated when set too low. When there
is relatively enough data on subjects in the future, the choice of this value will have more
substantial significance.

3.3. Connecting Driving Data with the I/O Interface of the ANM System

As mentioned above, the length of each driving clip is 100 time series points, which
is approximately 50 s of driving time. Each time series point has six values, including
eye movement x- and y-axis data (represented by eye-x and eye-y), left and proper finger
pressure on the steering wheel (represented by hand-left and hand-right), the average
foot pressure of the brake pedal (expressed as foot-brake), and the average pressure of the
accelerator pedal (expressed as foot-gas). This study assumes that during each driving clip,
the behavior in the first 25 s will affect the behavior in the next 25 s. The method of this
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study is to use the movements, finger pressure, and accelerator foot pressure (including
accelerator and brake) in the first 25 s as the input data of the system, and then the eye
movements, finger pressure, and accelerator foot pressure in the next 25 s as the system’s
output data. For each data set, the smaller the difference between the outputs generated by
the ANM system and the expected output, the better its learning performance is. Figure 13
gives an example of timing data 25 s before and 25 s after a specific time. In other words,
we hope to convert the input data of Figure 13a into the waveform of Figure 13b through
the ANM system.
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All information-processing neurons of the ANM system are divided into six groups,
corresponding to the above six categories of data (eye-x, eye-y, hand-left, hand-right, foot-
brake, foot-gas) (Figure 14). The firing behavior of each group of information-processing
neurons represents the data conversion of specific output data. In the current implementa-
tion, we use the time difference between two adjacent firing neurons of the same group to
describe the degree of data conversion. This study assumes that the relationship between
the time difference and the degree of conversion is similar to a sigmoid-like waveform
(Equation (1)). For a particular group of outputs, the waveforms generated by all of the
same group of neurons that produce firing behavior will be superimposed in series to
form a specific output waveform. Loss is the absolute difference between the waveform
generated by the ANM system and the expected waveform. The smaller the loss value, the
better the fitness of the system.

Degree of transformation = (
1

1 + e(−2 × ∆t)
− 0.5)× 2 × 90 (1)

Loss = ∑i

∣∣∣∑50
j=1

(
Eij − Aij

)∣∣∣ (2)

where Eij and Aij represent the expected trajectory and the trajectory generated by the
ANM system, respectively; i = eye-x, eye-y, hand-left, hand-right, foot-brake, and foot-gas.
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4. Experiments

Six experiments were conducted in this study. The first part focuses on the learning
ability of the system, exploring whether the ANM system can be used to learn each driving
clip. The second part examines the relationship between a series of driving clips. If there is
some correlation, we can judge whether the driver is fatigued through a series of driving
behaviors (rather than a single momentary behavior). The third part is performed to classify
different driving behaviors. The fourth part is based on the learning experiment from the
first part, followed by adaptive experiments using the obtained information. It investigates
whether the ANM system can be trained to apply one person’s system to different people.
The fifth part introduces driving segments with varying noise levels to explore whether the
ANM system can detect abnormal behavior in drivers while the vehicle is in motion. The
final experiment tests whether the driver has distracted (fatigued) driving.

4.1. Learning Capability

As mentioned earlier, in this study, the data collected by the first participant on general
roads were divided into 73 clusters, the second participant’s data into 62 clusters, and the
third participant’s data into 67 clusters. For highway driving, the first participant’s data
were divided into 58 clusters and the second into 56. This experiment hopes to understand
whether the ANM system has considerable learning capabilities for each data cluster. In
other words, can we use the ANM system for judgment learning for each type of driving
behavior? That is to say, we can use the driving behavior of the first 25 s to judge the
reaction behavior of the next 25 s. If the preliminary experimental results prove that the
above inference is feasible, we can gradually increase the driver’s behavior. On the other
hand, we can gradually increase the system’s complexity according to the needs of the
problem domain (for example, different weather, traffic flow, and road conditions). In this
experiment, we randomly selected 20 clusters from the 73 clusters of the first participant
in a general road environment. Additionally, nine clusters were selected from the other
two participants in a general road environment. For the highway data, nine clusters were
selected from the two participants in a heavy and light traffic environment. Each cluster
also randomly selected a driving clip to test whether the relationship between the first 25 s
and the last 25 s of driving behavior can be established. The results showed that the degree
of learning improvement was relatively rapid in the early stages of learning but slowed
down in the later stages. The degree of improvement became smaller and smaller in the
last stages. Most importantly, however, the system showed continued improvement, even
in the later stages of learning.

We allowed the ANM system’s learning to terminate when the learning improvement
was relatively slow. The results show (Tables 1–7) that the learning results in each cluster
are above 75%. We add here that if the system can continue learning, there is still room for
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continuous improvement (i.e., higher accuracy). However, the experimental results in this
part of the article were suspended at appropriate times to explore the different information
processing of ANM systems more broadly.

Table 1. Participant A’s performance during the first cycle and at termination while driving in a
general road environment.

Cluster Run Loss at
Cycle 1

Loss at
Termination

Improvement
Rate Run Loss at

Cycle 1
Loss at

Termination Improvement Rate

1 3 3933.0 948.0 75.9% 33 3161.0 559.0 82.3%

2 6 4082.4 863.3 78.9% 36 3410.0 744.0 78.2%

3 9 3289.0 756.0 77.0% 39 2937.0 739.0 75.0%

4 12 4139.1 848.4 79.5% 42 2933.0 975.0 66.8%

5 15 3979.0 956.0 76.0% 45 3104.0 730.0 76.5%

6 18 4676.1 864.5 81.5% 48 3057.6 537.9 82.4%

7 21 4316.0 661.0 84.7% 51 3039.0 290.0 90.5%

8 24 4759.3 772.0 83.8% 54 2866.2 460.3 83.9%

9 27 5792.0 879.0 84.8% 57 3425.0 1068.0 68.8%

10 30 4230.6 537.4 87.3% 60 4132.0 957.0 76.8%

Table 2. Participant B’s performance during the first cycle and at termination while driving in a
general road environment.

Cluster Run Loss at
Cycle 1

Loss at
Termination Improvement Rate

1 6 3699.2 991.4 73.2%

2 12 3392.5 712.2 79.0%

3 18 4220.0 823.3 80.5%

4 24 4346.3 783.2 82.0%

5 30 4276.7 1035.0 75.8%

6 36 4738.4 850.7 82.0%

7 42 3563.8 888.9 75.1%

8 48 3599.1 918.3 74.5%

9 54 3211.7 1222.7 61.9%

Table 3. Participant C’s performance during the first cycle and termination while driving in a general
road environment.

Cluster Run Loss at
Cycle 1

Loss at
Termination Improvement Rate

1 6 3604.2 944.7 73.8%

2 12 3712.4 1207.6 67.5%

3 18 4202.0 1303.2 69.0%

4 24 4693.6 1199.5 74.4%

5 30 4034.1 1307.7 67.6%

6 36 3665.6 959.5 73.8%
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Table 3. Cont.

Cluster Run Loss at
Cycle 1

Loss at
Termination Improvement Rate

7 42 3229.5 898.6 72.2%

8 48 3638.0 1146.3 68.5%

9 54 2787.7 743.6 73.3%

Table 4. Participant B’s performance during the first cycle and termination time while driving on
highways with a light traffic environment.

Cluster Run Loss at
Cycle 1

Loss at
Termination Improvement Rate

1 6 2822.4 710.9 74.8%

2 12 2977.7 800.2 73.1%

3 18 2830.0 605.1 78.6%

4 24 2927.1 620.1 78.8%

5 30 3057.8 563.0 81.6%

6 36 3016.9 618.3 79.5%

7 42 3032.6 592.8 80.5%

8 48 4410.4 743.4 83.1%

9 54 3716.0 879.6 76.3%

Table 5. Participant B’s performance during the first cycle and termination time while driving on
highways in a heavy traffic environment.

Cluster Run Loss at
Cycle 1

Loss at
Termination Improvement Rate

1 6 3206.2 973.3 69.6%

2 12 2769.2 784.1 71.7%

3 18 2859.1 513.1 82.1%

4 24 3075.1 740.1 75.9%

5 30 2783.0 601.8 78.4%

6 36 3002.4 619.9 79.4%

7 42 2863.0 723.3 74.7%

8 48 3837.9 917.4 76.1%

9 6 3206.2 973.3 69.6%

Table 6. Participant C’s performance during the first cycle and termination time while driving on
highways with a light traffic environment.

Cluster Run Loss at
Cycle 1

Loss at
Termination Improvement Rate

1 6 3965.3 982.6 75.2%

2 12 2698.2 913.0 66.2%

3 18 2576.9 882.4 65.8%

4 24 2871.1 660.1 77.0%

5 30 2901.4 917.0 68.4%
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Table 6. Cont.

Cluster Run Loss at
Cycle 1

Loss at
Termination Improvement Rate

6 36 2692.3 774.4 71.2%

7 42 2844.9 722.6 74.6%

8 48 4427.9 706.0 84.1%

9 54 4836.1 580.6 88.0%

Table 7. Participant C’s performance during the first cycle and termination time while driving on
highways in a heavy traffic environment.

Cluster Run Loss at
Cycle 1

Loss at
Termination Improvement Rate

1 6 2768.5 709.2 74.4%

2 12 2659.0 729.5 72.6%

3 18 2570.7 743.3 71.1%

4 24 3157.3 665.0 78.9%

5 30 2628.6 688.1 73.8%

6 36 2770.8 769.7 72.2%

7 42 3034.5 756.8 75.1%

8 48 3885.2 724.8 81.3%

9 54 2726.7 657.3 75.9%

4.2. Correlation Analysis before and after Driving Clips

In the previous part of the experiment, we randomly selected 20 driving clips for
learning. For each clip, this experiment wants to explore whether there is some correlation
between the clips before and after the clip. In other words, if so, we can use different driving
clips continuously (rather than just relying on a single driving segment) to determine
whether the driver is driving fatigued. The testing method of this experiment is to use the
ANM system that has been trained for a long time in the previous experiment and conduct
individual tests on each of the first one to four driving clips and the last one to four driving
clips used in the training period.

This experiment randomly selected 6 of the 20 learned systems from the first experi-
ment. The correlation between a specific driving clip’s first and last four driving clips is
tested for each learned system. If their loss values are not much different from each other
(compared with the loss value that the system has not learned; please refer to Table 1), it
means that there is some correlation between adjacent driving clips. In other words, driver
behavior changes step by step rather than in leaps and bounds. The results (Figure 15)
show that driver behavior is highly similar when the gap between two driving clips is
relatively tiny. As the gap gradually increases, so does the difference in driver behavior.
The important thing is that there is some U-shaped relationship between them. This rela-
tionship represents two meanings. The first is that it again shows that the ANM system has
a gradual transformation capability when the system’s performance function will slowly
change due to changes in the input data. The second is in driving fatigue detection; we can
verify whether the driver is fatigued through a series of driving behaviors (clips).
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4.3. Cluster Analysis

The test data of the second experiment were related to driving clips before and after
a specific driving clip. In other words, this is a driving segment of continuous driving
before and after a certain driving period. This experiment’s test data are driving clips from
different periods. As mentioned before, during the data collection phase of this study,
subjects were invited to drive the same route ten times. The test data of this experiment are
similar driving clips of these ten drives at different periods. We interpret the former as the
same type of driving segments, while the latter refers to utterly different driving segments.
Simply put, the second experiment was a test during the same driving period, while this
experiment was a driving test across various periods.

This experiment uses the 20 learning systems from the first experiment and finds
all similar driving clips at different periods. Table 8 shows the number of similar clips
between each driving clip and other clips in different periods. Figure 16 further organizes
the data in Table 2. The results show that among the 20 groups, 10 (more than 50%) have
loss values between 1022.2 and 1442.2. These values are not much different from the
learned values in Table 1. The loss values of the other eight groups are between 1442.2 and
1862.2. These values are slightly higher than those learned in Table 1 but differ considerably.
From the above results, we can roughly say that drivers’ behavior is similar to a certain
extent. In other words, we can perform classification to some extent from the driver’s
fragmentary behavior.

Table 8. Average loss and number of clips within a cluster.

Cluster Average Loss No. of Clips Cluster Average Loss No. of Clips

1 2244.1 48 11 1142.3 76

2 1275.6 76 12 1823.7 77

3 1467.2 58 13 1076.7 76

4 1304.3 66 14 1549.5 75
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Table 8. Cont.

Cluster Average Loss No. of Clips Cluster Average Loss No. of Clips

5 2191.2 64 15 1434.1 86

6 1401.1 83 16 1365.4 108

7 1700.0 74 17 1022.2 74

8 1199.9 81 18 1239.1 137

9 1550.5 54 19 1719.6 70

10 1487.5 83 20 1543.9 65
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4.4. Adaptability
4.4.1. Different Participants Driving the General Road Environment

Based on the learning capability, subsequent adaptive experiments were conducted
to explore whether the ANM system could further train and apply the system of one
individual to others. Our approach is to test whether different subjects perform similarly
in similar driving environments. The approach adopted is to use a system trained on
one user’s driving data to be tested on another user’s driving data. This may be an
assessment of the effectiveness of applying driving skills or knowledge learned through
one participant to another participant in a particular driving scenario. It is a type of
stress test. This study interprets it as adaptive capacity. The trained system was tested
using nine driving segments from another participant with similar driving patterns. For
each test, the system’s loss values were initially recorded when encountering different
drivers, followed by observing the outcomes after running for 500 iterations. Results from
Tables 9–14 indicated that some driving segments achieved improvement rates of over 75%
after just 500 training iterations, while others showed around 40% improvement. Even with
relatively brief training periods, achieving 40% improvement demonstrates the adaptability
of the ANM system. These data suggest that there is still room for learning. Moreover,
using training data from the same individual may better suit drivers with similar habits;
for example, Participant One and Participant Three share similar driving habits, as do
Participant Two and Participant Three. In the future, systems trained on Participants One
and Two could be applied to Participant Three.
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Table 9. Participant A’s data were tested with Participant B’s learned system in a general
road environment.

Cluster Run Loss at
Cycle 1

Loss at
Termination Improvement Rate

1 6 2723.2 1443.2 47.0%

2 12 1838.0 1095.5 40.4%

3 18 2829.4 1573.5 44.4%

4 24 2052.0 1140.7 44.4%

5 30 2517.2 1438.6 42.8%

6 36 2080.3 906 56.4%

7 42 2131.8 1069.9 49.8%

8 48 1755.1 1149.5 34.5%

9 54 1222.7 1219.9 0.2%

Table 10. Participant A’s data were tested with Participant C’s learned system in a general
road environment.

Cluster Run Loss at
Cycle 1

Loss at
Termination Improvement Rate

1 6 4517.7 1721.9 61.9%

2 12 3799.8 1039.6 72.6%

3 18 3854.7 2119.6 45.0%

4 24 4077.3 1144.5 71.9%

5 30 4263.1 1559.3 63.4%

6 36 3620.8 1175.2 67.5%

7 42 3855.0 1166 69.8%

8 48 4339.0 1372.3 68.4%

9 54 3955.4 1002.8 74.6%

Table 11. Participant B’s data were tested with Participant A’s learned system in a general
road environment.

Cluster Run Loss at
Cycle 1

Loss at
Termination Improvement Rate

1 6 1989.1 980.2 50.7%

2 12 1147.3 812.5 29.2%

3 18 2745.4 800.7 70.8%

4 24 1986.3 892.4 55.1%

5 30 1590.3 949.5 40.3%

6 36 2599.2 719.5 72.3%

7 42 1507.3 784.7 47.9%

8 48 1807.8 965.6 46.6%

9 54 1708.7 1291.9 24.4%
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Table 12. Participant B’s data were tested with Participant C’s learned system in a general
road environment.

Cluster Run Loss at
Cycle 1

Loss at
Termination Improvement Rate

1 6 4639.9 2029.1 56.3%

2 12 3487.7 1038.5 70.2%

3 18 4939.2 2148.1 56.5%

4 24 4896.9 1176.0 76.0%

5 30 4295.0 1500.2 65.1%

6 36 4164.1 1338.6 67.9%

7 42 3208.1 1257.7 60.8%

8 48 3888.7 1511.3 61.1%

9 54 3880.1 1133.9 70.8%

Table 13. Participant C’s data was tested using Participant A’s learned system in a general
road environment.

Cluster Run Loss at
Cycle 1

Loss at
Termination Improvement Rate

1 6 4735.4 1102.6 76.7%

2 12 5003.5 1676.1 66.5%

3 18 5240.0 864.5 83.5%

4 24 4386.8 1158.5 73.6%

5 30 5040.4 1364.9 72.9%

6 36 5215.3 891.3 82.9%

7 42 4759.3 773.8 83.7%

8 48 4716.2 1099.5 76.7%

9 54 6275.7 1768.2 71.8%

Table 14. Participant C’s data were tested on a general road environment with Participant
B’s learned system.

Cluster Run Loss at
Cycle 1

Loss at
Termination Improvement Rate

1 6 4583.8 1271.8 72.3%

2 12 5558.3 1572.7 71.7%

3 18 6050.3 1784.3 70.5%

4 24 5058.9 1169.7 76.9%

5 30 6005.6 1030.3 82.8%

6 36 6015.4 1451.7 75.9%

7 42 4716.2 1099.5 76.7%

8 48 4287.0 1225.9 71.4%

9 54 5126.3 1370.1 73.3%

4.4.2. Different Participants Driving on the Highway

Like the previous experiment, the driver routes were changed to highway driving. We
selected nine driving segments from both heavy and light traffic to observe the results of
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the system running 500 iterations on different drivers’ driving segments. From Tables 15–18,
it can be observed that the improvement rate on highways is generally lower than that
on general roads. This suggests that driving behavior on highways differs from that on
general roads. The traffic conditions on the road also influence driving behavior. It was
also noted that the initial loss values for highway driving are at least one or two thousand
units lower than those for general roads, indicating that highway driving behavior is
more straightforward from the beginning and can be adequately handled using the system
trained on general road driving.

Table 15. Participant A’s data in a light traffic environment were tested with Participant B’s
learned system.

Cluster Run Loss at
Cycle 1

Loss at
Termination Improvement Rate

1 6 1337.9 543.3 59.4%

2 12 968.2 823.3 15.0%

3 18 989.4 581.4 41.2%

4 24 1144.8 701.3 38.7%

5 30 762.5 603.3 20.9%

6 36 1541.7 783.5 49.2%

7 42 1182.0 936.1 20.8%

8 48 1626.5 684.8 57.9%

9 54 1656.6 684.7 58.7%

Table 16. Participant A’s data in a heavy traffic environment were tested with Participant B’s
learned system.

Cluster Run Loss at
Cycle 1

Loss at
Termination Improvement Rate

1 6 1574.5 523.3 66.8%

2 12 972.3 687.7 29.3%

3 18 1013.6 543.7 46.4%

4 24 1040.0 382.0 63.3%

5 30 1196.3 842.3 29.6%

6 36 1581.0 861.1 45.5%

7 42 1710.5 1066.3 37.7%

8 48 2630.3 923.4 64.9%

9 54 1529.3 864.2 43.5%

Table 17. Participant B’s data in a light traffic environment were tested with Participant A’s
learned system.

Cluster Run Loss at
Cycle 1

Loss at
Termination Improvement Rate

1 6 1316.2 672.2 48.9%

2 12 1169.8 858.7 26.6%

3 18 1014.8 604.2 40.5%

4 24 1337.9 378.6 71.7%
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Table 17. Cont.

Cluster Run Loss at
Cycle 1

Loss at
Termination Improvement Rate

5 30 1081.9 584.3 46.0%

6 36 951.2 567.6 40.3%

7 42 1156.4 489.2 57.7%

8 48 1257.6 792.2 37.0%

9 54 1697.7 750.6 55.8%

Table 18. Participant B’s data in a heavy traffic environment were tested with Participant A’s
learned system.

Cluster Run Loss at
Cycle 1

Loss at
Termination Improvement Rate

1 6 1214.6 877.5 27.8%

2 12 1395.9 880.8 36.9%

3 18 674.3 455.2 32.5%

4 24 1461.4 839.0 42.6%

5 30 1541.7 531.2 65.5%

6 36 766.1 550.6 28.1%

7 42 718.9 512.8 28.7%

8 48 1351.0 906.1 32.9%

9 54 1497.5 875.8 41.5%

4.5. Noise

In this experiment, six driving segments from Participant One driving on general
roads were selected, and different levels of noise (1%, 2%, 5%, and 10%) were added to
each segment. The aim was to investigate whether the ANM system can detect abnormal
behavior in drivers while the vehicle is in motion. As shown in Figure 17, even adding just
1% noise resulted in a significant increase in loss values, which increased further as the
noise levels increased. The experimental results indicate that the ANM system can detect
abnormal behavior in drivers while the vehicle is in motion.

σnoise = k × σoriginal (3)

4.6. Fatigued Driving

This study sorted out the possible symptoms of driver fatigue from relevant literature,
including blurred vision, involuntary nodding, increasing eye closing frequency, longer
eye closing time, continuous yawning, facial numbness, slow eye reaction, stiff movements,
changing lanes at will, etc. Based on the current settings of this study, this experiment
assumes that drivers are prone to three possible fatigue driving conditions: changing lanes
at will, eyes wandering and closing, and slow reaction speed. The first case (eyes wandering
and closing) tests eye movement information, while the last two instances (switching lanes
at will and slow reaction speed) exist mainly to explore the effects caused by abnormal
pressure on the hands and feet. The first case is to ask subjects to move and close their
eyes while driving deliberately. The primary purpose of this experiment is to observe the
impact of changes in eye movement. The second case (switching lanes at will) is simulated
by asking the subjects to switch lanes at will many times while driving, while the third
case (slow reaction speed) is simulated by asking the subjects to react with slow hand
and foot reactions. As before, the settings for all driving environments are the same. The
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driving clips collected in this experiment’s first, second, and third cases are 40, 43, and
63, respectively. Each case is tested separately in this experiment, and the average value
is taken. The average loss obtained in each case is relatively high (please refer to the loss
value in Table 19).
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Table 19. The average loss of each distraction case.

Distraction Case No. of Clips Average Loss

Eyes wandering and closing 40 3293.1

Switching lanes at will 43 3452.3

Slow reaction speed 63 3457.7

In the following, we further explore whether these different distraction phenomena
can be further trained through the ANM system. Similar to the second experiment, we
took 6 of the 20 learned systems to conduct the above research. For each distraction case,
five tests were performed. For each test, we first observed the loss values when the system
faced driver distraction and then allowed the system to run for 500 generations to observe
the final results. The results are shown in Table 20. After 500 generations of learning, some
results can be good, while others still have considerable room for effort. However, looking
at these data, there is still room for learning. However, the distraction test is a semi-random
variation. There is still considerable room for discussion, or a certain degree of controversy,
in trying to draw concrete conclusions from this approach.
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Table 20. The improvement rate of loss at cycle 1 and cycle 500.

Switching Lanes at Will Eyes Wandering/Closing Slow Reaction Speed

Clip Run Loss at
Cycle 1

Loss at
Cycle 500

Improvement
Rate

Loss at
Cycle 1

Loss at
Cycle 500

Improvement
Rate

Loss at
Cycle 1

Loss at
Cycle 500

Improvement
Rate

1

1 4232.9 795.7 81.2% 3577.9 923.7 74.2% 4310.0 1231.4 71.4%
2 4120.1 1020.7 75.2% 3943.0 1578.7 60.0% 4777.8 826.5 82.7%
3 3961.8 1549.6 60.9% 3323.1 1387.2 58.3% 5024.9 1377.2 72.6%
4 3657.5 1431.5 60.9% 3323.1 1387.2 58.3% 4664.9 1261.2 73.0%
5 4010.4 1145.7 71.4% 3099.1 1475.3 52.4% 3632.9 1009.5 72.2%

2

1 4021.7 1001.4 75.1% 3037.9 1130.0 62.8% 3091.7 1340.9 56.6%
2 3919.3 1238.5 68.4% 3523.6 1492.8 57.6% 4548.3 930.1 79.6%
3 3331.8 1909.3 42.7% 2952.4 1450.2 50.9% 3834.2 1256.0 67.2%
4 2860.8 1437.4 49.8% 2439.7 1150.1 52.9% 3353.0 1513.1 54.9%
5 3007.4 1585.7 47.3% 2881.3 1128.6 60.8% 2617.0 991.7 62.1%

3

1 3056.6 580.9 81.0% 2468.9 864.8 65.0% 3267.7 1264.7 61.3%
2 3416.3 883.8 74.1% 3335.5 1423.6 57.3% 4170.0 726.5 82.6%
3 3640.8 1450.1 60.2% 2864.4 1564.0 45.4% 4181.6 1183.2 71.7%
4 2944.6 1024.4 65.2% 2791.0 1020.3 63.4% 3462.9 1455.6 58.0%
5 3286.1 1068.8 67.5% 2719.3 1445.5 46.8% 3142.1 1032.5 67.1%

4

1 3225.0 462.6 85.7% 3092.1 889.9 71.2% 3605.5 1228.1 65.9%
2 3660.5 1122.1 69.3% 3345.9 1213.6 63.7% 2969.0 965.7 67.5%
3 3517.0 1383.6 60.7% 3536.9 1323.0 62.6% 3791.0 1027.1 72.9%
4 3467.3 1065.5 69.3% 3209.2 1093.2 65.9% 3347.2 1377.5 58.8%
5 3684.7 1293.9 64.9% 3186.8 1348.3 57.7% 3446.5 1125.2 67.4%

5

1 4054.9 763.6 81.2% 4384.6 1273.8 70.9% 3091.7 1340.9 56.6%
2 5115.5 1367.8 73.3% 4838.1 1412.5 70.8% 4548.3 930.1 79.6%
3 4268.9 1324.9 69.0% 4124.7 1684.9 59.2% 3834.2 1256.0 67.2%
4 4150.1 1524.5 63.3% 3734.5 1173.7 68.6% 3352.0 1513.1 54.9%
5 4181.0 1481.0 64.6% 3445.8 1069.2 69.0% 2617.0 991.7 62.1%

6

1 2171.6 822.2 62.1% 2769.2 968.5 65.0% 2939.9 1095.4 62.7%
2 2616.2 1257.0 52.0% 2884.0 1458.4 49.4% 3663.4 785.0 78.6%
3 3182.4 1773.5 44.3% 2596.0 1515.6 41.6% 4206.4 1206.8 71.3%
4 2669.5 1067.9 60.0% 3018.1 1177.5 61.0% 3812.2 1082.2 71.6%
5 2932.5 1128.4 61.5% 2662.9 1114.4 58.2% 3126.1 816.9 73.9%

5. Discussion

The computer industry is growing significantly as Moore’s Law continues to ferment
in recent years. However, the performance of the hardware could be improved by the
functionality established by the original developers. In contrast, software systems can be
used infinitely according to the user’s imagination. The two play a complementary role,
meaning they must complement each other for the entire computer system to achieve the
state of truth, goodness, and beauty.

Unfortunately, current software design is geared towards programmable design. Un-
der this premise, making programming more convenient is a goal people often consider,
and structured design has become a method people usually use. The thinking of struc-
tured programming is to use appropriate symbols to represent the ideas people want to
express and how to operate these designed symbols (so-called algorithms). When the
entire system design moves towards programmable structural design, it will face a severe
problem. When a specific function needs to be changed, even slightly, it may need to
be significantly changed. From another perspective, when an existing system is created
with minor changes, the entire system may become completely unsuitable (for example,
modification of some initial settings). A feasible thinking is to put features conducive to
malleability into software design thinking. We all know that biological systems are highly
self-modifying. The ANM system used in this study captures some of the characteristics
of organisms that are conducive to modification and implements them in the design of
software systems.

From the perspective of building a customized intelligent fatigued driving detection
system, biological-like adaptability is undoubtedly an ideal goal. This is because it must
be able to meet different needs, such as various groups of people. Under this premise, an
intelligent system must have rich learning capabilities, conduct long-term continuous prob-
lem solving of complex problems, and have a considerable degree of plasticity to adapt to
different needs. The difficulty is that everyone’s driving habits are entirely different. There-
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fore, establishing a fatigue detection system suitable for mass popularization is still a long
way away. Customized design is an inevitable trend. Intelligent assistance systems must
find the best answer and adjust at any time according to the user’s needs in a self-corrective
manner. In addition, the system must have a certain level of noise tolerance to cope with
transient changes in user movements while operating in a disturbed environment.

This research integrates information obtained from three sensing devices: eye move-
ment, finger pressure, and plantar pressure. It uses an autonomous learning architecture
to build a customized fatigued driving detection system. Then, we explore its feasibility
for fatigued driving detection through different experiments. First, we verified that the
ANM system can be used to learn and classify driving clips. Then, we verified that we
could judge whether the driver was fatigued by a series of driving behaviors (rather than
a single momentary behavior). Finally, we verify the results under the assumption that
drivers are experiencing three different distractions. The authors would like to add that
the current stage of this research emphasizes functional exploration, that is, the feasibility
of establishing an intelligent system that integrates eye, hand, and foot sensing. It is still
different from the actual real driving situation.

The current research on intelligent fatigue driving detection includes two lines of
directions. One is the fatigue driving sensor, and the other is the intelligent system. Re-
garding the studies on sensors, some studies focus on the judgment of the movements of
the eyes, hands, and feet, while some focus on the analysis of the force of the hands and
feet. However, whether the methods performed are action discrimination or force analysis,
one of the limitations of research in this area is how to process sensor data from different
sources in a timely or even synchronous manner, and another limitation is how to process
sensor data from different sources appropriately. In the data synchronization processing
part, this research is still at the stage of functional exploration. Therefore, the entire research
is still limited to manual processing in the data collection part. However, the ANM system
used in this study has an autonomous learning function in the information integration part.
During the learning process, it can discover each information source’s role in exploring
different types of fatigue driving. However, this research still has limitations: it requires
significant computer computing time to operate the entire ANM system with current com-
puter hardware. Note that the concept of ANM system construction is a multi-layered
competitive network. The information processing within each neuron can be comparable
with that of the network architecture. We use discontinuous event processing to simulate
such a multi-layer network architecture wherein each neural activity change is an event.
In this way, we can make the system produce different timing processing dynamics (that
is, converting from a series of time and space information to another series of time and
space information). If we plan to use a sequential processing computer to simulate the
entire system dynamics, it will require a lot of computing resources. Because of this, the
information-processing capabilities that this study can present are also limited to some
extent. In the future, when the hardware shows considerable growth, we can increase
the dynamics within neurons (for example, by growing the essential components within
the information-processing unit and the relationship between each other) or increase the
processing methods of operating control neurons. Future research in this area can improve
the integration of facial expressions and head information. Many scholars have made
considerable research results in this area. In this way, we can make the system produce
different timing processing dynamics.

On the other hand, this study considers further integrating the information of the
electroencephalograph (this research team has obtained preliminary experimental results
in this regard, but it has yet to be mature at this stage to the extent that it can be published
publicly). In terms of algorithms, the system used in this study should make additional
use of current deep learning technology (long- and short-term memory) to increase the
system’s functionality in a Hebbian manner (that is, converting a series of spatio-temporal
information into another series of spatio-temporal information). If we plan to use a se-
quential processing computer to simulate the dynamics of the entire system, it will require
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a lot of computing resources. Because of this, the information-processing capabilities
that this study can present are also limited. To a certain extent, in the future, when the
hardware shows considerable growth, the limitation of information-processing capabilities
that the ANM system can simulate will increase (for example, by increasing the essential
components inside the information-processing unit and their relationship to each other);
alternatively, increasing the processing methods of operating control neurons can improve
the integration of facial outcomes.

6. Conclusions

Fatigued driving is a problem that most people will face, and this problem usually
occurs without conscious awareness or through the driver not paying attention. If a cus-
tomized intelligent assistance system can be built to assist driving from people’s sensory
systems, it is generally believed to help people drive more or less safely. Current develop-
ment in this area is mainly accomplished by integrating deep learning, image processing,
biomedicine, human factors engineering, and other technologies. In addition to driving
fatigue, workplace fatigue caused by high-risk workplaces is similar. Most methods are to
establish intelligent physiological fatigue detection systems based on physiological charac-
teristics such as personal faces, eyes, mouth, and hand movements. However, everyone’s
driving behavior differs, and determining how to meet different customized needs is a
severe issue. Intelligent systems play an essential bridge role in customization.

In response to the customization issue, the ANM system proposed in this study has
more processing of the internal information of neurons than the general deep learning
technology. The former emphasizes processing information within neurons, while the latter
emphasizes processing information between neurons. Again, we emphasize that the ANM
system can also include information processing between neurons. Under this premise,
the ANM system in this study can also use the internal dynamics of a single neuron
to express information processing between neurons. In other words, a single neuron
in the ANM system is enough to handle the information processing that a traditional
neural network can represent. Most importantly, we establish the information-processing
activities inside neurons by capturing the characteristics of gradual changes in biological
structure/function. The experimental results of this study prove its permanent learning
ability and sufficient adaptability.

We indeed use simulations to generate distraction data. Undoubtedly, there is still a
considerable difference between these data and the data generated by the driver’s actual
fatigue. In other words, the simulation data used in this study cannot accurately reflect
the actual behavioral information of fatigue. However, this study emphasizes that collect-
ing fatigue driving data from actual drivers is challenging. Undoubtedly, it is not only
hazardous but also costly. Secondly, another insurmountable problem is sorting out the
so-called “drowsy driving episodes” from a continuous period of driving behavior. It is a
controversial issue, as judging “drowsy driving episodes could be subjective. In particular,
it is more difficult for everyone to have different driving behaviors. Regarding this issue,
the purpose of this study is not to immediately apply the entire system to fatigue driving
detection but to prove whether the learning system used in this study has a self-correction
mechanism for continuous learning. When the whole system matures, we can transplant it
to actual driving situations and establish a personalized fatigue driving detection system
through long-term personal use by drivers. In the current experimental stage, this study
uses a series of simulation aspects to gradually fill the gap between simulated data and
actual data during the experimental stage.

This study explores the establishment of a non-intrusive system. It allows us to re-
search different topics without harming or affecting users. Although this study uses a sim-
ple information-processing system that integrates eye movement, finger bending/pressure,
and plantar pressure sensing, the results obtained through this study can prove that in the
future, through better eyes, hand, and foot sensing equipment, we can build a state-of-the-
art, intelligent, customized fatigued driving detection system. It can even be developed
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into a simple and portable device or combined with a cloud server to calculate and analyze
data, significantly increasing the possibility of creating a customized intelligent system.
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